Massive MIMO or Small Cell Network: Who is More Energy Efficient?

Size: px
Start display at page:

Download "Massive MIMO or Small Cell Network: Who is More Energy Efficient?"

Transcription

1 or Small Cell Network: Who is More Energy Efficient? Wenjia Liu, Shengqian Han, Chenyang Yang Beihang University, Beijing, China {liuwenjia, Chengjun Sun Beijing Samsung Telecom R&D Center, China Abstract Energy efficiency (EE) is becoming an important design goal for wireless communication systems providing high spectral efficiency (SE). Both massive multi-input multi-output (MIMO) and small cell network (SCN) are expected to achieve high EE for high throughput cellular networks, though using different mechanisms. improves EE by exploiting a large array gain, while SCN improves EE by deploying a large number of low-power base stations (BSs) to reduce the propagation loss and increase the opportunity of BS sleep. In this paper, we compare the EEs as well as the SEs of Massive MIMO and SCN. For a fair comparison, we consider a multi-cell network with the same user density, antenna density and average cell-edge signal-to-noise-ratio (SNR). Perfect channel information is assumed, and three BS sleep strategies are considered. Our analysis shows that the EE of SCN increases with the cell size shrinking, and the achievable SEs of SCN and increase with the cell-edge SNR. When the number of cells is large, SCN is always more energy efficient than. On the other hand, when the number of cells is small, Massive MIMO achieves higher EE than SCN when the circuit power consumptions of are much lower than SCN. I. INTRODUCTION Wireless communication systems have been being designed toward high spectral efficiency (SE) to support the explosively growing traffics. Among various advanced technologies for improving the SE, the approaches to exploit spatial resources have been explored extensively, e.g., frequency reuse and spatial multiplexing. Both small cell network (SCN) [1] and Massive multi-input multi-output (MIMO) [2] have been recognized as promising ways to provide high SE, which actually are two extreme ways to use the spatial resources. SCN consists of densely deployed low-cost and low-power base stations (BSs). With the shrinking of the cell size, SCN benefits from the cell-splitting gain. employs a large number of antennas to serve a much smaller number of users, which enjoys a high array gain [3]. Except for improving the SE, both SCN and Massive MIMO are expected to improve energy efficiency (EE), which is becoming an important design goal for high throughput networks [4]. SCN brings transmitters and receivers closer and reduces the required transmit power to overcome path loss [1]. This work was supported in part by the National Natural Science Foundation of China (No ), the National Basic Research Program of China (No. 2012CB316003) and Beijing Samsung Telecom R&D Center. Moreover, the resulting small cell size provides much more opportunities of closing the BSs with low traffics for energy saving. By contrast, exploits giant antenna arrays to achieve high array gain and high spatial multiplexing gain. It can also reduce the transmit power to support a given throughput. Recently, the performance of SCN and on energy saving has drawn significant attention. The effects of cell size shrinking on energy saving were investigated in [5], where only transmit power consumption was considered. The required transmit powers of SCN and to achieve the same SE requirement were compared in [6], where only a single-user scenario was considered without intercell interference (ICI) and multi-user interference (MUI). In practical systems, the circuit power consumption cannot be ignored, especially for cellular systems where the BS occupies a large portion of the overall power consumption in the network [7]. When the circuit power consumed at the BSs are taken into account, it is still unclear whether SCN or Massive MIMO will be more energy efficient, especially for the multicell multi-user systems where both ICI and MUI exist. In this paper, we compare the EEs as well as the achievable SEs of SCN and, toward the goal to reveal how we should employ spatial resources to provide high SE and high EE. For a fair comparison, we consider identical number of users and identical number of antennas in the same area of a multi-cell network, and the cell-edge signalto-noise-ratio (SNR) is equal. Note that pilot contamination was identified as a bottleneck on improving performance of [3] and the training and signalling overhead will reduce both the SE and EE of SCN. Nonetheless, as a first attempt to compare the two different architectures, we assume that perfect channel information is available at the BSs. We consider three BS sleep strategies, and analyze the impact of various levels of circuit power consumptions and cell sizes on the performance of and SCN. The remainder of this paper is organized as follows. Section II introduces the system model. The EEs of and SCN are analyzed in Section III. The SE-EE relationships of the two systems are compared In Section IV through simulations, and conclusion remarks are given in Section V /13/$ IEEE 24

2 2013 IEEE WCNC Workshop on Future green End-to-End wireless Network area within a cell that has received power above a given minimum [8]. Under the assumptions of no random shadowing and identical receiver noises, the same cell-edge SNR should be ensured for the two systems with different cell sizes and different number of antennas to obtain 100% cell coverage area. Therefore, the maximal transmit power of the BS, Pmax, is set to ensure a given cell-edge SNR, which is defined as the average receive SNR for a user located at the cell boundary when the BS transmits with single antenna and with Pmax [8]. B. Downlink Transmission Consider that BSb serves Kb single antenna users with zeroforcing beamforming (ZFBF). For, Kb = K M. For SCN, we assume that Kb Ms.3 Denote Hb = [α1,b h1,b αkb,b hkb,b ] as the downlink channel matrix from BSb to the Kb users it serves, where αk,b and hk,b denote the large-scale fading gain and the small-scale fading channel from BSb to the k-th user (denoted by MSk ), respectively. Assume that perfect channel state information (CSI) is available at the BSs. Then the ZFBF at BSb can be computed as (1) Wb = [ p1,b g1,b pkb,b gkb,b ], Fig. 1. Illustration of the system settings. The cluster includes seven macrocells, each including one macro-bs and seven small-bss, i.e., L = 7, N = 7. II. S YSTEM M ODEL where gk,b = g k,b / g k,b, g k,b denotes the k-th column vector of (HH b ), pk,b is the power allocated to MSk, ( ) denotes the H Moore-Penrose inverse, ( ) is the conjugate transpose, and denotes the Euclidean norm. The received signal of MSk can be expressed as Nc H (2) yk = pk,b hh k,b gk,b sk + j=1,j =b hk,j Wj sj +nk, {z } A. System Settings of and SCN We consider a cellular network consisting of multiple noncoordinated hexagonal cells. The cell and the BS in the system are called macro-cell and macro-bs. Each macro-bs is equipped with a large number of co-located antennas, which is much larger than the number of users in its serving cell. The SCN system consists of a large number of small cells, each with a BS called small-bs. In this paper, user density and antenna density are respectively defined as the number of BS antennas and users per unit area. To ensure an approximately identical user density and antenna density in the two systems, we consider a reference area as illustrated in Fig. 1, which is a cluster of seven macrocells. Denote L as the number of macro-cells in the cluster, then L = 7 in Fig. 1. To unify the model and analysis of and SCN systems, we use N to denote the number of BSs deployed in one macro-cell. When N = 1, the system is, and the macro-bs equipped with M antennas serves K users in the macro-cell, where M K [3]. When N > 1, the system is SCN, and each small-bs is equipped with Ms antennas.1 Since we consider the same antenna density for the two systems, the total number of antennas of and SCN in one macro-cell should be the same, i.e., N Ms = M. For notational simplicity, we assume that M is an integer multiple of Ms.2 We consider the same cell coverage of the two systems for a fair comparison, i.e., the same expected percentage of Inter-cell interference where sk is the data symbol transmitted from BSb to MSk, sj is the data symbol vector for all Kj users served by BSj, nk is the additive white Gaussian noise (AWGN) with zero mean and variance σ 2, and Nc denotes the number of BSs in the cluster. According to the system settings, Nc = L for Massive MIMO, and Nc = LN for SCN. With ZFBF and perfect CSI, the intra-cell MUI can be eliminated. Hence only ICI exists as shown in (2). The signal-to-interference-plus-noise ratio (SINR) of MSk can be obtained as 2 pk,b hh k,b gk,b SINRk = Nc j=1,j =b. (3) 2 2 hh k,j Wj +σ {z } Ik III. EE A NALYSIS OF M ASSIVE MIMO AND SCN A. Problem Formulation The EE of the network is defined as the ratio of the total number of transmitted bits to the total energy consumption in the cluster. Let Rk,b denote the data rate of MSk supported 1 The homogeneous SCN system is considered in this paper, where the small-bss are uniformly deployed to avoid coverage hole. 2 More general cases can be easily included by first setting M = M s N and then randomly allocating the remaining M Ms N antennas to the N small-bss, where is floor operator. 3 If the number of users closest to BS exceeds M, BS will select M s s b b nearest users and the other users will be served by their closest adjacent BSs. 25

3 by BS b, and P b denote the total power consumption of BS b. Then the EE can be expressed as EE = Nc b=1 Kb k=1 R k,b Nc b=1 P b R sum P sum, (4) where R sum and P sum are the sum data rate of all users and the overall power consumption at all BSs in the cluster, respectively. Based on the result in [7], the total power consumption at BS b can be modeled as ( ) Pt,b P b = λ ρ + P c,b, (5) where P t,b, P c,b and ρ denote the transmit power consumption, circuit power consumption and power amplifier efficiency, respectively, and λ reflects the impacts of cooling, DC-DC and main supply. The values of these parameters depend on the type of the BS [9]. Switching the BSs with low traffic loads into sleep mode is an essential approach for saving energy in SCN. We consider three BS sleep strategies, which will be introduced in detail in next section. Let P ca and P ci denote the circuit power consumed at the RF chain of each antenna in active mode and sleep mode, respectively [7]. Then, the circuit power consumption of BS b can be expressed as follows, P c,b = N t (P ci + δ b (P ca P ci )), (6) where δ b = sign (P t,b ) denotes the operating modes of BS b, and sign ( ) denotes the sign function. If BS b is in sleep mode, then P t,b = 0 and δ b equals to zero. If BS b is in active mode, P t,b > 0 and δ b = 1. N t is the number of antennas at BS b. If BS b is a macro-bs, N t = M. If BS b is a small BS, N t = M s. To provide a whole picture of the SE-EE relationship of and SCN, we maximize the EE of each system for a given data rate requirement of each user. Let Rk,b 0 denote the data rate requirement of MS k, which is served by BS b. By setting R k,b = Rk,b 0, it is not hard to see from (4) that to maximize the EE is equivalent to minimize the overall power consumption P sum, which includes both transmit power consumption and circuit power consumption. According to (6), the circuit power consumption depends on the operating modes of the BSs. For a given BS sleep strategy, the circuit power consumption will be a constant. Therefore, we only need to minimize the overall transmit power consumption. Then, the problem that maximizes the EE by allocating transmit powers to multiple users under the data rate requirement of each user and the maximal transmit power constraint of each BS for a given BS sleep strategy can be formulated as min {p 1,b,...,p Kb,b} N c K b p k,b b=1 k=1 s.t. log 2 ( K b k=1 1 + p k,b h H k,b g k,b 2 I k + σ 2 p k,b P max, b p k,b 0, k, b, ) (7a) = R 0 k,b, k, b (7b) (7c) (7d) where I k is the ICI power defined in (3). Since there is no cooperation among the BSs, BS b has no knowledge of I k, which depends on the power allocation results of the interfering BSs. The problem (7) is similar to a conventional multi-cell power allocation problem, which can be solved by BS-wise iteration power allocation, and the convergence of the iterations was proven in [10]. However, when the cell number is large, the iteration algorithm is not applicable due to the prohibitive complexity. To circumvent this problem, we consider two extreme cases when calculating I k in the following. The performance of practical systems will lie between these two extreme cases. 1) Average Maximal Interference Power: In this case, we assume that all interfering BSs transmit with P max regardless of the data rate requirements of the users. Since the precoding vectors at each BS are independent of the interfering channels, the average interference power experienced at MS k, which is served by BS b, can be obtained as Ī k = E{ N c = N c Kj j=1,j b Kj j=1,j b = N c j=1,j b i=1 p i,j h H k,j g i,j 2 } i=1 p i,jgi,j H E{h k,jh H k,j }g i,j Kj i=1 p i,jα(d k,j ) g i,j 2 = N c j=1,j b δ jp max α(d k,j ) where d k,j is the distance between BS j and MS k, α(d k,j ) is the corresponding large-scale fading gain of MS k, and δ j is defined in (6) denoting the operating mode of BS j. By replacing I k with Īk, (7b) can be expressed as ) p k,b h log 2 (1 H k,b + g k,b 2 Nc j=1,j b δ jp max α(d k,j ) + σ 2 (8) = R 0 k,b. (9) Then problem (7) can be solved independently at each BS. It is not hard to find the optimal power allocation at BS b as ( Nc ) r k,b p j=1,j b δ jp max α(d k,j ) + σ 2 k,b = h H k,b g, (10) k,b 2 where r k,b = 2 R0 k,b 1. If the sum of the optimal powers allocated to all the K b users exceeds the maximal transmit power of each BS, i.e., they do not meet the constraints in (7c), an outage will occur. 26

4 2) Instantaneous Minimal Interference Power: The above average maximal interference power model assumes maximal transmit power of the interfering BSs, which can be regarded as the worst-case average ICI power. Next, we consider the case where all the BSs cooperatively allocate the powers based on the instantaneous CSI of all the users in the cluster, which corresponds to the best-case ICI power. With (1) and (2), the constraints in (7b) can be equivalently expressed as p k,b h H k,bg k,b 2 r k,b N c K j j=1,j b i=1 p i,j h H k,jg i,j 2 = r k,b σ 2 (11) for k = 1,..., K b and b = 1,..., N c. The N c b=1 K b linear constraints in (11) can be rewritten in a compact form as Ap = b, (12) where A, p and b are respectively defined as r k,b h H k,j g i,j 2 j b, i k [A] k+ b 1 l=1 K l,i+ j 1 l=1 K = 0, j = b, i k l h H k,b g k,b 2 j = b, i = k [p] k+ b 1 l=1 K l = p k,b, and [b] k+ b 1 l=1 K l = r k,bσ 2. By replacing the constraints in (7b) with (12), the joint power allocation problem can be formulated as min {p 1,1...p K1,1,...,p 1,Nc...p KNc,Nc } s.t. (12), (7c), (7d) N c K b p k,b b=1 k=1 (13a) (13b) This is a linear programming problem, which can be numerically solved with efficient algorithms [11]. When the matrix A has full rank, then the problem (7) has the unique solution, p = A 1 b. If p does not satisfy the constraints (7c) and (7d), then the problem is infeasible and an outage occurs. The solution of this problem maximizes the EE of the multicell network under the data rate requirement of each user and the maximal transmit power constraint of each BS for a given BS sleep strategy, where the instantaneous ICI power is minimal. IV. SIMULATION RESULTS In this section, we evaluate the EEs of and SCN systems, when the same number of users in the same area are served with identical antenna density and with identical cell-edge SNR. In the simulations, 10 users are uniformly distributed in each macro-cell with the radius of 1000 m. Overall 300 antennas are either all equipped at the macro-bs of a system or distributed over multiple small-bss of the SCN systems. The network layout is shown in Fig. 1, where L = 7 macro-cells are considered. The numbers of hexagonal smallcells within each hexagonal macro-cell are respectively set as 7, 61, 150 and 300, and the corresponding radiuses are 378 m, 128 m, 82 m, and 58 m. The cell-edge SNR is set to 10 db Transmit Power (W) Circuit Power (W) Min Interference Max Interference Fig. 2. Transmit power and circuit power versus the data rate requirement per user with the cell-edge SNR of 10 db. for all cells with various sizes unless otherwise specified. In the simulations, we consider a data rate requirement (i.e., SE requirement) achievable if the outage probability is less than 10%. Without otherwise specified, the BS sleep strategy for the SCN is set as follows: the BSs are turned into sleep mode when they have no users to serve. Since the propagation model depends on the cell size, both the short-range and long-range models are considered in the simulations. We define the transition distance as 10 m and 35 m respectively for SCN and systems, after which the propagation model switches from the short-range model to the long-range model. For the short-range model, the line-of-sight (LOS) channel exists with large probability and the large-scale fading gain follows log d in db [8], where d is the distance between the user and the BS. For the long-range model [12], the large-scale fading gain follows log d in db for, and follows log d in db for SCN. The EEs of and SCN largely depend on the circuit power consumption model, whose parameters depend on the BS types, and change with the cell size. The power consumption parameters of four typical BSs in prevalent cellular systems are summarized in [9], which are given in Table I. The four types of BSs have the coverage of 1000 m, 250 m, 100 m and 30 m, respectively. A. EE comparison Figure 2 shows the overall transmit power and circuit power of the BSs in and SCN systems in the centric macro cell. 4 Due to the limit of acceptable outage probability and maximal transmit power, and SCN systems have different maximum achievable SEs. As expected, the required overall transmit power in maximal interference case is larger than that in minimal interference case. The required transmit power in practical cases of interference power will lie between these two extreme cases. 4 In this way the cell-edge effects will be removed. 27

5 Fig. 3. The EE versus the required SE per user. The cell-edge SNR is 10 db. Fig. 4. The EE versus the required SE per user. The cell-edge SNR is 30 db. For conciseness, we only analyze the performance of Massive MIMO and SCN in the minimal interference case in the sequel. With the cell-edge SNR of 10 db, the achievable SE of is higher than SCN, and the achievable SE of SCN decreases as the number of cells increases. To achieve the same SE, needs more transmit power than SCN and the transmit power of SCN decreases with cell shrinking. This is because when the cell size reduces, the users will be closer to the BS. Although reducing cell size will reduce the array gain for a given antenna density, Fig. 2 shows that the benefit of high large-scale fading gain exceeds the loss of array gain, which results in a lower transmit power for a smaller cell size. On the other hand, when the cell number of SCN is small, e.g. N = 7, nearly all BSs will be active. Hence, the circuit power of SCN is close to that of. When the cell number of SCN is large, e.g. N = 300, most BSs will be in sleep mode. Therefore, the circuit power of SCN is much smaller than that of and decreases as the cell number increases. Fig. 3 shows the EEs of and SCN as a function of the required SE per user. It is shown that the EE of SCN to achieve the same SE requirement is much higher than that of. The gain increases as the cell size reduces, because the transmit power is much lower than the circuit power for SCN such that the EE is dominated by the circuit power. B. Impact of cell-edge SNR By comparing Fig. 3 with Fig. 4, we can observe the impact of the cell-edge SNR on the performance of and SCN. Similar relationship between the EEs of Massive MIMO and SCN can be observed from the two figures. For the SE, however, when the cell-edge SNR is 30 db, SCN can achieve higher SE than. This can be explained as follows. With high cell-edge SNR, the system operates in an ICI-limited scenario. In SCN, the reduction of cell size increases the number of sleep BSs and hence reduces the number of interfering BSs, which leads to the improvement of the SE. On the other hand, since the antenna density is given, N=7 UEthre=0 N=7 UEthre=1 N=7 UEthre=2 Fig. 5. The EE versus the required SE per user with different BS sleep strategies. reducing the cell size will decrease the array gain. Therefore, the achievable SE decreases when the cell size is too small as shown in Fig. 4. C. Impact of BS sleep strategy In Fig. 5, we analyze the impact of BS sleep strategies on the EE and the SE. In particular, we consider that a BS will turn into sleep mode when there are no users, one user, and two users in its coverage, respectively, corresponding to increasing values of the sleep threshold, where the SCN with seven cells is considered. It can be observed that when the sleep threshold is higher, more BSs will be in sleep mode and the system will consume less circuit power. Since the users in the cells covered by the sleep BSs will be served by adjacent active BSs, the increased propagation distance leads to more transmit power consumption. Because circuit power dominates the total power consumption, the EE of SCN improves as the sleep threshold increases. However, the increased transmit power leads to lower achievable SE because of the maximal transmit power constraint. D. Impact of the power consumption parameters All previous simulation results have shown that Massive MIMO achieves a lower EE than SCN, where the power 28

6 TABLE I PARAMETERS FOR ENERGY CONSUMPTION [9] η Fig. 6. The EE versus η for with the SE per user of 1.5bps/Hz. consumption parameters of are identical to the Macro BS currently deployed in cellular systems since the was set to have the same coverage as the Macro BS. In Fig. 6, we show with what power consumption parameters the can achieve a comparable EE to SCN. To this end, we adjust the power consumption of by using the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) with different η, where R 1000 η = represents the relative cell size. The four different cell radiuses in Table I correspond to four breakpoints of η, i.e., η 4 = 1, η 3 = 0.25, η 2 = 0.1, η 1 = The interpolating function for parameter ρ can be expressed as ρ 1 (η), η [η 1, η 2 ] ρ(η) = ρ 2 (η), η [η 2, η 3 ] ρ 3 (η), η [η 3, η 4 ] (14) where ρ i (η), i = 1, 2, 3 are the corresponding Hermit cubic interpolant. Other power consumption parameters in Table I can be similarly obtained by the interpolating functions. In the simulations above, the values of η of SCN with 7, 61, 150 and 300 cells are 0.378, 0.128, and 0.058, respectively. It can be seen that when the cell number of SCN is small, e.g. N = 7, can achieve a higher EE than SCN when η is less than 0.25, which is smaller than that of SCN with 7 small-cells. This indicates that to achieve the same EE, should be designed with lower power consumption than SCN. However, when the cell number of SCN is large, e.g. N c > 61, the EE of is always lower than SCN regardless of the power parameters. This is because SCN can enjoy more BS sleep opportunity to save the circuit power consumption. V. CONCLUSIONS In this paper, we compared the energy efficiencies (EEs) of and small cell network (SCN), given the same user density, antenna density and cell-edge SNR. To this end, we employed a unified model to analyze and optimize the two systems. We formulated the optimization problem for cell radius λ ρ P ca P ci 1000 m W 10.9 W 250 m W 5.4 W 100 m W 0.8 W 30 m W 0.4 W power allocation to multiple users that maximizes the EE under the constraint of data rate requirement of each user and the constraint of the maximal transmit power of each BS, where a best and worst case of interference power were considered. With the optimal solution of the problem, we analyzed the impacts of cell-edge SNR, BS sleep strategies and circuit power consumption on their performance. Our results showed that more transmit power is required by Massive MIMO than SCN to achieve the same spectral efficiency (SE) requirement. With typical circuit power consumption parameters, the EE of SCN is larger than that of Massive MIMO, because in SCN the BSs with low traffic loads can be turned into sleep mode. The achievable SE increases with the cell-edge SNR for both and SCN. When the BS sleep threshold becomes higher, SCN can achieve higher EE but lower achievable SE. When the number of cells in SCN is small, can achieve higher EE than SCN only with very low circuit power consumption. When the number of cells in SCN is large, is always less energy efficient than SCN regardless of the power consumptions. REFERENCES [1] J. Hoydis, M. Kobayashi, and M. Debbah, Green small-cell networks, IEEE Vehicular Tech. Mag., vol. 6, no. 1, pp , Mar [2] J. Hoydis, S. ten Brink, and M. Debbah, : How many antennas do we need? in Proc. Allerton Conf., [3] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, Scaling up MIMO: Opportunities and challenges with very large arrays, IEEE Signal Process. Mag., [4] G. Li, Z. Xu, C. Xiong, and C. Yang, Energy-efficient wireless communications: tutorial, survey, and open issues, IEEE Wireless Commun. Mag., vol. 18, no. 6, pp , Dec [5] H. Leem, S. Y. Baek, and D. K. Sung, The effects of cell size on energy saving, system capacity, and per-energy capacity, in Proc. IEEE WCNC, [6] E. Kurniawan and A. Goldsmith, Optimizing cellular network architectures to minimize energy consumption, in Proc. IEEE ICC, [7] G. Auer, V. Giannini, C. Desset, I. Godor, P. Skillermark, M. Olsson, M. Imran, D. Sabella, M. Gonzalez, O. Blume, and A. Fehske, How much energy is needed to run a wireless network? IEEE Wireless Commun. Mag., vol. 18, no. 5, pp , Oct [8] A. Goldsmith, Wireless Communications. Cambridge, U.K.: Cambridge Univ. Press, [9] M. A. Imran and P. Partners, Energy efficiency analysis of the reference systems, areas of improvements and target breakdown, Tech. Rep., [10] R. Yates, A framework for uplink power control in cellular radio systems, IEEE J. Select. Areas Commun., vol. 13, no. 7, pp , Sep [11] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, [12] TR V1.2.0, Further Advancements for E-UTRA Physical Layer Aspects (Release 9), 3rd Generation Partnership Project, Jun

Energy-Efficient Configuration of Frequency Resources in Multi-Cell MIMO-OFDM Networks

Energy-Efficient Configuration of Frequency Resources in Multi-Cell MIMO-OFDM Networks 0 IEEE 3rd International Symposium on Personal, Indoor and Mobile Radio Communications - PIMRC) Energy-Efficient Configuration of Frequency Resources in Multi-Cell MIMO-OFDM Networks Changyang She, Zhikun

More information

Energy-efficient Uplink Training Design For Closed-loop MISO Systems

Energy-efficient Uplink Training Design For Closed-loop MISO Systems 213 IEEE Wireless Communications and Networking Conference (WCNC): PHY Energy-efficient Uplink raining Design For Closed-loop MISO Systems Xin Liu, Shengqian Han, Chenyang Yang Beihang University, Beijing,

More information

EasyChair Preprint. A User-Centric Cluster Resource Allocation Scheme for Ultra-Dense Network

EasyChair Preprint. A User-Centric Cluster Resource Allocation Scheme for Ultra-Dense Network EasyChair Preprint 78 A User-Centric Cluster Resource Allocation Scheme for Ultra-Dense Network Yuzhou Liu and Wuwen Lai EasyChair preprints are intended for rapid dissemination of research results and

More information

Energy and Cost Analysis of Cellular Networks under Co-channel Interference

Energy and Cost Analysis of Cellular Networks under Co-channel Interference and Cost Analysis of Cellular Networks under Co-channel Interference Marcos T. Kakitani, Glauber Brante, Richard D. Souza, Marcelo E. Pellenz, and Muhammad A. Imran CPGEI, Federal University of Technology

More information

Distributed Coordinated Multi-Point Downlink Transmission with Over-the-Air Communication

Distributed Coordinated Multi-Point Downlink Transmission with Over-the-Air Communication Distributed Coordinated Multi-Point Downlink Transmission with Over-the-Air Communication Shengqian Han, Qian Zhang and Chenyang Yang School of Electronics and Information Engineering, Beihang University,

More information

arxiv: v2 [eess.sp] 31 Dec 2018

arxiv: v2 [eess.sp] 31 Dec 2018 Cooperative Energy Efficient Power Allocation Algorithm for Downlink Massive MIMO Saeed Sadeghi Vilni Abstract arxiv:1804.03932v2 [eess.sp] 31 Dec 2018 Massive multiple input multiple output (MIMO) is

More information

System Performance of Cooperative Massive MIMO Downlink 5G Cellular Systems

System Performance of Cooperative Massive MIMO Downlink 5G Cellular Systems IEEE WAMICON 2016 April 11-13, 2016 Clearwater Beach, FL System Performance of Massive MIMO Downlink 5G Cellular Systems Chao He and Richard D. Gitlin Department of Electrical Engineering University of

More information

Performance Analysis of Massive MIMO Downlink System with Imperfect Channel State Information

Performance Analysis of Massive MIMO Downlink System with Imperfect Channel State Information International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 3 Issue 12 ǁ December. 2015 ǁ PP.14-19 Performance Analysis of Massive MIMO

More information

On the Complementary Benefits of Massive MIMO, Small Cells, and TDD

On the Complementary Benefits of Massive MIMO, Small Cells, and TDD On the Complementary Benefits of Massive MIMO, Small Cells, and TDD Jakob Hoydis (joint work with K. Hosseini, S. ten Brink, M. Debbah) Bell Laboratories, Alcatel-Lucent, Germany Alcatel-Lucent Chair on

More information

Analysis of Massive MIMO With Hardware Impairments and Different Channel Models

Analysis of Massive MIMO With Hardware Impairments and Different Channel Models Analysis of Massive MIMO With Hardware Impairments and Different Channel Models Fredrik Athley, Giuseppe Durisi 2, Ulf Gustavsson Ericsson Research, Ericsson AB, Gothenburg, Sweden 2 Dept. of Signals and

More information

Beamforming with Imperfect CSI

Beamforming with Imperfect CSI This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 007 proceedings Beamforming with Imperfect CSI Ye (Geoffrey) Li

More information

Measured propagation characteristics for very-large MIMO at 2.6 GHz

Measured propagation characteristics for very-large MIMO at 2.6 GHz Measured propagation characteristics for very-large MIMO at 2.6 GHz Gao, Xiang; Tufvesson, Fredrik; Edfors, Ove; Rusek, Fredrik Published in: [Host publication title missing] Published: 2012-01-01 Link

More information

Analysis of massive MIMO networks using stochastic geometry

Analysis of massive MIMO networks using stochastic geometry Analysis of massive MIMO networks using stochastic geometry Tianyang Bai and Robert W. Heath Jr. Wireless Networking and Communications Group Department of Electrical and Computer Engineering The University

More information

ON PILOT CONTAMINATION IN MASSIVE MULTIPLE-INPUT MULTIPLE- OUTPUT SYSTEM WITH LEAST SQUARE METHOD AND ZERO FORCING RECEIVER

ON PILOT CONTAMINATION IN MASSIVE MULTIPLE-INPUT MULTIPLE- OUTPUT SYSTEM WITH LEAST SQUARE METHOD AND ZERO FORCING RECEIVER ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEM 2017, VOLUME: 08, ISSUE: 03 DOI: 10.21917/ijct.2017.0228 ON PILOT CONTAMINATION IN MASSIVE MULTIPLE-INPUT MULTIPLE- OUTPUT SYSTEM

More information

ENERGY EFFICIENT WATER-FILLING ALGORITHM FOR MIMO- OFDMA CELLULAR SYSTEM

ENERGY EFFICIENT WATER-FILLING ALGORITHM FOR MIMO- OFDMA CELLULAR SYSTEM ENERGY EFFICIENT WATER-FILLING ALGORITHM FOR MIMO- OFDMA CELLULAR SYSTEM Hailu Belay Kassa, Dereje H.Mariam Addis Ababa University, Ethiopia Farzad Moazzami, Yacob Astatke Morgan State University Baltimore,

More information

Downlink Power Control for Massive MIMO Cellular Systems with Optimal User Association

Downlink Power Control for Massive MIMO Cellular Systems with Optimal User Association Downlink Power Control for Massive MIMO Cellular Systems with Optimal User Association Trinh Van Chien, Emil Björnson, and Erik G. Larsson Department of Electrical Engineering ISY, Linköping University,

More information

Bringing the Magic of Asymptotic Analysis to Wireless Networks

Bringing the Magic of Asymptotic Analysis to Wireless Networks Massive MIMO Bringing the Magic of Asymptotic Analysis to Wireless Networks Dr. Emil Björnson Department of Electrical Engineering (ISY) Linköping University, Linköping, Sweden International Workshop on

More information

Coordinated Multi-Point (CoMP) Transmission in Downlink Multi-cell NOMA Systems: Models and Spectral Efficiency Performance

Coordinated Multi-Point (CoMP) Transmission in Downlink Multi-cell NOMA Systems: Models and Spectral Efficiency Performance 1 Coordinated Multi-Point (CoMP) Transmission in Downlink Multi-cell NOMA Systems: Models and Spectral Efficiency Performance Md Shipon Ali, Ekram Hossain, and Dong In Kim arxiv:1703.09255v1 [cs.ni] 27

More information

03_57_104_final.fm Page 97 Tuesday, December 4, :17 PM. Problems Problems

03_57_104_final.fm Page 97 Tuesday, December 4, :17 PM. Problems Problems 03_57_104_final.fm Page 97 Tuesday, December 4, 2001 2:17 PM Problems 97 3.9 Problems 3.1 Prove that for a hexagonal geometry, the co-channel reuse ratio is given by Q = 3N, where N = i 2 + ij + j 2. Hint:

More information

Decentralized Resource Allocation and Effective CSI Signaling in Dense TDD Networks

Decentralized Resource Allocation and Effective CSI Signaling in Dense TDD Networks Decentralized Resource Allocation and Effective CSI Signaling in Dense TDD Networks 1 Decentralized Resource Allocation and Effective CSI Signaling in Dense TDD Networks Antti Tölli with Praneeth Jayasinghe,

More information

Downlink Erlang Capacity of Cellular OFDMA

Downlink Erlang Capacity of Cellular OFDMA Downlink Erlang Capacity of Cellular OFDMA Gauri Joshi, Harshad Maral, Abhay Karandikar Department of Electrical Engineering Indian Institute of Technology Bombay Powai, Mumbai, India 400076. Email: gaurijoshi@iitb.ac.in,

More information

Precoding and Massive MIMO

Precoding and Massive MIMO Precoding and Massive MIMO Jinho Choi School of Information and Communications GIST October 2013 1 / 64 1. Introduction 2. Overview of Beamforming Techniques 3. Cooperative (Network) MIMO 3.1 Multicell

More information

Dynamic Frequency Hopping in Cellular Fixed Relay Networks

Dynamic Frequency Hopping in Cellular Fixed Relay Networks Dynamic Frequency Hopping in Cellular Fixed Relay Networks Omer Mubarek, Halim Yanikomeroglu Broadband Communications & Wireless Systems Centre Carleton University, Ottawa, Canada {mubarek, halim}@sce.carleton.ca

More information

Pilot-Decontamination in Massive MIMO Systems via Network Pilot Data Alignment

Pilot-Decontamination in Massive MIMO Systems via Network Pilot Data Alignment Pilot-Decontamination in Massive MIMO Systems via Network Pilot Data Alignment Majid Nasiri Khormuji Huawei Technologies Sweden AB, Stockholm Email: majid.n.k@ieee.org Abstract We propose a pilot decontamination

More information

Performance Analysis of Power Control and Cell Association in Heterogeneous Cellular Networks

Performance Analysis of Power Control and Cell Association in Heterogeneous Cellular Networks Performance Analysis of Power Control and Cell Association in Heterogeneous Cellular Networks Prasanna Herath Mudiyanselage PhD Final Examination Supervisors: Witold A. Krzymień and Chintha Tellambura

More information

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques 1 Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques Bin Song and Martin Haardt Outline 2 Multi-user user MIMO System (main topic in phase I and phase II) critical problem Downlink

More information

Hype, Myths, Fundamental Limits and New Directions in Wireless Systems

Hype, Myths, Fundamental Limits and New Directions in Wireless Systems Hype, Myths, Fundamental Limits and New Directions in Wireless Systems Reinaldo A. Valenzuela, Director, Wireless Communications Research Dept., Bell Laboratories Rutgers, December, 2007 Need to greatly

More information

Potential Throughput Improvement of FD MIMO in Practical Systems

Potential Throughput Improvement of FD MIMO in Practical Systems 2014 UKSim-AMSS 8th European Modelling Symposium Potential Throughput Improvement of FD MIMO in Practical Systems Fangze Tu, Yuan Zhu, Hongwen Yang Mobile and Communications Group, Intel Corporation Beijing

More information

Krauss, R., Brante, G., Rayel, O. K., Demo Souza, R., Onireti, O. and Imran, M. A. (08) On the Area Energy Efficiency of Multiple Transmit Antenna Small Base Stations. In: IEEE GLOBECOM, Singapore, 4-8

More information

Beamforming and Binary Power Based Resource Allocation Strategies for Cognitive Radio Networks

Beamforming and Binary Power Based Resource Allocation Strategies for Cognitive Radio Networks 1 Beamforming and Binary Power Based Resource Allocation Strategies for Cognitive Radio Networks UWB Walter project Workshop, ETSI October 6th 2009, Sophia Antipolis A. Hayar EURÉCOM Institute, Mobile

More information

Joint User Selection and Beamforming Schemes for Inter-Operator Spectrum Sharing

Joint User Selection and Beamforming Schemes for Inter-Operator Spectrum Sharing Joint User Selection and Beamforming Schemes for Inter-Operator Spectrum Sharing Johannes Lindblom, Erik G. Larsson and Eleftherios Karipidis Linköping University Post Print N.B.: When citing this work,

More information

Interference Model for Cognitive Coexistence in Cellular Systems

Interference Model for Cognitive Coexistence in Cellular Systems Interference Model for Cognitive Coexistence in Cellular Systems Theodoros Kamakaris, Didem Kivanc-Tureli and Uf Tureli Wireless Network Security Center Stevens Institute of Technology Hoboken, NJ, USA

More information

ISSN Vol.03,Issue.17 August-2014, Pages:

ISSN Vol.03,Issue.17 August-2014, Pages: www.semargroup.org, www.ijsetr.com ISSN 2319-8885 Vol.03,Issue.17 August-2014, Pages:3542-3548 Implementation of MIMO Multi-Cell Broadcast Channels Based on Interference Alignment Techniques B.SANTHOSHA

More information

Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems

Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems Jiangzhou Wang University of Kent 1 / 31 Best Wishes to Professor Fumiyuki Adachi, Father of Wideband CDMA [1]. [1]

More information

Transactions on Wireless Communication, Aug 2013

Transactions on Wireless Communication, Aug 2013 Transactions on Wireless Communication, Aug 2013 Mishfad S V Indian Institute of Science, Bangalore mishfad@gmail.com 7/9/2013 Mishfad S V (IISc) TWC, Aug 2013 7/9/2013 1 / 21 Downlink Base Station Cooperative

More information

Energy Efficient Power Control for the Two-tier Networks with Small Cells and Massive MIMO

Energy Efficient Power Control for the Two-tier Networks with Small Cells and Massive MIMO Energy Efficient Power Control for the Two-tier Networks with Small Cells and Massive MIMO Ningning Lu, Yanxiang Jiang, Fuchun Zheng, and Xiaohu You National Mobile Communications Research Laboratory,

More information

Joint Data Assignment and Beamforming for Backhaul Limited Caching Networks

Joint Data Assignment and Beamforming for Backhaul Limited Caching Networks 2014 IEEE 25th International Symposium on Personal, Indoor and Mobile Radio Communications Joint Data Assignment and Beamforming for Backhaul Limited Caching Networks Xi Peng, Juei-Chin Shen, Jun Zhang

More information

College of Engineering

College of Engineering WiFi and WCDMA Network Design Robert Akl, D.Sc. College of Engineering Department of Computer Science and Engineering Outline WiFi Access point selection Traffic balancing Multi-Cell WCDMA with Multiple

More information

Wideband Hybrid Precoder for Massive MIMO Systems

Wideband Hybrid Precoder for Massive MIMO Systems Wideband Hybrid Precoder for Massive MIMO Systems Lingxiao Kong, Shengqian Han, and Chenyang Yang School of Electronics and Information Engineering, Beihang University, Beijing 100191, China Email: {konglingxiao,

More information

Energy Harvested and Achievable Rate of Massive MIMO under Channel Reciprocity Error

Energy Harvested and Achievable Rate of Massive MIMO under Channel Reciprocity Error Energy Harvested and Achievable Rate of Massive MIMO under Channel Reciprocity Error Abhishek Thakur 1 1Student, Dept. of Electronics & Communication Engineering, IIIT Manipur ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

TIME-MULTIPLEXED / SUPERIMPOSED PILOT SELECTION FOR MASSIVE MIMO PILOT DECONTAMINATION

TIME-MULTIPLEXED / SUPERIMPOSED PILOT SELECTION FOR MASSIVE MIMO PILOT DECONTAMINATION TIME-MULTIPLEXED / SUPERIMPOSED PILOT SELECTION FOR MASSIVE MIMO PILOT DECONTAMINATION Karthik Upadhya Sergiy A. Vorobyov Mikko Vehkapera Department of Signal Processing and Acoustics, Aalto University,

More information

Optimized Data Symbol Allocation in Multicell MIMO Channels

Optimized Data Symbol Allocation in Multicell MIMO Channels Optimized Data Symbol Allocation in Multicell MIMO Channels Rajeev Gangula, Paul de Kerret, David Gesbert and Maha Al Odeh Mobile Communications Department, Eurecom 9 route des Crêtes, 06560 Sophia Antipolis,

More information

Spatial Correlation Effects on Channel Estimation of UCA-MIMO Receivers

Spatial Correlation Effects on Channel Estimation of UCA-MIMO Receivers 11 International Conference on Communication Engineering and Networks IPCSIT vol.19 (11) (11) IACSIT Press, Singapore Spatial Correlation Effects on Channel Estimation of UCA-MIMO Receivers M. A. Mangoud

More information

A Practical Resource Allocation Approach for Interference Management in LTE Uplink Transmission

A Practical Resource Allocation Approach for Interference Management in LTE Uplink Transmission JOURNAL OF COMMUNICATIONS, VOL. 6, NO., JULY A Practical Resource Allocation Approach for Interference Management in LTE Uplink Transmission Liying Li, Gang Wu, Hongbing Xu, Geoffrey Ye Li, and Xin Feng

More information

Novel Transmission Schemes for Multicell Downlink MC/DS-CDMA Systems Employing Time- and Frequency-Domain Spreading

Novel Transmission Schemes for Multicell Downlink MC/DS-CDMA Systems Employing Time- and Frequency-Domain Spreading Novel Transmission Schemes for Multicell Downlink MC/DS-CDMA Systems Employing Time- and Frequency-Domain Spreading Jia Shi and Lie-Liang Yang School of ECS, University of Southampton, SO7 BJ, United Kingdom

More information

What is the Role of MIMO in Future Cellular Networks: Massive? Coordinated? mmwave?

What is the Role of MIMO in Future Cellular Networks: Massive? Coordinated? mmwave? What is the Role of MIMO in Future Cellular Networks: Massive? Coordinated? mmwave? Robert W. Heath Jr. The University of Texas at Austin Wireless Networking and Communications Group www.profheath.org

More information

Coordinated Multi-Point Transmission for Interference Mitigation in Cellular Distributed Antenna Systems

Coordinated Multi-Point Transmission for Interference Mitigation in Cellular Distributed Antenna Systems Coordinated Multi-Point Transmission for Interference Mitigation in Cellular Distributed Antenna Systems M.A.Sc. Thesis Defence Talha Ahmad, B.Eng. Supervisor: Professor Halim Yanıkömeroḡlu July 20, 2011

More information

Proportional Fair Scheduling for Wireless Communication with Multiple Transmit and Receive Antennas 1

Proportional Fair Scheduling for Wireless Communication with Multiple Transmit and Receive Antennas 1 Proportional Fair Scheduling for Wireless Communication with Multiple Transmit and Receive Antennas Taewon Park, Oh-Soon Shin, and Kwang Bok (Ed) Lee School of Electrical Engineering and Computer Science

More information

Performance Analysis of CoMP Using Scheduling and Precoding Techniques in the Heterogeneous Network

Performance Analysis of CoMP Using Scheduling and Precoding Techniques in the Heterogeneous Network International Journal of Information and Electronics Engineering, Vol. 6, No. 3, May 6 Performance Analysis of CoMP Using Scheduling and Precoding Techniques in the Heterogeneous Network Myeonghun Chu,

More information

Random Beamforming with Multi-beam Selection for MIMO Broadcast Channels

Random Beamforming with Multi-beam Selection for MIMO Broadcast Channels Random Beamforming with Multi-beam Selection for MIMO Broadcast Channels Kai Zhang and Zhisheng Niu Dept. of Electronic Engineering, Tsinghua University Beijing 84, China zhangkai98@mails.tsinghua.e.cn,

More information

The EARTH Energy Efficiency Evaluation Framework (E 3 F):

The EARTH Energy Efficiency Evaluation Framework (E 3 F): The EARTH Energy Efficiency Evaluation Framework (E 3 F): A methodology to evaluate radio network energy efficiency at system level 1st ETSI TC EE workshop 20-21 June,, Genoa, Italy Magnus Olsson, Ericsson

More information

Journal of Asian Scientific Research

Journal of Asian Scientific Research Journal of Asian Scientific Research journal homepage: http://aessweb.com/journal-detail.php?id=5003 THOUGHPUT PERFORMANCE OF ADAPTIVE MODULATION AND CODING SCHEME WITH LINK ADAPTATION FOR MIMO-WIMAX DOWNLINK

More information

Optimum Rate Allocation for Two-Class Services in CDMA Smart Antenna Systems

Optimum Rate Allocation for Two-Class Services in CDMA Smart Antenna Systems 810 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 51, NO. 5, MAY 2003 Optimum Rate Allocation for Two-Class Services in CDMA Smart Antenna Systems Il-Min Kim, Member, IEEE, Hyung-Myung Kim, Senior Member,

More information

Full-duplex based Successive Interference Cancellation in Heterogeneous Networks

Full-duplex based Successive Interference Cancellation in Heterogeneous Networks Full-duplex based Successive Interference Cancellation in Heterogeneous Networks Lei Huang, Shengqian Han, Chenyang Yang Beihang University, Beijing, China Email: {leihuang, sqhan, cyyang}@buaa.edu.cn

More information

Cooperative Frequency Reuse for the Downlink of Cellular Systems

Cooperative Frequency Reuse for the Downlink of Cellular Systems Cooperative Frequency Reuse for the Downlink of Cellular Systems Salam Akoum, Marie Zwingelstein-Colin, Robert W. Heath Jr., and Merouane Debbah Department of Electrical & Computer Engineering Wireless

More information

Xiao Yang 1 The Institute of Microelectronics, Tsinghua University, Beijing,100084, China

Xiao Yang 1 The Institute of Microelectronics, Tsinghua University, Beijing,100084, China Inversion Selection Method for Linear Data Detection in the Massive Multiple Input Multiple Output Uplink with Reconfigurable Implementation Results 1 The Institute of Microelectronics, Tsinghua University,

More information

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline Multiple Antennas Capacity and Basic Transmission Schemes Mats Bengtsson, Björn Ottersten Basic Transmission Schemes 1 September 8, 2005 Presentation Outline Channel capacity Some fine details and misconceptions

More information

Experimental evaluation of massive MIMO at 20 GHz band in indoor environment

Experimental evaluation of massive MIMO at 20 GHz band in indoor environment This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Communications Express, Vol., 1 6 Experimental evaluation of massive MIMO at GHz

More information

Optimizing Multi-Cell Massive MIMO for Spectral Efficiency

Optimizing Multi-Cell Massive MIMO for Spectral Efficiency Optimizing Multi-Cell Massive MIMO for Spectral Efficiency How Many Users Should Be Scheduled? Emil Björnson 1, Erik G. Larsson 1, Mérouane Debbah 2 1 Linköping University, Linköping, Sweden 2 Supélec,

More information

Cell-free massive MIMO: Uniformly great service for everyone

Cell-free massive MIMO: Uniformly great service for everyone Cell-free massive MIMO: Uniformly great service for everyone Hien Quoc Ngo, Alexei Ashikhmin, Hong Yang, Erik G. Larsson and Thomas L. Marzetta Linköping University Post Print N.B.: When citing this work,

More information

LTE in Unlicensed Spectrum

LTE in Unlicensed Spectrum LTE in Unlicensed Spectrum Prof. Geoffrey Ye Li School of ECE, Georgia Tech. Email: liye@ece.gatech.edu Website: http://users.ece.gatech.edu/liye/ Contributors: Q.-M. Chen, G.-D. Yu, and A. Maaref Outline

More information

Performance Evaluation of the VBLAST Algorithm in W-CDMA Systems

Performance Evaluation of the VBLAST Algorithm in W-CDMA Systems erformance Evaluation of the VBLAST Algorithm in W-CDMA Systems Dragan Samardzija, eter Wolniansky, Jonathan Ling Wireless Research Laboratory, Bell Labs, Lucent Technologies, 79 Holmdel-Keyport Road,

More information

IN RECENT years, wireless multiple-input multiple-output

IN RECENT years, wireless multiple-input multiple-output 1936 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 6, NOVEMBER 2004 On Strategies of Multiuser MIMO Transmit Signal Processing Ruly Lai-U Choi, Michel T. Ivrlač, Ross D. Murch, and Wolfgang

More information

Modeling and Analysis of User-Centric and Disjoint Cooperation in Network MIMO Systems. Caiyi Zhu

Modeling and Analysis of User-Centric and Disjoint Cooperation in Network MIMO Systems. Caiyi Zhu Modeling and Analysis of User-Centric and Disjoint Cooperation in Network MIMO Systems by Caiyi Zhu A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate

More information

Interference Evaluation for Distributed Collaborative Radio Resource Allocation in Downlink of LTE Systems

Interference Evaluation for Distributed Collaborative Radio Resource Allocation in Downlink of LTE Systems Interference Evaluation for Distributed Collaborative Radio Resource Allocation in Downlink of LTE Systems Bahareh Jalili, Mahima Mehta, Mehrdad Dianati, Abhay Karandikar, Barry G. Evans CCSR, Department

More information

Uplink Receiver with V-BLAST and Practical Considerations for Massive MIMO System

Uplink Receiver with V-BLAST and Practical Considerations for Massive MIMO System Uplink Receiver with V-BLAST and Practical Considerations for Massive MIMO System Li Tian 1 1 Department of Electrical and Computer Engineering, University of Auckland, Auckland, New Zealand Abstract Abstract

More information

On Minimizing Base Station Power Consumption

On Minimizing Base Station Power Consumption On Minimizing Base Station Power Consumption Hauke Holtkamp, Gunther Auer DOCOMO Euro-Labs D-8687 Munich, Germany Email: {holtkamp, auer}@docomolab-euro.com Harald Haas Institute for Digital Communications

More information

Optimal Energy Harvesting Scheme for Power Beacon-Assisted Wireless-Powered Networks

Optimal Energy Harvesting Scheme for Power Beacon-Assisted Wireless-Powered Networks Indonesian Journal of Electrical Engineering and Computer Science Vol. 7, No. 3, September 2017, pp. 802 808 DOI: 10.11591/ijeecs.v7.i3.pp802-808 802 Optimal Energy Harvesting Scheme for Power Beacon-Assisted

More information

Designing Energy Efficient 5G Networks: When Massive Meets Small

Designing Energy Efficient 5G Networks: When Massive Meets Small Designing Energy Efficient 5G Networks: When Massive Meets Small Associate Professor Emil Björnson Department of Electrical Engineering (ISY) Linköping University Sweden Dr. Emil Björnson Associate professor

More information

On the Trade-Off Between Transmit and Leakage Power for Rate Optimal MIMO Precoding

On the Trade-Off Between Transmit and Leakage Power for Rate Optimal MIMO Precoding On the Trade-Off Between Transmit and Leakage Power for Rate Optimal MIMO Precoding Tim Rüegg, Aditya U.T. Amah, Armin Wittneben Swiss Federal Institute of Technology (ETH) Zurich, Communication Technology

More information

Spring 2017 MIMO Communication Systems Solution of Homework Assignment #5

Spring 2017 MIMO Communication Systems Solution of Homework Assignment #5 Spring 217 MIMO Communication Systems Solution of Homework Assignment #5 Problem 1 (2 points Consider a channel with impulse response h(t α δ(t + α 1 δ(t T 1 + α 3 δ(t T 2. Assume that T 1 1 µsecs and

More information

Adaptive Modulation, Adaptive Coding, and Power Control for Fixed Cellular Broadband Wireless Systems: Some New Insights 1

Adaptive Modulation, Adaptive Coding, and Power Control for Fixed Cellular Broadband Wireless Systems: Some New Insights 1 Adaptive, Adaptive Coding, and Power Control for Fixed Cellular Broadband Wireless Systems: Some New Insights Ehab Armanious, David D. Falconer, and Halim Yanikomeroglu Broadband Communications and Wireless

More information

Energy Efficiency of Combined DPS and JT CoMP Technique in Downlink LTE-A Cellular Networks

Energy Efficiency of Combined DPS and JT CoMP Technique in Downlink LTE-A Cellular Networks Energy Efficiency of Combined DPS and JT CoMP Technique in Downlink LTE-A Cellular Networks Md. Farhad Hossain, 2 Md. Jamiul Huque, 3 Ahnaf S. Ahmad, 4 Kumudu S. Munasinghe and 5 Abbas Jamalipour,2,3 Department

More information

Analysis of Novel Eigen Beam Forming Scheme with Power Allocation in LSAS

Analysis of Novel Eigen Beam Forming Scheme with Power Allocation in LSAS Analysis of Novel Eigen Beam Forming Scheme with Power Allocation in LSAS Saransh Malik, Sangmi Moon, Hun Choi, Cheolhong Kim. Daeijin Kim, and Intae Hwang, Non-Member, IEEE Abstract Massive MIMO (also

More information

Adaptive Co-primary Shared Access Between Co-located Radio Access Networks

Adaptive Co-primary Shared Access Between Co-located Radio Access Networks Adaptive Co-primary Shared Access Between Co-located Radio Access Networks Sofonias Hailu, Alexis A. Dowhuszko and Olav Tirkkonen Department of Communications and Networking, Aalto University, P.O. Box

More information

Massive MIMO a overview. Chandrasekaran CEWiT

Massive MIMO a overview. Chandrasekaran CEWiT Massive MIMO a overview Chandrasekaran CEWiT Outline Introduction Ways to Achieve higher spectral efficiency Massive MIMO basics Challenges and expectations from Massive MIMO Network MIMO features Summary

More information

Optimization of Coded MIMO-Transmission with Antenna Selection

Optimization of Coded MIMO-Transmission with Antenna Selection Optimization of Coded MIMO-Transmission with Antenna Selection Biljana Badic, Paul Fuxjäger, Hans Weinrichter Institute of Communications and Radio Frequency Engineering Vienna University of Technology

More information

Channel Norm-Based User Scheduler in Coordinated Multi-Point Systems

Channel Norm-Based User Scheduler in Coordinated Multi-Point Systems Channel Norm-Based User Scheduler in Coordinated Multi-Point Systems Shengqian an, Chenyang Yang Beihang University, Beijing, China Email: sqhan@ee.buaa.edu.cn cyyang@buaa.edu.cn Mats Bengtsson Royal Institute

More information

An Accurate and Efficient Analysis of a MBSFN Network

An Accurate and Efficient Analysis of a MBSFN Network An Accurate and Efficient Analysis of a MBSFN Network Matthew C. Valenti West Virginia University Morgantown, WV May 9, 2014 An Accurate (shortinst) and Efficient Analysis of a MBSFN Network May 9, 2014

More information

Optimal Relay Placement for Cellular Coverage Extension

Optimal Relay Placement for Cellular Coverage Extension Optimal elay Placement for Cellular Coverage Extension Gauri Joshi, Abhay Karandikar Department of Electrical Engineering Indian Institute of Technology Bombay Powai, India 400076. Email: gaurijoshi@iitb.ac.in,

More information

Near Optimal Joint Channel and Power Allocation Algorithms in Multicell Networks

Near Optimal Joint Channel and Power Allocation Algorithms in Multicell Networks Near Optimal Joint Channel and Power Allocation Algorithms in Multicell Networks Master Thesis within Optimization and s Theory HILDUR ÆSA ODDSDÓTTIR Supervisors: Co-Supervisor: Gabor Fodor, Ericsson Research,

More information

EE360: Lecture 6 Outline MUD/MIMO in Cellular Systems

EE360: Lecture 6 Outline MUD/MIMO in Cellular Systems EE360: Lecture 6 Outline MUD/MIMO in Cellular Systems Announcements Project proposals due today Makeup lecture tomorrow Feb 2, 5-6:15, Gates 100 Multiuser Detection in cellular MIMO in Cellular Multiuser

More information

Non-Orthogonal Multiple Access (NOMA) in 5G Cellular Downlink and Uplink: Achievements and Challenges

Non-Orthogonal Multiple Access (NOMA) in 5G Cellular Downlink and Uplink: Achievements and Challenges Non-Orthogonal Multiple Access (NOMA) in 5G Cellular Downlink and Uplink: Achievements and Challenges Presented at: Huazhong University of Science and Technology (HUST), Wuhan, China S.M. Riazul Islam,

More information

Distributed Power Control in Cellular and Wireless Networks - A Comparative Study

Distributed Power Control in Cellular and Wireless Networks - A Comparative Study Distributed Power Control in Cellular and Wireless Networks - A Comparative Study Vijay Raman, ECE, UIUC 1 Why power control? Interference in communication systems restrains system capacity In cellular

More information

Analysis of RF requirements for Active Antenna System

Analysis of RF requirements for Active Antenna System 212 7th International ICST Conference on Communications and Networking in China (CHINACOM) Analysis of RF requirements for Active Antenna System Rong Zhou Department of Wireless Research Huawei Technology

More information

Performance Evaluation of Uplink Closed Loop Power Control for LTE System

Performance Evaluation of Uplink Closed Loop Power Control for LTE System Performance Evaluation of Uplink Closed Loop Power Control for LTE System Bilal Muhammad and Abbas Mohammed Department of Signal Processing, School of Engineering Blekinge Institute of Technology, Ronneby,

More information

Cooperative Diversity Routing in Wireless Networks

Cooperative Diversity Routing in Wireless Networks Cooperative Diversity Routing in Wireless Networks Mostafa Dehghan, Majid Ghaderi, and Dennis L. Goeckel Department of Computer Science, University of Calgary, Emails: {mdehghan, mghaderi}@ucalgary.ca

More information

Performance Evaluation of Massive MIMO in terms of capacity

Performance Evaluation of Massive MIMO in terms of capacity IJSRD National Conference on Advances in Computer Science Engineering & Technology May 2017 ISSN: 2321-0613 Performance Evaluation of Massive MIMO in terms of capacity Nikhil Chauhan 1 Dr. Kiran Parmar

More information

Novel Detection Scheme for LSAS Multi User Scenario with LTE-A and MMB Channels

Novel Detection Scheme for LSAS Multi User Scenario with LTE-A and MMB Channels Novel Detection Scheme for LSAS Multi User Scenario with LTE-A MMB Channels Saransh Malik, Sangmi Moon, Hun Choi, Cheolhong Kim. Daeijin Kim, Intae Hwang, Non-Member, IEEE Abstract In this paper, we analyze

More information

Multihop Relay-Enhanced WiMAX Networks

Multihop Relay-Enhanced WiMAX Networks 0 Multihop Relay-Enhanced WiMAX Networks Yongchul Kim and Mihail L. Sichitiu Department of Electrical and Computer Engineering North Carolina State University Raleigh, NC 27695 USA. Introduction The demand

More information

NOMA in Distributed Antenna System for Max-Min Fairness and Max-Sum-Rate

NOMA in Distributed Antenna System for Max-Min Fairness and Max-Sum-Rate NOMA in Distributed Antenna System for Max-Min Fairness and Max-Sum-Rate Dong-Jun Han, Student Member, IEEE, Minseok Choi, Student Member, IEEE, and Jaekyun Moon Fellow, IEEE School of Electrical Engineering

More information

Centralized and Distributed LTE Uplink Scheduling in a Distributed Base Station Scenario

Centralized and Distributed LTE Uplink Scheduling in a Distributed Base Station Scenario Centralized and Distributed LTE Uplink Scheduling in a Distributed Base Station Scenario ACTEA 29 July -17, 29 Zouk Mosbeh, Lebanon Elias Yaacoub and Zaher Dawy Department of Electrical and Computer Engineering,

More information

6 Uplink is from the mobile to the base station.

6 Uplink is from the mobile to the base station. It is well known that by using the directional properties of adaptive arrays, the interference from multiple users operating on the same channel as the desired user in a time division multiple access (TDMA)

More information

Hybrid Frequency Reuse Scheme for Cellular MIMO Systems

Hybrid Frequency Reuse Scheme for Cellular MIMO Systems IEICE TRANS. COMMUN., VOL.E92 B, NO.5 MAY 29 1641 PAPER Special Section on Radio Access Techniques for 3G Evolution Hybrid Frequency Reuse Scheme for Cellular MIMO Systems Wei PENG a), Nonmember and Fumiyuki

More information

WITH the advancements in antenna technology and

WITH the advancements in antenna technology and On the Use of Channel Models and Channel Estimation Techniques for Massive MIMO Systems Martin Kuerbis, Naveen Mysore Balasubramanya, Lutz Lampe and Alexander Lampe Hochschule Mittweida - University of

More information

Bit per Joule and Area Energy-efficiency of Heterogeneous Macro Base Station Sites

Bit per Joule and Area Energy-efficiency of Heterogeneous Macro Base Station Sites Bit per Joule and Area Energy-efficiency of Heterogeneous Macro Base Station Sites Josip Lorincz, Nikola Dimitrov, Toncica Matijevic FESB, University of Split, R. Boskovica 32, 2000 Split, Croatia E-mail:

More information

Effects of Interference on Capacity in Multi-Cell CDMA Networks

Effects of Interference on Capacity in Multi-Cell CDMA Networks Effects of Interference on Capacity in Multi-Cell CDMA Networks Robert AKL, Asad PARVEZ, and Son NGUYEN Department of Computer Science and Engineering University of North Texas Denton, TX, 76207 ABSTRACT

More information

Downlink Performance of Cell Edge User Using Cooperation Scheme in Wireless Cellular Network

Downlink Performance of Cell Edge User Using Cooperation Scheme in Wireless Cellular Network Quest Journals Journal of Software Engineering and Simulation Volume1 ~ Issue1 (2013) pp: 07-12 ISSN(Online) :2321-3795 ISSN (Print):2321-3809 www.questjournals.org Research Paper Downlink Performance

More information

Beyond 4G Cellular Networks: Is Density All We Need?

Beyond 4G Cellular Networks: Is Density All We Need? Beyond 4G Cellular Networks: Is Density All We Need? Jeffrey G. Andrews Wireless Networking and Communications Group (WNCG) Dept. of Electrical and Computer Engineering The University of Texas at Austin

More information

Multiple Antenna Processing for WiMAX

Multiple Antenna Processing for WiMAX Multiple Antenna Processing for WiMAX Overview Wireless operators face a myriad of obstacles, but fundamental to the performance of any system are the propagation characteristics that restrict delivery

More information