Compressed-Sensing Based Multi-User Millimeter Wave Systems: How Many Measurements Are Needed?

Size: px
Start display at page:

Download "Compressed-Sensing Based Multi-User Millimeter Wave Systems: How Many Measurements Are Needed?"

Transcription

1 Compressed-Sensing Based Multi-User Millimeter Wave Systems: How Many Measurements Are Needed? Ahmed Alkhateeb*, Geert Leus #, and Robert W. Heath Jr.* * Wireless Networking and Communications Group, Department of Electrical and Computer Engineering, The University of Texas at Austin # Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology (TU Delft) See more on School of ICASSP talk on Wednesday

2 Why MIMO at mmwave? millimeter wave band possible bands used for cellular 1.3 GHz 2.1 GHz 7 GHz (unlic) 10 GHz several GHz of spectrum is promising but found in many separate bands 28 GHz 37 / 42 GHz spatial multiplexing & beamforming isotropic radiator mmwave aperture 60GHz E-Band just beamforming to 300 GHz multiple data streams TX RX sub-6ghz aperture Beamforming for antenna gain Spatial multiplexing for spectral efficiency Shu Sun, T. Rappapport, R. W. Heath, Jr., A. Nix, and S. Rangan, `` MIMO for Millimeter Wave Wireless Communications: Beamforming, Spatial Multiplexing, or Both?,'' IEEE Communications Magazine, December

3 Analog beamforning Baseband DAC Chain Chain ADC Baseband Phase shifters u Low power consumption (1 chain) u Beamforming gain achieved using narrow beams u MmWave specific constraints ª Constant gains: Only phases are typically adjusted ª Quantized phases: Fixed set of steering directions is allowed De-facto approach in IEEE ad / WiGig and Wireless HD Only provides single stream MIMO beamforming 3

4 Hybrid analog/digital architecture Baseband Baseband Precoding Precoding 1-bit DAC ADC Chain Beamforming + + Combining Chain 1-bit ADC ADC Baseband Baseband Combining Precoding 1-bit DAC ADC Chain Beamforming + Combining Chain 1-bit ADC ADC u Compromise on power consumption & complexity (# ADCs << # Antennas) u Enables spatial multiplexing and multi-user MIMO u Digital can correct for analog limitations [Aya 14] Hybrid architecture is one viable approach for multi-stream MIMO o [Aya 14] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. Heath, Spatially sparse precoding in millimeter wave MIMO systems, IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp , March

5 MmWave channel estimation u MmWave channel estimation is challenging ª Large transmit and receive arrays ª Low signal-to-noise ratio before beam forming ª Limited number of chains imposes constraints on training signal design ª Channel is seen through the lens u Prior work (e.g., [Wan 09], [Hur 13]) ª Avoids explicit channel estimation ª Relies on beam training with no prior channel knowledge ª Limitations: Supports only single-stream transmission o o Need to design new mmwave channel estimation algorithms [Wan 09] J. Wang, Z. Lan, C. Pyo, T. Baykas, C. Sum, M. Rahman, J. Gao, R. Funada, F. Kojima, H. Harada et al., Beam codebook based beamforming protocol for multi-gbps millimeter-wave WPAN systems, IEEE Journal on Selected Areas in Communications, vol. 27, no. 8, pp , [Hur 13] S. Hur, T. Kim, D. Love, J. Krogmeier, T. Thomas, and A. Ghosh, Millimeter wave beamforming for wireless backhaul and access in small cell networks, IEEE Transactions on Communications, vol. 61, no. 10, pp ,

6 MmWave channels are sparse u MmWave channel estimation can be formulated as a sparse problem [Alk 14] ª Channels are sparse in the angular domain, a few paths exist [Akd 13] u Sparse formulation motivates using (adaptive) compressed sensing tools ª Limitation: Training overhead scales with the # of users (repeated per user) [Alk 14] o o [Akd 13] M. Riza Akdeniz, Y. Liu, S. Sun, S. Rangan, T. S. Rappaport, and E. Erkip, Millimeter Wave Channel Modeling and Cellular Capacity Evaluation, IEEE Journal on Selected Areas on Communications, vol. 32, no. 6, pp , June 2014 [Alk 14] A. Alkhateeb, O. E. Ayach, G. Leus, and R. W. Heath Jr, Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J. Selected Topics in Signal Processing (JSTSP), vol. 8, no. 5, May 2014, pp

7 Contribution u Propose and evaluate a new mmwave system operation based on CS ª CS-based downlink channel training ª Data transmission with beamforming based on estimated channel u Evaluate system achievable rate as a function of the # of CS measurements ª Provides insights into the performance of CS-based mmwave systems ª Compares the performance with the exhaustive search solution 7

8 System model F precoder H u w U w 1 w u combiner N MS combiner w u Chain Limited Feedback uth mobile station N BS N MS u U users, antennas at BS and antennas at each MS ª Analog precoding at the base station and analog combining at each user u BS has # of chains = # of users ª Phase shifters are assumed to have a constant modulus & quantized angles 8

9 Channel model Robert W. Heath Jr. (2015) H u = N BS N MS α u a MS (θ u ) a BS (φ u ) u MmWave channel assumptions ª Single-path channels (for simplicity, it can be extended to multi-path channels) ª Array response vector is known, generally non-uniform e.g. UPA ª Paths may be LOS/NLOS path gain array response (includes path-loss) vectors angles of arrival/ departure (AoA/AoD) o [Akd 13] M. Riza Akdeniz, Y. Liu, S. Sun, S. Rangan, T. S. Rappaport, and E. Erkip, Millimeter Wave Channel Modeling and Cellular Capacity Evaluation, IEEE Journal on Selected Areas on Communications, vol. 32, no. 6, pp , June

10 Downlink CS-based channel training u BS use M 1 training beamforming vectors P u Each MS uses M 2 combining vectors Q for each basestation training vector u Received signal at user u can be written as Y MS = P Q H H u P + N u After vectorization & neglecting angle grid errors y MS = P ( P T Q H) ( A BS A MS ) z u + v, Vectorized received signal Training beamforming/combining matrices (realized using analog-only or hybrid in general) Sparse vector with a single nonzero at the AoA/AoD location Dictionary whose columns are BS/MS array response vectors with quantized grid angles 10

11 Downlink CS-based channel training u Vectorized signal can be written as y MS? P Measurement matrix Φ = P T Q H z u ` v Dictionary matrix Ψ = A BS A MS u Random compressed sensing measurements (similar for P & Q) [P] m,n = e jφ 2π m,n {0,,..., ( N BS Q 1 )2π m,n 2 } NQ BS NQ BS Different designs can be investigated # quantized angles zu u AoA/AoD estimation (equivalent to detecting the non-zero location of ) supp(z u ) = arg max Ψ H Φ H y MS Different support recovery algorithms can be investigated 11

12 Downlink data transmission F precoder H u Limited Feedback w U w 1 w u combiner u BS uses conjugate beamforming based on the estimated AoDs at the MS s ( ) ( ) ( )] F = [a BS ˆφ1, a BS ˆφ2,...,a BS ˆφU u MS s use maximum ratio combining (matched to the estimated AoA s) ) w u = a MS (ˆθu 12

13 Calculating the achievable rate u Key assumptions ª All channels are line-of-sight (generalization to NLOS is possible) ª Arrays are uniform (ULAs/UPAs) ª AoAs/AoDs are taken from a grid with critical quantization u The achievable rate of user u can be written as R u = log 2 1+ {ˆθ u =θ u } {ˆθ u =θ u,φ u = ˆφ u } U r=1 {φ u = ˆφ r } + 1 SNR U N BSN MS α u 2 Estimated AoAs/AoDs using the recovery algorithm 13

14 Achievable rate u The rate can be bounded as where { } [ R u E [ Ru { ( R u 1 U u Accounting for the channel coherence time, the rate is bounded by ( R u,eff R u 1 U )( 1 M ) ϵ (1 ϵ) N BS L C ( r u(φ u ˆφ r)} {ˆθ u =θ u,φ u = ˆφ u } { } { ) P { } N {ˆθu =θ u,φ u = ˆφ u } BS R u = log 2 (1+ SNR U N BSN MS α u 2) Single-user rate ] Robert W. Heath Jr. (2015) Probability of support recovery Single-user rate with no interference and perfect channel knowledge Channel coherence time (# symbols) # of CS measurements with support recovery error 14

15 Simulation results Setup: BS has ULA with 64 antennas MS has ULA s with 32 antennas Operating at 28 GHz Bandwidth 50 MHz TX-RX separation is 500 m Average transmit power of 37 dbm 2 bits for phase shifter angle quantization Random phase shifted P, Q OMP recovery Achievable Rate (bps/ Hz) for a given, best M will be less than this Robert W. Heath Jr. (2015) Analog Beamforming Perfect Channel Knowledge Analog Beamforming CS Based Channel Estimation Lower Bound in (12) with 0.95 recovery success probability Number of Measurements (M BS x M MS ) u Need for random measurements to approach optimal rate u Order of magnitude less than exhaustive search ~ 64x32 u Optimizing the measurement matrices design should improve the performance u With N chains at the receiver, overhead will be ( )/N 15

16 Simulation results Training that maximizes the achievable rate 5 Setup: BS has ULA with 64 antennas 4 MS s have ULA s with 32 antennas Operating at 28 GHz 3 Bandwidth 50 MHz TX-RX separation is 500 m 2 Average transmit power of 37 dbm 2 bits for phase shifter angle quantization Effective Achievable Rate (bps/ Hz) 6 1 L C = 600 symbols L C = 400 symbols L C = 200 symbols Number of Measurements (M BS x M MS ) u More CS measurements does not necessarily means better performance u CS measurements need to be adapted with the channel coherence time u Having more chains at the receivers will increases the efficiency 16

17 Conclusion u Compressed sensing based mmwave systems are promising ª An order of magnitude less training overhead vs exhaustive search solutions ª All users can simultaneously estimate their channels (similar codebooks) ª With hybrid receivers, chains can be used to reduce training overhead u Future work ª Investigate different CS beamforming/measurement matrices design ª Evaluating the performance for different sparse recovery algorithms (OMP, ) ª Extend to multi-path & wideband channels ª Include the impact of AoAs/AoDs quantization errors 17

18 Questions? Professor Robert W. Heath Jr. Wireless Networking and Communications Group Department of Electrical and Computer Engineering The University of Texas at Austin 18

Next Generation Mobile Communication. Michael Liao

Next Generation Mobile Communication. Michael Liao Next Generation Mobile Communication Channel State Information (CSI) Acquisition for mmwave MIMO Systems Michael Liao Advisor : Andy Wu Graduate Institute of Electronics Engineering National Taiwan University

More information

Millimeter Wave MIMO Precoding/Combining: Challenges and Potential Solutions

Millimeter Wave MIMO Precoding/Combining: Challenges and Potential Solutions Millimeter Wave MIMO Precoding/Combining: Challenges and Potential Solutions Robert W. Heath Jr., Ph.D., P.E. Joint work with Ahmed Alkhateeb, Jianhua Mo, and Nuria González-Prelcic Wireless Networking

More information

Auxiliary Beam Pair Enabled AoD Estimation for Large-scale mmwave MIMO Systems

Auxiliary Beam Pair Enabled AoD Estimation for Large-scale mmwave MIMO Systems Auxiliary Beam Pair Enabled AoD Estimation for Large-scale mmwave MIMO Systems Dalin Zhu, Junil Choi and Robert W. Heath Jr. Wireless Networking and Communications Group Department of Electrical and Computer

More information

PROGRESSIVE CHANNEL ESTIMATION FOR ULTRA LOW LATENCY MILLIMETER WAVE COMMUNICATIONS

PROGRESSIVE CHANNEL ESTIMATION FOR ULTRA LOW LATENCY MILLIMETER WAVE COMMUNICATIONS PROGRESSIVECHANNELESTIMATIONFOR ULTRA LOWLATENCYMILLIMETER WAVECOMMUNICATIONS Hung YiCheng,Ching ChunLiao,andAn Yeu(Andy)Wu,Fellow,IEEE Graduate Institute of Electronics Engineering, National Taiwan University

More information

Millimeter Wave MIMO Communication

Millimeter Wave MIMO Communication Millimeter Wave MIMO Communication Professor Robert W. Heath Jr., PhD, PE Wireless Networking and Communications Group Department of Electrical and Computer Engineering The University of Texas at Austin

More information

Millimeter Wave: the future of commercial wireless systems

Millimeter Wave: the future of commercial wireless systems Sildes are Robert W. Heath Jr. 2016 Millimeter Wave: the future of commercial wireless systems Professor Robert W. Heath Jr. Wireless Networking and Communications Group Department of Electrical and Computer

More information

Dictionary-free Hybrid Precoders and Combiners for mmwave MIMO Systems

Dictionary-free Hybrid Precoders and Combiners for mmwave MIMO Systems Dictionary-free Hybrid Precoders and Combiners for mmwave MIMO Systems Roi Méndez-Rial, Cristian Rusu, Nuria González-Prelcic and Robert W. Heath Jr. Universidade de Vigo, Vigo, Spain, Email: {roimr,crusu,nuria}@gts.uvigo.es

More information

Channel Estimation for Hybrid Architecture Based Wideband Millimeter Wave Systems

Channel Estimation for Hybrid Architecture Based Wideband Millimeter Wave Systems Channel Estimation for Hybrid Architecture Based Wideband Millimeter Wave Systems Kiran Venugopal, Ahmed Alkhateeb, Nuria González Prelcic, and Robert W. Heath, Jr. arxiv:1611.03046v2 [cs.it] 13 Nov 2016

More information

Hybrid Digital and Analog Beamforming Design for Large-Scale MIMO Systems

Hybrid Digital and Analog Beamforming Design for Large-Scale MIMO Systems Hybrid Digital and Analog Beamforg Design for Large-Scale MIMO Systems Foad Sohrabi and Wei Yu Department of Electrical and Computer Engineering University of Toronto Toronto Ontario M5S 3G4 Canada Emails:

More information

Performance Analysis of Beam Sweeping in Millimeter Wave Assuming Noise and Imperfect Antenna Patterns

Performance Analysis of Beam Sweeping in Millimeter Wave Assuming Noise and Imperfect Antenna Patterns Performance Analysis of Beam Sweeping in Millimeter Wave Assuming Noise and Imperfect Antenna Patterns Vutha Va and Robert W. Heath Jr. Wireless Networking and Communications Group Department of Electrical

More information

Context Information Based Initial Cell Search for Millimeter Wave 5G Cellular Networks

Context Information Based Initial Cell Search for Millimeter Wave 5G Cellular Networks Context Information Based Initial Cell Search for Millimeter Wave 5G Cellular Networks Waqas Bin Abbas, Michele Zorzi Department of Information Engineering, University of Padova, Italy E-mail: {waqas,zorzi}@dei.unipd.it

More information

MIllimeter-wave (mmwave) ( GHz) multipleinput

MIllimeter-wave (mmwave) ( GHz) multipleinput 1 Low RF-Complexity Technologies to Enable Millimeter-Wave MIMO with Large Antenna Array for 5G Wireless Communications Xinyu Gao, Student Member, IEEE, Linglong Dai, Senior Member, IEEE, and Akbar M.

More information

Low Complexity Energy Efficiency Analysis in Millimeter Wave Communication Systems

Low Complexity Energy Efficiency Analysis in Millimeter Wave Communication Systems The 217 International Workshop on Service-oriented Optimization of Green Mobile Networks GREENNET Low Complexity Energy Efficiency Analysis in Millimeter Wave Communication Systems Pan Cao and John Thompson

More information

Full-Duplex Millimeter-Wave Communication. Zhenyu Xiao, Pengfei Xia, Xiang-Gen Xia. Abstract

Full-Duplex Millimeter-Wave Communication. Zhenyu Xiao, Pengfei Xia, Xiang-Gen Xia. Abstract 1 Full-Duplex Millimeter-Wave Communication Zhenyu Xiao, Pengfei Xia, Xiang-Gen Xia Abstract arxiv:1709.07983v1 [cs.it] 23 Sep 2017 The potential of doubling the spectrum efficiency of full-duplex (FD)

More information

Millimeter Wave Wireless Communications Workshop #1: 5G Cellular Communications

Millimeter Wave Wireless Communications Workshop #1: 5G Cellular Communications Millimeter Wave Wireless Communications Workshop #1: 5G Cellular Communications Miah Md Suzan, Vivek Pal 30.09.2015 5G Definition (Functinality and Specification) The number of connected Internet of Things

More information

Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems

Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems Jiangzhou Wang University of Kent 1 / 31 Best Wishes to Professor Fumiyuki Adachi, Father of Wideband CDMA [1]. [1]

More information

Wearable networks: A new frontier for device-to-device communication

Wearable networks: A new frontier for device-to-device communication Wearable networks: A new frontier for device-to-device communication Professor Robert W. Heath Jr. Wireless Networking and Communications Group Department of Electrical and Computer Engineering The University

More information

Low RF-Complexity Technologies for 5G Millimeter-Wave MIMO Systems with Large Antenna Arrays

Low RF-Complexity Technologies for 5G Millimeter-Wave MIMO Systems with Large Antenna Arrays 1 Low RF-Complexity Technologies for 5G Millimeter-Wave MIMO Systems with Large Antenna Arrays Xinyu Gao, Student Member, IEEE, Linglong Dai, Senior Member, IEEE, and Akbar M. Sayeed, Fellow, IEEE arxiv:1607.04559v1

More information

Estimating Millimeter Wave Channels Using Out-of-Band Measurements

Estimating Millimeter Wave Channels Using Out-of-Band Measurements Estimating Millimeter Wave Channels Using Out-of-Band Measurements Anum Ali*, Robert W. Heath Jr.*, and Nuria Gonzalez-Prelcic** * Wireless Networking and Communications Group The University of Texas at

More information

An adaptive channel estimation algorithm for millimeter wave cellular systems

An adaptive channel estimation algorithm for millimeter wave cellular systems Journal of Communications and Information Networks Vol.1, No.2, Aug. 2016 DOI: 10.11959/j.issn.2096-1081.2016.015 An adaptive channel estimation algorithm for millimeter wave cellular systems Research

More information

Wideband Channel Tracking for mmwave MIMO System with Hybrid Beamforming Architecture

Wideband Channel Tracking for mmwave MIMO System with Hybrid Beamforming Architecture Wideband Channel Tracking for mmwave MIMO System with Hybrid Beamforming Architecture Han Yan, Shailesh Chaudhari, and Prof. Danijela Cabric Dec. 13 th 2017 Intro: Tracking in mmw MIMO MMW network features

More information

What is the Role of MIMO in Future Cellular Networks: Massive? Coordinated? mmwave?

What is the Role of MIMO in Future Cellular Networks: Massive? Coordinated? mmwave? What is the Role of MIMO in Future Cellular Networks: Massive? Coordinated? mmwave? Robert W. Heath Jr. The University of Texas at Austin Wireless Networking and Communications Group www.profheath.org

More information

Cost-Effective Millimeter Wave Communications. with Lens Antenna Array

Cost-Effective Millimeter Wave Communications. with Lens Antenna Array Cost-Effective Millimeter Wave Communications 1 with Lens Antenna Array Yong Zeng and Rui Zhang arxiv:1610.0211v1 [cs.it] 8 Oct 2016 Abstract Millimeter wave (mmwave) communication is a promising technology

More information

Interference in Finite-Sized Highly Dense Millimeter Wave Networks

Interference in Finite-Sized Highly Dense Millimeter Wave Networks Interference in Finite-Sized Highly Dense Millimeter Wave Networks Kiran Venugopal, Matthew C. Valenti, Robert W. Heath Jr. UT Austin, West Virginia University Supported by Intel and the Big- XII Faculty

More information

Hybrid Beamforming Based mmwave for Future Generation Communication

Hybrid Beamforming Based mmwave for Future Generation Communication Hybrid Beamforming Based mmwave for Future Generation Communication Himanish Guha 1, Anshu Mukherjee 2, Dr. M. S. Vasanthi 3 1,2,3 Dept. of Information and Telecommunication Engineering, SRM Institute

More information

Location-Aided mm-wave Channel Estimation for Vehicular Communication

Location-Aided mm-wave Channel Estimation for Vehicular Communication ocation-aided mm-wave Channel Estimation for Vehicular Communication Nil Garcia, Henk Wymeersch, Erik G. Ström, and Dirk Slock Department of Signals and Systems, Chalmers University of Technology, Sweden

More information

Directional Beam Alignment for Millimeter Wave Cellular Systems

Directional Beam Alignment for Millimeter Wave Cellular Systems Directional Beam Alignment for Millimeter Wave Cellular Systems Jie Zhao and Xin Wang Department of Electrical and Computer Engineering State University of New York at Stony Brook Stony Brook, NY, USA

More information

FEASIBILITY STUDY ON FULL-DUPLEX WIRELESS MILLIMETER-WAVE SYSTEMS. University of California, Irvine, CA Samsung Research America, Dallas, TX

FEASIBILITY STUDY ON FULL-DUPLEX WIRELESS MILLIMETER-WAVE SYSTEMS. University of California, Irvine, CA Samsung Research America, Dallas, TX 2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) FEASIBILITY STUDY ON FULL-DUPLEX WIRELESS MILLIMETER-WAVE SYSTEMS Liangbin Li Kaushik Josiam Rakesh Taori University

More information

Hybrid MMSE Precoding for mmwave Multiuser MIMO Systems

Hybrid MMSE Precoding for mmwave Multiuser MIMO Systems 1 ybrid MMSE Precoding for mmwave Multiuser MIMO Systems Duy. N. Nguyen, Long Bao Le, and Tho Le-Ngoc Wireless Networking and Communications Group, The University of Texas at Austin, TX, USA, 7871 Department

More information

at 1 The simulation codes are provided to reproduce the results in this paper

at   1 The simulation codes are provided to reproduce the results in this paper Angle-Based Codebook for Low-Resolution Hybrid Precoding in illimeter-wave assive IO Systems Jingbo Tan, Linglong Dai, Jianjun Li, and Shi Jin Tsinghua National Laboratory for Information Science and Technology

More information

Millimeter Wave Cellular Channel Models for System Evaluation

Millimeter Wave Cellular Channel Models for System Evaluation Millimeter Wave Cellular Channel Models for System Evaluation Tianyang Bai 1, Vipul Desai 2, and Robert W. Heath, Jr. 1 1 ECE Department, The University of Texas at Austin, Austin, TX 2 Huawei Technologies,

More information

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks Lectio praecursoria Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks Author: Junquan Deng Supervisor: Prof. Olav Tirkkonen Department of Communications and Networking Opponent:

More information

Coverage and Rate in Finite-Sized Device-to-Device Millimeter Wave Networks

Coverage and Rate in Finite-Sized Device-to-Device Millimeter Wave Networks Coverage and Rate in Finite-Sized Device-to-Device Millimeter Wave Networks Matthew C. Valenti, West Virginia University Joint work with Kiran Venugopal and Robert Heath, University of Texas Under funding

More information

Effect of Wideband Beam Squint on Codebook Design in Phased-Array Wireless Systems

Effect of Wideband Beam Squint on Codebook Design in Phased-Array Wireless Systems Effect of Wideband Beam Squint on Codebook Design in Phased-Array Wireless Systems Mingming Cai, Kang Gao, Ding ie, Bertrand Hochwald, J. icholas Laneman, Huang Huang and Kunpeng Liu Wireless Institute,

More information

Analysis of Self-Body Blocking in MmWave Cellular Networks

Analysis of Self-Body Blocking in MmWave Cellular Networks Analysis of Self-Body Blocking in MmWave Cellular Networks Tianyang Bai and Robert W. Heath Jr. The University of Texas at Austin Department of Electrical and Computer Engineering Wireless Networking and

More information

Space-Time Block Coded Spatial Modulation Aided mmwave MIMO with Hybrid Precoding

Space-Time Block Coded Spatial Modulation Aided mmwave MIMO with Hybrid Precoding Space-Time Block Coded Spatial Modulation Aided mmwave MIMO with Hybrid Precoding Taissir Y. Elganimi and Ali A. Elghariani Electrical and Electronic Engineering Department, University of Tripoli Tripoli,

More information

Codeword Selection and Hybrid Precoding for Multiuser Millimeter Wave Massive MIMO Systems

Codeword Selection and Hybrid Precoding for Multiuser Millimeter Wave Massive MIMO Systems 1 Codeword Selection and Hybrid Precoding for Multiuser Millimeter Wave Massive MIMO Systems arxiv:1901.01424v1 [eess.sp] 5 Jan 2019 Xuyao Sun, Student Member, IEEE, and Chenhao Qi, Senior Member, IEEE

More information

Beyond 4G: Millimeter Wave Picocellular Wireless Networks

Beyond 4G: Millimeter Wave Picocellular Wireless Networks Beyond 4G: Millimeter Wave Picocellular Wireless Networks Sundeep Rangan, NYU-Poly Joint work with Ted Rappaport, Elza Erkip, Mustafa Riza Akdeniz, Yuanpeng Liu Sept 21, 2013 NJ ACS, Hoboken, J 1 Outline

More information

System Level Challenges for mmwave Cellular

System Level Challenges for mmwave Cellular System Level Challenges for mmwave Cellular Sundeep Rangan, NYU WIRELESS December 4, 2016 GlobecomWorkshops, Washington, DC 1 Outline MmWave cellular: Potential and challenges Directional initial access

More information

Reconfigurable Hybrid Beamforming Architecture for Millimeter Wave Radio: A Tradeoff between MIMO Diversity and Beamforming Directivity

Reconfigurable Hybrid Beamforming Architecture for Millimeter Wave Radio: A Tradeoff between MIMO Diversity and Beamforming Directivity Reconfigurable Hybrid Beamforming Architecture for Millimeter Wave Radio: A Tradeoff between MIMO Diversity and Beamforming Directivity Hybrid beamforming (HBF), employing precoding/beamforming technologies

More information

2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

Millimeter Wave MIMO Channel Estimation Based on Adaptive Compressed Sensing

Millimeter Wave MIMO Channel Estimation Based on Adaptive Compressed Sensing Millimeter Wave MIMO Channel Estimation Based on Adaptive Compressed Sensing Shu Sun and Theodore S. Rappaport YU WIRELESS and Tandon School of Engineering, ew York University, Brooklyn, Y, USA 11201 E-mail:

More information

On the Security of Millimeter Wave Vehicular Communication Systems using Random Antenna Subsets

On the Security of Millimeter Wave Vehicular Communication Systems using Random Antenna Subsets On the Security of Millimeter Wave Vehicular Communication Systems using Random Antenna Subsets Mohammed Eltayeb*, Junil Choi*, Tareq Al-Naffouri #, and Robert W. Heath Jr.* * Wireless Networking and Communications

More information

A Practical Channel Estimation Scheme for Indoor 60GHz Massive MIMO System. Arumugam Nallanathan King s College London

A Practical Channel Estimation Scheme for Indoor 60GHz Massive MIMO System. Arumugam Nallanathan King s College London A Practical Channel Estimation Scheme for Indoor 60GHz Massive MIMO System Arumugam Nallanathan King s College London Performance and Efficiency of 5G Performance Requirements 0.1~1Gbps user rates Tens

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ICCE.2012.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ICCE.2012. Zhu, X., Doufexi, A., & Koçak, T. (2012). A performance enhancement for 60 GHz wireless indoor applications. In ICCE 2012, Las Vegas Institute of Electrical and Electronics Engineers (IEEE). DOI: 10.1109/ICCE.2012.6161865

More information

mm Wave Communications J Klutto Milleth CEWiT

mm Wave Communications J Klutto Milleth CEWiT mm Wave Communications J Klutto Milleth CEWiT Technology Options for Future Identification of new spectrum LTE extendable up to 60 GHz mm Wave Communications Handling large bandwidths Full duplexing on

More information

MIMO Wireless Communications

MIMO Wireless Communications MIMO Wireless Communications Speaker: Sau-Hsuan Wu Date: 2008 / 07 / 15 Department of Communication Engineering, NCTU Outline 2 2 MIMO wireless channels MIMO transceiver MIMO precoder Outline 3 3 MIMO

More information

5G Positioning for connected cars

5G Positioning for connected cars 5G Positioning for connected cars (mmw) 5G introduction Mathematical model of 5G-mmW positioning Mutiple aspects of the achievable error Estimation principle June 2018 Summer school on 5G V2X communications

More information

5G: Opportunities and Challenges Kate C.-J. Lin Academia Sinica

5G: Opportunities and Challenges Kate C.-J. Lin Academia Sinica 5G: Opportunities and Challenges Kate C.-J. Lin Academia Sinica! 2015.05.29 Key Trend (2013-2025) Exponential traffic growth! Wireless traffic dominated by video multimedia! Expectation of ubiquitous broadband

More information

ADC Bit Optimization for Spectrum- and Energy-Efficient Millimeter Wave Communications

ADC Bit Optimization for Spectrum- and Energy-Efficient Millimeter Wave Communications ADC Bit Optimization for Spectrum- and Energy-Efficient Millimeter Wave Communications Jinseok Choi, Junmo Sung, Brian Evans, and Alan Gatherer* Electrical and Computer Engineering, The University of Texas

More information

Direction of Arrival Estimation in Smart Antenna for Marine Communication. Deepthy M Vijayan, Sreedevi K Menon /16/$31.

Direction of Arrival Estimation in Smart Antenna for Marine Communication. Deepthy M Vijayan, Sreedevi K Menon /16/$31. International Conference on Communication and Signal Processing, April 6-8, 2016, India Direction of Arrival Estimation in Smart Antenna for Marine Communication Deepthy M Vijayan, Sreedevi K Menon Abstract

More information

A Kalman based Hybrid Precoding for Multi-User Millimeter Wave MIMO Systems

A Kalman based Hybrid Precoding for Multi-User Millimeter Wave MIMO Systems Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. Digital Object Identifier 10.1109/ACCESS.2017.DOI A Kalman based Hybrid Precoding for Multi-User Millimeter Wave MIMO Systems ANNA

More information

Ten Things You Should Know About MIMO

Ten Things You Should Know About MIMO Ten Things You Should Know About MIMO 4G World 2009 presented by: David L. Barner www/agilent.com/find/4gworld Copyright 2009 Agilent Technologies, Inc. The Full Agenda Intro System Operation 1: Cellular

More information

Alternating Minimization for Hybrid Precoding in Multiuser OFDM mmwave Systems

Alternating Minimization for Hybrid Precoding in Multiuser OFDM mmwave Systems Alternating Minimization for Hybrid Precoding in Multiuser OFDM mmwave Systems Xianghao Yu, Jun Zhang, and Khaled B. Letaief, Fellow, IEEE Dept. of ECE, The Hong Kong University of Science and Technology

More information

Coverage and Capacity Analysis of mmwave Cellular Systems

Coverage and Capacity Analysis of mmwave Cellular Systems Coverage and Capacity Analysis of mmwave Cellular Systems Robert W. Heath Jr., Ph.D., P.E. Wireless Networking and Communications Group Department of Electrical and Computer Engineering The University

More information

NR Physical Layer Design: NR MIMO

NR Physical Layer Design: NR MIMO NR Physical Layer Design: NR MIMO Younsun Kim 3GPP TSG RAN WG1 Vice-Chairman (Samsung) 3GPP 2018 1 Considerations for NR-MIMO Specification Design NR-MIMO Specification Features 3GPP 2018 2 Key Features

More information

Millimeter Wave Communication in 5G Wireless Networks. By: Niloofar Bahadori Advisors: Dr. J.C. Kelly, Dr. B Kelley

Millimeter Wave Communication in 5G Wireless Networks. By: Niloofar Bahadori Advisors: Dr. J.C. Kelly, Dr. B Kelley Millimeter Wave Communication in 5G Wireless Networks By: Niloofar Bahadori Advisors: Dr. J.C. Kelly, Dr. B Kelley Outline 5G communication Networks Why we need to move to higher frequencies? What are

More information

MmWave Channel Estimation via Atomic Norm Minimization for Multi-User Hybrid Precoding

MmWave Channel Estimation via Atomic Norm Minimization for Multi-User Hybrid Precoding MmWave Channel Estimation via Atomic Norm Minimization for Multi-User Hybrid Precoding Junquan Deng, Olav Tirkkonen and Christoph Studer Department of Communications and Networking, Aalto University, Finland

More information

Multi-Aperture Phased Arrays Versus Multi-beam Lens Arrays for Millimeter-Wave Multiuser MIMO

Multi-Aperture Phased Arrays Versus Multi-beam Lens Arrays for Millimeter-Wave Multiuser MIMO Multi-Aperture Phased Arrays Versus Multi-beam Lens Arrays for Millimeter-Wave Multiuser MIMO Asilomar 2017 October 31, 2017 Akbar M. Sayeed Wireless Communications and Sensing Laboratory Electrical and

More information

Massive MIMO for the New Radio Overview and Performance

Massive MIMO for the New Radio Overview and Performance Massive MIMO for the New Radio Overview and Performance Dr. Amitabha Ghosh Nokia Bell Labs IEEE 5G Summit June 5 th, 2017 What is Massive MIMO ANTENNA ARRAYS large number (>>8) of controllable antennas

More information

Discussion Points for HW-CSP Breakout Session. July 19, 2017 Jeyanandh Paramesh, Subhanshu Gupta, Greg LaCaille, Vishal Saxena, Sarah Yost

Discussion Points for HW-CSP Breakout Session. July 19, 2017 Jeyanandh Paramesh, Subhanshu Gupta, Greg LaCaille, Vishal Saxena, Sarah Yost Discussion Points for HW-CSP Breakout Session July 19, 2017 Jeyanandh Paramesh, Subhanshu Gupta, Greg LaCaille, Vishal Saxena, Sarah Yost Topics for Discussion (Tentative) What are the main issues at the

More information

A Novel Millimeter-Wave Channel Simulator (NYUSIM) and Applications for 5G Wireless Communications

A Novel Millimeter-Wave Channel Simulator (NYUSIM) and Applications for 5G Wireless Communications A Novel Millimeter-Wave Channel Simulator (NYUSIM) and Applications for 5G Wireless Communications Shu Sun, George R. MacCartney, Jr., and Theodore S. Rappaport {ss7152,gmac,tsr}@nyu.edu IEEE International

More information

Vehicle-to-X communication using millimeter waves

Vehicle-to-X communication using millimeter waves Infrastructure Person Vehicle 5G Slides Robert W. Heath Jr. (2016) Vehicle-to-X communication using millimeter waves Professor Robert W. Heath Jr., PhD, PE mmwave Wireless Networking and Communications

More information

Wideband Channel Estimation for Hybrid Beamforming Millimeter Wave Communication Systems with Low-Resolution ADCs

Wideband Channel Estimation for Hybrid Beamforming Millimeter Wave Communication Systems with Low-Resolution ADCs Wideband Channel Estimation for ybrid Beamforming Millimeter Wave Communication Systems with Low-Resolution ADCs Junmo Sung, Jinseok Choi, and Brian L Evans Wireless Networking and Communications Group

More information

Principles of Millimeter Wave Communications for V2X

Principles of Millimeter Wave Communications for V2X Principles of Millimeter Wave Communications for V2X Stefano Buzzi University of Cassino and Southern Lazio, Cassino, Italy London, June 11th, 2018 About myself and the University of Cassino... - Associate

More information

Implications of Millimeter Wave for 5G System Design

Implications of Millimeter Wave for 5G System Design Sildes are Robert W. Heath Jr. 2016 Implications of Millimeter Wave for 5G System Design Professor Robert W. Heath Jr. Wireless Networking and Communications Group Department of Electrical and Computer

More information

Frequency Selective Hybrid Precoding for. Limited Feedback Millimeter Wave Systems

Frequency Selective Hybrid Precoding for. Limited Feedback Millimeter Wave Systems Frequency Selective Hybrid Precoding for Limited Feedback Millimeter Wave Systems Ahmed Alkhateeb and Robert W. Heath, Jr. Invited Paper) arxiv:50.00609v4 [cs.it] 3 Aug 06 Abstract Hybrid analog/digital

More information

Energy Efficient Hybrid Beamforming in Massive MU-MIMO Systems via Eigenmode Selection

Energy Efficient Hybrid Beamforming in Massive MU-MIMO Systems via Eigenmode Selection Energy Efficient Hybrid Beamforming in Massive MU-MIMO Systems via Eigenmode Selection Weiheng Ni, Po-Han Chiang, and Sujit Dey Mobile Systems Design Lab, Dept. of Electrical and Computer Engineering,

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /MC-SS.2011.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /MC-SS.2011. Zhu, X., Doufexi, A., & Koçak, T. (2011). Beamforming performance analysis for OFDM based IEEE 802.11ad millimeter-wave WPANs. In 8th International Workshop on Multi-Carrier Systems & Solutions (MC-SS),

More information

Deep Learning Coordinated Beamforming for Highly-Mobile Millimeter Wave Systems

Deep Learning Coordinated Beamforming for Highly-Mobile Millimeter Wave Systems Deep Learning Coordinated Beamforming for Highly-Mobile Millimeter Wave Systems Ahmed Alkhateeb, Sam Alex, Paul Varkey, Ying Li, Qi Qu, and Djordje Tujkovic Facebook 1 arxiv:1804.10334v1 [cs.it] 27 Apr

More information

Design of mmwave massive MIMO cellular systems

Design of mmwave massive MIMO cellular systems Design of mmwave massive MIMO cellular systems Abbas Kazerouni and Mainak Chowdhury Faculty mentor: Andrea Goldsmith Wireless Systems Lab, Stanford University March 23, 2015 Future cellular networks Higher

More information

On the Value of Coherent and Coordinated Multi-point Transmission

On the Value of Coherent and Coordinated Multi-point Transmission On the Value of Coherent and Coordinated Multi-point Transmission Antti Tölli, Harri Pennanen and Petri Komulainen atolli@ee.oulu.fi Centre for Wireless Communications University of Oulu December 4, 2008

More information

Exciting Times for mmw Research

Exciting Times for mmw Research Wideband (and Massive) MIMO for Millimeter-Wave Mobile Networks: Recent Results on Theory, Architectures, and Prototypes WCNC 2017 mmw5g Workshop Millimeter Wave-Based Integrated Mobile Communications

More information

Claudio Fiandrino, IMDEA Networks, Madrid, Spain

Claudio Fiandrino, IMDEA Networks, Madrid, Spain 1 Claudio Fiandrino, IMDEA Networks, Madrid, Spain 2 3 Introduction on mm-wave communications Localization system Hybrid beamforming Architectural design and optimizations 4 Inevitable to achieve multi-gbit/s

More information

Beamforming for 4.9G/5G Networks

Beamforming for 4.9G/5G Networks Beamforming for 4.9G/5G Networks Exploiting Massive MIMO and Active Antenna Technologies White Paper Contents 1. Executive summary 3 2. Introduction 3 3. Beamforming benefits below 6 GHz 5 4. Field performance

More information

A Complete MIMO System Built on a Single RF Communication Ends

A Complete MIMO System Built on a Single RF Communication Ends PIERS ONLINE, VOL. 6, NO. 6, 2010 559 A Complete MIMO System Built on a Single RF Communication Ends Vlasis Barousis, Athanasios G. Kanatas, and George Efthymoglou University of Piraeus, Greece Abstract

More information

Explosive Growth in Wireless Traffic

Explosive Growth in Wireless Traffic Multi-beam MIMO for Millimeter-Wave Wireless: Architectures, Prototypes, and 5G Use Cases IEEE WCNC'2016 Workshop on Millimeter Wave-Based Integrated Mobile Communications for 5G Networks (mmw5g Workshop)

More information

Vehicle-to-X communication using millimeter waves (just in time for 5G)

Vehicle-to-X communication using millimeter waves (just in time for 5G) Vehicle-to-X communication using millimeter waves (just in time for 5G) Professor Robert W. Heath Jr., PhD, PE Wireless Networking and Communications Group Department of Electrical and Computer Engineering

More information

Limited Feedback in Multiple-Antenna Systems with One-Bit Quantization

Limited Feedback in Multiple-Antenna Systems with One-Bit Quantization Limited Feedback in Multiple-Antenna Systems with One-Bit uantization Jianhua Mo and Robert W. Heath Jr. Wireless Networking and Communications Group The University of Texas at Austin, Austin, TX 787,

More information

Design of Analog and Digital Beamformer for 60GHz MIMO Frequency Selective Channel through Second Order Cone Programming

Design of Analog and Digital Beamformer for 60GHz MIMO Frequency Selective Channel through Second Order Cone Programming IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 6, Ver. II (Nov -Dec. 2015), PP 91-97 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Design of Analog and Digital

More information

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques 1 Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques Bin Song and Martin Haardt Outline 2 Multi-user user MIMO System (main topic in phase I and phase II) critical problem Downlink

More information

Use of Multiple-Antenna Technology in Modern Wireless Communication Systems

Use of Multiple-Antenna Technology in Modern Wireless Communication Systems Use of in Modern Wireless Communication Systems Presenter: Engr. Dr. Noor M. Khan Professor Department of Electrical Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph:

More information

Fair Beam Allocation in Millimeter-Wave Multiuser Transmission

Fair Beam Allocation in Millimeter-Wave Multiuser Transmission Fair Beam Allocation in Millimeter-Wave Multiuser Transmission Firat Karababa, Furan Kucu and Tolga Girici TOBB University of Economics and Technology Department of Electrical and Electronics Engineering

More information

Efficient Signaling Schemes for mmwave LOS MIMO Communication Using Uniform Linear and Circular Arrays

Efficient Signaling Schemes for mmwave LOS MIMO Communication Using Uniform Linear and Circular Arrays Efficient Signaling Schemes for mmwave LOS MIMO Communication Using Uniform Linear and Circular Arrays G. D. Surabhi and A. Chockalingam Department of ECE, Indian Institute of Science, Bangalore 562 Abstract

More information

Vehicle-to-X communication for 5G - a killer application of millimeter wave

Vehicle-to-X communication for 5G - a killer application of millimeter wave 2017, Robert W. W. Heath Jr. Jr. Vehicle-to-X communication for 5G - a killer application of millimeter wave Professor Robert W. Heath Jr. Wireless Networking and Communications Group Department of Electrical

More information

MU-MIMO with Fixed Beamforming for

MU-MIMO with Fixed Beamforming for MU-MIMO with Fixed Beamforming for FDD Systems Manfred Litzenburger, Thorsten Wild, Michael Ohm Alcatel-Lucent R&I Stuttgart, Germany MU-MIMO - Motivation MU-MIMO Supporting multiple users in a cell on

More information

Millimeter-Wave Communication with Non-Orthogonal Multiple Access for 5G

Millimeter-Wave Communication with Non-Orthogonal Multiple Access for 5G 1 Millimeter-Wave Communication with Non-Orthogonal Multiple Access for 5G Zhenyu Xiao, Linglong Dai, Zhiguo Ding, Jinho Choi, Pengfei Xia, and Xiang-Gen Xia arxiv:1709.07980v1 [cs.it] 23 Sep 2017 Abstract

More information

Millimeter Wave Communications:

Millimeter Wave Communications: Millimeter Wave Communications: From Point-to-Point Links to Agile Network Connections Haitham Hassanieh Omid Abari, Michael Rodriguez, Dina Katabi Spectrum Scarcity Huge bandwidth available at millimeter

More information

Lens MIMO Based Millimeter Wave Broadcast Channel

Lens MIMO Based Millimeter Wave Broadcast Channel 615 Lens MIMO Based Millimeter Wave Broadcast Channel Kushal Anand, Erry Gunawan, Yong Liang Guan School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore Email: kush0005@e.ntu.edu.sg,egunawan@ntu.edu.sg,eylguan@ntu.edu.sg

More information

Beamspace Multiplexing for Wireless Millimeter-Wave Backhaul Link

Beamspace Multiplexing for Wireless Millimeter-Wave Backhaul Link Beamspace Multiplexing for Wireless Millimeter-Wave Backhaul Link Ding, Y., Fusco, V., & Shitvov, A. (017). Beamspace Multiplexing for Wireless Millimeter-Wave Backhaul Link. In EuCAP 017: Proceedings

More information

Hybrid Analog and Digital Beamforming for OFDM-Based Large-Scale MIMO Systems

Hybrid Analog and Digital Beamforming for OFDM-Based Large-Scale MIMO Systems Hybrid Analog and Digital Beamforming for OFDM-Based Large-Scale MIMO Systems Foad Sohrabi and Wei Yu Department of Electrical and Computer Engineering University of Toronto, Toronto, Ontario M5S 3G4,

More information

5G, WLAN, and LTE Wireless Design with MATLAB

5G, WLAN, and LTE Wireless Design with MATLAB 5G, WLAN, and LTE Wireless Design with MATLAB Marc Barberis Application Engineering Group 2017 The MathWorks, Inc. 1 Agenda The 5G Landscape Designing 5G Systems Generating waveforms Designing baseband

More information

Modeling Mutual Coupling and OFDM System with Computational Electromagnetics

Modeling Mutual Coupling and OFDM System with Computational Electromagnetics Modeling Mutual Coupling and OFDM System with Computational Electromagnetics Nicholas J. Kirsch Drexel University Wireless Systems Laboratory Telecommunication Seminar October 15, 004 Introduction MIMO

More information

On OFDM and SC-FDE Transmissions in Millimeter Wave Channels with Beamforming

On OFDM and SC-FDE Transmissions in Millimeter Wave Channels with Beamforming On and SC-FDE Transmissions in Millimeter Wave Channels with Beamforming Meng Wu, Dirk Wübben, Armin Dekorsy University of Bremen, Bremen, Germany Email:{wu,wuebben,dekorsy}@ant.uni-bremen.de Paolo Baracca,

More information

Coverage and Capacity Analysis of mmwave Cellular Systems

Coverage and Capacity Analysis of mmwave Cellular Systems Coverage and Capacity Analysis of mmwave Cellular Systems Robert W. Heath Jr. The University of Texas at Austin Joint work with Tianyang Bai www.profheath.org Wireless is Big in Texas 20 Faculty 12 Industrial

More information

THE past decade has witnessed the exponential growth of

THE past decade has witnessed the exponential growth of 256 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 12, NO. 2, MAY 2018 Hybrid Precoder and Combiner Design With Low-Resolution Phase Shifters in mmwave MIMO Systems Zihuan Wang, Student Member,

More information

5G India Demystifying 5G, Massive MIMO and Challenges

5G India Demystifying 5G, Massive MIMO and Challenges Demystifying 5G, Massive MIMO and Challenges 5G India 2017 Ramarao Anil Head Product Support, Development & Applications Rohde & Schwarz India Pvt. Ltd. COMPANY RESTRICTED Agenda ı 5G Vision ı Why Virtualization

More information

Hybrid Transceivers for Massive MIMO - Some Recent Results

Hybrid Transceivers for Massive MIMO - Some Recent Results IEEE Globecom, Dec. 2015 for Massive MIMO - Some Recent Results Andreas F. Molisch Wireless Devices and Systems (WiDeS) Group Communication Sciences Institute University of Southern California (USC) 1

More information

Understanding Noise and Interference Regimes in 5G Millimeter-Wave Cellular Networks

Understanding Noise and Interference Regimes in 5G Millimeter-Wave Cellular Networks Understanding Noise and Interference Regimes in 5G Millimeter-Wave Cellular Networks Mattia Rebato, Marco Mezzavilla, Sundeep Rangan, Federico Boccardi, Michele Zorzi NYU WIRELESS, Brooklyn, NY, USA University

More information

Transforming MIMO Test

Transforming MIMO Test Transforming MIMO Test MIMO channel modeling and emulation test challenges Presented by: Kevin Bertlin PXB Product Engineer Page 1 Outline Wireless Technologies Review Multipath Fading and Antenna Diversity

More information