College of Engineering

Size: px
Start display at page:

Download "College of Engineering"

Transcription

1 WiFi and WCDMA Network Design Robert Akl, D.Sc. College of Engineering Department of Computer Science and Engineering

2 Outline WiFi Access point selection Traffic balancing Multi-Cell WCDMA with Multiple Classes User modeling using 2D Gaussian distribution Intra-cell and inter-cell interference and capacity 2/46

3 3/46 WiFi Outline IEEE overview IEEE network design issues Optimal access point selection and traffic allocation Overlapping-channel Interference Factor Optimal channel assignment Numerical results

4 4/46 IEEE Overview Transmission medium Formed in 1990 for wireless LANs Unlicensed industrial, scientific, and medical bands 915 MHz, 2.4 GHz, 5 GHz (1997) 2.4 GHz, 1Mbps a (1999) 5 GHz, 54 Mbps b (1999) 2.4 GHz, 11 Mbps g (2003) 2.4 GHz, 54 Mbps

5 IEEE Design Issues Designing includes two major components: Placement of access points Coverage Ample bandwidth Channel assignment Minimize adjacent channel interference Minimize overlapping-channel 5/46

6 6/46 Designing wireless LANs Creation of service area map Placement of candidate APs Creation of signal level map Selection of the APs from candidate APs Assignment of radio frequencies to APs

7 A service area map for a three story building with 60 demand clusters 7/46

8 A signal level map for a three story building with 14 APs 8/46

9 Candidate AP assignment graph for 14 APs and 20 demand clusters 9/46

10 AP Selection and traffic allocation Optimization Problem x ij = a binary variable; 1 when demand cluster i is assigned to AP j and 0 otherwise C i = the congestion factor B i = the maximum bandwidth of AP i T i = the average traffic load of a demand cluster i L = total number of demand cluster M = total number of candidate APs 10/46

11 Numerical Analysis Parameters 20 demand clusters and 14 APs in a three story building Number of users per demand cluster = between 1 and 10 (randomly chosen) Average traffic demand per user = 200 Kbps Maximum bandwidth of AP = 11 Mbps Average traffic load of a demand cluster i (T i ) = Average traffic demand per user x number of users at demand cluster i 11/46

12 A signal level map for a three story building with 14 APs and 20 demand clusters 12/46

13 Candidate AP assignment graph 13/46

14 14/46 Average Traffic Load T 1 1,600 Kbps T 11 1,400 Kbps T 2 2,000 Kbps T 12 2,000 Kbps T Kbps T 13 1,800 Kbps T 4 1,800 Kbps T Kbps T 5 1,200 Kbps T Kbps T Kbps T 16 2,000 Kbps T Kbps T Kbps T Kbps T Kbps T 9 1,800 Kbps T Kbps T 10 1,600 Kbps T Kbps

15 15/46 Results of the optimization AP selection graph

16 16/46 Optimal Access Point Selection and Traffic Allocation

17 Congestion factor of 14 APs with 15, 20, 25, and 30 demand clusters 17/46

18 Average congestion across the networks as the number of demand clusters is increased 18/46

19 19/46 Channel Assignment Problem Frequency and channel assignments Channels Frequency Channels Frequency GHz GHz GHz GHz GHz GHz GHz GHz GHz GHz GHz GHz GHz GHz

20 20/ b Channel Overlap Rooms in Party (11 rooms) Blue noise from room 1 Red noise from room 6 Yellow noise from room 11 Only 3 quite rooms available; 1, 6, and 11

21 Only 3 non-overlapping channels: 1, 6, and / b Channel Overlap

22 22/46 Overlapping-channel Interference Factor Relative percentage gain in interference between two APs as a result of using overlapping channels. F i = the channel assigned to AP i c = the overlapping channel factor, which is 1/5 for b For example if we used channels 1 and 2 we would have 80% interference Channels 1 and 5 would have 20% interference Channels 1 and 6 would have 0% interference

23 23/46 Types of Channel Interference Adjacent channel interference: inversely proportional to the distance raised to path loss exponent Co-channel interference: directly proportional to the overlapping-channel interference factor

24 V = the total interference at AP i I ij = the relative interference that AP j causes on AP i w ij = overlapping-channel interference factor between AP i and AP j d ij = the distance between AP i and AP j m = a pathloss exponent c = the overlapping channel factor 24/46 Channel Assignment Optimization Problem

25 25/46 Channel Assignment using channels 1, 6, and 11 only AP Channel Interference AP Channel Interference

26 Channel Assignment Map using channels 1, 6, and 11 only 26/46

27 27/46 Optimal Channel Assignment AP Channel Interference AP Channel Interference

28 Optimal Channel Assignment Map 28/46

29 The relative interference of APs when using only channels 1, 6, and 11 and optimal assignment 29/46

30 Average interference across the networks as the number of APs is increased 30/46

31 31/46 WiFi Results Our Access Point Selection optimization balances the load on the entire network By minimizing the bottleneck APs, we can get better bandwidth utilization for the whole network, which result in higher throughput We define an overlapping-channel interference factor that captures the interference in overlapping channels. Our Channel Assignment optimization minimizes the interference at each AP By optimally using more than just the 3 non-overlapping channels, the average interference across the network can be reduced

32 32/46 WCDMA Outline Introduction to CDMA networks Calculation of Intra-cell interference in CDMA Calculation of Intra-cell interference in WCDMA with multiple classes of users. User modeling using 2D Gaussian Distribution Capacity analysis Numerical results

33 Frequency Frequency 33/46 Code Division Multiple Access (CDMA) Overview Multiple access schemes FDMA TDMA CDMA Call 4 Call 3 Call 10 Call 11 Call 12 Call 7 Call 8 Call 9 Frequency Call 1 Call 2 Call 3 Call 4 Call 2 Call 4 Call 5 Call 6 Time Call 1 Time Call 1 Call 2 Call 3 Time Code

34 34/46 Factors Affecting Capacity Power Control c1 Pt1 c2 Pt2 Pr1 Pr2 Base Station Pt1: Power transmitted from c1 Pt2: Power transmitted from c2 Pr1: Power received at base station from c1 Pr2: Power received at base station from c2 Pr1 = Pr2 d2 d1 Distance

35 CDMA with One Class of Users I ji Relative average interference at cell i caused by n j users in cell j Cell i ri I ji I ji j m r, j x y nj E, Cj m 2 da x y r, / Aj i x y i m s 2 nj rj ( x, y) e Aj m r ( x, y) C j i da( x, y) rj Cell j where ln(10) 10 da s is the standard deviation of the attenuation for the shadow fading m is the path loss exponent 35/46

36 36/46 WCDMA with Multiple Classes of Users Inter-cell Interference at cell i caused by n j users in cell j of class t r ( x, y) I S v n w( x, y) da( x, y) A r ( x, y) 2 ( ) m s e j ji, t t t j, t m j C i j 2 m e rj ( x, y) w( x, y) da( x, y). m A r ( x, y) ( s ) ji, t j C j i w(x,y) ji, t is the user distribution density at (x,y) is per-user (with service t) relative inter-cell interference factor from cell j to BS i,

37 37/46 Model User Density with 2D Gaussian Distribution x2 1 x w( x, y) e e , 2 1, 2 is a user density normalizing parameter means variances of the distribution for every cell own 1 T i t t i, t W t1 I S n is the total intra-cell interference density caused by all users in cell i

38 38/46 Total Inter-cell Interference Density in WCDMA M T inter 1 i tt j, t ji, t W j1, ji t1 I S n M is the total number of cells in the network T total number of services W is the bandwidth of the system

39 Signal-to-Noise Density in WCDMA t E I b St R 0 own inter it, N0 Ii Ii S R t t T M T S t 0 i, t t j, t t ji, t t W t1 j1, ji t1 N n n t St t W where N 0 R t is the thermal noise density, is the bit rate for service t t is the minimum signal-to-noise ratio required 39/46

40 Simultaneous Users in WCDMA Must Satisfy the Following Inequality Constraints T M T () t ni, t t n j, t t ji, t t ceff t1 j1, ji t1 where () t c eff W 1 Rt Rt t St N 0 t S t n it, is the minimum signal-to-noise ratio is the maximum signal power the number of users in BS i for given service t The capacity in a WCDMA network is defined as the maximum number of simultaneous users ( n1, t, n2, t,, nm, t ) for all services t 1,, T 40/46

41 41/46 Simulations Network configuration COST-231 propagation model Carrier frequency = 1800 MHz Average base station height = 30 meters Average mobile height = 1.5 meters Path loss coefficient, m = 4 Shadow fading standard deviation, σ s = 6 db Processing gain, W/R = 21.1 db Bit energy to interference ratio threshold, τ = 9.2 db Interference to background noise ratio, I 0 /N 0 = 10 db Activity factor, α = 0.375

42 Multi-Cell WCDMA Simulation Uniform User Distribution Simulated network capacity where users are uniformly distributed in the cells. The maximum number of users 2-D Gaussian approximation of users uniformly distributed in cells. 1= 2=12000, μ1=μ2=0. The maximum number of users is /46

43 Extreme Cases Using Actual Interference Non-Uniform Distribution Simulated network capacity where users are densely clustered around the BSs causing the least amount of inter-cell interference. The maximum number of users is 1026 in the 2-D Gaussian approximation of users densely clustered around the BSs. 1= 2=100, μ1=μ2=0. The maximum number of users is /46

44 Extreme Cases Using Actual Interference Non-Uniform Distribution Simulated network capacity where users are densely clustered at the boundaries of the cells causing the most amount of inter-cell interference. The maximum number of users is only 108 in the network. 2-D Gaussian approximation of users densely clustered at the boundaries of the cells. The values of 1=2=300, μ1, and μ2 are different in the different cells. The maximum 44/46

45 WCDMA Results Model inter-cell and intra-cell interference for different classes of users in multi-cell WCDMA. We approximate the user distribution by using 2-dimensional Gaussian distributions by determining the means and the standard deviations of the distributions for every cell. Compared our model with simulation results using actual interference and showed that it is fast and accurate enough to be used efficiently in the planning process of WCDMA networks. 45/46

46 46/46 Thank You!! Questions?

College of Engineering

College of Engineering Collee of Enineerin Capacity Allocation in Multi-cell UMTS Networks for Different Spreadin Factors with Perfect and Imperfect Power Control Robert Akl, D.Sc. Son Nuyen, M.S. Department of Computer Science

More information

Effects of Interference on Capacity in Multi-Cell CDMA Networks

Effects of Interference on Capacity in Multi-Cell CDMA Networks Effects of Interference on Capacity in Multi-Cell CDMA Networks Robert AKL, Asad PARVEZ, and Son NGUYEN Department of Computer Science and Engineering University of North Texas Denton, TX, 76207 ABSTRACT

More information

Impact of Interference Model on Capacity in CDMA Cellular Networks

Impact of Interference Model on Capacity in CDMA Cellular Networks SCI 04: COMMUNICATION AND NETWORK SYSTEMS, TECHNOLOGIES AND APPLICATIONS 404 Impact of Interference Model on Capacity in CDMA Cellular Networks Robert AKL and Asad PARVEZ Department of Computer Science

More information

Data and Computer Communications. Chapter 10 Cellular Wireless Networks

Data and Computer Communications. Chapter 10 Cellular Wireless Networks Data and Computer Communications Chapter 10 Cellular Wireless Networks Cellular Wireless Networks 5 PSTN Switch Mobile Telecomm Switching Office (MTSO) 3 4 2 1 Base Station 0 2016-08-30 2 Cellular Wireless

More information

CHANNEL ASSIGNMENT AND LOAD DISTRIBUTION IN A POWER- MANAGED WLAN

CHANNEL ASSIGNMENT AND LOAD DISTRIBUTION IN A POWER- MANAGED WLAN CHANNEL ASSIGNMENT AND LOAD DISTRIBUTION IN A POWER- MANAGED WLAN Mohamad Haidar Robert Akl Hussain Al-Rizzo Yupo Chan University of Arkansas at University of Arkansas at University of Arkansas at University

More information

Partial overlapping channels are not damaging

Partial overlapping channels are not damaging Journal of Networking and Telecomunications (2018) Original Research Article Partial overlapping channels are not damaging Jing Fu,Dongsheng Chen,Jiafeng Gong Electronic Information Engineering College,

More information

CAPACITY AND THROUGHPUT OPTIMIZATION IN MULTI-CELL 3G WCDMA NETWORKS. Son Nguyen, B.S. Thesis Prepared for the Degree of MASTER OF SCIENCE

CAPACITY AND THROUGHPUT OPTIMIZATION IN MULTI-CELL 3G WCDMA NETWORKS. Son Nguyen, B.S. Thesis Prepared for the Degree of MASTER OF SCIENCE CAPACITY AND THROUGHPUT OPTIMIZATION IN MULTI-CELL 3G WCDMA NETWORKS Son Nguyen, B.S. Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS December 2005 APPROVED: Robert Akl, Major

More information

EC 551 Telecommunication System Engineering. Mohamed Khedr

EC 551 Telecommunication System Engineering. Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr 1 Mohamed Khedr., 2008 Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week

More information

OPTIMAL ACCESS POINT SELECTION AND CHANNEL ASSIGNMENT IN IEEE NETWORKS. Sangtae Park, B.S. Thesis Prepared for the Degree of MASTER OF SCIENCE

OPTIMAL ACCESS POINT SELECTION AND CHANNEL ASSIGNMENT IN IEEE NETWORKS. Sangtae Park, B.S. Thesis Prepared for the Degree of MASTER OF SCIENCE OPTIMAL ACCESS POINT SELECTION AND CHANNEL ASSIGNMENT IN IEEE 802.11 NETWORKS Sangtae Park, B.S. Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS December 2004 APPROVED: Robert

More information

Level 6 Graduate Diploma in Engineering Wireless and mobile communications

Level 6 Graduate Diploma in Engineering Wireless and mobile communications 9210-119 Level 6 Graduate Diploma in Engineering Wireless and mobile communications Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil,

More information

EasyChair Preprint. A User-Centric Cluster Resource Allocation Scheme for Ultra-Dense Network

EasyChair Preprint. A User-Centric Cluster Resource Allocation Scheme for Ultra-Dense Network EasyChair Preprint 78 A User-Centric Cluster Resource Allocation Scheme for Ultra-Dense Network Yuzhou Liu and Wuwen Lai EasyChair preprints are intended for rapid dissemination of research results and

More information

Cross-layer Network Design for Quality of Services in Wireless Local Area Networks: Optimal Access Point Placement and Frequency Channel Assignment

Cross-layer Network Design for Quality of Services in Wireless Local Area Networks: Optimal Access Point Placement and Frequency Channel Assignment Cross-layer Network Design for Quality of Services in Wireless Local Area Networks: Optimal Access Point Placement and Frequency Channel Assignment Chutima Prommak and Boriboon Deeka Abstract This paper

More information

Unit 3 - Wireless Propagation and Cellular Concepts

Unit 3 - Wireless Propagation and Cellular Concepts X Courses» Introduction to Wireless and Cellular Communications Unit 3 - Wireless Propagation and Cellular Concepts Course outline How to access the portal Assignment 2. Overview of Cellular Evolution

More information

Common Control Channel Allocation in Cognitive Radio Networks through UWB Multi-hop Communications

Common Control Channel Allocation in Cognitive Radio Networks through UWB Multi-hop Communications The first Nordic Workshop on Cross-Layer Optimization in Wireless Networks at Levi, Finland Common Control Channel Allocation in Cognitive Radio Networks through UWB Multi-hop Communications Ahmed M. Masri

More information

Quick Introduction to Communication Systems

Quick Introduction to Communication Systems Quick Introduction to Communication Systems p. 1/26 Quick Introduction to Communication Systems Aly I. El-Osery, Ph.D. elosery@ee.nmt.edu Department of Electrical Engineering New Mexico Institute of Mining

More information

Impact of Interference Model on Capacity in CDMA Cellular Networks. Robert Akl, D.Sc. Asad Parvez University of North Texas

Impact of Interference Model on Capacity in CDMA Cellular Networks. Robert Akl, D.Sc. Asad Parvez University of North Texas Impact of Interference Model on Capacty n CDMA Cellular Networks Robert Akl, D.Sc. Asad Parvez Unversty of North Texas Outlne Introducton to CDMA networks Average nterference model Actual nterference model

More information

Data and Computer Communications

Data and Computer Communications Data and Computer Communications Chapter 14 Cellular Wireless Networks Eighth Edition by William Stallings Cellular Wireless Networks key technology for mobiles, wireless nets etc developed to increase

More information

Unit-1 The Cellular Concept

Unit-1 The Cellular Concept Unit-1 The Cellular Concept 1.1 Introduction to Cellular Systems Solves the problem of spectral congestion and user capacity. Offer very high capacity in a limited spectrum without major technological

More information

Unit 4 - Cellular System Design, Capacity, Handoff, and Outage

Unit 4 - Cellular System Design, Capacity, Handoff, and Outage Unit 4 - Cellular System Design, Capacity, Handoff, and Outage Course outline How to access the portal Assignment. Overview of Cellular Evolution and Wireless Technologies Wireless Propagation and Cellular

More information

DISTRIBUTION AND BACKHAUL

DISTRIBUTION AND BACKHAUL DISTRIBUTION AND BACKHAUL USING WHITE SPACE 3G WHITE SPACES WIFI FIBER BACKHAUL NETWORK 2 OUTLINE Our proposed system First order Methodology Achievable Capacity Traffic Demand How many cells would need

More information

GTBIT ECE Department Wireless Communication

GTBIT ECE Department Wireless Communication Q-1 What is Simulcast Paging system? Ans-1 A Simulcast Paging system refers to a system where coverage is continuous over a geographic area serviced by more than one paging transmitter. In this type of

More information

A Practical Resource Allocation Approach for Interference Management in LTE Uplink Transmission

A Practical Resource Allocation Approach for Interference Management in LTE Uplink Transmission JOURNAL OF COMMUNICATIONS, VOL. 6, NO., JULY A Practical Resource Allocation Approach for Interference Management in LTE Uplink Transmission Liying Li, Gang Wu, Hongbing Xu, Geoffrey Ye Li, and Xin Feng

More information

Chutima Prommak and Boriboon Deeka. Proceedings of the World Congress on Engineering 2007 Vol II WCE 2007, July 2-4, 2007, London, U.K.

Chutima Prommak and Boriboon Deeka. Proceedings of the World Congress on Engineering 2007 Vol II WCE 2007, July 2-4, 2007, London, U.K. Network Design for Quality of Services in Wireless Local Area Networks: a Cross-layer Approach for Optimal Access Point Placement and Frequency Channel Assignment Chutima Prommak and Boriboon Deeka ESS

More information

CCAP: A Strategic Tool for Managing Capacity of CDMA Networks

CCAP: A Strategic Tool for Managing Capacity of CDMA Networks CCAP: A Strategic Tool for Managing Capacity of CDMA Networks Teleware Co. Ltd. in cooperation with Washington University, Saint Louis, Missouri, USA What is CCAP Graphical interactive tool for CDMA Calculates

More information

Soft Handoff Parameters Evaluation in Downlink WCDMA System

Soft Handoff Parameters Evaluation in Downlink WCDMA System Soft Handoff Parameters Evaluation in Downlink WCDMA System A. A. AL-DOURI S. A. MAWJOUD Electrical Engineering Department Tikrit University Electrical Engineering Department Mosul University Abstract

More information

SEN366 (SEN374) (Introduction to) Computer Networks

SEN366 (SEN374) (Introduction to) Computer Networks SEN366 (SEN374) (Introduction to) Computer Networks Prof. Dr. Hasan Hüseyin BALIK (8 th Week) Cellular Wireless Network 8.Outline Principles of Cellular Networks Cellular Network Generations LTE-Advanced

More information

Wireless Future. OUTLINE My thought on Wireless Future Before March 11 After March 11

Wireless Future. OUTLINE My thought on Wireless Future Before March 11 After March 11 VTC-Spring Panel:Wireless Future, 8:30~10:00am, 17 May, 2011, Budapest, Hungary Wireless Future Tohoku U. Aobayama-campus Fumiyuki Adachi Wireless Signal Processing & Networking (WSP&N) Lab. Dept. of Electrical

More information

UWB Channel Modeling

UWB Channel Modeling Channel Modeling ETIN10 Lecture no: 9 UWB Channel Modeling Fredrik Tufvesson & Johan Kåredal, Department of Electrical and Information Technology fredrik.tufvesson@eit.lth.se 2011-02-21 Fredrik Tufvesson

More information

Wireless Physical Layer Concepts: Part II

Wireless Physical Layer Concepts: Part II Wireless Physical Layer Concepts: Part II Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at:

More information

Channel Modeling ETI 085

Channel Modeling ETI 085 Channel Modeling ETI 085 Overview Lecture no: 9 What is Ultra-Wideband (UWB)? Why do we need UWB channel models? UWB Channel Modeling UWB channel modeling Standardized UWB channel models Fredrik Tufvesson

More information

GSM FREQUENCY PLANNING

GSM FREQUENCY PLANNING GSM FREQUENCY PLANNING PROJECT NUMBER: PRJ070 BY NAME: MUTONGA JACKSON WAMBUA REG NO.: F17/2098/2004 SUPERVISOR: DR. CYRUS WEKESA EXAMINER: DR. MAURICE MANG OLI Introduction GSM is a cellular mobile network

More information

Channel selection for IEEE based wireless LANs using 2.4 GHz band

Channel selection for IEEE based wireless LANs using 2.4 GHz band Channel selection for IEEE 802.11 based wireless LANs using 2.4 GHz band Jihoon Choi 1a),KyubumLee 1, Sae Rom Lee 1, and Jay (Jongtae) Ihm 2 1 School of Electronics, Telecommunication, and Computer Engineering,

More information

A New Analysis of the DS-CDMA Cellular Uplink Under Spatial Constraints

A New Analysis of the DS-CDMA Cellular Uplink Under Spatial Constraints A New Analysis of the DS-CDMA Cellular Uplink Under Spatial Constraints D. Torrieri M. C. Valenti S. Talarico U.S. Army Research Laboratory Adelphi, MD West Virginia University Morgantown, WV June, 3 the

More information

Beamforming and Binary Power Based Resource Allocation Strategies for Cognitive Radio Networks

Beamforming and Binary Power Based Resource Allocation Strategies for Cognitive Radio Networks 1 Beamforming and Binary Power Based Resource Allocation Strategies for Cognitive Radio Networks UWB Walter project Workshop, ETSI October 6th 2009, Sophia Antipolis A. Hayar EURÉCOM Institute, Mobile

More information

King Fahd University of Petroleum & Minerals Computer Engineering Dept

King Fahd University of Petroleum & Minerals Computer Engineering Dept King Fahd University of Petroleum & Minerals Computer Engineering Dept COE 543 Mobile and Wireless Networks Term 0 Dr. Ashraf S. Hasan Mahmoud Rm -148-3 Ext. 174 Email: ashraf@ccse.kfupm.edu.sa 4//003

More information

Wireless Network Pricing Chapter 2: Wireless Communications Basics

Wireless Network Pricing Chapter 2: Wireless Communications Basics Wireless Network Pricing Chapter 2: Wireless Communications Basics Jianwei Huang & Lin Gao Network Communications and Economics Lab (NCEL) Information Engineering Department The Chinese University of Hong

More information

Mobile & Wireless Networking. Lecture 4: Cellular Concepts & Dealing with Mobility. [Reader, Part 3 & 4]

Mobile & Wireless Networking. Lecture 4: Cellular Concepts & Dealing with Mobility. [Reader, Part 3 & 4] 192620010 Mobile & Wireless Networking Lecture 4: Cellular Concepts & Dealing with Mobility [Reader, Part 3 & 4] Geert Heijenk Outline of Lecture 4 Cellular Concepts q Introduction q Cell layout q Interference

More information

Traffic Modelling For Capacity Analysis of CDMA Networks Using Lognormal Approximation Method

Traffic Modelling For Capacity Analysis of CDMA Networks Using Lognormal Approximation Method IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834, p- ISSN: 2278-8735. Volume 4, Issue 6 (Jan. - Feb. 2013), PP 42-50 Traffic Modelling For Capacity Analysis of CDMA

More information

SLIDE #2.1. MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2012. ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala

SLIDE #2.1. MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2012. ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala Mobile Cellular Systems SLIDE #2.1 MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2012 ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala Email-alakroy.nerist@gmail.com What we will learn in this

More information

ENHANCED BANDWIDTH EFFICIENCY IN WIRELESS OFDMA SYSTEMS THROUGH ADAPTIVE SLOT ALLOCATION ALGORITHM

ENHANCED BANDWIDTH EFFICIENCY IN WIRELESS OFDMA SYSTEMS THROUGH ADAPTIVE SLOT ALLOCATION ALGORITHM ENHANCED BANDWIDTH EFFICIENCY IN WIRELESS OFDMA SYSTEMS THROUGH ADAPTIVE SLOT ALLOCATION ALGORITHM K.V. N. Kavitha 1, Siripurapu Venkatesh Babu 1 and N. Senthil Nathan 2 1 School of Electronics Engineering,

More information

EEG473 Mobile Communications Module 2 : Week # (6) The Cellular Concept System Design Fundamentals

EEG473 Mobile Communications Module 2 : Week # (6) The Cellular Concept System Design Fundamentals EEG473 Mobile Communications Module 2 : Week # (6) The Cellular Concept System Design Fundamentals Interference and System Capacity Interference is the major limiting factor in the performance of cellular

More information

Unit 2: Mobile Communication Systems Lecture 8, 9: Performance Improvement Techniques in Cellular Systems. Today s Lecture: Outline

Unit 2: Mobile Communication Systems Lecture 8, 9: Performance Improvement Techniques in Cellular Systems. Today s Lecture: Outline Unit 2: Mobile Communication Systems Lecture 8, 9: Performance Improvement Techniques in Cellular Systems Today s Lecture: Outline Handover & Roaming Hard and Soft Handover Power Control Cell Splitting

More information

03_57_104_final.fm Page 97 Tuesday, December 4, :17 PM. Problems Problems

03_57_104_final.fm Page 97 Tuesday, December 4, :17 PM. Problems Problems 03_57_104_final.fm Page 97 Tuesday, December 4, 2001 2:17 PM Problems 97 3.9 Problems 3.1 Prove that for a hexagonal geometry, the co-channel reuse ratio is given by Q = 3N, where N = i 2 + ij + j 2. Hint:

More information

Revision of Lecture One

Revision of Lecture One Revision of Lecture One System blocks and basic concepts Multiple access, MIMO, space-time Transceiver Wireless Channel Signal/System: Bandpass (Passband) Baseband Baseband complex envelope Linear system:

More information

Downlink Erlang Capacity of Cellular OFDMA

Downlink Erlang Capacity of Cellular OFDMA Downlink Erlang Capacity of Cellular OFDMA Gauri Joshi, Harshad Maral, Abhay Karandikar Department of Electrical Engineering Indian Institute of Technology Bombay Powai, Mumbai, India 400076. Email: gaurijoshi@iitb.ac.in,

More information

Survey of Power Control Schemes for LTE Uplink E Tejaswi, Suresh B

Survey of Power Control Schemes for LTE Uplink E Tejaswi, Suresh B Survey of Power Control Schemes for LTE Uplink E Tejaswi, Suresh B Department of Electronics and Communication Engineering K L University, Guntur, India Abstract In multi user environment number of users

More information

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss Introduction Small-scale fading is used to describe the rapid fluctuation of the amplitude of a radio

More information

Dynamic Frequency Hopping in Cellular Fixed Relay Networks

Dynamic Frequency Hopping in Cellular Fixed Relay Networks Dynamic Frequency Hopping in Cellular Fixed Relay Networks Omer Mubarek, Halim Yanikomeroglu Broadband Communications & Wireless Systems Centre Carleton University, Ottawa, Canada {mubarek, halim}@sce.carleton.ca

More information

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang Wireless Communication: Concepts, Techniques, and Models Hongwei Zhang http://www.cs.wayne.edu/~hzhang Outline Digital communication over radio channels Channel capacity MIMO: diversity and parallel channels

More information

Teletraffic Modeling of Cdma Systems

Teletraffic Modeling of Cdma Systems P a g e 34 Vol. 10 Issue 3 (Ver 1.0) July 010 Global Journal of Researches in Engineering Teletraffic Modeling of Cdma Systems John S.N 1 Okonigene R.E Akinade B.A 3 Ogunremi O 4 GJRE Classification -

More information

Adaptive Modulation, Adaptive Coding, and Power Control for Fixed Cellular Broadband Wireless Systems: Some New Insights 1

Adaptive Modulation, Adaptive Coding, and Power Control for Fixed Cellular Broadband Wireless Systems: Some New Insights 1 Adaptive, Adaptive Coding, and Power Control for Fixed Cellular Broadband Wireless Systems: Some New Insights Ehab Armanious, David D. Falconer, and Halim Yanikomeroglu Broadband Communications and Wireless

More information

Multihop Relay-Enhanced WiMAX Networks

Multihop Relay-Enhanced WiMAX Networks 0 Multihop Relay-Enhanced WiMAX Networks Yongchul Kim and Mihail L. Sichitiu Department of Electrical and Computer Engineering North Carolina State University Raleigh, NC 27695 USA. Introduction The demand

More information

EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY. Why do we need UWB channel models?

EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY. Why do we need UWB channel models? Wireless Communication Channels Lecture 9:UWB Channel Modeling EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY Overview What is Ultra-Wideband (UWB)? Why do we need UWB channel

More information

Data and Computer Communications. Tenth Edition by William Stallings

Data and Computer Communications. Tenth Edition by William Stallings Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education - 2013 CHAPTER 10 Cellular Wireless Network

More information

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010 ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010 Lecture 2 Today: (1) Frequency Reuse, (2) Handoff Reading for today s lecture: 3.2-3.5 Reading for next lecture: Rap 3.6 HW 1 will

More information

Mobile and Personal Communications. Dr Mike Fitton, Telecommunications Research Lab Toshiba Research Europe Limited

Mobile and Personal Communications. Dr Mike Fitton, Telecommunications Research Lab Toshiba Research Europe Limited Mobile and Personal Communications Dr Mike Fitton, mike.fitton@toshiba-trel.com Telecommunications Research Lab Toshiba Research Europe Limited 1 Mobile and Personal Communications Outline of Lectures

More information

Sensor Networks for Estimating and Updating the Performance of Cellular Systems

Sensor Networks for Estimating and Updating the Performance of Cellular Systems Sensor Networks for Estimating and Updating the Performance of Cellular Systems Liang Xiao, Larry J. Greenstein, Narayan B. Mandayam WINLAB, Rutgers University {lxiao, ljg, narayan}@winlab.rutgers.edu

More information

CDMA & WCDMA (UMTS) AIR INTERFACE. ECE 2526-WIRELESS & CELLULAR COMMUNICATION SYSTEMS Monday, June 25, 2018

CDMA & WCDMA (UMTS) AIR INTERFACE. ECE 2526-WIRELESS & CELLULAR COMMUNICATION SYSTEMS Monday, June 25, 2018 CDMA & WCDMA (UMTS) AIR INTERFACE ECE 2526-WIRELESS & CELLULAR COMMUNICATION SYSTEMS Monday, June 25, 2018 SPREAD SPECTRUM OPTIONS (1) Fast Frequency Hopping (FFSH) Advantages: Has higher anti-jamming

More information

Partial Co-channel based Overlap Resource Power Control for Interference Mitigation in an LTE-Advanced Network with Device-to-Device Communication

Partial Co-channel based Overlap Resource Power Control for Interference Mitigation in an LTE-Advanced Network with Device-to-Device Communication CTRQ 2013 : The Sixth International Conference on Communication Theory Reliability and Quality of Service Partial Co-channel based Overlap Resource Power Control for Interference Mitigation in an LTE-Advanced

More information

The Cellular Concept

The Cellular Concept The Cellular Concept Key problems in multi-user wireless system: spectrum is limited and expensive large # of users to accommodate high quality-of-services (QoS) is required expandable systems are needed

More information

ELEC-E7120 Wireless Systems Weekly Exercise Problems 5

ELEC-E7120 Wireless Systems Weekly Exercise Problems 5 ELEC-E7120 Wireless Systems Weekly Exercise Problems 5 Problem 1: (Range and rate in Wi-Fi) When a wireless station (STA) moves away from the Access Point (AP), the received signal strength decreases and

More information

Radio Resource Allocation based on Power- Bandwidth Characteristics for Self-optimising Cellular Mobile Radio Networks

Radio Resource Allocation based on Power- Bandwidth Characteristics for Self-optimising Cellular Mobile Radio Networks Radio Resource Allocation based on Power- Bandwidth Characteristics for Self-optimising Cellular Mobile Radio Networks Philipp P. Hasselbach, Anja Klein Communications Engineering Lab Technische Universität

More information

Reti di Telecomunicazione. Channels and Multiplexing

Reti di Telecomunicazione. Channels and Multiplexing Reti di Telecomunicazione Channels and Multiplexing Point-to-point Channels They are permanent connections between a sender and a receiver The receiver can be designed and optimized based on the (only)

More information

CS Mobile and Wireless Networking Homework 1

CS Mobile and Wireless Networking Homework 1 S 515 - Mobile and Wireless Networking Homework 1 ate: Oct 16, 2002, Wednesday You may benefit from the following tools if you wish: scientific calculator function plotter like matlab, gnuplot, or any

More information

Performance Evaluation of Uplink Closed Loop Power Control for LTE System

Performance Evaluation of Uplink Closed Loop Power Control for LTE System Performance Evaluation of Uplink Closed Loop Power Control for LTE System Bilal Muhammad and Abbas Mohammed Department of Signal Processing, School of Engineering Blekinge Institute of Technology, Ronneby,

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 2. Interference and Shadow Margins, Handoff Gain, Coverage Capacity, Flat Fading

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 2. Interference and Shadow Margins, Handoff Gain, Coverage Capacity, Flat Fading ECE6604 PERSONAL & MOBILE COMMUNICATIONS Week 2 Interference and Shadow Margins, Handoff Gain, Coverage Capacity, Flat Fading 1 Interference Margin As the subscriber load increases, additional interference

More information

Medium Access Control. Wireless Networks: Guevara Noubir. Slides adapted from Mobile Communications by J. Schiller

Medium Access Control. Wireless Networks: Guevara Noubir. Slides adapted from Mobile Communications by J. Schiller Wireless Networks: Medium Access Control Guevara Noubir Slides adapted from Mobile Communications by J. Schiller S200, COM3525 Wireless Networks Lecture 4, Motivation Can we apply media access methods

More information

Spring 2017 MIMO Communication Systems Solution of Homework Assignment #5

Spring 2017 MIMO Communication Systems Solution of Homework Assignment #5 Spring 217 MIMO Communication Systems Solution of Homework Assignment #5 Problem 1 (2 points Consider a channel with impulse response h(t α δ(t + α 1 δ(t T 1 + α 3 δ(t T 2. Assume that T 1 1 µsecs and

More information

Performance Analysis of Power Control and Cell Association in Heterogeneous Cellular Networks

Performance Analysis of Power Control and Cell Association in Heterogeneous Cellular Networks Performance Analysis of Power Control and Cell Association in Heterogeneous Cellular Networks Prasanna Herath Mudiyanselage PhD Final Examination Supervisors: Witold A. Krzymień and Chintha Tellambura

More information

EENG473 Mobile Communications Module 2 : Week # (8) The Cellular Concept System Design Fundamentals

EENG473 Mobile Communications Module 2 : Week # (8) The Cellular Concept System Design Fundamentals EENG473 Mobile Communications Module 2 : Week # (8) The Cellular Concept System Design Fundamentals Improving Capacity in Cellular Systems Cellular design techniques are needed to provide more channels

More information

Impact of Intra- and Inter-Cell Interferences on UMTS-FDD

Impact of Intra- and Inter-Cell Interferences on UMTS-FDD Impact of Intra- and Inter-Cell Interferences on UMTS-FDD Hugo Esteves (1), Mário Pereira (1), Luis M. Correia (1), Carlos Caseiro (2) (1) Instituto Superior Técnico/Instituto de Telecomunicações, Tech.

More information

Transmission Performance of Flexible Relay-based Networks on The Purpose of Extending Network Coverage

Transmission Performance of Flexible Relay-based Networks on The Purpose of Extending Network Coverage Transmission Performance of Flexible Relay-based Networks on The Purpose of Extending Network Coverage Ardian Ulvan 1 and Robert Bestak 1 1 Czech Technical University in Prague, Technicka 166 7 Praha 6,

More information

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Vehicle Networks Wireless communication basics Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Outline Wireless Signal Propagation Electro-magnetic waves Signal impairments Attenuation Distortion

More information

Broadcast Operation. Christopher Schmidt. University of Erlangen-Nürnberg Chair of Mobile Communications. January 27, 2010

Broadcast Operation. Christopher Schmidt. University of Erlangen-Nürnberg Chair of Mobile Communications. January 27, 2010 Broadcast Operation Seminar LTE: Der Mobilfunk der Zukunft Christopher Schmidt University of Erlangen-Nürnberg Chair of Mobile Communications January 27, 2010 Outline 1 Introduction 2 Single Frequency

More information

TRANSMITTER DIVERSITY IN CDMA SYSTEMS. Miguel Gómez, Vincent Hag, Jeremy Lainé, François Willame Coordinator : S. Ben Slimane

TRANSMITTER DIVERSITY IN CDMA SYSTEMS. Miguel Gómez, Vincent Hag, Jeremy Lainé, François Willame Coordinator : S. Ben Slimane TRANSMITTER DIVERSITY IN CDMA SYSTEMS Miguel Gómez, Vincent Hag, Jeremy Lainé, François Willame Coordinator : S. Ben Slimane 4th June 23 Abstract In wireless communication, diversity techniques are widely

More information

1.1 Introduction to the book

1.1 Introduction to the book 1 Introduction 1.1 Introduction to the book Recent advances in wireless communication systems have increased the throughput over wireless channels and networks. At the same time, the reliability of wireless

More information

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 10 - LTE (4G) -Technologies used in 4G and 5G The Need for LTE Long Term Evolution (LTE) With the growth of mobile data and mobile users, it becomes essential

More information

Direct Link Communication II: Wireless Media. Current Trend

Direct Link Communication II: Wireless Media. Current Trend Direct Link Communication II: Wireless Media Current Trend WLAN explosion (also called WiFi) took most by surprise cellular telephony: 3G/4G cellular providers/telcos/data in the same mix self-organization

More information

Lecture 3 Cellular Systems

Lecture 3 Cellular Systems Lecture 3 Cellular Systems I-Hsiang Wang ihwang@ntu.edu.tw 3/13, 2014 Cellular Systems: Additional Challenges So far: focus on point-to-point communication In a cellular system (network), additional issues

More information

Probabilistic Link Properties. Octav Chipara

Probabilistic Link Properties. Octav Chipara Probabilistic Link Properties Octav Chipara Signal propagation Propagation in free space always like light (straight line) Receiving power proportional to 1/d² in vacuum much more in real environments

More information

CDMA Bunched Systems for Improving Fairness Performance of the Packet Data Services

CDMA Bunched Systems for Improving Fairness Performance of the Packet Data Services CDMA Bunched Systems for Improving Fairness Performance of the Packet Data Services Sang Kook Lee, In Sook Cho, Jae Weon Cho, Young Wan So, and Daeh Young Hong Dept. of Electronic Engineering, Sogang University

More information

Wireless Physical Layer Concepts: Part III

Wireless Physical Layer Concepts: Part III Wireless Physical Layer Concepts: Part III Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

(R1) each RRU. R3 each

(R1) each RRU. R3 each 26 Telfor Journal, Vol. 4, No. 1, 212. LTE Network Radio Planning Igor R. Maravićć and Aleksandar M. Nešković Abstract In this paper different ways of planning radio resources within an LTE network are

More information

LTE in Unlicensed Spectrum

LTE in Unlicensed Spectrum LTE in Unlicensed Spectrum Prof. Geoffrey Ye Li School of ECE, Georgia Tech. Email: liye@ece.gatech.edu Website: http://users.ece.gatech.edu/liye/ Contributors: Q.-M. Chen, G.-D. Yu, and A. Maaref Outline

More information

Wireless & Cellular Communications

Wireless & Cellular Communications Wireless & Cellular Communications Slides are adopted from Lecture notes by Professor A. Goldsmith, Stanford University. Instructor presentation materials for the book: Wireless Communications, 2nd Edition,

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS

ECE6604 PERSONAL & MOBILE COMMUNICATIONS ECE6604 PERSONAL & MOBILE COMMUNICATIONS GORDON L. STÜBER School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, Georgia, 30332-0250 Ph: (404) 894-2923 Fax: (404) 894-7883

More information

PERFORMANCE ANALYSIS OF DOWNLINK POWER CONTROL IN WCDMA SYSTEM

PERFORMANCE ANALYSIS OF DOWNLINK POWER CONTROL IN WCDMA SYSTEM PERFORMANCE ANALYSIS OF DOWNLINK POWER CONTROL IN WCDMA SYSTEM Dr. M. Mahbubur Rahman, Md. Khairul Islam, Tarek Hassan-Al-Mahmud, A. R. Mahmud Abstract: WCDMA (Wideband Code Division Multiple Access) plays

More information

Downlink radio resource optimization in wide-band CDMA systems

Downlink radio resource optimization in wide-band CDMA systems WIRELESS COMMUNICATIONS AND MOBILE COMPUTING Wirel. Commun. Mob. Comput. 2003; 3:735 742 (DOI: 10.1002/wcm.153) Downlink radio resource optimization in wide-band CDMA systems Yue Chen*,y and Laurie Cuthbert

More information

Performance of Wideband Mobile Channel with Perfect Synchronism BPSK vs QPSK DS-CDMA

Performance of Wideband Mobile Channel with Perfect Synchronism BPSK vs QPSK DS-CDMA Performance of Wideband Mobile Channel with Perfect Synchronism BPSK vs QPSK DS-CDMA By Hamed D. AlSharari College of Engineering, Aljouf University, Sakaka, Aljouf 2014, Kingdom of Saudi Arabia, hamed_100@hotmail.com

More information

Chapter 2 Overview. Duplexing, Multiple Access - 1 -

Chapter 2 Overview. Duplexing, Multiple Access - 1 - Chapter 2 Overview Part 1 (2 weeks ago) Digital Transmission System Frequencies, Spectrum Allocation Radio Propagation and Radio Channels Part 2 (last week) Modulation, Coding, Error Correction Part 3

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

Heterogeneous Networks (HetNets) in HSPA

Heterogeneous Networks (HetNets) in HSPA Qualcomm Incorporated February 2012 QUALCOMM is a registered trademark of QUALCOMM Incorporated in the United States and may be registered in other countries. Other product and brand names may be trademarks

More information

Characterization of Downlink Transmit Power Control during Soft Handover in WCDMA Systems

Characterization of Downlink Transmit Power Control during Soft Handover in WCDMA Systems Characterization of Downlink Transmit Power Control during Soft Handover in CDA Systems Palash Gupta, Hussain ohammed, and..a Hashem Department of Computer Science and ngineering Khulna University of ngineering

More information

Lecture 5. Large Scale Fading and Network Deployment

Lecture 5. Large Scale Fading and Network Deployment Lecture 5 Large Scale Fading and Network Deployment Large Scale Fading 2 n Large scale variation of signal strength with distance n Consider average signal strength values n The average is computed either

More information

Load Balancing for Centralized Wireless Networks

Load Balancing for Centralized Wireless Networks Load Balancing for Centralized Wireless Networks Hong Bong Kim and Adam Wolisz Telecommunication Networks Group Technische Universität Berlin Sekr FT5 Einsteinufer 5 0587 Berlin Germany Email: {hbkim,

More information

WIRELESS COMMUNICATIONS PRELIMINARIES

WIRELESS COMMUNICATIONS PRELIMINARIES WIRELESS COMMUNICATIONS Preliminaries Radio Environment Modulation Performance PRELIMINARIES db s and dbm s Frequency/Time Relationship Bandwidth, Symbol Rate, and Bit Rate 1 DECIBELS Relative signal strengths

More information

Chapter 7. Multiple Division Techniques

Chapter 7. Multiple Division Techniques Chapter 7 Multiple Division Techniques 1 Outline Frequency Division Multiple Access (FDMA) Division Multiple Access (TDMA) Code Division Multiple Access (CDMA) Comparison of FDMA, TDMA, and CDMA Walsh

More information

Wireless Intro : Computer Networking. Wireless Challenges. Overview

Wireless Intro : Computer Networking. Wireless Challenges. Overview Wireless Intro 15-744: Computer Networking L-17 Wireless Overview TCP on wireless links Wireless MAC Assigned reading [BM09] In Defense of Wireless Carrier Sense [BAB+05] Roofnet (2 sections) Optional

More information

Ad Hoc Resource Allocation in Cellular Systems

Ad Hoc Resource Allocation in Cellular Systems Appears in Proceedings of 1999 IEEE Radio and Wireless Conference (RAWCON99), pg. 51. Ad Hoc Resource Allocation in Cellular Systems Abstract A fundamental question in a wireless cellular system is how

More information

Chapter 14. Cellular Wireless Networks

Chapter 14. Cellular Wireless Networks Chapter 14 Cellular Wireless Networks Evolu&on of Wireless Communica&ons 1901 Marconi: Trans-Atlantic wireless transmission 1906 Fessenden: first radio broadcast (AM) 1921 Detroit Police Dept wireless

More information