Interference Model for Cognitive Coexistence in Cellular Systems

Size: px
Start display at page:

Download "Interference Model for Cognitive Coexistence in Cellular Systems"

Transcription

1 Interference Model for Cognitive Coexistence in Cellular Systems Theodoros Kamakaris, Didem Kivanc-Tureli and Uf Tureli Wireless Network Security Center Stevens Institute of Technology Hoboken, NJ, USA Abstract Cognitive radio is a key enabling technology of dynamic spectrum access for exploiting unused spectrum resources. This article focuses on modeling the opportunity for cellular systems which have the greatest spectrum scarcity problem. A system model is introduced for analyzing the opportunistic bandwidth within a cellular network through a spatial evaluation of the resources used by the primary and available to the secondary systems. Towards this purpose, two metrics are introduced signifying the spatial coherence of resources: the region of interference and the region of communications. Our results suggest significant underutilized resources that can be scavenged through secondary users to greatly improve the spectral efficiency of cellular networks. I. INTRODUCTION The concepts of cognitive radios and dynamic spectrum access [1] have spearheaded the evolution of new paradigms of interference aware multiple access and spectral reuse. At the same time policy changes [2] allowing opportunistic use enable new disruptive technologies as secondary systems provide added value to legacy systems with accelerated time to market evolution cycles. A market in dire need of such accelerated evolution cycles is that of cellular telephony and its imminent convergence to wireless data networks. Next generation networks (NGN) envision multi-network technologies that provide always available, best-connected services. Along this paradigm this article investigates the availability of underutilized spectral resources within the static infrastructure of a cellular network for capacity expansion through opportunistic spectral reuse. NGN technologies ubiquitously converge to frequency reuse of one to improve bandwidth efficiency, while increasing the cell density is often the strategy for increasing system capacity. However, the hub-and-spoke architecture along with the frequency division duplex (FDD) scheme and the power control mechanisms employed allow for spectrum holes through the exposed node effect. In the uplink channel, the bandwidth used by a transmitting mobile remains unutilized in the antipodal area of the cell due to power control. An opportunistic access scheme for a secondary system with a dynamic operational area of coverage (footprint), such as those proposed in [3] and [4] can exploit such spectrum holes through low power adhoc networks which control their interference to the primary system. We note that our discussion for spectral reuse is significantly different from the case of cognitive radio in TV bands. Since the mobiles receive at different frequencies, their involvement is limited to the interference they introduce to the secondary system, therefore the footprints of the primary and secondary system overlap, whilst in the TV bands scenario the systems remain spatially orthogonal. Following we formalize and quantify the available opportunistic resources that such a secondary system can exploit. We base our discussion on the geometric analysis of an intuitive system model of the cellular network. II. SYSTEM MODEL We represent the cellular network with a hexagonal pattern with the basestation (BS) located at the center of the hexagon and the mobiles (MSs) uniformly distributed around them. We assume that within the boundaries of a hexagon the MSs are associated with the BS at its center. The system model is based on the introduction of two new metrics to quantify the cellular system resources that could be opportunistically scavenged by a secondary system operating within the bounds of a cellular network: The region of interference (RoI) signifies the spatial coherence of resources around the location of a secondary user () and is a measure of the resource utilization seen by the. The region of communications (RoC) is a measure of the possible footprint the can have to utilize available resources without interfering with the primary system (i.e. the cellular network). These metrics are not related to specific frequency, time or other parameters that might constitute the cellular systems multiple access scheme, rather they represent a ratio of the respective RoI, RoC areas over the total cell area. Hence, we formulate the problem as a measure of the spatial coherence of the cellular system s resources, whether those are spectral channels, time slots or CDMA codes. As mentioned at the introduction, we focus our discussion to the uplink of the cellular system since out of the three identified sources of opportunistic resources, the frequency division duplex scheme is the only one still adhered to in next generation cellular networks. A. Region of Interference Assuming a uniform distribution of the MSs across the cell area, the interference seen by the can be estimated as the ratio of the interfering area over the cell area. As aforementioned, this measure of interference indicates the ratio of available resources to the secondary user to those of the primary user and can represent orthogonal frequency channels,

2 time slots or CDMA codes, thus being applicable to any multiple access mechanism. A key assumption on which we base our system model is that typically mobiles employ power control that effectively bounds their range to a radius equal to their distance from the BS. We define the RoI for a specific location within a cell as the area within which any MS transmitting will make those resources (channels, timeslots, etc.) unavailable to the. Consider the geometry shown in Fig. 1, where the transmitter ( ) is communicating to the receiver ( Rx ) with the same resources that the MS is communicating to the BS within a cell. to the assumed power control strategy, then for the MS to interfere with the, the following inequality must hold: d (MS, Rx ) α d (MS, BS) α < R C. (5) The problem becomes similar to that of finding the umbrella diagram as defined in [5]. Let C() be the polygon with A sides, modeling the sensitivity range of the secondary user receiver equal to the cell radius range. We define the convex polygon I i = H(BS i C() and we construct the perpendicular bisector L i of BS i in I i. Next we find the intersections of the bisector line segments. Since the intersection is the circumcenter of the triangle (, BS i, BS i+1 ), the bisector line segments L i and L i+1 (or their extensions) intersect on the boundary of cells H(BS i ), H(BS i+1 ). If we denote the polygon formed by the line segments L i as P (L i ) then RoI Rx = P (L i ) C() as depicted in Fig. 2. BS Tx d(ms,bs) D MS d(ms,) Rx RoI R C() Fig. 1. Opportunistic spectrum users in a cellular network Let PRx X, P T X x denote the power received at and transmitted from X respectively, and let d(x, Y ) denote the distance of X to Y. Assuming a distance-power gradient α, the power received by the BS (PRx BS) is: PRx BS PT MS x = d (MS, BS) α PT MS x = PRx BS d (MS, BS) α. (1) For Rx to decode received signals with an interference free range R: P D α P MS d (MS, Rx ) α + N 0 > P N 0 R α. (2) From equations 1 and 2 we can obtain an expression relating d (MS, Rx ) and d (MS, BS) with R > D as follows: ( ) N 0 R α PRx BS D α 1 d (MS, BS)α > d (MS, Rx ) α, (3) that is equivalent to: d (MS, BS) α < d (MS, Rx) α ( ) R α SNR BS D α 1. (4) Given a random location within the area of adjacent cells with centers at BS0,...BS3, C() signifies the maximum RoI in the case all MSs transmit at their full range equal to that of the cell radius (RC). If we constrain their range according BS3 Fig. 2. BS0 L3 L0 L2 BS2 Region of Interference L1 BS1 The high level algorithm to compute the area of RoI for any location with respect to the area of H(BS i ) is described below: FOR H(BS 0 ) : FIND BS i where C() H(BS i ) 0 COMPUTE R(BS i ) such that: MS i H(BS i ), d(, MS i ) d(bs i, MS i ) COMPUTE RoI() = ( i R(BS i)) (C()) B. Region of Communications Due to the advantageous positioning of the BS in a cellular system along with the fact that there are constant transmissions on the downlink, it is possible to determine a maximum power allowed for which the would be operating below the interference range of the BS. A straightforward approach would be to measure the relative downlink path loss from each

3 BS, assume a conservative uplink path loss and transmit at power levels that do not increase the Signal to Interference Noise Ratio (SINR) seen at the BS for the MSs. This implies that the range of the s transmission is proportional to its distance from the BS. Since we cannot know the distribution of the MSs across the adjacent BSs, the must constrain its transmission to a range less than the distance of the closest BS. We introduce the metric of region of communication to indicate the area within which an can effectively communicate to another. This is similar to the bidirectional communications range, taking into account the transmission power limitations imposed by the BSs in proximity. As before, we define the polygon P (L i ) as the region from which the transmission range of other secondary users can reach without increasing the SINR of adjacent BSs. Then we define R() as the polygon with A sides that encloses the transmission range of. Then RoC = P (L i ) R() depicted in Fig db for communicating. Therefore we need to adjust both RoI and RoC as a function of the operational SNR and SINR respectively. We assume the following path loss model [6]: Let the received signal power P r be proportional to the distance, raised to the distance-power gradient α such that: P r P 0 = ( ) α d, (6) where P 0 is the received power at a reference distance and α varies typically from: 2 (free space loss), 3 (suburban) or 4 (urban environment). Then, the path loss (L P ) is given by: L P = L α log d, (7) where L 0 is the path loss at reference distance. In Fig. 2,3 we depict the RoI and RoC with boundaries at 0 db SNR and 0 db SINR respectively. Fig. 4,5 illustrate the adjusted RoI and RoC for SNR and SINR greater than 0 which correspond d to range adjustments by a factor of across the dimensions of C(), R() and P (L i ). RoC C'() L0 BS0 L1 BS1 L'0 R() L2 RoI' L'1 L3 L'2 BS3 BS2 L'3 Fig. 3. Region of Communications The high level algorithm to compute the area of RoC for any location with respect to the area of H(BS i ) is described below: FOR H(BS 0 ) : FIND BS i where R() H(BS i ) 0 COMPUTE R(BS i ) such that: MS i H(BS i ), d(, MS i ) d(bs i, MS i ) COMPUTE RoC() = ( i R(BS i)) (R()) C. SNR adjustment to RoI, RoC In the above discussion we have assumed perfect power control for MS to BS and to BS with 0 db SNR at the boundaries. However, the mobiles operate at higher SN R > 0dB, and similarly the s would require SINR greater than Fig. 4. SNR adjusted Region of Interference For the Region of Interference, the lines L i now bisect BS i in I i such that: and points L i : d (L i, Rx ) = d d (L i, Rx ) (8) R C () = d R C(). (9) For the Region of Communications, the lines L i now bisect BS i in I i such that: points L i : d (L i, Rx ) = d d (L i, Rx ) (10)

4 BS0 R'() L'0 RoC' L'1 L'3 L'2 Fig. 6. Region of Interference normalized to the Cell Area at 0 db SNR MS BS and Fig. 5. SNR adjusted Region of Communications R C () = d R C(). (11) Since is set to be the the reference distance at which the RoI SNR and RoC SINR are zero, we can relate the range adjustment to the operational SNR from the Path Loss equation as follows: ( ) d {SNR, SINR} = L P L 0 = 10 α log (12) For a more analytic discussion on the relation of the distance and the power between the secondary user and the primary system we refer the reader to [7]. A. Region of Interference III. SIMULATION RELTS Fig. 6 illustrates the simulation results of the RoI algorithm across one cell when the power control strategy of the primary system is 0 db (SNR BS MS = 0 db). The grayscale color scheme represents the RoI normalized to the total cell area and exhibits an interesting pattern due to the effect of the hexagonal representation. The RoI varies less than 6% across the entire cell area and we expect it to be more homogeneous across the cell in a real world cellular system. The interpretation of the figure below would suggest that with a cellular system operating at minimal SNR, with perfect power control and at full capacity, at any given location within the cell, less than 50% of the total resources are utilized. Fig. 7 illustrates the effect of different power control strategies as a function of SNR for different power-distance gradients (α). The computation for negative SNR is justified given the ability of the BS to have increased gain through modulation (CDMA, SS) or advanced antenna configurations (Beamforming, MIMO) that further improve the Path Loss characteristics of the MS to BS transmission, reducing the interference to and from the secondary user. Assuming that Mobile Stations will always connect to the closest BS, which is equivalent to the assumption of uniform distribution, the above discussion becomes valid for any frequency reuse pattern, where the hexagonal bounds become boundaries enclosing the MSs for each BS. It is noticeable that the expected available resources quickly diminish with more realistic power control strategies of 5 db and higher. Mean RoI 0.9 α=2 α=3 α= SNR BS MS (db) Fig. 7. B. Region of Communications Average RoI across Cell vs. SNR BS MS Fig. 8 illustrates the simulation results of the RoC algorithm across one cell at to SINR equal to 0

5 db. The figure depicts the ratio of RoC over the Cell Area which is proportional to the square of the distance from the basestation. Fig. 9 depicts how the RoC varies as a the distance between the BS and the transmitter increases, and how it would vary without the constraining region of P (L i ). The P (L i ) constrain ensures that only the area within which an can receive as well as transmit to another is calculated given the power control limits to avoid interference with the cellular system. RoC α = 2 α = 3 α = 4 d =.3Rc d =.6Rc d =.9Rc SINR (db) Fig. 10. RoC vs. SINR at BS to distance of, an.9 of the Cell Radius Fig. 8. Region of Communications normalized to the Cell Area at 0 db SINR RoC Area Fig. 9. With Li constraint Without Li constraint d(bs, Tx ) RoC with increasing distance of the transmitter from the BS Fig. 10 depicts how the RoC varies as a function of the operational SINR for to communications. Three different distances from the BS are considered at, and 0.9 of the total Cell Radius and for varying power-distance gradients. IV. CONCLUSIONS We have formalized and simulated two metrics for assessing the opportunistic resources available to secondary users within a cellular system. We have evaluated that the available resources on the uplink are significant regardless of the location within the cell, yet greatly depend on the cellular systems power control strategy and propagation environment. The communication range of a secondary user is significantly reduced as the user approaches the basestation. Strategies to overcome this limitation might include the availability of out of band channels used only for users very close to the BS or spread spectrum underlay modulation schemes that could operate at negative SINR. REFERENCES [1] J. Mitola, Cognitive radio: An integrated agent architecture for software defined radio, Ph.D. dissertation, Royal Institute of Technology (KTH), Stockholm, Sweden, [2] P. Kolodzy, Spectrum policy task force report, Federal Communications Commission, Tech. Rep. Rep. ET Docket no , November [3] T.Fujii, Y. Kamiya, and Y. Suzuki, Multi-band ad-hoc cognitive radio for reducing inter system interference, in Personal, Indoor and Mobile Radio Communications, 2006 IEEE 17th International Symposium on,. IEEE, September 2006, pp [4] X. Liu and S. Shankar, Sensing-based opportunistic channel access, Mobile Networks and Applications, vol. 11, no. 4, pp , [5] J. Zhang and G. Fan, A cellular network planning technique to minimize exposure to rf radiation, in ICPPW 04: Proceedings of the 2004 International Conference on Parallel Processing Workshops (ICPPW 04). Washington, DC, USA: IEEE Computer Society, 2004, pp [6] K. Pahlavan and P. Krishnamurthy, Principles of Wireless Networks: A Unified Approach. Upper Saddle River, NJ, USA: Prentice Hall PTR, [7] A. Sahai, R. Tandra, S. M. Mishra, and N. Hoven, Fundamental design tradeoffs in cognitive radio systems, in TAPAS 06: Proceedings of the First International Workshop on Technology and Policy for Accessing Spectrum. New York, NY, USA: ACM Press, 2006, p. 2.

Location Aware Wireless Networks

Location Aware Wireless Networks Location Aware Wireless Networks Behnaam Aazhang CMC Rice University Houston, TX USA and CWC University of Oulu Oulu, Finland Wireless A growing market 2 Wireless A growing market Still! 3 Wireless A growing

More information

Beamforming and Binary Power Based Resource Allocation Strategies for Cognitive Radio Networks

Beamforming and Binary Power Based Resource Allocation Strategies for Cognitive Radio Networks 1 Beamforming and Binary Power Based Resource Allocation Strategies for Cognitive Radio Networks UWB Walter project Workshop, ETSI October 6th 2009, Sophia Antipolis A. Hayar EURÉCOM Institute, Mobile

More information

Optimizing Multi-Cell Massive MIMO for Spectral Efficiency

Optimizing Multi-Cell Massive MIMO for Spectral Efficiency Optimizing Multi-Cell Massive MIMO for Spectral Efficiency How Many Users Should Be Scheduled? Emil Björnson 1, Erik G. Larsson 1, Mérouane Debbah 2 1 Linköping University, Linköping, Sweden 2 Supélec,

More information

CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions

CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions This dissertation reported results of an investigation into the performance of antenna arrays that can be mounted on handheld radios. Handheld arrays

More information

Multiple Antenna Processing for WiMAX

Multiple Antenna Processing for WiMAX Multiple Antenna Processing for WiMAX Overview Wireless operators face a myriad of obstacles, but fundamental to the performance of any system are the propagation characteristics that restrict delivery

More information

EEG473 Mobile Communications Module 2 : Week # (6) The Cellular Concept System Design Fundamentals

EEG473 Mobile Communications Module 2 : Week # (6) The Cellular Concept System Design Fundamentals EEG473 Mobile Communications Module 2 : Week # (6) The Cellular Concept System Design Fundamentals Interference and System Capacity Interference is the major limiting factor in the performance of cellular

More information

Evaluation of spectrum opportunities in the GSM band

Evaluation of spectrum opportunities in the GSM band 21 European Wireless Conference Evaluation of spectrum opportunities in the GSM band Andrea Carniani #1, Lorenza Giupponi 2, Roberto Verdone #3 # DEIS - University of Bologna, viale Risorgimento, 2 4136,

More information

Level 6 Graduate Diploma in Engineering Wireless and mobile communications

Level 6 Graduate Diploma in Engineering Wireless and mobile communications 9210-119 Level 6 Graduate Diploma in Engineering Wireless and mobile communications Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil,

More information

CDMA Networks. Hena Maloku. Bachelor of Science in Electrical Engineering-Telecommunication, University of Prishtina, 2008

CDMA Networks. Hena Maloku. Bachelor of Science in Electrical Engineering-Telecommunication, University of Prishtina, 2008 Limits on Secondary Transmissions Operating in Uplink Frequencies in Cellular CDMA Networks by Hena Maloku Bachelor of Science in Electrical Engineering-Telecommunication, University of Prishtina, 2008

More information

Power Allocation with Random Removal Scheme in Cognitive Radio System

Power Allocation with Random Removal Scheme in Cognitive Radio System , July 6-8, 2011, London, U.K. Power Allocation with Random Removal Scheme in Cognitive Radio System Deepti Kakkar, Arun khosla and Moin Uddin Abstract--Wireless communication services have been increasing

More information

Soft Handoff Parameters Evaluation in Downlink WCDMA System

Soft Handoff Parameters Evaluation in Downlink WCDMA System Soft Handoff Parameters Evaluation in Downlink WCDMA System A. A. AL-DOURI S. A. MAWJOUD Electrical Engineering Department Tikrit University Electrical Engineering Department Mosul University Abstract

More information

Wireless Systems Laboratory Stanford University Pontifical Catholic University Rio de Janiero Oct. 13, 2011

Wireless Systems Laboratory Stanford University Pontifical Catholic University Rio de Janiero Oct. 13, 2011 Andrea Goldsmith Wireless Systems Laboratory Stanford University Pontifical Catholic University Rio de Janiero Oct. 13, 2011 Future Wireless Networks Ubiquitous Communication Among People and Devices Next-generation

More information

Dynamic Grouping and Frequency Reuse Scheme for Dense Small Cell Network

Dynamic Grouping and Frequency Reuse Scheme for Dense Small Cell Network GRD Journals Global Research and Development Journal for Engineering International Conference on Innovations in Engineering and Technology (ICIET) - 2016 July 2016 e-issn: 2455-5703 Dynamic Grouping and

More information

Cooperative Spectrum Sensing and Spectrum Sharing in Cognitive Radio: A Review

Cooperative Spectrum Sensing and Spectrum Sharing in Cognitive Radio: A Review International Journal of Computer Applications in Engineering Sciences [VOL I, ISSUE III, SEPTEMBER 2011] [ISSN: 2231-4946] Cooperative Spectrum Sensing and Spectrum Sharing in Cognitive Radio: A Review

More information

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 10 - LTE (4G) -Technologies used in 4G and 5G The Need for LTE Long Term Evolution (LTE) With the growth of mobile data and mobile users, it becomes essential

More information

Optimal Relay Placement for Cellular Coverage Extension

Optimal Relay Placement for Cellular Coverage Extension Optimal elay Placement for Cellular Coverage Extension Gauri Joshi, Abhay Karandikar Department of Electrical Engineering Indian Institute of Technology Bombay Powai, India 400076. Email: gaurijoshi@iitb.ac.in,

More information

ETI2511-WIRELESS COMMUNICATION II HANDOUT I 1.0 PRINCIPLES OF CELLULAR COMMUNICATION

ETI2511-WIRELESS COMMUNICATION II HANDOUT I 1.0 PRINCIPLES OF CELLULAR COMMUNICATION ETI2511-WIRELESS COMMUNICATION II HANDOUT I 1.0 PRINCIPLES OF CELLULAR COMMUNICATION 1.0 Introduction The substitution of a single high power Base Transmitter Stations (BTS) by several low BTSs to support

More information

Performance Analysis of Power Control and Cell Association in Heterogeneous Cellular Networks

Performance Analysis of Power Control and Cell Association in Heterogeneous Cellular Networks Performance Analysis of Power Control and Cell Association in Heterogeneous Cellular Networks Prasanna Herath Mudiyanselage PhD Final Examination Supervisors: Witold A. Krzymień and Chintha Tellambura

More information

Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow.

Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow. Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow WiMAX Whitepaper Author: Frank Rayal, Redline Communications Inc. Redline

More information

EasyChair Preprint. A User-Centric Cluster Resource Allocation Scheme for Ultra-Dense Network

EasyChair Preprint. A User-Centric Cluster Resource Allocation Scheme for Ultra-Dense Network EasyChair Preprint 78 A User-Centric Cluster Resource Allocation Scheme for Ultra-Dense Network Yuzhou Liu and Wuwen Lai EasyChair preprints are intended for rapid dissemination of research results and

More information

Analysis of RF requirements for Active Antenna System

Analysis of RF requirements for Active Antenna System 212 7th International ICST Conference on Communications and Networking in China (CHINACOM) Analysis of RF requirements for Active Antenna System Rong Zhou Department of Wireless Research Huawei Technology

More information

6 Uplink is from the mobile to the base station.

6 Uplink is from the mobile to the base station. It is well known that by using the directional properties of adaptive arrays, the interference from multiple users operating on the same channel as the desired user in a time division multiple access (TDMA)

More information

A survey on broadcast protocols in multihop cognitive radio ad hoc network

A survey on broadcast protocols in multihop cognitive radio ad hoc network A survey on broadcast protocols in multihop cognitive radio ad hoc network Sureshkumar A, Rajeswari M Abstract In the traditional ad hoc network, common channel is present to broadcast control channels

More information

EE360: Lecture 6 Outline MUD/MIMO in Cellular Systems

EE360: Lecture 6 Outline MUD/MIMO in Cellular Systems EE360: Lecture 6 Outline MUD/MIMO in Cellular Systems Announcements Project proposals due today Makeup lecture tomorrow Feb 2, 5-6:15, Gates 100 Multiuser Detection in cellular MIMO in Cellular Multiuser

More information

DOWNLINK BEAMFORMING AND ADMISSION CONTROL FOR SPECTRUM SHARING COGNITIVE RADIO MIMO SYSTEM

DOWNLINK BEAMFORMING AND ADMISSION CONTROL FOR SPECTRUM SHARING COGNITIVE RADIO MIMO SYSTEM DOWNLINK BEAMFORMING AND ADMISSION CONTROL FOR SPECTRUM SHARING COGNITIVE RADIO MIMO SYSTEM A. Suban 1, I. Ramanathan 2 1 Assistant Professor, Dept of ECE, VCET, Madurai, India 2 PG Student, Dept of ECE,

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

Opportunistic Communication in Wireless Networks

Opportunistic Communication in Wireless Networks Opportunistic Communication in Wireless Networks David Tse Department of EECS, U.C. Berkeley October 10, 2001 Networking, Communications and DSP Seminar Communication over Wireless Channels Fundamental

More information

Analysis of massive MIMO networks using stochastic geometry

Analysis of massive MIMO networks using stochastic geometry Analysis of massive MIMO networks using stochastic geometry Tianyang Bai and Robert W. Heath Jr. Wireless Networking and Communications Group Department of Electrical and Computer Engineering The University

More information

Cooperative versus Full-Duplex Communication in Cellular Networks: A Comparison of the Total Degrees of Freedom. Amr El-Keyi and Halim Yanikomeroglu

Cooperative versus Full-Duplex Communication in Cellular Networks: A Comparison of the Total Degrees of Freedom. Amr El-Keyi and Halim Yanikomeroglu Cooperative versus Full-Duplex Communication in Cellular Networks: A Comparison of the Total Degrees of Freedom Amr El-Keyi and Halim Yanikomeroglu Outline Introduction Full-duplex system Cooperative system

More information

MULTI-HOP RADIO ACCESS CELLULAR CONCEPT FOR FOURTH-GENERATION MOBILE COMMUNICATION SYSTEMS

MULTI-HOP RADIO ACCESS CELLULAR CONCEPT FOR FOURTH-GENERATION MOBILE COMMUNICATION SYSTEMS MULTI-HOP RADIO ACCESS CELLULAR CONCEPT FOR FOURTH-GENERATION MOBILE COMMUNICATION SYSTEMS MR. AADITYA KHARE TIT BHOPAL (M.P.) PHONE 09993716594, 09827060004 E-MAIL aadkhare@rediffmail.com aadkhare@gmail.com

More information

Dynamic Frequency Hopping in Cellular Fixed Relay Networks

Dynamic Frequency Hopping in Cellular Fixed Relay Networks Dynamic Frequency Hopping in Cellular Fixed Relay Networks Omer Mubarek, Halim Yanikomeroglu Broadband Communications & Wireless Systems Centre Carleton University, Ottawa, Canada {mubarek, halim}@sce.carleton.ca

More information

Kushwinder Singh, Pooja Student and Assistant Professor, Punjabi University Patiala, India

Kushwinder Singh, Pooja Student and Assistant Professor, Punjabi University Patiala, India Simulation of Picocell Interference Scenario for Cognitive Radio Kushwinder Singh, Pooja Student and Assistant Professor, Punjabi University Patiala, India ksd19@gmail.com,pooja_citm13@rediffmail.com Abstract

More information

Non-Orthogonal Multiple Access (NOMA) in 5G Cellular Downlink and Uplink: Achievements and Challenges

Non-Orthogonal Multiple Access (NOMA) in 5G Cellular Downlink and Uplink: Achievements and Challenges Non-Orthogonal Multiple Access (NOMA) in 5G Cellular Downlink and Uplink: Achievements and Challenges Presented at: Huazhong University of Science and Technology (HUST), Wuhan, China S.M. Riazul Islam,

More information

03_57_104_final.fm Page 97 Tuesday, December 4, :17 PM. Problems Problems

03_57_104_final.fm Page 97 Tuesday, December 4, :17 PM. Problems Problems 03_57_104_final.fm Page 97 Tuesday, December 4, 2001 2:17 PM Problems 97 3.9 Problems 3.1 Prove that for a hexagonal geometry, the co-channel reuse ratio is given by Q = 3N, where N = i 2 + ij + j 2. Hint:

More information

REPORT ITU-R M

REPORT ITU-R M Rep. ITU-R M.2113-1 1 REPORT ITU-R M.2113-1 Sharing studies in the 2 500-2 690 band between IMT-2000 and fixed broadband wireless access systems including nomadic applications in the same geographical

More information

How user throughput depends on the traffic demand in large cellular networks

How user throughput depends on the traffic demand in large cellular networks How user throughput depends on the traffic demand in large cellular networks B. Błaszczyszyn Inria/ENS based on a joint work with M. Jovanovic and M. K. Karray (Orange Labs, Paris) 1st Symposium on Spatial

More information

Further Vision on TD-SCDMA Evolution

Further Vision on TD-SCDMA Evolution Further Vision on TD-SCDMA Evolution LIU Guangyi, ZHANG Jianhua, ZHANG Ping WTI Institute, Beijing University of Posts&Telecommunications, P.O. Box 92, No. 10, XiTuCheng Road, HaiDian District, Beijing,

More information

Differentiable Spectrum Partition for Fractional Frequency Reuse in Multi-Cell OFDMA Networks

Differentiable Spectrum Partition for Fractional Frequency Reuse in Multi-Cell OFDMA Networks MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Differentiable Spectrum Partition for Fractional Frequency Reuse in Multi-Cell OFDMA Networks Weihuang Fu, Zhifeng Tao, Jinyun Zhang, Dharma

More information

2-2 Advanced Wireless Packet Cellular System using Multi User OFDM- SDMA/Inter-BTS Cooperation with 1.3 Gbit/s Downlink Capacity

2-2 Advanced Wireless Packet Cellular System using Multi User OFDM- SDMA/Inter-BTS Cooperation with 1.3 Gbit/s Downlink Capacity 2-2 Advanced Wireless Packet Cellular System using Multi User OFDM- SDMA/Inter-BTS Cooperation with 1.3 Gbit/s Downlink Capacity KAWAZAWA Toshio, INOUE Takashi, FUJISHIMA Kenzaburo, TAIRA Masanori, YOSHIDA

More information

MIMO Systems and Applications

MIMO Systems and Applications MIMO Systems and Applications Mário Marques da Silva marques.silva@ieee.org 1 Outline Introduction System Characterization for MIMO types Space-Time Block Coding (open loop) Selective Transmit Diversity

More information

MATLAB COMMUNICATION TITLES

MATLAB COMMUNICATION TITLES MATLAB COMMUNICATION TITLES -2018 ORTHOGONAL FREQUENCY-DIVISION MULTIPLEXING(OFDM) 1 ITCM01 New PTS Schemes For PAPR Reduction Of OFDM Signals Without Side Information 2 ITCM02 Design Space-Time Trellis

More information

Partial overlapping channels are not damaging

Partial overlapping channels are not damaging Journal of Networking and Telecomunications (2018) Original Research Article Partial overlapping channels are not damaging Jing Fu,Dongsheng Chen,Jiafeng Gong Electronic Information Engineering College,

More information

Spectrum Sharing Techniques for Next Generation Cellular Networks. Brett Kaufman. Master of Science

Spectrum Sharing Techniques for Next Generation Cellular Networks. Brett Kaufman. Master of Science RICE UNIVERSITY Spectrum Sharing Techniques for Next Generation Cellular Networks by Brett Kaufman A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Master of Science APPROVED,

More information

Scaling Laws for Cognitive Radio Network with Heterogeneous Mobile Secondary Users

Scaling Laws for Cognitive Radio Network with Heterogeneous Mobile Secondary Users Scaling Laws for Cognitive Radio Network with Heterogeneous Mobile Secondary Users Y.Li, X.Wang, X.Tian and X.Liu Shanghai Jiaotong University Scaling Laws for Cognitive Radio Network with Heterogeneous

More information

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010 ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010 Lecture 2 Today: (1) Frequency Reuse, (2) Handoff Reading for today s lecture: 3.2-3.5 Reading for next lecture: Rap 3.6 HW 1 will

More information

Decentralized Resource Allocation and Effective CSI Signaling in Dense TDD Networks

Decentralized Resource Allocation and Effective CSI Signaling in Dense TDD Networks Decentralized Resource Allocation and Effective CSI Signaling in Dense TDD Networks 1 Decentralized Resource Allocation and Effective CSI Signaling in Dense TDD Networks Antti Tölli with Praneeth Jayasinghe,

More information

Open-Loop and Closed-Loop Uplink Power Control for LTE System

Open-Loop and Closed-Loop Uplink Power Control for LTE System Open-Loop and Closed-Loop Uplink Power Control for LTE System by Huang Jing ID:5100309404 2013/06/22 Abstract-Uplink power control in Long Term Evolution consists of an open-loop scheme handled by the

More information

NOISE, INTERFERENCE, & DATA RATES

NOISE, INTERFERENCE, & DATA RATES COMP 635: WIRELESS NETWORKS NOISE, INTERFERENCE, & DATA RATES Jasleen Kaur Fall 2015 1 Power Terminology db Power expressed relative to reference level (P 0 ) = 10 log 10 (P signal / P 0 ) J : Can conveniently

More information

Reti di Telecomunicazione. Channels and Multiplexing

Reti di Telecomunicazione. Channels and Multiplexing Reti di Telecomunicazione Channels and Multiplexing Point-to-point Channels They are permanent connections between a sender and a receiver The receiver can be designed and optimized based on the (only)

More information

Downlink Performance of Cell Edge User Using Cooperation Scheme in Wireless Cellular Network

Downlink Performance of Cell Edge User Using Cooperation Scheme in Wireless Cellular Network Quest Journals Journal of Software Engineering and Simulation Volume1 ~ Issue1 (2013) pp: 07-12 ISSN(Online) :2321-3795 ISSN (Print):2321-3809 www.questjournals.org Research Paper Downlink Performance

More information

Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems

Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems Jiangzhou Wang University of Kent 1 / 31 Best Wishes to Professor Fumiyuki Adachi, Father of Wideband CDMA [1]. [1]

More information

Superposition Coding in the Downlink of CDMA Cellular Systems

Superposition Coding in the Downlink of CDMA Cellular Systems Superposition Coding in the Downlink of CDMA Cellular Systems Surendra Boppana and John M. Shea Wireless Information Networking Group University of Florida Feb 13, 2006 Outline of the talk Introduction

More information

SNS COLLEGE OF ENGINEERING COIMBATORE DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK

SNS COLLEGE OF ENGINEERING COIMBATORE DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK SNS COLLEGE OF ENGINEERING COIMBATORE 641107 DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK EC6801 WIRELESS COMMUNICATION UNIT-I WIRELESS CHANNELS PART-A 1. What is propagation model? 2. What are the

More information

Mobile & Wireless Networking. Lecture 4: Cellular Concepts & Dealing with Mobility. [Reader, Part 3 & 4]

Mobile & Wireless Networking. Lecture 4: Cellular Concepts & Dealing with Mobility. [Reader, Part 3 & 4] 192620010 Mobile & Wireless Networking Lecture 4: Cellular Concepts & Dealing with Mobility [Reader, Part 3 & 4] Geert Heijenk Outline of Lecture 4 Cellular Concepts q Introduction q Cell layout q Interference

More information

A New NOMA Approach for Fair Power Allocation

A New NOMA Approach for Fair Power Allocation A New NOMA Approach for Fair Power Allocation José Armando Oviedo and Hamid R. Sadjadpour Department of Electrical Engineering, University of California, Santa Cruz Email: {xmando, hamid}@soe.ucsc.edu

More information

Coexistence with primary users of different scales

Coexistence with primary users of different scales Coexistence with primary users of different scales Shridhar Mubaraq Mishra Department of Electrical Engineering and Computer Science University of California Berkeley, California 94704 Email: smm@eecs.berkeley.edu

More information

ABSTRACT ALGORITHMS IN WIRELESS NETWORKS WITH ANTENNA ARRAYS

ABSTRACT ALGORITHMS IN WIRELESS NETWORKS WITH ANTENNA ARRAYS ABSTRACT Title of Dissertation: CROSS-LAYER RESOURCE ALLOCATION ALGORITHMS IN WIRELESS NETWORKS WITH ANTENNA ARRAYS Tianmin Ren, Doctor of Philosophy, 2005 Dissertation directed by: Professor Leandros

More information

Unit-1 The Cellular Concept

Unit-1 The Cellular Concept Unit-1 The Cellular Concept 1.1 Introduction to Cellular Systems Solves the problem of spectral congestion and user capacity. Offer very high capacity in a limited spectrum without major technological

More information

ENERGY EFFICIENT WATER-FILLING ALGORITHM FOR MIMO- OFDMA CELLULAR SYSTEM

ENERGY EFFICIENT WATER-FILLING ALGORITHM FOR MIMO- OFDMA CELLULAR SYSTEM ENERGY EFFICIENT WATER-FILLING ALGORITHM FOR MIMO- OFDMA CELLULAR SYSTEM Hailu Belay Kassa, Dereje H.Mariam Addis Ababa University, Ethiopia Farzad Moazzami, Yacob Astatke Morgan State University Baltimore,

More information

ADJACENT BAND COMPATIBILITY OF TETRA AND TETRAPOL IN THE MHZ FREQUENCY RANGE, AN ANALYSIS COMPLETED USING A MONTE CARLO BASED SIMULATION TOOL

ADJACENT BAND COMPATIBILITY OF TETRA AND TETRAPOL IN THE MHZ FREQUENCY RANGE, AN ANALYSIS COMPLETED USING A MONTE CARLO BASED SIMULATION TOOL European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ADJACENT BAND COMPATIBILITY OF TETRA AND TETRAPOL IN THE 380-400 MHZ

More information

LECTURE 12. Deployment and Traffic Engineering

LECTURE 12. Deployment and Traffic Engineering 1 LECTURE 12 Deployment and Traffic Engineering Cellular Concept 2 Proposed by Bell Labs in 1971 Geographic Service divided into smaller cells Neighboring cells do not use same set of frequencies to prevent

More information

Implementation Issues in Spectrum Sensing for Cognitive Radios

Implementation Issues in Spectrum Sensing for Cognitive Radios Implementation Issues in Spectrum Sensing for Cognitive Radios Danijela Cabric, Shridhar Mubaraq Mishra, Robert W. Brodersen Berkeley Wireless Research Center, University of California, Berkeley Abstract-

More information

EENG473 Mobile Communications Module 2 : Week # (4) The Cellular Concept System Design Fundamentals

EENG473 Mobile Communications Module 2 : Week # (4) The Cellular Concept System Design Fundamentals EENG473 Mobile Communications Module 2 : Week # (4) The Cellular Concept System Design Fundamentals Frequency reuse or frequency planning : The design process of selecting and allocating channel groups

More information

Combination of Dynamic-TDD and Static-TDD Based on Adaptive Power Control

Combination of Dynamic-TDD and Static-TDD Based on Adaptive Power Control Combination of Dynamic-TDD and Static-TDD Based on Adaptive Power Control Howon Lee and Dong-Ho Cho Department of Electrical Engineering and Computer Science Korea Advanced Institute of Science and Technology

More information

ADJACENT BAND COMPATIBILITY OF 400 MHZ TETRA AND ANALOGUE FM PMR AN ANALYSIS COMPLETED USING A MONTE CARLO BASED SIMULATION TOOL

ADJACENT BAND COMPATIBILITY OF 400 MHZ TETRA AND ANALOGUE FM PMR AN ANALYSIS COMPLETED USING A MONTE CARLO BASED SIMULATION TOOL European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ADJACENT BAND COMPATIBILITY OF 400 MHZ AND ANALOGUE FM PMR AN ANALYSIS

More information

Massive MIMO Full-duplex: Theory and Experiments

Massive MIMO Full-duplex: Theory and Experiments Massive MIMO Full-duplex: Theory and Experiments Ashu Sabharwal Joint work with Evan Everett, Clay Shepard and Prof. Lin Zhong Data Rate Through Generations Gains from Spectrum, Densification & Spectral

More information

Hype, Myths, Fundamental Limits and New Directions in Wireless Systems

Hype, Myths, Fundamental Limits and New Directions in Wireless Systems Hype, Myths, Fundamental Limits and New Directions in Wireless Systems Reinaldo A. Valenzuela, Director, Wireless Communications Research Dept., Bell Laboratories Rutgers, December, 2007 Need to greatly

More information

Unit 3 - Wireless Propagation and Cellular Concepts

Unit 3 - Wireless Propagation and Cellular Concepts X Courses» Introduction to Wireless and Cellular Communications Unit 3 - Wireless Propagation and Cellular Concepts Course outline How to access the portal Assignment 2. Overview of Cellular Evolution

More information

Abstract. Marío A. Bedoya-Martinez. He joined Fujitsu Europe Telecom R&D Centre (UK), where he has been working on R&D of Second-and

Abstract. Marío A. Bedoya-Martinez. He joined Fujitsu Europe Telecom R&D Centre (UK), where he has been working on R&D of Second-and Abstract The adaptive antenna array is one of the advanced techniques which could be implemented in the IMT-2 mobile telecommunications systems to achieve high system capacity. In this paper, an integrated

More information

Deployment scenarios and interference analysis using V-band beam-steering antennas

Deployment scenarios and interference analysis using V-band beam-steering antennas Deployment scenarios and interference analysis using V-band beam-steering antennas 07/2017 Siklu 2017 Table of Contents 1. V-band P2P/P2MP beam-steering motivation and use-case... 2 2. Beam-steering antenna

More information

Data and Computer Communications. Tenth Edition by William Stallings

Data and Computer Communications. Tenth Edition by William Stallings Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education - 2013 CHAPTER 10 Cellular Wireless Network

More information

COMPARATIVE EVALUATION OF FRACTIONAL FREQUENCY REUSE (FFR) AND TRADITIONAL FREQUENCY REUSE IN 3GPP-LTE DOWNLINK Chandra Thapa 1 and Chandrasekhar.

COMPARATIVE EVALUATION OF FRACTIONAL FREQUENCY REUSE (FFR) AND TRADITIONAL FREQUENCY REUSE IN 3GPP-LTE DOWNLINK Chandra Thapa 1 and Chandrasekhar. COMPARATIVE EVALUATION OF FRACTIONAL FREQUENCY REUSE (FFR) AND TRADITIONAL FREQUENCY REUSE IN 3GPP-LTE DOWNLINK Chandra Thapa and Chandrasekhar.C SV College of Engineering & Technology, M.Tech II (DECS)

More information

6 Multiuser capacity and

6 Multiuser capacity and CHAPTER 6 Multiuser capacity and opportunistic communication In Chapter 4, we studied several specific multiple access techniques (TDMA/FDMA, CDMA, OFDM) designed to share the channel among several users.

More information

Coordinated Multi-Point Transmission for Interference Mitigation in Cellular Distributed Antenna Systems

Coordinated Multi-Point Transmission for Interference Mitigation in Cellular Distributed Antenna Systems Coordinated Multi-Point Transmission for Interference Mitigation in Cellular Distributed Antenna Systems M.A.Sc. Thesis Defence Talha Ahmad, B.Eng. Supervisor: Professor Halim Yanıkömeroḡlu July 20, 2011

More information

Bandwidth-SINR Tradeoffs in Spatial Networks

Bandwidth-SINR Tradeoffs in Spatial Networks Bandwidth-SINR Tradeoffs in Spatial Networks Nihar Jindal University of Minnesota nihar@umn.edu Jeffrey G. Andrews University of Texas at Austin jandrews@ece.utexas.edu Steven Weber Drexel University sweber@ece.drexel.edu

More information

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.393, ISSN: , Volume 2, Issue 3, April 2014

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.393, ISSN: , Volume 2, Issue 3, April 2014 COMPARISON OF SINR AND DATA RATE OVER REUSE FACTORS USING FRACTIONAL FREQUENCY REUSE IN HEXAGONAL CELL STRUCTURE RAHUL KUMAR SHARMA* ASHISH DEWANGAN** *Asst. Professor, Dept. of Electronics and Technology,

More information

Joint Spectrum and Power Allocation for Inter-Cell Spectrum Sharing in Cognitive Radio Networks

Joint Spectrum and Power Allocation for Inter-Cell Spectrum Sharing in Cognitive Radio Networks Joint Spectrum and Power Allocation for Inter-Cell Spectrum Sharing in Cognitive Radio Networks Won-Yeol Lee and Ian F. Akyildiz Broadband Wireless Networking Laboratory School of Electrical and Computer

More information

Submission on Proposed Methodology for Engineering Licenses in Managed Spectrum Parks

Submission on Proposed Methodology for Engineering Licenses in Managed Spectrum Parks Submission on Proposed Methodology and Rules for Engineering Licenses in Managed Spectrum Parks Introduction General This is a submission on the discussion paper entitled proposed methodology and rules

More information

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang Wireless Communication: Concepts, Techniques, and Models Hongwei Zhang http://www.cs.wayne.edu/~hzhang Outline Digital communication over radio channels Channel capacity MIMO: diversity and parallel channels

More information

Modelling Small Cell Deployments within a Macrocell

Modelling Small Cell Deployments within a Macrocell Modelling Small Cell Deployments within a Macrocell Professor William Webb MBA, PhD, DSc, DTech, FREng, FIET, FIEEE 1 Abstract Small cells, or microcells, are often seen as a way to substantially enhance

More information

On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels

On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels Kambiz Azarian, Hesham El Gamal, and Philip Schniter Dept of Electrical Engineering, The Ohio State University Columbus, OH

More information

Direction of Arrival Estimation in Smart Antenna for Marine Communication. Deepthy M Vijayan, Sreedevi K Menon /16/$31.

Direction of Arrival Estimation in Smart Antenna for Marine Communication. Deepthy M Vijayan, Sreedevi K Menon /16/$31. International Conference on Communication and Signal Processing, April 6-8, 2016, India Direction of Arrival Estimation in Smart Antenna for Marine Communication Deepthy M Vijayan, Sreedevi K Menon Abstract

More information

Spectrum Management and Cognitive Radio

Spectrum Management and Cognitive Radio Spectrum Management and Cognitive Radio Alessandro Guidotti Tutor: Prof. Giovanni Emanuele Corazza, University of Bologna, DEIS Co-Tutor: Ing. Guido Riva, Fondazione Ugo Bordoni The spectrum scarcity problem

More information

Secure Transmission Power of Cognitive Radios for Dynamic Spectrum Access Applications

Secure Transmission Power of Cognitive Radios for Dynamic Spectrum Access Applications Secure Transmission Power of Cognitive Radios for Dynamic Spectrum Access Applications Xiaohua Li, Jinying Chen, Fan Ng Dept. of Electrical and Computer Engineering State University of New York at Binghamton

More information

Direct Link Communication II: Wireless Media. Current Trend

Direct Link Communication II: Wireless Media. Current Trend Direct Link Communication II: Wireless Media Current Trend WLAN explosion (also called WiFi) took most by surprise cellular telephony: 3G/4G cellular providers/telcos/data in the same mix self-organization

More information

Performance Evaluation of the VBLAST Algorithm in W-CDMA Systems

Performance Evaluation of the VBLAST Algorithm in W-CDMA Systems erformance Evaluation of the VBLAST Algorithm in W-CDMA Systems Dragan Samardzija, eter Wolniansky, Jonathan Ling Wireless Research Laboratory, Bell Labs, Lucent Technologies, 79 Holmdel-Keyport Road,

More information

REPORT ITU-R M Characteristics of broadband wireless access systems operating in the land mobile service for use in sharing studies

REPORT ITU-R M Characteristics of broadband wireless access systems operating in the land mobile service for use in sharing studies Rep. ITU-R M.2116 1 REPORT ITU-R M.2116 Characteristics of broadband wireless access systems operating in the land mobile service for use in sharing studies (Questions ITU-R 1/8 and ITU-R 7/8) (2007) 1

More information

Radio Resource Allocation Scheme for Device-to-Device Communication in Cellular Networks Using Fractional Frequency Reuse

Radio Resource Allocation Scheme for Device-to-Device Communication in Cellular Networks Using Fractional Frequency Reuse 2011 17th Asia-Pacific Conference on Communications (APCC) 2nd 5th October 2011 Sutera Harbour Resort, Kota Kinabalu, Sabah, Malaysia Radio Resource Allocation Scheme for Device-to-Device Communication

More information

Wireless Network Pricing Chapter 2: Wireless Communications Basics

Wireless Network Pricing Chapter 2: Wireless Communications Basics Wireless Network Pricing Chapter 2: Wireless Communications Basics Jianwei Huang & Lin Gao Network Communications and Economics Lab (NCEL) Information Engineering Department The Chinese University of Hong

More information

Performance Evaluation of Uplink Closed Loop Power Control for LTE System

Performance Evaluation of Uplink Closed Loop Power Control for LTE System Performance Evaluation of Uplink Closed Loop Power Control for LTE System Bilal Muhammad and Abbas Mohammed Department of Signal Processing, School of Engineering Blekinge Institute of Technology, Ronneby,

More information

Natasha Devroye, Mai Vu, and Vahid Tarokh ] Cognitive Radio Networks. [Highlights of information theoretic limits, models, and design]

Natasha Devroye, Mai Vu, and Vahid Tarokh ] Cognitive Radio Networks. [Highlights of information theoretic limits, models, and design] [ Natasha Devroye, Mai Vu, and Vahid Tarokh ] Cognitive Radio Networks BRAND X PICTURES [Highlights of information theoretic limits, models, and design] In recent years, the development of intelligent,

More information

Optimum Power Allocation in Cooperative Networks

Optimum Power Allocation in Cooperative Networks Optimum Power Allocation in Cooperative Networks Jaime Adeane, Miguel R.D. Rodrigues, and Ian J. Wassell Laboratory for Communication Engineering Department of Engineering University of Cambridge 5 JJ

More information

Journal of Asian Scientific Research DEVELOPMENT OF A COGNITIVE RADIO MODEL USING WAVELET PACKET TRANSFORM - BASED ENERGY DETECTION TECHNIQUE

Journal of Asian Scientific Research DEVELOPMENT OF A COGNITIVE RADIO MODEL USING WAVELET PACKET TRANSFORM - BASED ENERGY DETECTION TECHNIQUE Journal of Asian Scientific Research ISSN(e): 2223-1331/ISSN(p): 2226-5724 URL: www.aessweb.com DEVELOPMENT OF A COGNITIVE RADIO MODEL USING WAVELET PACKET TRANSFORM - BASED ENERGY DETECTION TECHNIQUE

More information

HETEROGENEOUS LINK ASYMMETRY IN TDD MODE CELLULAR SYSTEMS

HETEROGENEOUS LINK ASYMMETRY IN TDD MODE CELLULAR SYSTEMS HETEROGENEOUS LINK ASYMMETRY IN TDD MODE CELLULAR SYSTEMS Magnus Lindström Radio Communication Systems Department of Signals, Sensors and Systems Royal Institute of Technology (KTH) SE- 44, STOCKHOLM,

More information

Optimal Max-min Fair Resource Allocation in Multihop Relay-enhanced WiMAX Networks

Optimal Max-min Fair Resource Allocation in Multihop Relay-enhanced WiMAX Networks Optimal Max-min Fair Resource Allocation in Multihop Relay-enhanced WiMAX Networks Yongchul Kim and Mihail L. Sichitiu Department of Electrical and Computer Engineering North Carolina State University

More information

Cognitive Radio: an information theoretic perspective

Cognitive Radio: an information theoretic perspective Cognitive Radio: an information theoretic perspective Daniela Tuninetti, UIC, in collaboration with: Stefano Rini, post-doc @ TUM, Diana Maamari, Ph.D. candidate@ UIC, and atasha Devroye, prof. @ UIC.

More information

Information Theory at the Extremes

Information Theory at the Extremes Information Theory at the Extremes David Tse Department of EECS, U.C. Berkeley September 5, 2002 Wireless Networks Workshop at Cornell Information Theory in Wireless Wireless communication is an old subject.

More information

EE360: Multiuser Wireless Systems and Networks. Lecture 1 Outline

EE360: Multiuser Wireless Systems and Networks. Lecture 1 Outline EE360: Multiuser Wireless Systems and Networks Lecture 1 Outline Course Details Course Syllabus Course Overview Future Wireless Networks Multiuser Channels (Broadcast/MAC Channels) Spectral Reuse and Interference

More information

Deployment and Radio Resource Reuse in IEEE j Multi-hop Relay Network in Manhattan-like Environment

Deployment and Radio Resource Reuse in IEEE j Multi-hop Relay Network in Manhattan-like Environment Deployment and Radio Resource Reuse in IEEE 802.16j Multi-hop Relay Network in Manhattan-like Environment I-Kang Fu and Wern-Ho Sheen Department of Communication Engineering National Chiao Tung University

More information

Impact of UWB interference on IEEE a WLAN System

Impact of UWB interference on IEEE a WLAN System Impact of UWB interference on IEEE 802.11a WLAN System Santosh Reddy Mallipeddy and Rakhesh Singh Kshetrimayum Dept. of Electronics and Communication Engineering, Indian Institute of Technology, Guwahati,

More information