KEKB Status and Upgrade Plan with Crab Crossing

Size: px
Start display at page:

Download "KEKB Status and Upgrade Plan with Crab Crossing"

Transcription

1 KEKB Status and Upgrade Plan with Crab Crossing Second Electron-Ion Collider Workshop March 16,24 Mika Masuzawa, KEK 1

2 Contents 1. Introduction 2. Machine Performance 3. Key Issues for High Luminosity 4. Upgrade Plan with Crab Crossing 5. Summary 2

3 1. Introduction Beam energy 8GeV (electron, HER ) 3.5GeV (positron, LER ) Circumference 316 m Use TRISTAN tunnel RF system f RF ~ 59MHz ARES (LER) ARES+SCC (HER) The construction of KEKB began in 1994, and was completed in November Commissioning started in Dec

4 Machine Parameters (12/18/23) Ring LER HER Horizontal Emittance (nm) 18 (18) 24 (18) Beam Current (ma) 153 (26) 1132 (11) Number of bunches 1281 (~5) Bunch Current (ma) 1.17 (.52).884 (.22) Number of Bunch Trains 1 Horizontal Beam Size@IP(µm) σ* x Vertical Beam Size@IP(µm) σ* y Emittance Ratio ε y /ε x Beta function@ip β x *(cm)/β y *(cm) 59/.58 (33/1) 56/.7 (33/1) Beam-beam parameters ξ x /ξ y.14/.69 (.39/.52).71/.53 (.39/.52) Beam lifetime at collision (minutes) 125 at 153mA 216 at 1132 ma Peak luminosity (/nb/s) 11.6 (1) ( ) Design values 4

5 IR Vertical focusing by a pair of superconducting Q-magnet (QCSL/QCSR). Extra vertical focusing by QC1L/R for the electron beam. One beam must go off axis due to the finite crossing angle at the IP. To minimize the flux of SR through the IP, the incoming positron (electron) beam orbit is set on the axis of QCSL (QCSR). Superconducting solenoid magnets SL/R used for compensating the detector solenoid field. 5

6 2. Machine Performance Continuous injection

7 7

8 Best 24 hours 8

9 3. Key Issues for High Luminosity The history of the KEKB commissioning has been a struggle with issues such as: A) High beam currents Problems with hardware components Instability B) Single beam blowup due to the electron cloud instability Solenoid winding C) Beam-beam blowup Tune survey Optics corrections Other tuning knobs (X-Y coupling at IP etc.) 9

10 A) Problems due to High Beam Currents Problems with vacuum components HOM heating and damage Bellows, gate valves Arcing of components due to HOMs or wall currents Movable masks, RF shield at injection septum Direct damage by beam Movable masks, beam abort chamber Heating and vacuum leak due to SR IR chambers, Helico-flex gaskets 1

11 Damaged vacuum components Damaged RF shield fingers Damaged movable mask 11

12 A) Problems due to High Beam Currents Instability sources Fast ion (electron ring) Serious at high vacuum pressures Can be suppressed by bunch-by-bunch FB Electron cloud (positron ring) Can be suppressed by solenoid field RF cavity Beam current is not limited by instabilities due to RF cavity. We use -1 mode damper (with comb-filter) to suppress instability from the fundamental mode. We do not need longitudinal bunch-by-bunch FB. Others Dust trapping 12

13 B) Single beam blowup due to the electron cloud instability H.Fukuma ECOULD

14 Electron Cloud (EC) 1999/4 Single beam blowup was observed by SR monitor. 1999/1 Electron cloud hypothesis was proposed by K.Oide. 1999/11 C-yoke permanent magnets were installed in attempt to cure the blowup problem. 2/3 Additional C-yoke magnets were installed. 2/5 Head-tail instability model by K.Ohmi & F.Zimmermann was proposed. 2/9 C-yoke magnets were replaced by solenoid magnets (~28 sections). 2/12 Effectiveness of the solenoids in improving luminosity was confirmed. 21/1 195 additional solenoid magnet sections were installed. 21/9 345 additional solenoid magnet sections were installed. 21/11 Peak luminosity reached 5.5 nb/s. H.Fukuma ECOULD

15 C-yoke permanent magnets 15

16 Electron-cloud-suppression solenoids 16

17 Electron-cloud-suppression solenoids Total length of solenoid preliminary (very rough estimation) 32 circumference total drift length 2 4th 5th Total length(m) nd 3rd 8 1st Bz > 2 G 4 Sep. Jan. 1 Apr. 1 Sep. 1 Jan. 2 Date Effect on luminosity confirmed 17

18 LER Beam size (σ y ) 5 21 July : off 1 train, 1153 bunches, 4 rf bucket spacing Vertical beam size@ip (micron) July : on 21 Dec. : on 22 Feb. : on LER beam current (ma) 18

19 Effect of solenoids on luminosity 15 Effect of solenoid (after second installation) All on (7/Apr./1) Specific luminosity / bunch (1 3 cm -2 sec -1 ma -2 ) 1 5 NEG-bellows section off (9/May/1) All off (9/May/1) All on (9/May/1) L = I e 1 + 4π N f bunch Spec.Lum /bunch = I 2 σ i + i 1 xσ = 1 4πf y L N bunch e i + i N bunch 2 x y σ σ I b (LER) I b (HER) (ma 2 ) 19

20 C) Beam-Beam Blowup Tune survey Both simulations and surveys in real machine Horizontal tunes very close to the half-integer Need very fine control of tunes Optics correction (global correction) βfunctions Dispersion X-Y coupling Collision tuning knobs Waist points X-Y coupling at IP Dispersions at IP Orbit feedback around IP 2

21 Choice of Betatron Tunes & Specific Luminosity Specific luminosity was improved by 25%. 1/29/22 5/9/23 12/18/23 21 Simulations M.Tawada, et al.

22 Bunch-spacing problem Observations The specific luminosity depends on the bunch spacing. A longer bunch spacing gives a higher specific luminosity. Cause of the problem Not understood. 22

23 Comparison of specific luminosity/bunch with 3 and 4 bucket spacing More solenoids (~8m) I bunch (LER) * I bunch (HER) [ma 2 ] I bunch (LER) * I bunch (HER) [ma 2 ] L = I e 1 + 4π N f bunch Spec.Lum /bunch = I 2 σ i + i 1 xσ = 1 4πf y L N bunch i + i N bunch 2 x y e σ σ 23

24 4. Upgrade Plan with Crab Crossing Role of Crab Cavity KEKB Super-KEKB Strategy Backup scheme Adopted as baseline Ring LER HER LER HER Beam energy (GeV) Beam current (A) RF frequency (MHz) Crossing angle (mrad) ±11 ±15 βx* (m) βx, crab (m) Required kick (MV) The design luminosity of 1. x1 34 cm -2 s -1 has been achieved without crab crossing.

25 Crab crossing scheme RF Deflector ( Crab Cavity ) HER Electrons LER Positrons 1.44 MV Head-on Collision Crossing Angle (11 x 2 m rad.) 1.41 MV 1.41 MV 1.44 MV Palmer for LC (1988) Oide and Yokoya for storage rings :Phys,Rev.A4,315(1989) Recent simulations by Ohmi showed significant increase of luminosity with crab crossing. 25

26 Crossing angle Transformation from lab. Frame to head-on frame. ( ) * * * * * * * * * * 1 1 tan tan sin cos / cos / sin cos / ) tan ( ] sin [1 tan y x z z x z z z y y x x x x p p p p h h p p p x h z z p p x h y y h p p x h z x + + = + = + = = + = = + + = φ φ φ φ φ φ φ φ φ φ (φ: half crossing angle) Linear part 1 tan cos 1/ cos 1/ 1 cos 1/ tan 1 φ φ φ φ φ Oide and Yokoya for storage rings (1989) 26

27 Transverse kick by Crab Cavity x x ζ ζ 1 tan cos 1/ cos 1/ 1 cos 1/ tan 1 φ φ φ φ φ Crossing-angle term. Crab-cavity term 27 Crab cavity makes z dependent dispersion ζ x = φ at the IP, which cancels the crossing angle effect (φ << 1).

28 Simulation Head-on vs. crab-crossing (K.Ohmi) head-on crab-crossing Crab crossing restores the full luminosity of a head-on collision. 28

29 Simulation model Weak-strong K.Ohmi Many macro particles Fixed Gaussian Strong-strong Simulation of beam-beam effects in a circular e+ecollider Phys.Rev.E62 (7287)2 Many macro particles Many macro particles 29

30 Crab-crossing simulation -mrad vs. 11-mrad crossing angle (K.Ohmi) Weak-Strong model Strong-Strong model Bunch current Bunch current Beam-beam limit is ~.6 for 11 mrad half-crossing angle (both models agree well). -mrad (head-on) collision gives a higher ξ y. Beam-beam limit for -mrad crossing depends on the 3 model.

31 Parameters for 11 mrad crabbing.33m(her)/.33m(ler) V = ω rf cetanϕ β * x β x,crab 1m(HER)/2m(LER) V:voltage E:Beam energy β x* : beta-function at the IP β x : cra beta-function at the crab cavity ϕ:half crossing angle at the IP 31 (A.Morita MAC24) ω rf :the rf frequency of the cavity

32 Hardware for Crabbing (design) The TM11 mode is used to create timedependent horizontal rotational kicks to beam bunches. The TM11 mode is trapped within the cavity, while the other unwanted modes are extracted from the cavity module. 32

33 Crab Cavity Damping unwanted parasitic modes Accelerating cavities Operating mode (TM1) is the lowest frequency mode. Crab cavity Operating mode (usually TM11) is NOT the lowest frequency mode. Any parasitic mode (HOM) has higher frequency than the operating mode. Frequency of several parasitic modes can be lower than (or close to) the crabbing mode. Wave guides or beam pipe with cut-off frequency higher than the operating mode can damp all HOM s. (ARES, SCC, PEP-II cavity, etc) Special cure is needed for the damping of parasitic modes. (K.Akai MAC24) 33

34 Analogy with rectangular cavity f n,m,l = c n 2a 2 + m 2b 2 + l 2d 2 a b d Rectangular (n-m-l) Cylindrical Beam coupling Mode TM1-1- TM1 monopole-like Accelerating mode TM2-1- TM11(H) dipole-like Crabbing mode TM1-2- TM11(V) dipole-like Unwanted crabbing TE-1-1 TE111(H) dipole-like Lowest TE-like TE1--1 TE111(V) dipole-like Lowest TE-like TM monopole-like TM dipole-like TE-2-1 TE211 quadrupole-like (K.Akai MAC24) 34

35 Squashed cell Extremely polarized cell Large eccentricity where horizontal size is about twice the vertical size (a ~2b). Frequency of the unwanted crabbing mode increases. Relatively short cell length (small d) The frequencies of lowest TE-like parasitic modes increase. Frequencies of all parasitic modes except the accelerating mode can be made higher than the crabbing mode. (K.Akai MAC24) 35

36 Crab Cavity Design for KEKB Squashed cell Coaxial coupler is used as a beam pipe (axial view) Absorbing material Notch filter Absorbing material Coaxial beam pipe Cooling for inner conductor inner conductor "Squashed cell" Squashed Crab cavity for B-factories 36 (K. Akai et al., Proc. B-factories, SLAC-4 p.181 (1992).)

37 Coaxial coupler with notch filter Monopole mode (including the Lower Freq. Mode ) Couples strongly and propagates in the coaxial line as TEM wave and can be guided out. Crabbing mode Couples as dipole-like, but does not propagate in the coaxial line, if the cut-off frequency of TE11 mode is higher than the crabbing frequency. Possible asymmetry or misalignment causes monopole-like coupling, which propagates in the coaxial line as TEM. A notch filter is attached to reject the TEM-coupled crabbing mode back to the cavity. absorber notch filter Possible location to attach coaxial coupler (K.Akai MAC24) 37

38 Crab crossing experiment at KEKB KEKB (LER) β cra b=4m V kick =1.47MV KEKB (HER) β cra b=2m V kick =1.51MV Or ig inal cavit y No. of caviti es 1 Grow t h ti me (hori zon t al) 36ms Grow th time (longitudinal) 96ms Total HOM pow er 23k W No. of caviti es 1 Grow t h ti me (hori zon t al) 33ms Grow t h t ime (longit ud inal) 415ms Total HOM pow er 6kW The crab crossing experiment in KEKB is planned in FY 25. The original crab cavity will be used for the experiment. (K.Akai MAC24) 38

39 Superconducting Crab Cavity Crab Cavity Group KEK Crab Cavity R&D Group K. Hosoyama, K. Hara, A. Kabe, Y. Kojima, Y. Morita, H. Nakai A. Honma, A. Terashima, K. Nakanishi MHI S. Matsuoka, T. Yanagisawa I.D. 24 Input Coupler I.D. 12 I.R. 9 I.D. 188 I.R I.R. 2 Coaxial Coupler 866 I.D. 3 Monitor Port scale (cm) K.Hosoyama (MAC 24) 39

40 Test Result of KEKB Crab Cavity #1 Design Esp (Surface peak electric field) 1 1 without coaxial coupler without coaxial coupler 2.8 K 4.2 K Q 1 9 with coaxial coupler Esp [MV/m] K.Hosoyama (MAC 24) 4

41 Multipacting in Crab Cavity with Coaxial Coupler K.Hosoyama (MAC 24) 41

42 Crab cavity R&D, production Fabrication and Surface Treatment RF Performance Test with a Coaxial Coupler Multipacting could be overcome by RF process. We have established these techniques! K.Hosoyama (MAC 24) 42

43 Crab Cavity Installation Plan Both crab cavities will be installed in the Nikko straight section because: There is some space for both rings. Cryogenic system is available. LER D1 D11 HER Crab Cavity for HER Crab Cavity for LER D1 Straight Section Transfer Line Connection Port LER e + e - HER Acc. Cavities K.Hosoyama (MAC 24) Crab Cavity 43

44 Crab Cavity Installation in JFY 25 (April 25-March 26) Test Plan Install one cavity in either the HER or the LER at the end of 25. Check hardware and modify if necessary. Install another crab cavity in the other ring in the summer of 26. Beam will be crabbed throughout the entire ring. What will happen? HOM, RF cavity? If everything is OK, luminosity doubles (?) 44

45 5. Summary KEKB has achieved its design luminosity of cm -2 s -1 without crab crossing. Crab cavities are planned to be installed in both rings by summer 26. Hardware preparation is going well. A doubling of the luminosity is hoped for. 45

46 KEKB Luminosity Projection 1 /ab appears on the horizon! Crab Cavity 18 /fb/mo. Beam Test (K.Oide MAC24) 46

47 H.Fukuma ECOULD

48 H.Fukuma ECOULD

49 49

CRAB CAVITY DEVELOPMENT

CRAB CAVITY DEVELOPMENT CRA CAVITY DVLOPMNT K. Hosoyama #, K. Hara, A. Kabe, Y. Kojima, Y. Morita, H. Nakai, A. Honma, K. Akai, Y. Yamamoto, T. Furuya, S. Mizunobu, M. Masuzawa, KK, Tsukuba, Japan K. Nakanishi, GUAS(KK), Tsukuba,

More information

MULTIPACTING IN THE CRAB CAVITY

MULTIPACTING IN THE CRAB CAVITY MULTIPACTING IN TH CRAB CAVITY Y. Morita, K. Hara, K. Hosoyama, A. Kabe, Y. Kojima, H. Nakai, KK, 1-1, Oho, Tsukuba, Ibaraki 3-81, JAPAN Md. M. Rahman, K. Nakanishi, Graduate University for Advanced Studies,

More information

IR summary. 2009/7/9 M. Iwasaki (Tokyo) For Belle-II MDI Group Tokyo / Tohoku / KEK

IR summary. 2009/7/9 M. Iwasaki (Tokyo) For Belle-II MDI Group Tokyo / Tohoku / KEK IR summary 2009/7/9 M. Iwasaki (Tokyo) For Belle-II MDI Group Tokyo / Tohoku / KEK Two machine options High-current option SR BG & HOM heating Nano-beam option IR assembly & support High current (LER/HER)

More information

Superconducting RF System. Heung-Sik Kang

Superconducting RF System. Heung-Sik Kang Design of PLS-II Superconducting RF System Heung-Sik Kang On behalf of PLS-II RF group Pohang Accelerator Laboratory Content 1. Introduction 2. Physics design 3. Cryomodules 4. Cryogenic system 5. High

More information

IR assembly + BG simulation 2009/7/7 M. Iwasaki (Tokyo) For Belle-II MDI Group Tokyo / Tohoku / KEK

IR assembly + BG simulation 2009/7/7 M. Iwasaki (Tokyo) For Belle-II MDI Group Tokyo / Tohoku / KEK IR assembly + BG simulation 2009/7/7 M. Iwasaki (Tokyo) For Belle-II MDI Group Tokyo / Tohoku / KEK http://hep.phys.s.u-tokyo.ac.jp/superkekbmdi/ 1. IR assembly IR assembly at current KEKB K.Kanazawa (KEK)

More information

Construction Status of SuperKEKB Vacuum System

Construction Status of SuperKEKB Vacuum System Construction Status of SuperKEKB Vacuum System Mt. Tsukuba SuperKEKB ( 3000 m) Damping Ring Linac KEK Tsukuba site Fourth Workshop on the Operation of Large Vacuum systems (OLAV IV) April 2, 2014 Kyo Shibata

More information

THE HIGH LUMINOSITY PERFORMANCE OF CESR WITH THE NEW GENERATION SUPERCONDUCTING CAVITY

THE HIGH LUMINOSITY PERFORMANCE OF CESR WITH THE NEW GENERATION SUPERCONDUCTING CAVITY Presented at the 1999 Particle Accelerator Conference, New York City, NY, USA, March 29 April 2 CLNS 99/1614 / SRF 990407-03 THE HIGH LUMINOSITY PERFORMANCE OF CESR WITH THE NEW GENERATION SUPERCONDUCTING

More information

RF Issues for High Intensity Factories

RF Issues for High Intensity Factories RF Issues for High Intensity Factories Kazunori AKAI KEK, National Laboratory for High Energy Physics, Japan Abstract This paper presents a brief report on the RF issues concerning high-luminosity electron-positron

More information

FAST RF KICKER DESIGN

FAST RF KICKER DESIGN FAST RF KICKER DESIGN David Alesini LNF-INFN, Frascati, Rome, Italy ICFA Mini-Workshop on Deflecting/Crabbing Cavity Applications in Accelerators, Shanghai, April 23-25, 2008 FAST STRIPLINE INJECTION KICKERS

More information

RECENT STATUS OF THE SUPERCONDUCTING CAVITIES FOR KEKB

RECENT STATUS OF THE SUPERCONDUCTING CAVITIES FOR KEKB RECENT STATUS OF THE SUPERCONDUCTING CAVITIES FOR KEKB T. Furuya #, K. Akai, K. Hara, K. Hosoyama, A. Kabe, Y. Kojima, S. Mitsunobu, Y. Morita, H. Nakai and T. Tajima, KEK, - Oho, Tsukuba, Ibaraki-ken,

More information

Crab Cavity Systems for Future Colliders. Silvia Verdú-Andrés, Ilan Ben-Zvi, Qiong Wu (Brookhaven National Lab), Rama Calaga (CERN)

Crab Cavity Systems for Future Colliders. Silvia Verdú-Andrés, Ilan Ben-Zvi, Qiong Wu (Brookhaven National Lab), Rama Calaga (CERN) International Particle Accelerator Conference Copenhagen (Denmark) 14-19 May, 2017 Crab Cavity Systems for Future Colliders Silvia Verdú-Andrés, Ilan Ben-Zvi, Qiong Wu (Brookhaven National Lab), Rama Calaga

More information

BEPCII-THE SECOND PHASE CONSTRUCTION OF BEIJING ELECTRON POSITRON COLLIDER

BEPCII-THE SECOND PHASE CONSTRUCTION OF BEIJING ELECTRON POSITRON COLLIDER BEPCII-THE SECOND PHASE CONSTRUCTION OF BEIJING ELECTRON POSITRON COLLIDER C. Zhang, G.X. Pei for BEPCII Team IHEP, CAS, P.O. Box 918, Beijing 100039, P.R. China Abstract BEPCII, the second phase construction

More information

Magnetic measurement system for superconducting final focus quadrupoles for SuperKEKB

Magnetic measurement system for superconducting final focus quadrupoles for SuperKEKB Magnetic measurement system for superconducting final focus quadrupoles for SuperKEKB Y. Arimoto (KEK) IMMW 20 @ Diamond Light Source 2017/Jun/8 SuperKEKB Final focus magnet system Magnetic field measurement

More information

IR introduction + Beam BG simulation /12/11 M. Iwasaki (Univ. of Tokyo)

IR introduction + Beam BG simulation /12/11 M. Iwasaki (Univ. of Tokyo) IR introduction + Beam BG simulation1 2008/12/11 M. Iwasaki (Univ. of Tokyo) Super-KEKB High luminosity experiment Remarkable features of Super-KEKB - High beam current Introduction - Strong dynamic-beam

More information

Circumference 187 m (bending radius = 8.66 m)

Circumference 187 m (bending radius = 8.66 m) 4. Specifications of the Accelerators Table 1. General parameters of the PF storage ring. Energy 2.5 GeV (max 3.0 GeV) Initial stored current multi-bunch 450 ma (max 500 ma at 2.5GeV) single bunch 70 ma

More information

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES S. Belomestnykh HPC workshop JLAB, 30 October 2002 Introduction Many aspects of the high-power coupler design, fabrication, preparation, conditioning, integration

More information

Compensation of the Crossing Angle with Crab Cavities at KEKB

Compensation of the Crossing Angle with Crab Cavities at KEKB Compensation of the Crossing Angle with Crab Cavities at KEKB T. Abe, K. Akai, M. Akemoto, A. Akiyama, M. Arinaga, K. Ebihara, K. Egawa, A. Enomoto, J. Flanagan, S. Fukuda, H. Fukuma, Y. Funakoshi, K.

More information

HOM/LOM Coupler Study for the ILC Crab Cavity*

HOM/LOM Coupler Study for the ILC Crab Cavity* SLAC-PUB-1249 April 27 HOM/LOM Coupler Study for the ILC Crab Cavity* L. Xiao, Z. Li, K. Ko, SLAC, Menlo Park, CA9425, U.S.A Abstract The FNAL 9-cell 3.9GHz deflecting mode cavity designed for the CKM

More information

Design of beam optics for FCC-ee

Design of beam optics for FCC-ee Design of beam optics for FCC-ee KEK Accelerator Seminar 4 Aug. 2015 K. Oide (KEK) Many thanks to M. Benedikt, A. Bogomyagkov. H. Burkhardt, B. Holzer, J. Jowett, I. Koop, E. Levitchev, P. Piminov, D.

More information

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH INVESTIGATION OF A RIDGE-LOADED WAVEGUIDE STRUCTURE FOR CLIC X-BAND CRAB CAVITY

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH INVESTIGATION OF A RIDGE-LOADED WAVEGUIDE STRUCTURE FOR CLIC X-BAND CRAB CAVITY CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CLIC Note 1003 INVESTIGATION OF A RIDGE-LOADED WAVEGUIDE STRUCTURE FOR CLIC X-BAND CRAB CAVITY V.F. Khan, R. Calaga and A. Grudiev CERN, Geneva, Switzerland.

More information

LHC. LHC Crab-cavity Aspects & Strategy. LHC Upgrade & Crab Crossing. New Road Map. SPS, a first validation step

LHC. LHC Crab-cavity Aspects & Strategy. LHC Upgrade & Crab Crossing. New Road Map. SPS, a first validation step LHC Crab-cavity Aspects & Strategy Rama Calaga (for the LHC-CC collaboration) IPAC10, Kyoto, May 25, 2010 LHC LHC Upgrade & Crab Crossing New Road Map SPS, a first validation step Special thanks: R. Assmann,

More information

System Integration of the TPS. J.R. Chen NSRRC, Hsinchu

System Integration of the TPS. J.R. Chen NSRRC, Hsinchu System Integration of the TPS J.R. Chen NSRRC, Hsinchu OUTLINE I. Main features of the TPS II. Major concerns and intersystem effects of an advanced synchrotron light source III. Subsystems and intersystem

More information

ARES Upgrade for Super-KEKB

ARES Upgrade for Super-KEKB 3th Advanced ICFA Beam Dynamics Workshop on High Luminosity e+e- Collisions, October 3-6, 23, Stanford, California ARES Upgrade for Super-KEKB Tetsuo Abe KEK, Tsukuba, Ibaraki 35-8, Japan ARES is a normal-conducting

More information

DEVELOPMENTS OF HORIZONTAL HIGH PRESSURE RINSING FOR SUPERKEKB SRF CAVITIES

DEVELOPMENTS OF HORIZONTAL HIGH PRESSURE RINSING FOR SUPERKEKB SRF CAVITIES DEVELOPMENTS OF HORIZONTAL HIGH PRESSURE RINSING FOR SUPERKEKB SRF CAVITIES Y. Morita #, K. Akai, T. Furuya, A. Kabe, S. Mitsunobu, and M. Nishiwaki Accelerator Laboratory, KEK, Tsukuba, Ibaraki 305-0801,

More information

Accelerating Cavities

Accelerating Cavities Accelerating Cavities for the Damping Ring (DR) Tetsuo ABE For KEKB RF/ARES Cavity Group (T. Abe, T. Kageyama, H. Sakai, Y. Takeuchi, and K. Yoshino) The 16 th KEKB Accelerator Review Meeting February

More information

Crab Cavities for FCC

Crab Cavities for FCC Crab Cavities for FCC R. Calaga, A. Grudiev, CERN FCC Week 2017, May 30, 2017 Acknowledgements: O. Bruning, E. Cruz-Alaniz, K. Ohmi, R. Martin, R. Tomas, F. Zimmermann Livingston Plot 100 TeV FCC-hh: 0.5-3x1035

More information

Chapter 9. Magnet System. 9.1 Magnets in the Arc and Straight Sections

Chapter 9. Magnet System. 9.1 Magnets in the Arc and Straight Sections Chapter 9 Magnet System This chapter discusses the parameters and the design of the magnets to use at KEKB. Plans on the magnet power supply systems, magnet installation procedure and alignment strategies

More information

KEKB B FACTORY. Single Crab Cavity Scheme CRAB CROSSING. Proceedings of PAC07, Albuquerque, New Mexico, USA

KEKB B FACTORY. Single Crab Cavity Scheme CRAB CROSSING. Proceedings of PAC07, Albuquerque, New Mexico, USA COMPENSATION O F T HE C ROSSING A NGLE W ITH C RAB C AVITIES A T KEKB T. Abe, K. Akai, M. Akemoto, A. Akiyama, M. Arinaga, K. Ebihara, K. Egawa, A. Enomoto, J. Flanagan, S. Fukuda, H. Fukuma, Y. Funakoshi,

More information

IR HOM Issues. Collection of HOM effects. Sasha Novokhatski SLAC, Stanford University. Parallel Session: RF, HOM, Power June 15, 2006

IR HOM Issues. Collection of HOM effects. Sasha Novokhatski SLAC, Stanford University. Parallel Session: RF, HOM, Power June 15, 2006 IR HOM Issues Collection of HOM effects Sasha Novokhatski SLAC, Stanford University Parallel Session: RF, HOM, Power June 15, 2006 Luminosity and wake fields We need high current beams of short bunches

More information

KEK ERL CRYOMODULE DEVELOPMENT

KEK ERL CRYOMODULE DEVELOPMENT KEK ERL CRYOMODULE DEVELOPMENT H. Sakai*, T. Furuya, E. Kako, S. Noguchi, M. Sato, S. Sakanaka, T. Shishido, T. Takahashi, K. Umemori, K. Watanabe and Y. Yamamoto KEK, 1-1, Oho, Tsukuba, Ibaraki, 305-0801,

More information

COUPLER DESIGN CONSIDERATIONS FOR THE ILC CRAB CAVITY

COUPLER DESIGN CONSIDERATIONS FOR THE ILC CRAB CAVITY COUPLER DESIGN CONSIDERATIONS FOR THE ILC CRAB CAVITY C. Beard 1), G. Burt 2), A. C. Dexter 2), P. Goudket 1), P. A. McIntosh 1), E. Wooldridge 1) 1) ASTeC, Daresbury laboratory, Warrington, Cheshire,

More information

Main Injector Cavity Simulation and Optimization for Project X

Main Injector Cavity Simulation and Optimization for Project X Main Injector Cavity Simulation and Optimization for Project X Liling Xiao Advanced Computations Group Beam Physics Department Accelerator Research Division Status Meeting, April 7, 2011 Outline Background

More information

SRF in Storage Rings. Michael Pekeler ACCEL Instruments GmbH Bergisch Gladbach Germany

SRF in Storage Rings. Michael Pekeler ACCEL Instruments GmbH Bergisch Gladbach Germany SRF in Storage Rings Michael Pekeler ACCEL Instruments GmbH 51429 Bergisch Gladbach Germany SRF in Storage Rings Michael Pekeler ACCEL Instruments GmbH 51429 Bergisch Gladbach Germany TESLA type cavity:

More information

STATUS OF THE ILC CRAB CAVITY DEVELOPMENT

STATUS OF THE ILC CRAB CAVITY DEVELOPMENT STATUS OF THE ILC CRAB CAVITY DEVELOPMENT SLAC-PUB-4645 G. Burt, A. Dexter, Cockcroft Institute, Lancaster University, LA 4YR, UK C. Beard, P. Goudket, P. McIntosh, ASTeC, STFC, Daresbury laboratories,

More information

2008 JINST 3 S The RF systems and beam feedback. Chapter Introduction

2008 JINST 3 S The RF systems and beam feedback. Chapter Introduction Chapter 4 The RF systems and beam feedback 4.1 Introduction The injected beam will be captured, accelerated and stored using a 400 MHz superconducting cavity system, and the longitudinal injection errors

More information

R&D Activities for ARES Upgrade

R&D Activities for ARES Upgrade R&D Activities for ARES Upgrade Tetsuo Abe for KEKB-RF/ARES-cavity group High Energy Accelerator Research Organization (KEK) 1. R&D programs for SuperKEKB 2. L-band HOM-load test stand 3. Input

More information

BESSY VSR: SRF challenges and developments for a variable pulse-length next generation light source

BESSY VSR: SRF challenges and developments for a variable pulse-length next generation light source BESSY VSR: SRF challenges and developments for a variable pulse-length next generation light source Institut SRF - Wissenschaft und Technologie (FG-ISRF) Adolfo Vélez et al. SRF17 Lanzhou, 17-21/7/2017

More information

CEBAF waveguide absorbers. R. Rimmer for JLab SRF Institute

CEBAF waveguide absorbers. R. Rimmer for JLab SRF Institute CEBAF waveguide absorbers R. Rimmer for JLab SRF Institute Outline Original CEBAF HOM absorbers Modified CEBAF loads for FEL New materials for replacement loads High power loads for next generation FELs

More information

DQW HOM Coupler for LHC

DQW HOM Coupler for LHC DQW HOM Coupler for LHC J. A. Mitchell 1, 2 1 Engineering Department Lancaster University 2 BE-RF-BR Section CERN 03/07/2017 J. A. Mitchell (PhD Student) HL LHC UK Jul 17 03/07/2017 1 / 27 Outline 1 LHC

More information

APAC 2007, Raja Ramanna Centre for Advanced Technology(RRCAT), Indore, India LHC STATUS. Lyndon Evans, CERN, Geneva, Switzerland

APAC 2007, Raja Ramanna Centre for Advanced Technology(RRCAT), Indore, India LHC STATUS. Lyndon Evans, CERN, Geneva, Switzerland LHC STATUS Lyndon Evans, CERN, Geneva, Switzerland Abstract The installation of the Large Hadron Collider at CERN is now approaching completion. Almost 1100 of the 1232 main bending magnets are installed

More information

FAST KICKERS LNF-INFN

FAST KICKERS LNF-INFN ILC Damping Rings R&D Workshop - ILCDR06 September 26-28, 2006 at Cornell University FAST KICKERS R&D @ LNF-INFN Fabio Marcellini for the LNF fast kickers study group* * D. Alesini, F. Marcellini P. Raimondi,

More information

Short-Pulse X-ray at the Advanced Photon Source Overview

Short-Pulse X-ray at the Advanced Photon Source Overview Short-Pulse X-ray at the Advanced Photon Source Overview Vadim Sajaev and Louis Emery Accelerator Operations and Physics Group Accelerator Systems Division Mini-workshop on Methods of Data Analysis in

More information

RF Design of Normal Conducting Deflecting Cavity

RF Design of Normal Conducting Deflecting Cavity RF Design of Normal Conducting Deflecting Cavity Valery Dolgashev (SLAC), Geoff Waldschmidt, Ali Nassiri (Argonne National Laboratory, Advanced Photon Source) 48th ICFA Advanced Beam Dynamics Workshop

More information

O. Napoly LC02, SLAC, Feb. 5, Higher Order Modes Measurements

O. Napoly LC02, SLAC, Feb. 5, Higher Order Modes Measurements O. Napoly LC02, SLAC, Feb. 5, 2002 Higher Order Modes Measurements with Beam at the TTF Linac TTF Measurements A collective effort including most of Saclay, Orsay and DESY TTF physicists : S. Fartoukh,

More information

The TESLA Linear Collider. Winfried Decking (DESY) for the TESLA Collaboration

The TESLA Linear Collider. Winfried Decking (DESY) for the TESLA Collaboration The TESLA Linear Collider Winfried Decking (DESY) for the TESLA Collaboration Outline Project Overview Highlights 2000/2001 Publication of the TDR Cavity R&D TTF Operation A0 and PITZ TESLA Beam Dynamics

More information

Summary of CARE-HHH Mini-Workshop on LHC Crab Cavity Validation, 21 August 2008

Summary of CARE-HHH Mini-Workshop on LHC Crab Cavity Validation, 21 August 2008 High Energy High Intensity Hadron Beams Summary of CARE-HHH Mini-Workshop on LHC Crab Cavity Validation, 21 August 2008 R. Calaga, E. Ciapala, R. Garoby, T. Linnecar, R. Tomas, and F. Zimmermann Abstract

More information

VIBRATION MEASUREMENTS IN THE KEKB TUNNEL. Mika Masuzawa, Yasunobu Ohsawa, Ryuhei Sugahara and Hiroshi Yamaoka. KEK, OHO 1-1 Tsukuba, Japan

VIBRATION MEASUREMENTS IN THE KEKB TUNNEL. Mika Masuzawa, Yasunobu Ohsawa, Ryuhei Sugahara and Hiroshi Yamaoka. KEK, OHO 1-1 Tsukuba, Japan IWAA2004, CERN, Geneva, 4-7 October 2004 VIBRATION MEASUREMENTS IN THE KEKB TUNNEL Mika Masuzawa, Yasunobu Ohsawa, Ryuhei Sugahara and Hiroshi Yamaoka KEK, OHO 1-1 Tsukuba, Japan 1. INTRODUCTION KEKB is

More information

OPERATING EXPERIENCE WITH = 1 HIGH CURRENT ACCELERATORS*

OPERATING EXPERIENCE WITH = 1 HIGH CURRENT ACCELERATORS* Presented at the 11 th Workshop on RF Superconductivity SRF 2003, Lubeck/Travemunde, Germany SRF 031215-19 OPERATING EXPERIENCE WITH = 1 HIGH CURRENT ACCELERATORS* S. Belomestnykh # Laboratory for Elementary-Particle

More information

Advance on High Power Couplers for SC Accelerators

Advance on High Power Couplers for SC Accelerators Advance on High Power Couplers for SC Accelerators Eiji Kako (KEK, Japan) IAS conference at Hong Kong for High Energy Physics, 2017, January 23th Eiji KAKO (KEK, Japan) IAS at Hong Kong, 2017 Jan. 23 1

More information

HIGH POWER COUPLER FOR THE TESLA TEST FACILITY

HIGH POWER COUPLER FOR THE TESLA TEST FACILITY Abstract HIGH POWER COUPLER FOR THE TESLA TEST FACILITY W.-D. Moeller * for the TESLA Collaboration, Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany The TeV Energy Superconducting Linear

More information

The BESSY Higher Order Mode Damped Cavity - Further Improvements -

The BESSY Higher Order Mode Damped Cavity - Further Improvements - The BESSY Higher Order Mode Damped Cavity - Further Improvements - Ernst Weihreter Reminder of Technical Problems Solutions Conclusions BESSY HOM Damped Cavity Project collaboration: (EC funded) - BESSY

More information

SUPERCONDUCTING RF IN STORAGE-RING-BASED LIGHT SOURCES

SUPERCONDUCTING RF IN STORAGE-RING-BASED LIGHT SOURCES Presented at the 13th International Workshop on RF Superconductivity, Beijing, China, 2007 SRF 071120-03 SUPERCONDUCTING RF IN STORAGE-RING-BASED LIGHT SOURCES * S. Belomestnykh #, CLASSE, Cornell University,

More information

The ILC Accelerator Complex

The ILC Accelerator Complex The ILC Accelerator Complex Nick Walker DESY/GDE UK LC meeting 3 rd September 2013 Oxford University, UK. 1 ILC in a Nutshell 200-500 GeV E cm e + e - collider L ~2 10 34 cm -2 s -1 upgrade: ~1 TeV central

More information

Physics Requirements Document Document Title: SCRF 1.3 GHz Cryomodule Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7

Physics Requirements Document Document Title: SCRF 1.3 GHz Cryomodule Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7 Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7 Document Approval: Originator: Tor Raubenheimer, Physics Support Lead Date Approved Approver: Marc Ross, Cryogenic System Manager Approver: Jose Chan,

More information

LHC: CONSTRUCTION AND COMMISSIONING STATUS

LHC: CONSTRUCTION AND COMMISSIONING STATUS LHC: CONSTRUCTION AND COMMISSIONING STATUS L. Evans, CERN, Geneva, Switzerland. Abstract The installation of the Large Hadron Collider at CERN is now approaching completion. All magnets are installed with

More information

MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM CHAMBER

MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM CHAMBER Frascati Physics Series Vol. X (1998), pp. 371-378 14 th Advanced ICFA Beam Dynamics Workshop, Frascati, Oct. 20-25, 1997 MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM

More information

High Power Couplers for TTF - FEL

High Power Couplers for TTF - FEL High Power Couplers for TTF - FEL 1. Requirements for High Power Couplers on superconducting Cavities 2. Characteristics of pulsed couplers 3. Standing wave pattern in the coaxial coupler line 4. Advantages

More information

Electron cloud effects, codes & simulations. K. Ohmi (KEK) ICAP12, Aug, 2012 Rostock

Electron cloud effects, codes & simulations. K. Ohmi (KEK) ICAP12, Aug, 2012 Rostock Electron cloud effects, codes & simulations K. Ohmi (KEK) ICAP12, 20-24 Aug, 2012 Rostock Observation of electron cloud effects Coupled bunch instability ~1 cm bunch 10 9-10 10 e+ Electron cloud ~1m Single

More information

LHC TRANSVERSE FEEDBACK SYSTEM: FIRST RESULTS OF COMMISSIONING. V.M. Zhabitsky XXI Russian Particle Accelerator Conference

LHC TRANSVERSE FEEDBACK SYSTEM: FIRST RESULTS OF COMMISSIONING. V.M. Zhabitsky XXI Russian Particle Accelerator Conference LHC TRANSVERSE FEEDBACK SYSTEM: FIRST RESULTS OF COMMISSIONING V.M. Zhabitsky XXI Russian Particle Accelerator Conference 28.09-03.10.2008, Zvenigorod LHC Transverse Feedback System: First Results of Commissioning

More information

The impedance budget of the CERN Proton Synchrotron (PS)

The impedance budget of the CERN Proton Synchrotron (PS) The impedance budget of the CERN Proton Synchrotron (PS) Serena Persichelli CERN Hadron Synchrotron Collective effects University of Rome La Sapienza serena.persichelli@cern.ch Why do we study the beam

More information

REVIEW OF FAST BEAM CHOPPING F. Caspers CERN AB-RF-FB

REVIEW OF FAST BEAM CHOPPING F. Caspers CERN AB-RF-FB F. Caspers CERN AB-RF-FB Introduction Review of several fast chopping systems ESS-RAL LANL-SNS JAERI CERN-SPL Discussion Conclusion 1 Introduction Beam choppers are typically used for β = v/c values between

More information

Energy Recovering Linac Issues

Energy Recovering Linac Issues Energy Recovering Linac Issues L. Merminga Jefferson Lab EIC Accelerator Workshop Brookhaven National Laboratory February 26-27, 2002 Outline Energy Recovery RF Stability in Recirculating, Energy Recovering

More information

COMMISSIONING OF A COMPACT SYNCHROTRON RADIATION SOURCE AT HIROSHIMA UNIVERSITY

COMMISSIONING OF A COMPACT SYNCHROTRON RADIATION SOURCE AT HIROSHIMA UNIVERSITY COMMISSIONING OF A COMPACT SYNCHROTRON RADIATION SOURCE AT HIROSHIMA UNIVERSITY K. Yoshida, M. Andreyashkin, K. Goto, E. Hashimoto, G. Kutluk, K. Matsui, K. Mimura,H. Namatame, N. Ojima, K. Shimada, M.

More information

3 rd Harmonic Cavity at ELETTRA

3 rd Harmonic Cavity at ELETTRA 3 rd Harmonic Cavity at ELETTRA G.Penco, M.Svandrlik FERMI @ Elettra G.O.F. RF UPGRADE BOOSTER Big Projects Started FINALLY at ELETTRA during 25 Experiments with 3HC concluded in December 24 Now activities

More information

SRF FOR FUTURE CIRCULAR COLLIDERS

SRF FOR FUTURE CIRCULAR COLLIDERS FRBA4 Proceedings of SRF215, Whistler, BC, Canada SRF FOR FUTURE CIRCULAR COLLIDERS A. Butterworth, O. Brunner, R. Calaga,E.Jensen CERN, Geneva, Switzerland Copyright 215 CC-BY-3. and by the respective

More information

Third Harmonic Superconducting passive cavities in ELETTRA and SLS

Third Harmonic Superconducting passive cavities in ELETTRA and SLS RF superconductivity application to synchrotron radiation light sources Third Harmonic Superconducting passive cavities in ELETTRA and SLS 2 cryomodules (one per machine) with 2 Nb/Cu cavities at 1.5 GHz

More information

Proceedings of Chamonix 2010 workshop on LHC Performance CRAB CAVITIES

Proceedings of Chamonix 2010 workshop on LHC Performance CRAB CAVITIES CRAB CAVITIES R. Calaga, R. De-Maria (BNL), E. Metral, Y. Sun, R. Tomás, F. Zimmermann (CERN) Abstract With lower betas at collision points or longer bunches, luminosity loss due to the crossing angle

More information

High acceleration gradient. Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL

High acceleration gradient. Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL High acceleration gradient Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL Critical points The physical limitation of a SC resonator is given by the requirement that the RF magnetic

More information

RF System Models and Longitudinal Beam Dynamics

RF System Models and Longitudinal Beam Dynamics RF System Models and Longitudinal Beam Dynamics T. Mastoridis 1, P. Baudrenghien 1, J. Molendijk 1, C. Rivetta 2, J.D. Fox 2 1 BE-RF Group, CERN 2 AARD-Feedback and Dynamics Group, SLAC T. Mastoridis LLRF

More information

3.9 GHz Deflecting Mode Cavity

3.9 GHz Deflecting Mode Cavity 3.9 GHz Deflecting Mode Cavity Timothy W. Koeth July 12, 2005 History of 3.9 GHz DMC Cavity Simulations The Other Modes concern and modeling R/Q Wake Field Simulations Design: OM couplers Testing: Vertical

More information

X-Band Linear Collider Report*

X-Band Linear Collider Report* SLAC DOE Program Review X-Band Linear Collider Path to the Future X-Band Linear Collider Report* D. L. Burke NLC Program Director * Abstracted from recent presentations to the International Technical Recommendation

More information

Precision RF Beam Position Monitors for Measuring Beam Position and Tilt Progress Report

Precision RF Beam Position Monitors for Measuring Beam Position and Tilt Progress Report Precision RF Beam Position Monitors for Measuring Beam Position and Tilt Progress Report UC Berkeley Senior Personnel Yury G. Kolomensky Collaborating Institutions Stanford Linear Accelerator Center: Marc

More information

SPEAR 3 - THE FIRST YEAR OF OPERATION*

SPEAR 3 - THE FIRST YEAR OF OPERATION* SLAC-PUB-11679 SPEAR 3 - THE FIRST YEAR OF OPERATION* R. Hettel for the SSRL ASD, SSRL/SLAC, Stanford, CA 942, U.S.A. Abstract The first electrons were accumulated in the newly completed 3-GeV SPEAR 3

More information

Superconducting Accelerating Cavity for KEK B-Factory

Superconducting Accelerating Cavity for KEK B-Factory Superconducting Accelerating Cavity for KEK B-Factory 1 ntroduction T.Furuya, K.Asano, Y.shi*, Y.Kijima*, S.Mitsunobu, T.Murai*, K.Sennyu**, T.Tajima and T.Takahashi KEK-B is an asymmetric collider of

More information

5.5 SNS Superconducting Linac

5.5 SNS Superconducting Linac JP0150514 ICANS - XV 15 th Meeting of the International Collaboration on Advanced Neutron Sources November 6-9, 2000 Tsukuba, Japan Ronald M. Sundelin Jefferson Lab* 5.5 SNS Superconducting Linac 12000

More information

Recent Progress in HOM Damping from Around The World

Recent Progress in HOM Damping from Around The World Recent Progress in HOM Damping from Around The World - News from the 2010 HOM Workshop at CORNELL - Matthias Liepe Cornell University Slide 1 Recent Progress in HOM Damping from Around The World Outline

More information

RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS

RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS J. Teichert, A. Büchner, H. Büttig, F. Gabriel, P. Michel, K. Möller, U. Lehnert, Ch. Schneider, J. Stephan, A.

More information

International Technology Recommendation Panel. X-Band Linear Collider Path to the Future. RF System Overview. Chris Adolphsen

International Technology Recommendation Panel. X-Band Linear Collider Path to the Future. RF System Overview. Chris Adolphsen International Technology Recommendation Panel X-Band Linear Collider Path to the Future RF System Overview Chris Adolphsen Stanford Linear Accelerator Center April 26-27, 2004 Delivering the Beam Energy

More information

Current Industrial SRF Capabilities and Future Plans

Current Industrial SRF Capabilities and Future Plans and Future Plans Capabilities in view of Design Engineering Manufacturing Preparation Testing Assembly Taking into operation Future Plans Participate in and contribute to development issues, provide prototypes

More information

The HL-LHC Machine *

The HL-LHC Machine * Chapter 3 The HL-LHC Machine * I. Bejar 1, O. Brüning 1, P. Fessia 2, L. Rossi 1, R. Tomas 3 and M. Zerlauth 2 1 CERN, Accelerator and Technology Sector, Genève 23, CH-1211, Switzerland 2 CERN, TE Department,

More information

Detection of Beam Induced Dipole-Mode Signals in the SLC S-Band Structures* Abstract

Detection of Beam Induced Dipole-Mode Signals in the SLC S-Band Structures* Abstract -. SLAC-PUB-79 June 1997 Detection of Beam nduced Dipole-Mode Signals in the SLC S-Band Structures* M. Seidel, C. Adolphsen, R. Assmann, D.H. Whittum Stanford Linear Accelerator Center, Stanford University,

More information

Progress in High Gradient Accelerator Research at MIT

Progress in High Gradient Accelerator Research at MIT Progress in High Gradient Accelerator Research at MIT Presented by Richard Temkin MIT Physics and Plasma Science and Fusion Center May 23, 2007 MIT Accelerator Research Collaborators MIT Plasma Science

More information

Report of working group 5

Report of working group 5 Report of working group 5 Materials Cavity design Cavity Fabrication Preparatioin & Testing Power coupler HOM coupler Beam line absorber Tuner Fundamental R&D items Most important R&D items 500 GeV parameters

More information

ATF2 Project at KEK. T. Tauchi, KEK at Orsay 17 June, 2005

ATF2 Project at KEK. T. Tauchi, KEK at Orsay 17 June, 2005 ATF2 Project at KEK T. Tauchi, KEK at Orsay 17 June, 2005 IP Final Goal Ensure collisions between nanometer beams; i.e. luminosity for ILC experiment Reduction of Risk at ILC FACILITY construction, first

More information

Raja Ramanna Center for Advanced Technology, Indore, India

Raja Ramanna Center for Advanced Technology, Indore, India Electromagnetic Design of g = 0.9, 650 MHz Superconducting Radiofrequency Cavity Arup Ratan Jana 1, Vinit Kumar 1, Abhay Kumar 2 and Rahul Gaur 1 1 Materials and Advanced Accelerator Science Division 2

More information

Thermionic Bunched Electron Sources for High-Energy Electron Cooling

Thermionic Bunched Electron Sources for High-Energy Electron Cooling Thermionic Bunched Electron Sources for High-Energy Electron Cooling Vadim Jabotinski 1, Yaroslav Derbenev 2, and Philippe Piot 3 1 Institute for Physics and Technology (Alexandria, VA) 2 Thomas Jefferson

More information

Engineering Challenges and Solutions for MeRHIC. Andrew Burrill for the MeRHIC Team

Engineering Challenges and Solutions for MeRHIC. Andrew Burrill for the MeRHIC Team Engineering Challenges and Solutions for MeRHIC Andrew Burrill for the MeRHIC Team Key Components Photoinjector Design Photocathodes & Drive Laser Linac Cavities 703.75 MHz 5 cell cavities 3 rd Harmonic

More information

Detailed Design Report

Detailed Design Report Detailed Design Report Chapter 2 MAX IV 3 GeV Storage Ring 2.6. The Radio Frequency System MAX IV Facility CHAPTER 2.6. THE RADIO FREQUENCY SYSTEM 1(15) 2.6. The Radio Frequency System 2.6. The Radio Frequency

More information

CRAB CAVITIES FOR THE LHC UPGRADE

CRAB CAVITIES FOR THE LHC UPGRADE CRAB CAVITIES FOR THE LHC UPGRADE Rama Calaga, CERN, Geneva, Switzerland Abstract The talk will review the motivation and the evolution of the crab cavity technology for luminosity enhancement and leveling

More information

Multi-bunch feedback systems

Multi-bunch feedback systems Multi-bunch feedback systems M. Lonza Elettra Synchrotron Light Laboratory, Sincrotrone Trieste S.C.p.A., Trieste, Italy Abstract Coupled-bunch instabilities excited by the interaction of the particle

More information

New Tracking Gantry-Synchrotron Idea. G H Rees, ASTeC, RAL, U.K,

New Tracking Gantry-Synchrotron Idea. G H Rees, ASTeC, RAL, U.K, New Tracking Gantry-Synchrotron Idea G H Rees, ASTeC, RAL, U.K, Scheme makes use of the following: simple synchrotron and gantry magnet lattices series connection of magnets for 5 Hz tracking one main

More information

LOW BETA CAVITY DEVELOPMENT FOR AN ATLAS INTENSITY UPGRADE

LOW BETA CAVITY DEVELOPMENT FOR AN ATLAS INTENSITY UPGRADE LOW BETA CAVITY DEVELOPMENT FOR AN ATLAS INTENSITY UPGRADE M. P. Kelly, Z. A. Conway, S. M. Gerbick, M. Kedzie, T. C. Reid, R. C. Murphy, B. Mustapha, S.H. Kim, P. N. Ostroumov, Argonne National Laboratory,

More information

Acceleration of High-Intensity Protons in the J-PARC Synchrotrons. KEK/J-PARC M. Yoshii

Acceleration of High-Intensity Protons in the J-PARC Synchrotrons. KEK/J-PARC M. Yoshii Acceleration of High-Intensity Protons in the J-PARC Synchrotrons KEK/J-PARC M. Yoshii Introduction 1. J-PARC consists of 400 MeV Linac, 3 GeV Rapid Cycling Synchrotron (RCS) and 50 GeV Main synchrotron

More information

Electromagnetic characterization of materials for the CLIC Damping Rings and high frequency issues

Electromagnetic characterization of materials for the CLIC Damping Rings and high frequency issues Electromagnetic characterization of materials for the CLIC Damping Rings and high frequency issues Eirini Koukovini-Platia CERN, EPFL Acknowlegdements G. De Michele, C. Zannini, G. Rumolo (CERN) 1 Outline

More information

Philippe Lebrun & Laurent Tavian, CERN

Philippe Lebrun & Laurent Tavian, CERN 7-11 July 2014 ICEC25 /ICMC 2014 Conference University of Twente, The Netherlands Philippe Lebrun & Laurent Tavian, CERN Ph. Lebrun & L. Tavian, ICEC25 Page 1 Contents Introduction: the European Strategy

More information

Suppression of Vertical Oscillation and Observation of Flux Improvement during Top-up Injection at PLS-II

Suppression of Vertical Oscillation and Observation of Flux Improvement during Top-up Injection at PLS-II Suppression of Vertical Oscillation and Observation of Flux Improvement during Top-up Injection at PLS-II Y-G. Son, 1 J.-Y. Kim, 1 C. Mitsuda, 2 K. Kobayashi, 2 J. Ko, 1 T-Y. Lee, 1 J-Y. Choi, 1 D-E. Kim,

More information

Nominal LHC parameters

Nominal LHC parameters Nominal LHC parameters The nominal LHC peak luminosity L = 10 34 cm 2 s 1 corresponds to a nominal bunch spacing of 25 ns and to β = 0.5 m, full crossing angle θ c = 300 µrad, and bunch population N b

More information

SIMULATIONS OF TRANSVERSE HIGHER ORDER DEFLECTING MODES IN THE MAIN LINACS OF ILC

SIMULATIONS OF TRANSVERSE HIGHER ORDER DEFLECTING MODES IN THE MAIN LINACS OF ILC SIMULATIONS OF TRANSVERSE HIGHER ORDER DEFLECTING MODES IN THE MAIN LINACS OF ILC C.J. Glasman, R.M. Jones, I. Shinton, G. Burt, The University of Manchester, Manchester M13 9PL, UK Cockcroft Institute

More information

Message from the Americas

Message from the Americas Message from the Americas G. Dugan, Cornell Univ. for the United States Linear Collider Steering Group (USLCSG) First ILC Workshop KEK, Tsukuba, Japan Nov. 13, 2004 Outline Perspectives on the ILC from

More information