Analysis of RF requirements for Active Antenna System

Size: px
Start display at page:

Download "Analysis of RF requirements for Active Antenna System"

Transcription

1 212 7th International ICST Conference on Communications and Networking in China (CHINACOM) Analysis of RF requirements for Active Antenna System Rong Zhou Department of Wireless Research Huawei Technology Beijing, China Abstract Active Antenna System (AAS) is a Base Station equipped with an antenna array system, the radiation pattern of which may be dynamically adjustable. Since the interactions between the transmitters and receivers within the AAS might be different from the convention BS and the convention antenna system, the impacts of the transmitted or received radio signals on the transmitter and receivers shall be studied. In this article, we present an overview on some typical new characteristics of the AAS, such as spatial ACLR, in-band blocking. Then quantitative study of in-band blocking is conducted according system level simulations. Keywords - AAS; RF;In-band blocking; spatial ACLR; I. INTRODUCTION Presently, 3GPP (3 rd Generation Partnership Project) RAN Working Group 4 is studying on the RF and EMC aspects of Active Antenna System (AAS). By integrating the transceivers and the radiating elements in one package and applying beam forming vectors to the radiating elements digitally which is different from legacy Base Station (BS), AAS has the capability of applying additional beamforming (BF) on vertical direction in addition to horizontal-only BF. This capability of 3-Dimension (3D) spatial processing has the potential to improve the system performance. Furthermore AAS could eliminate the cable loss and reduce site engineering complexities costs. Since the interactions between the antenna array system and the transmitters and receivers within the AAS might be different from the legacy BS and the convention antenna system, the impacts of the transmitted or received radio signals on the transmitter and receivers shall be investigated. The methodologies employed to determine AAS radio transmission and reception characteristics could follow the similar methodologies for convention BS, i.e. coexistence studying of AAS with other system is required with taking into account of system scenarios and implementation issues to ensure that the coexisting systems will not significantly degrade the performance of each other. In this article we give a detailed analysis of new characteristics of AAS, focusing on Adjacent Channel Leakage power Ratio (ACLR) and In-band blocking requirement, which might be different from the legacy BS. Then we provided some preliminary simulation results for AAS in-band blocking level, followed by a discussion of simulation assumptions, including Wu Rong Zhang, Ph.D., IEEE member Department of Wireless Research Huawei Technology Beijing, China 3D antenna modeling. In final, the suggestion for defining AAS Radio Frequency (RF) requirement was provided according to the analysis. II. NEW CHARACTORISICS FOR AAS A. Receive RF requirements For AAS receive requirements, let s start the discussions from the in-band blocking requirement, and other receiver requirements such as in-channel selectivity, dynamic range, and the receiver inter-modulation could follow the similar discussion. The in-band blocking interference power represents the total received power at the antenna connector (via the connected antenna) from all the UEs in the adjacent system within the same operating band but based on the uncoordinated deployment. The methodology of defining BS in-band blocking requirements for UTRA and E-UTRA is described in TR and TR36.942, i.e. system simulations were performed to evaluate the CDF distribution of the received power from UEs within the systems at the adjacent channel. The in-band blocking requirement shall be the power level that the BS may receive with very low possibility, for example,.1% for Macro BS. As shown in Fig.1, the signals collected from the antenna elements are combined before being fed into the front end of the receiver for traditional BS. While for AAS BS, each receiver is connected with one or multiple antenna elements. Since the antenna pattern connected with the receiver is different between traditional BS and AAS, the received blocking level could be different as well /12/$ IEEE

2 Figure 1. Scenarios of received blocking signals at traditional BS and AAS. B. Transmit RF requirement For transmit requirements, we would like to compare the ACLR of traditional BS with AAS at the first step. For traditional BS, both the wanted signal and unwanted (Out-of-Band and Spurious) emissions are transmitted from a single RF transmit chain, and the weighting vectors are applied to the identical (wanted / unwanted) signal at each antenna element and the weighting process is implemented as phase shift network inside the antenna. Thus the composite antenna generates the similar beam in the wanted signal domain and the unwanted emission domain, as shown in Fig. 2. Figure 3. Spatial selectivity of the transmitter signals. According to the simulation, the main beam pattern (un-normalized) for uncorrelated signals is usually wider than that of wanted signal, shown in Figure 4. Gain / Y direction Gain / X direction Figure 4. Antenna pattern of uncorrelated distortion and noise Figure 2. Traditional BTS signal emissions. However, this process is different for AAS. For the i th transmitter in the AAS BS, the output signal P i can be denoted as, P i = S + F + F i + N i (1) where S is the wanted signal to be transmitted. The wanted signals are identical for all the transmitters. F is the correlated distortions due to pre-distortion, crest factor reduction, and etc, and its radiation pattern is identical as the one for wanted signal. F i is the uncorrelated distortions due to transmitter chain inconsistence, such as the discrepancies of the RF modules in the transmitter chains, which can t be controlled by the weighting vectors. N i is the thermal noise in the transmitter chain which should be uncorrelated between the transmitters and can t be controlled by the weighting vectors. The phenomenon in Fig.3 and Fig.4 leads to the spatial selectivity of the relative differences between the wanted signal and the distortions plus noise, or the ACLR. The ACLR selectivity means the interference leakage to the adjacent band are not uniformly distributed in the spatial domain, i.e. some of the areas covered by the adjacent systems may suffer more interference from AAS BS while some others may suffer less. The ACLR selectivity is determined by the correlation level between the transmitters. The spatial ACLR shall be properly modeled and the impacts on the coexistence between adjacent systems shall be evaluated. III. SYSTEM SIMULATION To study AAS in-band blocking requirement quantitatively, system level simulation is performed. In this section we first describe the simulation assumptions and parameters used in the study. Then some initial simulation results are present to show the blocking level received at AAS. A. Simulation Case The most typical application of the AAS BS is the macro cell coverage with 3-sectors at each site. Correspondingly, Macro legacy system to Macro AAS system is considered at 68

3 the first, meanwhile Macro legacy system to Macro legacy system is also simulated for comparison, as shown in Table 1. where θ3db = 65 degrees is the vertical 3dB bandwidth, and SLAV = 25 db is the front-back ratio on vertical domain. TABLE 1 SIMULATION CASES FOR IN-BAND BLOCKING EVALUATION Aggressor Victim 1-a 1-b 1-c 1 z Case -1 1 B. Simulation Assumptions -1 1) 3D antenna model To evaluate AAS blocking requirement, we could first establish the radiating element pattern, and then, on db domain, make superposition of the element pattern with the array pattern which is determined by the vertical transmit weighting factor [1]. The antenna modeling is based on the preliminary geometry as shown in Fig.5. 1 y 3 2 x Figure 6. Radiating element pattern b) Composite antenna pattern The proposed composite pattern is a superposition of the element pattern and the vertical array pattern which is given by, N G (θ, ϕ ) = AE (θ, ϕ ) + 1 log1 wn u n n=1 2 (5) where un is the signal arrived at the n th radiating element with different phase shift. wn is the complex transmit weights applied to the vertical antenna array, assumed to be : wn = (6) where βetilt is electrical down tilt of BS, and dv is the element vertical spacing. Figure 5. Antenna array geometry. a) Radiating element pattern It is assumed that the radiating element pattern model is in a similar form to the 3GPP model in TR as below, and antenna pattern is shown in Fig z AE(φ,θ) = Gmax min{ [AE,H(φ)+AE,H(θ)], Am} d 1 exp i 2π (n 1) v sin β etilt λ N (2) -5 where -1 φ and θ is the given azimuth and elevation angle which is defined in Fig Gmax is the maximum directional gain of the radiating element in db y Figure 7. Composite antenna pattern 2) Cell layout For uncoordinated network simulations, identical cell layouts for each network shall be applied with worst case shift between sites. The second network s sites are located at the first network s cell edge. Inter site distance (ISD) of 75 meter is applied. (3) where φ3db = 65 degrees is the horizontal 3dB bandwidth and Am = 25dB is the front-back ratio. AE,H is the vertical pattern: AE,V (θ) = min[12(θ/θ3db)2,slav] 1 x AE,H is the horizontal pattern: AE,H (φ) = min[12(φ/φ3db)2,am] (4) 681

4 For 3D model, UEs are distributed on the flat ground, with the uniform height of 1.5 meter, and the height of the macro site are uniformly 3 meter. 3) Propagation Modeling For Macro cell deployed in urban or suburban area, the path loss model defined in 3GPP TR is applied, assuming a carrier frequency of 2GHz. L(R) = Log 1 (R), R in kilometer; Path_Loss_a = max {L(R), Free_Space_Loss}+ LogF; Path_Loss_macro= max {Path_Loss_a, Free_Space_Loss} G_Tx G_Rx; 4) Simulation parameters Other simulation assumptions and parameters are listed in Table 2. TABLE 2 GENERAL SIMULATION ASSUMPTIONS Parameters Cellular layout Duplex UE distribution Carrier frequency System bandwidth Inter Site Distance (ISD) Minimum distance UE<->BS Log normal shadowing Shadow correlation coefficient Scheduling algorithm RB number per active UEs number of active UEs UE max Tx power UE min Tx power BS max Tx power Power control parameters Antenna configuration at MS Down tile angle of BS Cable loss of legacy BS Cable loss of AAS The height of BS The height of MS Radiation Element Size (Row * Column) Vertical radiating element spacing Output statistics (Interferer levels) Values Hexagonal, 3 sectors/cell (19 cells wrap-around), uncoordinated FDD Average 1 UEs per cell (sector). UEs on flat ground 2GHz 1MHz 75m 35m Standard Deviation of 1 db.5 (inter site) / 1. (intra site) Round Robin, full buffered UL: 16RBs (total: 48 RBs) UL: 3 UEs 23 dbm -4 dbm 46dBm TR Section : PC Set 1 (alpha=1; P=-11dBm) Omni-directional 1 degree electrical down tile 1 db db 3 m 1.5 m 1*1.9λ CDF of the received interference power in dbm from an aggressor (Enlarged to show 99.99% point) C. Simulation Result We now present some preliminary simulation results for in-band blocking level received at AAS individual receiver and the receiver of the traditional BS under different Macro deployment scenarios, by using the simulation methodology and assumptions described above. CDF Blocking level at BS receiver (dbm) Figure 8. Received in-blocking level. Case 1-a Case 1-b Case 1-c The 99.99% CDF power levels reading from Fig.8 are summarized in Table 3 below. TABLE 1 BLOCKING LEVELS AT 99.99% CDF Case Aggressor Victim 1-a 1-b 1-c 99.99% CDF (dbm) Some conclusions could be obtained based on the above simulation results: In the real network, the blocking interference signals presented at the individual radiating element of the AAS are almost the same with that of BS equipped with traditional antenna. The reason is that comparing with traditional antenna, the element antenna shows larger gain than the composited antenna pattern in a wide direction. This implies that the interference received by element antenna would not be 1log 1 (N) lower than that of the traditional antenna in tradition BS. Therefore it is suggested that the in-band blocking requirement for tradition BS could applied for each receiver of AAS. In the existing testing specifications for BS using antenna array[2], it defines that for receiver testing, the test signals applied to the receiver antenna connectors shall be such that the sum of the powers of the signals applied equals the power of the test signal(s) specified in the test, and this requirements apply to each test, as shown below. 682

5 Test input port P s Splitting network Rx antenna interface P i Base Station REFERENCES [1] Xue-Song Yang, Hao Qian, Bing-Zhong Wang and Shaoqiu Xiao, Radiation Pattern Computation of Pyramidal Conformal Antenna Array with Active-Element Pattern Technique, Antennas and Propagation Magazine, IEEE, Volume 53, Feb.211, pp [2] TS , Release 1, UTRA Base Station conformance testing P s = sum(p i ), where P s is the required input power specified Figure 9. Receiver test set-up. If we use this testing approach for AAS, the wanted signal and blocking interference are equally allocated to each antenna port, and the blocking capability of each receiver is tested as: Blocking interference: Legacy BS in-band blocking level 1Log 1 (N); Wanted signal: Legacy BS wanted signal level 1Log 1 (N); where N is number of antenna ports in the AAS. However, according to our simulation result, there is not a 1log 1 (N) db relations between the blocking interference power level at individual element in AAS and the legacy BS as implied by the array testing setup using power splitter. Defining and testing the in-band blocking performance of each receiver in AAS at 1Log 1 (N) db scaled to legacy BS requirement would expose the AAS to big interference risks which eventually impact the stability of the network. The similar issues can be found for other receiver tests such as Dynamic Range, In-band Selectivity, and Inter-modulation. IV. CONCLUSION AAS is an emerging technology which is an integration of multiple transceivers and the antenna array in one package and offers significant benefit on site engineering and system performance gain. Since the interactions between the transmitters and receivers within the AAS might be different from the legacy BS and the legacy antenna system, the impacts of the transmitted or received radio signals on the transmitter and receivers could be different as well. This implies that new requirements shall be defined for the AAS with taking into account of its new characteristics. 683

3GPP TR V7.0.0 ( )

3GPP TR V7.0.0 ( ) TR 25.816 V7.0.0 (2005-12) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; UMTS 900 MHz Work Item Technical Report (Release 7) The present document

More information

System Performance of Cooperative Massive MIMO Downlink 5G Cellular Systems

System Performance of Cooperative Massive MIMO Downlink 5G Cellular Systems IEEE WAMICON 2016 April 11-13, 2016 Clearwater Beach, FL System Performance of Massive MIMO Downlink 5G Cellular Systems Chao He and Richard D. Gitlin Department of Electrical Engineering University of

More information

REPORT ITU-R M

REPORT ITU-R M Rep. ITU-R M.2113-1 1 REPORT ITU-R M.2113-1 Sharing studies in the 2 500-2 690 band between IMT-2000 and fixed broadband wireless access systems including nomadic applications in the same geographical

More information

A Novel 3D Beamforming Scheme for LTE-Advanced System

A Novel 3D Beamforming Scheme for LTE-Advanced System A Novel 3D Beamforming Scheme for LTE-Advanced System Yu-Shin Cheng 1, Chih-Hsuan Chen 2 Wireless Communications Lab, Chunghwa Telecom Co, Ltd No 99, Dianyan Rd, Yangmei City, Taoyuan County 32601, Taiwan

More information

3GPP TR V8.0.0 ( )

3GPP TR V8.0.0 ( ) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) system scenarios; () The

More information

REPORT ITU-R M Characteristics of broadband wireless access systems operating in the land mobile service for use in sharing studies

REPORT ITU-R M Characteristics of broadband wireless access systems operating in the land mobile service for use in sharing studies Rep. ITU-R M.2116 1 REPORT ITU-R M.2116 Characteristics of broadband wireless access systems operating in the land mobile service for use in sharing studies (Questions ITU-R 1/8 and ITU-R 7/8) (2007) 1

More information

NTT DOCOMO Technical Journal. 1. Introduction. 2. Features of an Activeantenna. 2.1 Basic Configuration of Base Station using an Active Antenna

NTT DOCOMO Technical Journal. 1. Introduction. 2. Features of an Activeantenna. 2.1 Basic Configuration of Base Station using an Active Antenna Active Antenna for More Advanced and Economical Radio Base Stations Base Station Active antennas that integrate radio transceiver functions in the antenna unit have been attracting attention as an approach

More information

ETSI TR V (201

ETSI TR V (201 TR 136 942 V13.0.0 (201 16-01) TECHNICAL REPORT LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); (RF) system scenarioss (3GPP TR 36.942 version 13.0.0 Release 13) Radio Frequency 1 TR 136 942

More information

ARIB TR-T V Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) system scenarios (Release 9)

ARIB TR-T V Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) system scenarios (Release 9) ARIB TR-T12-36.942 V9.2.0 Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) system scenarios (Release 9) Refer to Notice in the preface of ARIB TR-T12 for Copyrights. TR 36.942

More information

03_57_104_final.fm Page 97 Tuesday, December 4, :17 PM. Problems Problems

03_57_104_final.fm Page 97 Tuesday, December 4, :17 PM. Problems Problems 03_57_104_final.fm Page 97 Tuesday, December 4, 2001 2:17 PM Problems 97 3.9 Problems 3.1 Prove that for a hexagonal geometry, the co-channel reuse ratio is given by Q = 3N, where N = i 2 + ij + j 2. Hint:

More information

ETSI TR V8.2.0 ( ) Technical Report

ETSI TR V8.2.0 ( ) Technical Report TR 136 942 V8.2.0 (2009-07) Technical Report LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) system scenarios (3GPP TR 36.942 version 8.2.0 Release 8) 1 TR 136 942 V8.2.0

More information

3GPP TR V ( )

3GPP TR V ( ) TR 36.931 V11.0.0 (2012-09) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency

More information

TDD-TDD Interference Analysis Involving Synchronized WiMAX Systems 18 September 2009

TDD-TDD Interference Analysis Involving Synchronized WiMAX Systems 18 September 2009 TDD-TDD Interference Analysis Involving Synchronized WiMAX Systems 18 September 2009 Copyright 2009 WiMAX Forum. All rights reserved. WiMAX, Fixed WiMAX, Mobile WiMAX, WiMAX Forum, WiMAX Certified WiMAX

More information

3G TR V2.2.1( )

3G TR V2.2.1( ) 3G TR 25.942 V2.2.1(1999-12) Technical Report 3rd Generation Partnership Project; Technical Specification Group (TSG) RAN WG4; RF System Scenarios The present document has been developed within the 3 rd

More information

Providing Extreme Mobile Broadband Using Higher Frequency Bands, Beamforming, and Carrier Aggregation

Providing Extreme Mobile Broadband Using Higher Frequency Bands, Beamforming, and Carrier Aggregation Providing Extreme Mobile Broadband Using Higher Frequency Bands, Beamforming, and Carrier Aggregation Fredrik Athley, Sibel Tombaz, Eliane Semaan, Claes Tidestav, and Anders Furuskär Ericsson Research,

More information

Beamforming for 4.9G/5G Networks

Beamforming for 4.9G/5G Networks Beamforming for 4.9G/5G Networks Exploiting Massive MIMO and Active Antenna Technologies White Paper Contents 1. Executive summary 3 2. Introduction 3 3. Beamforming benefits below 6 GHz 5 4. Field performance

More information

Keysight Technologies Performing LTE and LTE-Advanced RF Measurements with the E7515A UXM Wireless Test Set

Keysight Technologies Performing LTE and LTE-Advanced RF Measurements with the E7515A UXM Wireless Test Set Keysight Technologies Performing LTE and LTE-Advanced RF Measurements with the E7515A UXM Wireless Test Set Based on 3GPP TS 36.521-1 Application Note 02 Keysight Performing LTE and LTE-Advanced Measurements

More information

White Paper. 850 MHz & 900 MHz Co-Existence. 850 MHz Out-Of-Band Emissions Problem xxxx-xxxreva

White Paper. 850 MHz & 900 MHz Co-Existence. 850 MHz Out-Of-Band Emissions Problem xxxx-xxxreva White Paper 850 MHz & 900 MHz Co-Existence 850 MHz Out-Of-Band Emissions Problem 2016 xxxx-xxxreva White Paper 850 MHz & 900 MHz Coexistence - 850 MHz Out-of-Band Emissions Problem Table of Contents Introduction

More information

ETSI TR V ( )

ETSI TR V ( ) TR 136 931 V14.0.0 (2017-04) TECHNICAL REPORT LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) requirements for LTE Pico Node B (3GPP TR 36.931 version 14.0.0 Release 14)

More information

Next Generation Mobile Networks NGMN Liaison Statement to 5GAA

Next Generation Mobile Networks NGMN Liaison Statement to 5GAA Simulation assumptions and simulation results of LLS and SLS 1 THE LINK LEVEL SIMULATION 1.1 Simulation assumptions The link level simulation assumptions are applied as follows: For fast fading model in

More information

3GPP TS V ( )

3GPP TS V ( ) TS 25.106 V5.12.0 (2006-12) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; UTRA repeater radio transmission and reception (Release 5) The

More information

3GPP TS V6.6.0 ( )

3GPP TS V6.6.0 ( ) TS 25.106 V6.6.0 (2006-12) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; UTRA repeater radio transmission and reception (Release 6) The

More information

Adaptive Transmission Scheme for Vehicle Communication System

Adaptive Transmission Scheme for Vehicle Communication System Sangmi Moon, Sara Bae, Myeonghun Chu, Jihye Lee, Soonho Kwon and Intae Hwang Dept. of Electronics and Computer Engineering, Chonnam National University, 300 Yongbongdong Bukgu Gwangju, 500-757, Republic

More information

COMPATIBILITY BETWEEN UMTS 900/1800 AND SYSTEMS OPERATING IN ADJACENT BANDS

COMPATIBILITY BETWEEN UMTS 900/1800 AND SYSTEMS OPERATING IN ADJACENT BANDS Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) COMPATIBILITY BETWEEN UMTS 900/1800 AND SYSTEMS OPERATING IN ADJACENT BANDS

More information

Technical Report Universal Mobile Telecommunications System (UMTS); Radio Frequency (RF) system scenarios (3GPP TR version 11.0.

Technical Report Universal Mobile Telecommunications System (UMTS); Radio Frequency (RF) system scenarios (3GPP TR version 11.0. TR 125 942 V11.0.0 (2012-10) Technical Report Universal Mobile Telecommunications System (UMTS); Radio Frequency (RF) system scenarios (3GPP TR 25.942 version 11.0.0 Release 11) 1 TR 125 942 V11.0.0 (2012-10)

More information

FEASIBILITY STUDY ON FULL-DUPLEX WIRELESS MILLIMETER-WAVE SYSTEMS. University of California, Irvine, CA Samsung Research America, Dallas, TX

FEASIBILITY STUDY ON FULL-DUPLEX WIRELESS MILLIMETER-WAVE SYSTEMS. University of California, Irvine, CA Samsung Research America, Dallas, TX 2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) FEASIBILITY STUDY ON FULL-DUPLEX WIRELESS MILLIMETER-WAVE SYSTEMS Liangbin Li Kaushik Josiam Rakesh Taori University

More information

(R1) each RRU. R3 each

(R1) each RRU. R3 each 26 Telfor Journal, Vol. 4, No. 1, 212. LTE Network Radio Planning Igor R. Maravićć and Aleksandar M. Nešković Abstract In this paper different ways of planning radio resources within an LTE network are

More information

Closed-loop MIMO performance with 8 Tx antennas

Closed-loop MIMO performance with 8 Tx antennas Closed-loop MIMO performance with 8 Tx antennas Document Number: IEEE C802.16m-08/623 Date Submitted: 2008-07-14 Source: Jerry Pi, Jay Tsai Voice: +1-972-761-7944, +1-972-761-7424 Samsung Telecommunications

More information

ECC Report 197. COMPATIBILITY STUDIES MSS TERMINALS TRANSMITTING TO A SATELLITE IN THE BAND MHz AND ADJACENT CHANNEL UMTS SERVICES

ECC Report 197. COMPATIBILITY STUDIES MSS TERMINALS TRANSMITTING TO A SATELLITE IN THE BAND MHz AND ADJACENT CHANNEL UMTS SERVICES ECC Report 197 COMPATIBILITY STUDIES MSS TERMINALS TRANSMITTING TO A SATELLITE IN THE BAND 198 21 MHz AND ADJACENT CHANNEL UMTS SERVICES approved May 213 ECC REPORT 197- Page 2 EXECUTIVE SUMMARY The aim

More information

ETSI TR V3.3.0 ( )

ETSI TR V3.3.0 ( ) TR 125 942 V3.3.0 (2002-06) Technical Report Universal Mobile Telecommunications System (UMTS); RF system scenarios (3GPP TR 25.942 version 3.3.0 Release 1999) 1 TR 125 942 V3.3.0 (2002-06) Reference RTR/TSGR-0425942v330

More information

3GPP TR V3.0.0 ( )

3GPP TR V3.0.0 ( ) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Networks; RF System Scenarios () The present document has been developed within the 3 rd Generation Partnership

More information

Base station antenna selection for LTE networks

Base station antenna selection for LTE networks White paper Base station antenna selection for LTE networks Ivy Y. Kelly, Ph.D. technology development strategist, Sprint Martin Zimmerman, Ph.D. Base Station Antenna engineering director, CommScope Ray

More information

Low-power shared access to spectrum for mobile broadband Modelling parameters and assumptions Real Wireless Real Wireless Ltd.

Low-power shared access to spectrum for mobile broadband Modelling parameters and assumptions Real Wireless Real Wireless Ltd. Low-power shared access to spectrum for mobile broadband Modelling parameters and assumptions Real Wireless 2011 Real Wireless Ltd. Device parameters LTE UE Max Transmit Power dbm 23 Antenna Gain dbi 0

More information

Performance Evaluation of Uplink Closed Loop Power Control for LTE System

Performance Evaluation of Uplink Closed Loop Power Control for LTE System Performance Evaluation of Uplink Closed Loop Power Control for LTE System Bilal Muhammad and Abbas Mohammed Department of Signal Processing, School of Engineering Blekinge Institute of Technology, Ronneby,

More information

White Paper 850 MHz & 900 MHz Co-Existence 900 MHz Receiver Blocking Problem

White Paper 850 MHz & 900 MHz Co-Existence 900 MHz Receiver Blocking Problem White Paper 850 MHz & 900 MHz Co-Existence 900 MHz Receiver Blocking Problem Table of Contents Introduction and Background 3 Assumptions 3 Receiver Blocking Problem 6 Conclusion 8 2 1. Introduction and

More information

Passive and active antenna systems for base stations of IMT systems

Passive and active antenna systems for base stations of IMT systems Report ITU-R M.2334-0 (11/2014) Passive and active antenna systems for base stations of IMT systems M Series Mobile, radiodetermination, amateur and related satellite services ii Rep. ITU-R M.2334-0 Foreword

More information

ADJACENT BAND COMPATIBILITY OF 400 MHZ TETRA AND ANALOGUE FM PMR AN ANALYSIS COMPLETED USING A MONTE CARLO BASED SIMULATION TOOL

ADJACENT BAND COMPATIBILITY OF 400 MHZ TETRA AND ANALOGUE FM PMR AN ANALYSIS COMPLETED USING A MONTE CARLO BASED SIMULATION TOOL European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ADJACENT BAND COMPATIBILITY OF 400 MHZ AND ANALOGUE FM PMR AN ANALYSIS

More information

Qualcomm Research DC-HSUPA

Qualcomm Research DC-HSUPA Qualcomm, Technologies, Inc. Qualcomm Research DC-HSUPA February 2015 Qualcomm Research is a division of Qualcomm Technologies, Inc. 1 Qualcomm Technologies, Inc. Qualcomm Technologies, Inc. 5775 Morehouse

More information

Submission on Proposed Methodology for Engineering Licenses in Managed Spectrum Parks

Submission on Proposed Methodology for Engineering Licenses in Managed Spectrum Parks Submission on Proposed Methodology and Rules for Engineering Licenses in Managed Spectrum Parks Introduction General This is a submission on the discussion paper entitled proposed methodology and rules

More information

RF exposure impact on 5G rollout A technical overview

RF exposure impact on 5G rollout A technical overview RF exposure impact on 5G rollout A technical overview ITU Workshop on 5G, EMF & Health Warsaw, Poland, 5 December 2017 Presentation: Kamil BECHTA, Nokia Mobile Networks 5G RAN Editor: Christophe GRANGEAT,

More information

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document.

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document. Hunukumbure, R. M. M., Beach, M. A., Allen, B., Fletcher, P. N., & Karlsson, P. (2001). Smart antenna performance degradation due to grating lobes in FDD systems. (pp. 5 p). Link to publication record

More information

Base Station (BS) Radio Transmission Minimum Requirements for LTE-U SDL. Presented at the LTE-U Forum workshop on May 28, 2015 in San Diego, CA

Base Station (BS) Radio Transmission Minimum Requirements for LTE-U SDL. Presented at the LTE-U Forum workshop on May 28, 2015 in San Diego, CA Base Station (BS) Radio Transmission Minimum Requirements for LTE-U SDL Presented at the LTE-U Forum workshop on May 28, 2015 in San Diego, CA Disclaimer and Copyright Notification Disclaimer and Copyright

More information

3GPP TS V8.0.0 ( )

3GPP TS V8.0.0 ( ) TS 36.104 V8.0.0 (2007-12) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station

More information

France. SHARING STUDY BETWEEN RADIOLOCATION AND IMT-2020 BASE STATION WITHIN MHz

France. SHARING STUDY BETWEEN RADIOLOCATION AND IMT-2020 BASE STATION WITHIN MHz Radiocommunication Study Groups Received: 12 September 2017 Document 14 September 2017 English only France SHARING STUDY BETWEEN RADIOLOCATION AND IMT-2020 BASE STATION WITHIN 31 800-33 400 MHz 1 Introduction

More information

ADJACENT BAND COMPATIBILITY OF TETRA AND TETRAPOL IN THE MHZ FREQUENCY RANGE, AN ANALYSIS COMPLETED USING A MONTE CARLO BASED SIMULATION TOOL

ADJACENT BAND COMPATIBILITY OF TETRA AND TETRAPOL IN THE MHZ FREQUENCY RANGE, AN ANALYSIS COMPLETED USING A MONTE CARLO BASED SIMULATION TOOL European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ADJACENT BAND COMPATIBILITY OF TETRA AND TETRAPOL IN THE 380-400 MHZ

More information

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved.

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved. LTE TDD What to Test and Why 2012 LitePoint Corp. 2012 LitePoint, A Teradyne Company. All rights reserved. Agenda LTE Overview LTE Measurements Testing LTE TDD Where to Begin? Building a LTE TDD Verification

More information

On the impact of interference from TDD terminal stations to FDD terminal stations in the 2.6 GHz band

On the impact of interference from TDD terminal stations to FDD terminal stations in the 2.6 GHz band On the impact of interference from TDD terminal stations to FDD terminal stations in the 2.6 GHz band Statement Publication date: 21 April 2008 Contents Section Annex Page 1 Executive summary 1 2 Introduction

More information

System-Level Performance of Downlink Non-orthogonal Multiple Access (NOMA) Under Various Environments

System-Level Performance of Downlink Non-orthogonal Multiple Access (NOMA) Under Various Environments System-Level Permance of Downlink n-orthogonal Multiple Access (N) Under Various Environments Yuya Saito, Anass Benjebbour, Yoshihisa Kishiyama, and Takehiro Nakamura 5G Radio Access Network Research Group,

More information

Survey of Power Control Schemes for LTE Uplink E Tejaswi, Suresh B

Survey of Power Control Schemes for LTE Uplink E Tejaswi, Suresh B Survey of Power Control Schemes for LTE Uplink E Tejaswi, Suresh B Department of Electronics and Communication Engineering K L University, Guntur, India Abstract In multi user environment number of users

More information

France. 1 Introduction. 2 Employed methodology. Radiocommunication Study Groups

France. 1 Introduction. 2 Employed methodology. Radiocommunication Study Groups Radiocommunication Study Groups Received: 10 February 2014 Document 10 February 2014 France COMPATIBILITY STUDY BETWEEN THE POTENTIAL NEW MS ALLOCATION AROUND THE 1 400-1 427 MHz PASSIVE BAND AND THE RADIO

More information

Wireless Physical Layer Concepts: Part III

Wireless Physical Layer Concepts: Part III Wireless Physical Layer Concepts: Part III Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

Outdoor Booster Equipment for 2 GHz FOMA

Outdoor Booster Equipment for 2 GHz FOMA Radio Equipment Booster Economization Outdoor Booster Equipment for 2 GHz FOMA Outdoor booster (repeater) equipment was developed for 2 GHz FOMA in order to provide services to previously blind areas promptly

More information

Sensitivity of optimum downtilt angle for geographical traffic load distribution in WCDMA

Sensitivity of optimum downtilt angle for geographical traffic load distribution in WCDMA Sensitivity of optimum downtilt angle for geographical traffic load distribution in WCDMA Jarno Niemelä, Tero Isotalo, Jakub Borkowski, and Jukka Lempiäinen Institute of Communications Engineering, Tampere

More information

Approved September 2014

Approved September 2014 ECC Report 220 Compatibility/sharing studies related to PMSE, DECT and SRD with DA2GC in the 2 GHz unpaired bands and MFCN in the adjacent 2 GHz paired band Approved September 2014 ECC REPORT 220 - Page

More information

ADJACENT BAND COMPATIBILITY BETWEEN GSM AND CDMA-PAMR AT 915 MHz

ADJACENT BAND COMPATIBILITY BETWEEN GSM AND CDMA-PAMR AT 915 MHz Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ADJACENT BAND COMPATIBILITY BETWEEN GSM AND CDMA-PAMR AT 915 MHz

More information

Application Note. StarMIMO. RX Diversity and MIMO OTA Test Range

Application Note. StarMIMO. RX Diversity and MIMO OTA Test Range Application Note StarMIMO RX Diversity and MIMO OTA Test Range Contents Introduction P. 03 StarMIMO setup P. 04 1/ Multi-probe technology P. 05 Cluster vs Multiple Cluster setups Volume vs Number of probes

More information

Heterogeneous Networks (HetNets) in HSPA

Heterogeneous Networks (HetNets) in HSPA Qualcomm Incorporated February 2012 QUALCOMM is a registered trademark of QUALCOMM Incorporated in the United States and may be registered in other countries. Other product and brand names may be trademarks

More information

Performance review of Pico base station in Indoor Environments

Performance review of Pico base station in Indoor Environments Aalto University School of Electrical Engineering Performance review of Pico base station in Indoor Environments Inam Ullah, Edward Mutafungwa, Professor Jyri Hämäläinen Outline Motivation Simulator Development

More information

WINNER+ IMT-Advanced Evaluation Group

WINNER+ IMT-Advanced Evaluation Group IEEE L802.16-10/0064 WINNER+ IMT-Advanced Evaluation Group Werner Mohr, Nokia-Siemens Networks Coordinator of WINNER+ project on behalf of WINNER+ http://projects.celtic-initiative.org/winner+/winner+

More information

Cross-correlation Characteristics of Multi-link Channel based on Channel Measurements at 3.7GHz

Cross-correlation Characteristics of Multi-link Channel based on Channel Measurements at 3.7GHz Cross-correlation Characteristics of Multi-link Channel based on Channel Measurements at 3.7GHz Myung-Don Kim*, Jae Joon Park*, Hyun Kyu Chung* and Xuefeng Yin** *Wireless Telecommunications Research Department,

More information

ETSI TS V8.0.0 ( ) Technical Specification

ETSI TS V8.0.0 ( ) Technical Specification TS 136 106 V8.0.0 (2009-01) Technical Specification LTE; Evolved Universal Terrestrial Radio Access (); FDD repeater radio transmission and reception (3GPP TS 36.106 version 8.0.0 Release 8) 1 TS 136 106

More information

CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions

CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions This dissertation reported results of an investigation into the performance of antenna arrays that can be mounted on handheld radios. Handheld arrays

More information

Sibel tombaz, Pål Frenger, Fredrik Athley, Eliane Semaan, Claes Tidestav, Ander Furuskär Ericsson research.

Sibel tombaz, Pål Frenger, Fredrik Athley, Eliane Semaan, Claes Tidestav, Ander Furuskär Ericsson research. Sibel tombaz, Pål Frenger, Fredrik Athley, Eliane Semaan, Claes Tidestav, Ander Furuskär Ericsson research Sibel.tombaz@ericsson.com Identify the achievable energy savings with 5G-NX systems operating

More information

ECC Report 203. Approved 8 November 2013

ECC Report 203. Approved 8 November 2013 ECC Report 203 Least Restrictive Technical Conditions suitable for Mobile/Fixed Communication Networks (MFCN), including IMT, in the frequency bands 3400-3600 MHz and 3600-3800 MHz Approved 8 November

More information

Smart antenna technology

Smart antenna technology Smart antenna technology In mobile communication systems, capacity and performance are usually limited by two major impairments. They are multipath and co-channel interference [5]. Multipath is a condition

More information

3GPP TR V ( )

3GPP TR V ( ) TR 25.951 V10.0.0 (2011-04) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; FDD Base Station (BS) classification (Release 10) The present document

More information

2. LITERATURE REVIEW

2. LITERATURE REVIEW 2. LITERATURE REVIEW In this section, a brief review of literature on Performance of Antenna Diversity Techniques, Alamouti Coding Scheme, WiMAX Broadband Wireless Access Technology, Mobile WiMAX Technology,

More information

ECC Report 276. Thresholds for the coordination of CDMA and LTE broadband systems in the 400 MHz band

ECC Report 276. Thresholds for the coordination of CDMA and LTE broadband systems in the 400 MHz band ECC Report 276 Thresholds for the coordination of CDMA and LTE broadband systems in the 400 MHz band 27 April 2018 ECC REPORT 276 - Page 2 0 EXECUTIVE SUMMARY This Report provides technical background

More information

TETRA Tx Test Solution

TETRA Tx Test Solution Product Introduction TETRA Tx Test Solution Signal Analyzer Reference Specifications ETSI EN 300 394-1 V3.3.1(2015-04) / Part1: Radio ETSI TS 100 392-2 V3.6.1(2013-05) / Part2: Air Interface May. 2016

More information

Field Test of Uplink CoMP Joint Processing with C-RAN Testbed

Field Test of Uplink CoMP Joint Processing with C-RAN Testbed 212 7th International ICST Conference on Communications and Networking in China (CHINACOM) Field Test of Uplink CoMP Joint Processing with C-RAN Testbed Lei Li, Jinhua Liu, Kaihang Xiong, Peter Butovitsch

More information

Modelling and simulation of IMT networks and systems for use in sharing and compatibility studies

Modelling and simulation of IMT networks and systems for use in sharing and compatibility studies Recommendation ITU-R M.2101-0 (02/2017) Modelling and simulation of IMT networks and systems for use in sharing and compatibility studies M Series Mobile, radiodetermination, amateur and related satellite

More information

Downtilted Base Station Antennas A Simulation Model Proposal and Impact on HSPA and LTE Performance

Downtilted Base Station Antennas A Simulation Model Proposal and Impact on HSPA and LTE Performance Downtilted Base Station Antennas A Simulation Model Proposal and Impact on HSPA and LTE Performance Fredrik Gunnarsson, Martin N Johansson, Anders Furuskär, Magnus Lundevall, Arne Simonsson, Claes Tidestav,

More information

Potential Throughput Improvement of FD MIMO in Practical Systems

Potential Throughput Improvement of FD MIMO in Practical Systems 2014 UKSim-AMSS 8th European Modelling Symposium Potential Throughput Improvement of FD MIMO in Practical Systems Fangze Tu, Yuan Zhu, Hongwen Yang Mobile and Communications Group, Intel Corporation Beijing

More information

Active Antennas: The Next Step in Radio and Antenna Evolution

Active Antennas: The Next Step in Radio and Antenna Evolution Active Antennas: The Next Step in Radio and Antenna Evolution Kevin Linehan VP, Chief Technology Officer, Antenna Systems Dr. Rajiv Chandrasekaran Director of Technology Development, RF Power Amplifiers

More information

RECOMMENDATION ITU-R M.1654 *

RECOMMENDATION ITU-R M.1654 * Rec. ITU-R M.1654 1 Summary RECOMMENDATION ITU-R M.1654 * A methodology to assess interference from broadcasting-satellite service (sound) into terrestrial IMT-2000 systems intending to use the band 2

More information

Abstract. Marío A. Bedoya-Martinez. He joined Fujitsu Europe Telecom R&D Centre (UK), where he has been working on R&D of Second-and

Abstract. Marío A. Bedoya-Martinez. He joined Fujitsu Europe Telecom R&D Centre (UK), where he has been working on R&D of Second-and Abstract The adaptive antenna array is one of the advanced techniques which could be implemented in the IMT-2 mobile telecommunications systems to achieve high system capacity. In this paper, an integrated

More information

Simply configured Radio on Fiber link yielding positive gain for mobile phone system

Simply configured Radio on Fiber link yielding positive gain for mobile phone system LETTER IEICE Electronics Express, Vol.11, No.15, 1 6 Simply configured Radio on Fiber link yielding positive gain for mobile phone system Junji Higashiyama 1a), Yoshiaki Tarusawa 1, and Masafumi Koga 2

More information

TOWARDS A GENERALIZED METHODOLOGY FOR SMART ANTENNA MEASUREMENTS

TOWARDS A GENERALIZED METHODOLOGY FOR SMART ANTENNA MEASUREMENTS TOWARDS A GENERALIZED METHODOLOGY FOR SMART ANTENNA MEASUREMENTS A. Alexandridis 1, F. Lazarakis 1, T. Zervos 1, K. Dangakis 1, M. Sierra Castaner 2 1 Inst. of Informatics & Telecommunications, National

More information

Experimental evaluation of massive MIMO at 20 GHz band in indoor environment

Experimental evaluation of massive MIMO at 20 GHz band in indoor environment This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Communications Express, Vol., 1 6 Experimental evaluation of massive MIMO at GHz

More information

EasyChair Preprint. A User-Centric Cluster Resource Allocation Scheme for Ultra-Dense Network

EasyChair Preprint. A User-Centric Cluster Resource Allocation Scheme for Ultra-Dense Network EasyChair Preprint 78 A User-Centric Cluster Resource Allocation Scheme for Ultra-Dense Network Yuzhou Liu and Wuwen Lai EasyChair preprints are intended for rapid dissemination of research results and

More information

Status of supporting low level output powers for FDD base stations within the 3GPP RAN specifications today

Status of supporting low level output powers for FDD base stations within the 3GPP RAN specifications today TSG-RAN meeting #19 Birmingham, Great Britain, 11 th -14 th March, 2003 RP-030194 Agenda Item: 9.10 Source: Title: Motorola Document for: Approval Introduction Status of supporting low level output powers

More information

Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow.

Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow. Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow WiMAX Whitepaper Author: Frank Rayal, Redline Communications Inc. Redline

More information

IEEE C /008. IEEE Broadband Wireless Access Working Group <

IEEE C /008. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Interference scenarios in 2.4GHz and 5.8GHz UNII band 2006-01-09 Source(s) Mariana Goldhamer Alvarion

More information

Study on LTE MIMO Schemes for Indoor Scenarios

Study on LTE MIMO Schemes for Indoor Scenarios 2012 7th International ICST Conference on Communications and Networking in China (CHINACOM) Study on LTE MIMO Schemes for Indoor Scenarios Zhaobiao Lv 1, Jianquan Wang 1, Changling Wang 2, Qingyu Cai 2,

More information

ESG. UMTS900 Overview & Deployment Guidelines. November W Rev A. Engineering Services Group

ESG. UMTS900 Overview & Deployment Guidelines. November W Rev A. Engineering Services Group ESG Engineering Services Group UMTS900 Overview & Deployment Guidelines November 2006 80-W1044-1 Rev A Export of this technology may be controlled by the United States Government. Diversion contrary to

More information

Input to FM54 on OOB emissions due to UMTS or LTE signals

Input to FM54 on OOB emissions due to UMTS or LTE signals REFERENCE O-8751-1.0 FREQUENCY MANAGEMENT WORKING GROUP Input to FM54 on OOB emissions due to UMTS or LTE signals NAME DATE VISA Author FM Drafting Group 10/2014 D. Martens Reviewed Endorsed FM WORKING

More information

Technical Support to Defence Spectrum LTE into Wi-Fi Additional Analysis. Definitive v1.0-12/02/2014. Ref: UK/2011/EC231986/AH17/4724/V1.

Technical Support to Defence Spectrum LTE into Wi-Fi Additional Analysis. Definitive v1.0-12/02/2014. Ref: UK/2011/EC231986/AH17/4724/V1. Technical Support to Defence Spectrum LTE into Wi-Fi Additional Analysis Definitive v1.0-12/02/2014 Ref: UK/2011/EC231986/AH17/4724/ 2014 CGI IT UK Ltd 12/02/2014 Document Property Value Version v1.0 Maturity

More information

Planning of LTE Radio Networks in WinProp

Planning of LTE Radio Networks in WinProp Planning of LTE Radio Networks in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen mail@awe-communications.com Issue Date Changes V1.0 Nov. 2010 First version of document V2.0

More information

RECOMMENDATION ITU-R M.1580 *, ** Generic unwanted emission characteristics of base stations using the terrestrial radio interfaces of IMT-2000

RECOMMENDATION ITU-R M.1580 *, ** Generic unwanted emission characteristics of base stations using the terrestrial radio interfaces of IMT-2000 Rec. ITU-R M.1580 1 RECOMMENDATION ITU-R M.1580 *, ** Generic unwanted emission characteristics of base stations using the terrestrial radio interfaces of IMT-2000 (Question ITU-R 229/8) (2002) The ITU

More information

Self-Management for Unified Heterogeneous Radio Access Networks. Symposium on Wireless Communication Systems. Brussels, Belgium August 25, 2015

Self-Management for Unified Heterogeneous Radio Access Networks. Symposium on Wireless Communication Systems. Brussels, Belgium August 25, 2015 Self-Management for Unified Heterogeneous Radio Access Networks Twelfth ISWCS International 2015 Symposium on Wireless Communication Systems Brussels, Belgium August 25, 2015 AAS Evolution: SON solutions

More information

RECOMMENDATION ITU-R M.1652 *

RECOMMENDATION ITU-R M.1652 * Rec. ITU-R M.1652 1 RECOMMENDATION ITU-R M.1652 * Dynamic frequency selection (DFS) 1 in wireless access systems including radio local area networks for the purpose of protecting the radiodetermination

More information

Enhancing Energy Efficiency in LTE with Antenna Muting

Enhancing Energy Efficiency in LTE with Antenna Muting Enhancing Energy Efficiency in LTE with Antenna Muting Per Skillermark and Pål Frenger Ericsson AB, Ericsson Research, Sweden {per.skillermark, pal.frenger}@ericsson.com Abstract The concept of antenna

More information

Transforming MIMO Test

Transforming MIMO Test Transforming MIMO Test MIMO channel modeling and emulation test challenges Presented by: Kevin Bertlin PXB Product Engineer Page 1 Outline Wireless Technologies Review Multipath Fading and Antenna Diversity

More information

Advances in Radio Science

Advances in Radio Science Advances in Radio Science (23) 1: 149 153 c Copernicus GmbH 23 Advances in Radio Science Downlink beamforming concepts in UTRA FDD M. Schacht 1, A. Dekorsy 1, and P. Jung 2 1 Lucent Technologies, Thurn-und-Taxis-Strasse

More information

ETSI TS V4.3.0 ( )

ETSI TS V4.3.0 ( ) Technical Specification Universal Mobile Telecommunications System (UMTS); UTRA (BS) TDD; Radio transmission and reception () 1 Reference RTS/TSGR-0425105Uv4R3 Keywords UMTS 650 Route des Lucioles F-06921

More information

MIMO Wireless Communications

MIMO Wireless Communications MIMO Wireless Communications Speaker: Sau-Hsuan Wu Date: 2008 / 07 / 15 Department of Communication Engineering, NCTU Outline 2 2 MIMO wireless channels MIMO transceiver MIMO precoder Outline 3 3 MIMO

More information

K E Y N O T E S P E E C H. Deputy General Manager / Keysight Technologies

K E Y N O T E S P E E C H. Deputy General Manager / Keysight Technologies //08 K E Y N O T E S P E E C H Jeffrey Chen Jeffrey-cy_chen@keysight.com 08.0. Deputy General Manager / Keysight Technologies M O R E S P E E D, L E S S P O W E R, P E R F E C T A C C U R A C Y NETWORKS/CLOUD

More information

Performance Analysis of CoMP Using Scheduling and Precoding Techniques in the Heterogeneous Network

Performance Analysis of CoMP Using Scheduling and Precoding Techniques in the Heterogeneous Network International Journal of Information and Electronics Engineering, Vol. 6, No. 3, May 6 Performance Analysis of CoMP Using Scheduling and Precoding Techniques in the Heterogeneous Network Myeonghun Chu,

More information

Co-existence. DECT/CAT-iq vs. other wireless technologies from a HW perspective

Co-existence. DECT/CAT-iq vs. other wireless technologies from a HW perspective Co-existence DECT/CAT-iq vs. other wireless technologies from a HW perspective Abstract: This White Paper addresses three different co-existence issues (blocking, sideband interference, and inter-modulation)

More information

ETSI TS V ( ) Technical Specification

ETSI TS V ( ) Technical Specification TS 125 116 V10.0.0 (2011-05) Technical Specification Universal Mobile Telecommunications System (UMTS); UTRA repeater radio transmission and reception (LCR TDD) (3GPP TS 25.116 version 10.0.0 Release 10)

More information