APPENDIX 1 FEATURES OF MICROCONTROLLER 89C51

Size: px
Start display at page:

Download "APPENDIX 1 FEATURES OF MICROCONTROLLER 89C51"

Transcription

1 120 APPENDIX 1 FEATURES OF MICROCONTROLLER 89C51

2 121

3 122

4 123

5 124

6 125

7 126 APPENDIX 2 ATMEGA8 MICROCONTROLLER CODE ; ; MOSFET Gating Pulse Generation for the ATMEL ATmega8. ; ; General Description of Approach: ; ; We are using PORTB1, 2, 3, 4 as our output gating signals ; It must be noted that on an H-bridge we have defined the following; ; ; Starting at the top left switch in the H-bridge we have switch G1 ; Moving counter-clockwise through the switches we have G2, G4, and ; Finally G3 as the top right-most switch. As labeled on the H-Bridge PCB. ; ; SO! Our Gating pulses come from the following PORTB outputs: ; Switch G1 = PORTB3 = PIN 17 ; Switch G2 = PORTB4 = PIN 18 ; Switch G3 = PORTB2 = PIN 16 ; Switch G4 = PORTB1 = PIN 15 ; ; At 100% load, G1 and G4 are in phase as well as G2 and G2 ; There must also be a delay between the turn off of G1 and G4 ; Into the turn on of G2 and G3. This delay is also seen in the ; reverse where G2 and G3 turn off and G1 and G4 turn on. ; include "m8def.inc" ; Interrupt Service Vectors.org 0x000 rjmp Reset.org OC1Aaddr rjmp T1comA; timer counter 1 compare match A.org OC1Baddr rjmp T1comB; timer counter 1 compare match B

8 127 ; Register definitions for variables.def pwmhi=r16; hi time for main control signal.def pwmlo=r17; lo time for main control signal.def pwmt=r18; Period of control signal.def tf=r19; Delay time for rise and fall.def temp=r20.def temp2=r21 ; Reset vector - initialize interrupts and service routines Reset: ldi temp, low (RAMEND) ;Set stack ptr to ram end out SPL,temp ldi temp,high(ramend) out SPH, temp ; Initialize timercounter1 and interrupts ldi temp,(1<<wgm12)+(1<<cs10) ;WGM12 Clear timer on compare to OCIE1A out TCCR1B, temp ;CS10 no prescale run at clock speed ldi temp,(1<<ocie1a)+(1<<ocie1b) ;tc1 compare matcha and matchb interrupts out TIMSK,temp ; ; Control signal values are here for Peroid value correspond to # of CPU cycles ; loads max count value for TimerCounter1 ; this is our period of control waveform ldi temp,0x01 out OCR1AH,temp ldi temp,0x90 out OCR1AL,temp ; This Changes duty cycle change me change me ; Loads compare value for duty cycle note must load H before low ldi temp,0x01 ;100% 0x01 15% 0x00 out OCR1BH,temp ldi temp,0x90 ;100% 0x90 15% 0x30 out OCR1BL,temp ; ; Initialize outputs ldi temp,(1<<ddb4) (1<<DDB3) (1<<DDB2) (1<<DDB1) ;sets data direction for pins out DDRB,temp ;set data direction to out ldi tf,0x01 sei loop: rjmp loop

9 ; Rising of Control signal T1comA: sbis PORTB,(PORTB2) rjmp bit2clear nop ;these nop s make both pulses have equivalent duty cycle nop nop cbi PORTB,(PORTB2) ;Clear G3 rcall DELAY sbi PORTB,(PORTB1) ;Set G4 reti bit2clear: cbi PORTB,(PORTB1) ;Clear G4 rcall DELAY sbi PORTB,(PORTB2) ;Set G3 reti ; Falling of Control signal T1comB: sbis PORTB,(PORTB4) rjmp bit4clear nop ;these nops make both pulses have equivalent duty cycle nop nop cbi PORTB,(PORTB4) ;Clear G2 rcall DELAY sbi PORTB,(PORTB3) ;Set G1 reti bit4clear: cbi PORTB,(PORTB3) ;Clear G1 rcall DELAY sbi PORTB,(PORTB4) ;Set G2 reti ; Delay subroutine DELAY: ldi temp,0x00 loopy: inc temp cpse temp,tf rjmp loopy ret 128

10 129 APPENDIX 3 FEATURES OF ARM PROCESSOR LPC2148

11 130

12 131

13 132

14 133

15 134

16 135

17 136

18 137

19 138

20 139

21 140

22 141

23 142

24 143

25 144

26 145

27 146

28 147 APPENDIX 4 MAIN PROGRAM *******************MAIN PROGRAM**************************/ /***********************(PARTIALLY SHOWN) *****************/ int main (void) { /* main entry for program */ char cmdbuf [15]; int i; int idx; PINSEL1 = 0x ; IODIR1 = 0xFF0000; ADCR = 0x002E0401; init_serial (); T0MR0 = T0MCR = 3; T0TCR = 1; VICVectAddr0 = (unsigned long)tc0; VICVectCntl0 = 0x20 4; VICIntEnable = 0x ; VICDefVectAddr = (unsigned long) DefISR; clear_records (); printf ( menu ); while (1) { /* loop forever */

29 148 printf ("\ncommand: "); getline (&cmdbuf[0], sizeof (cmdbuf)); for (i = 0; cmdbuf[i]!= 0; i++) { /* convert to upper characters */ cmdbuf[i] = toupper(cmdbuf[i]); } for (i = 0; cmdbuf[i] == ' '; i++); switch (cmdbuf[i]) { /* proceed to command function */ case 'R': if ((idx = read_index (&cmdbuf[i+1])) == WRONGINDEX) break; while (idx!= sindex) { /* check end of table */ if (U1LSR & 0x01) { /* check serial interface */ } if (save_record[idx].time.hour!= 0xff) { measure_display (save_record[idx]); } } } } } * * *

30 149 APPENDIX 5 DESIGN OF PI CONTROLLER Controllers based on the PI approach are commonly used for DC DC converter applications. Power converters have relatively low order dynamics that can be well controlled by the PI method. Ziegler and Nichols conducted numerous experiments and proposed rules for determining values of K P and K I based on the transient step response of system. Figure A5.1 S-shaped reaction curve

31 150 Table A5.1 Ziegler-Nichols tuning rule Controller K P K I K D P T L 0 0 PI PID T.9 L T L T.2 L T L T It applies to resonant converter with neither integrator nor dominant complex-conjugate poles, whose unit-step response resemble an S- shaped curve with no overshoot. This S-shaped curve is called the reaction curve. The S-shaped reaction curve (shown in Figure A5.1) can be characterized by two constants, delay time (L) and time constant (T), which are determined by drawing a tangent line at the inflection point of the curve and finding the intersections of the tangent line with the time axis and the steady-state level line. Using the parameters L and T, we can set the values of K P, K I and K D according to the formula shown in the Table A5.1. These parameters will typically give a response with an overshoot about 25% and good settling time. Based on the Ziegler-Nichols Tuning Rule, Proportional gain Constant (K P ) = 0.05 and Integral Time Constant (K I ) = 25 are obtained for the converter under study.

32 151 APPENDIX 6 DC GAIN CHARACTERISTICS AND OPERATING REGION OF LCC AND LCL RESONANT CONVERTERS The quality factor (Q ) and resonant frequency ( f o ) of LCC resonant converter is given below: Q Z L C 1C 2 C C 1 L 2 and (A6.1) f o 2 L 1 C C 1 1 C 2 C 2 Figure A6.1 shows the DC characteristic of LCC resonant converter. The major problems of Series Resonant Converter (SRC) are light-load regulation, high circulating energy and high turn-off current at nominal input voltage. The major problems of Parallel Resonant Converter (PRC) are high circulating energy; high turns off current at high input voltage condition. Compare with SRC, the operating region is much smaller.

33 152 Figure A6.1 DC gain characteristics and operating region of LCC resonant converter At light load, the frequency doesn't need to change too much to keep output voltage regulated. So light load regulation problem doesn't exist in PRC. The LCC resonant tank can be considered as the combination of Series Resonant Converter and Parallel Resonant Converter thereby combining the advantages of both. Figure A6.1 shows that the maximum gain, which is determined by Q, affects the operating range of the switching frequency regulating the output voltage under line variation.

34 153 From the Figure A6.1, it can be observed that LCC resonant converters can achieve a narrow switching frequency range with load change. At light-load conditions, the circulating energy is smaller. The LCC has two resonant frequencies, series resonant frequency and parallel resonant frequency. Although operating at the series resonant frequency is desirable for high efficiency, when doing so, ZVS is lost for certain load conditions. Thus, the operating region is designed to be on the right-hand side of the parallel resonant frequency to achieve ZVS at all load conditions. Unfortunately, like the PRC and SRC, for the LCC, the circulating energy and turn-off current of the device also increases at nominal input voltage Vin_max. In sum, to deal with a wide input voltage range, all these traditional resonant converters encounter some problems. To achieve higher efficiency, LCL resonant topologies should be considered. The quality factor (Q) and resonant frequency ( f o ) of the LCL resonant converter is given below. 1 f o 2 ( L1 L2 ) C and L r Q C Z Where, L L C r L C L r 1 2 (A6.2) The voltage gain of the LCL resonant converter is drawn in Figure A6.2. LCL-T and LCC Resonant converters encounter problems while dealing with a wide input voltage range. Meanwhile, at the nominal condition, the LCL resonant converter operates very close to the resonant frequency,

35 154 which is the best operation point to accomplish high efficiency. In addition, voltage gains of different Q converge at the series resonant point. The LCL resonant tank parameters can be optimized to achieve high efficiency for a wide load range. As a result, holdup time extension capability is accomplished without sacrificing the efficiency at the nominal condition. The LCL resonant converter is considered as one of the most desirable topologies for wide input voltage range. Figure A6.2 DC gain characteristics and operating region of LCL resonant converter

A MORON'S GUIDE TO TIMER/COUNTERS v2.2. by

A MORON'S GUIDE TO TIMER/COUNTERS v2.2. by A MORON'S GUIDE TO TIMER/COUNTERS v2.2 by RetroDan@GMail.com TABLE OF CONTENTS: 1. THE PAUSE ROUTINE 2. WAIT-FOR-TIMER "NORMAL" MODE 3. WAIT-FOR-TIMER "NORMAL" MODE (Modified) 4. THE TIMER-COMPARE METHOD

More information

Sensor Report. University of Florida Department of Computer and Electrical Engineering EEL 5666 Intelligent Machine Design Laboratory

Sensor Report. University of Florida Department of Computer and Electrical Engineering EEL 5666 Intelligent Machine Design Laboratory Sensor Report University of Florida Department of Computer and Electrical Engineering EEL 5666 Intelligent Machine Design Laboratory Steven Theriault TA: Uriel Rodriguez Jason Plew Instructor: A. A. Arroyo

More information

Design with Microprocessors

Design with Microprocessors Design with Microprocessors Year III Computer Science 1-st Semester Lecture 5: AVR timers Timers AVR timers 8 bit timers/counters 16 bit timers/counters Characteristics Input clock prescaler Read / write

More information

Embedded Hardware Design Lab4

Embedded Hardware Design Lab4 Embedded Hardware Design Lab4 Objective: Controlling the speed of dc motor using light sensor (LDR). In this lab, we would want to control the speed of a DC motor with the help of light sensor. This would

More information

Atmel ATmega328P Timing Subsystems. Reading

Atmel ATmega328P Timing Subsystems. Reading 1 P a g e Atmel ATmega328P Timing Subsystems Reading The AVR Microcontroller and Embedded Systems using Assembly and C) by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi Chapter 9: Programming Timers

More information

CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER

CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER 61 CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER This Chapter deals with the procedure of embedding PI controller in the ARM processor LPC2148. The error signal which is generated from the reference

More information

Application Note: Using the Motor Driver on the 3pi Robot and Orangutan Robot Controllers

Application Note: Using the Motor Driver on the 3pi Robot and Orangutan Robot Controllers Application Note: Using the Motor Driver on the 3pi Robot and Orangutan Robot 1. Introduction..................................................... 2 2. Motor Driver Truth Tables.............................................

More information

ECED3204: Microprocessor Part IV--Timer Function

ECED3204: Microprocessor Part IV--Timer Function ECED3204: Microprocessor Part IV--Timer Function Jason J. Gu Department of 1 Outline i. Introduction to the Microcontroller Timer System ii. Overview of the Mega AVR Timer System iii. Timer Clock Source

More information

International Journal of Research in Advent Technology Available Online at:

International Journal of Research in Advent Technology Available Online at: OVERVIEW OF DIFFERENT APPROACHES OF PID CONTROLLER TUNING Manju Kurien 1, Alka Prayagkar 2, Vaishali Rajeshirke 3 1 IS Department 2 IE Department 3 EV DEpartment VES Polytechnic, Chembur,Mumbai 1 manjulibu@gmail.com

More information

L13: (25%), (20%), (5%) ECTE333

L13: (25%), (20%), (5%) ECTE333 ECTE333 s schedule ECTE333 Lecture 1 - Pulse Width Modulator School of Electrical, Computer and Telecommunications Engineering University of Wollongong Australia Week Lecture (2h) Tutorial (1h) Lab (2h)

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

8-bit Atmel tinyavr Microcontroller with 16K Bytes In-System Programmable Flash. ATtiny1634

8-bit Atmel tinyavr Microcontroller with 16K Bytes In-System Programmable Flash. ATtiny1634 8-bit Atmel tinyavr Microcontroller with 16K Bytes In-System Programmable Flash Features High Performance, Low Power AVR 8-bit Microcontroller Advanced RISC Architecture 125 Powerful Instructions Most

More information

8-bit Microcontroller with 4K Bytes In-System Programmable Flash and Boost Converter. ATtiny43U. Preliminary

8-bit Microcontroller with 4K Bytes In-System Programmable Flash and Boost Converter. ATtiny43U. Preliminary Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 120 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

Counter/Timers in the Mega8

Counter/Timers in the Mega8 Counter/Timers in the Mega8 The mega8 incorporates three counter/timer devices. These can: Be used to count the number of events that have occurred (either external or internal) Act as a clock Trigger

More information

8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATtiny1634

8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATtiny1634 Features High Performance, Low Power AVR 8-bit Microcontroller Advanced RISC Architecture 125 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash. ATtiny25/V ATtiny45/V ATtiny85/V. Preliminary

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash. ATtiny25/V ATtiny45/V ATtiny85/V. Preliminary Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 120 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System

CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System Introduction CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System The purpose of this lab is to introduce you to digital control systems. The most basic function of a control system is to

More information

The Discussion of this exercise covers the following points: Angular position control block diagram and fundamentals. Power amplifier 0.

The Discussion of this exercise covers the following points: Angular position control block diagram and fundamentals. Power amplifier 0. Exercise 6 Motor Shaft Angular Position Control EXERCISE OBJECTIVE When you have completed this exercise, you will be able to associate the pulses generated by a position sensing incremental encoder with

More information

8-bit Microcontroller with 8K Bytes In-System Programmable Flash. ATmega48 ATmega88 ATmega168. Automotive

8-bit Microcontroller with 8K Bytes In-System Programmable Flash. ATmega48 ATmega88 ATmega168. Automotive Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 131 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

8-bit Microcontroller with 2K Bytes In-System Programmable Flash. ATtiny2313/V. Preliminary

8-bit Microcontroller with 2K Bytes In-System Programmable Flash. ATtiny2313/V. Preliminary Features Utilizes the AVR RISC Architecture AVR High-performance and Low-power RISC Architecture 120 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully

More information

8-bit Microcontroller with 2K Bytes In-System Programmable Flash. ATtiny2313/V. Preliminary

8-bit Microcontroller with 2K Bytes In-System Programmable Flash. ATtiny2313/V. Preliminary Features Utilizes the AVR RISC Architecture AVR High-performance and Low-power RISC Architecture 120 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully

More information

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash. ATtiny261A ATtiny461A ATtiny861A. Preliminary

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash. ATtiny261A ATtiny461A ATtiny861A. Preliminary Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 123 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

CHAPTER 2 PHASE SHIFTED SERIES RESONANT DC TO DC CONVERTER

CHAPTER 2 PHASE SHIFTED SERIES RESONANT DC TO DC CONVERTER 30 CHAPTER 2 PHASE SHIFTED SERIES RESONANT DC TO DC CONVERTER 2.1 INTRODUCTION This chapter introduces the phase shifted series resonant converter (PSRC). Operation of the circuit is explained. Design

More information

ATmega48PA/ATmega88PA/ATmega168PA

ATmega48PA/ATmega88PA/ATmega168PA ATmega48PA/ATmega88PA/ATmega168PA 8-bit AVR Microcontroller with 4/8/16K8/16Kbytes In-system DATASHEET Features High performance, low power AVR 8-Bit microcontroller Advanced RISC architecture 131 powerful

More information

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash. ATtiny24/44/84. Preliminary

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash. ATtiny24/44/84. Preliminary Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 120 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

High performance, low power AVR 8-bit microcontroller Advanced RISC architecture. Non-volatile program and data memories. Peripheral features

High performance, low power AVR 8-bit microcontroller Advanced RISC architecture. Non-volatile program and data memories. Peripheral features ATmega88/ATmega168 High Temperature Automotive Microcontroller DATASHEET Features High performance, low power AVR 8-bit microcontroller Advanced RISC architecture 131 powerful instructions most single

More information

8-bit with 8K Bytes In-System Programmable Flash. ATmega8 ATmega8L. Preliminary

8-bit with 8K Bytes In-System Programmable Flash. ATmega8 ATmega8L. Preliminary Features High-performance, Low-power AVR 8-bit Microcontroller Advanced RISC Architecture 130 Powerful Instructions Most Single-clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

8-bit Microcontroller with 8K Bytes In-System Programmable Flash. ATmega8535 ATmega8535L

8-bit Microcontroller with 8K Bytes In-System Programmable Flash. ATmega8535 ATmega8535L Features High-performance, Low-power AVR 8-bit Microcontroller Advanced RISC Architecture 130 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

8-bit Microcontroller with 1K Bytes In-System Programmable Flash. ATtiny13A

8-bit Microcontroller with 1K Bytes In-System Programmable Flash. ATtiny13A Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 120 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

8-bit Microcontroller with 2K/4K/8K Bytes In-System Programmable Flash. ATtiny24A ATtiny44A ATtiny84A

8-bit Microcontroller with 2K/4K/8K Bytes In-System Programmable Flash. ATtiny24A ATtiny44A ATtiny84A Features High Performance, Low Power AVR 8-bit Microcontroller Advanced RISC Architecture 12 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

8-bit Microcontroller with 32K Bytes In-System Programmable Flash. ATmega328P. Automotive. Preliminary. Features

8-bit Microcontroller with 32K Bytes In-System Programmable Flash. ATmega328P. Automotive. Preliminary. Features Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 131 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

8-bit Microcontroller with 8K Bytes In-System Programmable Flash. ATmega48/V ATmega88/V ATmega168/V

8-bit Microcontroller with 8K Bytes In-System Programmable Flash. ATmega48/V ATmega88/V ATmega168/V Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 131 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

8-bit Microcontroller with 512/1024 Bytes In-System Programmable Flash. ATtiny4/5/9/10

8-bit Microcontroller with 512/1024 Bytes In-System Programmable Flash. ATtiny4/5/9/10 Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 54 Powerful Instructions Most Single Clock Cycle Execution 16 x 8 General Purpose Working Registers Fully Static

More information

8-bit Microcontroller with 2/4K Bytes In-System Programmable Flash. ATtiny2313A ATtiny4313. Preliminary

8-bit Microcontroller with 2/4K Bytes In-System Programmable Flash. ATtiny2313A ATtiny4313. Preliminary Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 120 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

8-bit with 8K Bytes In-System Programmable Flash. ATmega8A

8-bit with 8K Bytes In-System Programmable Flash. ATmega8A Features High-performance, Low-power AVR 8-bit Microcontroller Advanced RISC Architecture 3 Powerful Instructions Most Single-clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash. ATtiny25/V * ATtiny45/V ATtiny85/V * * Preliminary

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash. ATtiny25/V * ATtiny45/V ATtiny85/V * * Preliminary Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 120 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

ATmega48PB/88PB/168PB

ATmega48PB/88PB/168PB Atmel AVR 8-bit Microcontroller with 4/8/16KBytes In-System Programmable Flash ATmega48PB/88PB/168PB PRELIMINARY DATASHEET Features High Performance, Low Power Atmel AVR 8-Bit Microcontroller Family Advanced

More information

8-bit with 8K Bytes In-System Programmable Flash. ATmega8* ATmega8L*

8-bit with 8K Bytes In-System Programmable Flash. ATmega8* ATmega8L* Features High-performance, Low-power AVR 8-bit Microcontroller Advanced RISC Architecture 130 Powerful Instructions Most Single-clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

8-bit Microcontroller with 4/8K Bytes In-System Programmable Flash. ATtiny48/88

8-bit Microcontroller with 4/8K Bytes In-System Programmable Flash. ATtiny48/88 Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 23 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

High Performance, Low Power Atmel AVR 8-bit Microcontroller Advanced RISC Architecture. Non-volatile Program and Data Memories. Peripheral Features

High Performance, Low Power Atmel AVR 8-bit Microcontroller Advanced RISC Architecture. Non-volatile Program and Data Memories. Peripheral Features ATtiny828 8-bit AVR Microcontroller with 8K Bytes In-System Programmable Flash DATASHEET Features High Performance, Low Power Atmel AVR 8-bit Microcontroller Advanced RISC Architecture 123 Powerful Instructions

More information

8-bit Microcontroller with 16K Bytes In-System Programmable Flash and LIN Controller. ATtiny167 Automotive. Preliminary. BDTIC

8-bit Microcontroller with 16K Bytes In-System Programmable Flash and LIN Controller. ATtiny167 Automotive. Preliminary. BDTIC BDTIC www.bdtic.com/atmel Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 123 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working

More information

Microprocessors & Interfacing

Microprocessors & Interfacing Lecture overview Microprocessors & Interfacing /Output output PMW Digital-to- (D/A) Conversion input -to-digital (A/D) Conversion Lecturer : Dr. Annie Guo S2, 2008 COMP9032 Week9 1 S2, 2008 COMP9032 Week9

More information

8-bit Microcontroller with 32K Bytes In-System Programmable Flash

8-bit Microcontroller with 32K Bytes In-System Programmable Flash Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 130 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash. ATtiny25 ATtiny45 ATtiny85. Automotive. BDTIC

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash. ATtiny25 ATtiny45 ATtiny85. Automotive. BDTIC BDTIC www.bdtic.com/atmel Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 120 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working

More information

Design of PI controller for Positive Output Super- Lift LUO Converter

Design of PI controller for Positive Output Super- Lift LUO Converter Design of PI controller for Positive Output Super- Lift LUO Converter 1 K.Muthuselvi, 2 L. Jessi Sahaya Shanthi 1 Department of Electrical &Electronics, SACS MAVMM Engineering College, Madurai, India 2

More information

8-bit Microcontroller with 64K Bytes In-System Programmable Flash. ATmega64 ATmega64L. Preliminary. Features

8-bit Microcontroller with 64K Bytes In-System Programmable Flash. ATmega64 ATmega64L. Preliminary. Features Features High-performance, Low-power AVR 8-bit Microcontroller Advanced RISC Architecture 130 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers + Peripheral

More information

MICROCONTROLLER TUTORIAL II TIMERS

MICROCONTROLLER TUTORIAL II TIMERS MICROCONTROLLER TUTORIAL II TIMERS WHAT IS A TIMER? We use timers every day - the simplest one can be found on your wrist A simple clock will time the seconds, minutes and hours elapsed in a given day

More information

Analog Input and Output. Lecturer: Sri Parameswaran Notes by: Annie Guo

Analog Input and Output. Lecturer: Sri Parameswaran Notes by: Annie Guo Analog Input and Output Lecturer: Sri Parameswaran Notes by: Annie Guo 1 Analog output Lecture overview PMW Digital-to-Analog (D/A) Conversion Analog input Analog-to-Digital (A/D) Conversion 2 PWM Analog

More information

Building Interactive Devices and Objects. Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz MHCI Lab, LMU München

Building Interactive Devices and Objects. Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz MHCI Lab, LMU München Building Interactive Devices and Objects Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Today Servo Motors DC Motors Stepper Motors Motor Drivers PWM WLAN

More information

Procidia Control Solutions Dead Time Compensation

Procidia Control Solutions Dead Time Compensation APPLICATION DATA Procidia Control Solutions Dead Time Compensation AD353-127 Rev 2 April 2012 This application data sheet describes dead time compensation methods. A configuration can be developed within

More information

Cleaning Robot Working at Height Final. Fan-Qi XU*

Cleaning Robot Working at Height Final. Fan-Qi XU* Proceedings of the 3rd International Conference on Material Engineering and Application (ICMEA 2016) Cleaning Robot Working at Height Final Fan-Qi XU* International School, Beijing University of Posts

More information

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES 47 CHAPTER 3 DC-DC CONVERTER TOPOLOGIES 3.1 INTRODUCTION In recent decades, much research efforts are directed towards finding an isolated DC-DC converter with high volumetric power density, low electro

More information

8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATmega16 ATmega16L. Preliminary

8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATmega16 ATmega16L. Preliminary Features High-performance, Low-power AVR 8-bit Microcontroller Advanced RISC Architecture 131 Powerful Instructions Most Single-clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

8-bit Microcontroller with 8K Bytes In-System Programmable Flash. ATmega48/V ATmega88/V ATmega168/V. Preliminary

8-bit Microcontroller with 8K Bytes In-System Programmable Flash. ATmega48/V ATmega88/V ATmega168/V. Preliminary Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 131 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATmega169PA. Preliminary

8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATmega169PA. Preliminary Features High Performance, Low Power Atmel AVR 8-Bit Microcontroller Advanced RISC Architecture 130 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully

More information

8-bit Microcontroller with 32K Bytes In-System Programmable Flash. ATmega32 ATmega32L

8-bit Microcontroller with 32K Bytes In-System Programmable Flash. ATmega32 ATmega32L Features High-performance, Low-power AVR 8-bit Microcontroller Advanced RISC Architecture 131 Powerful Instructions Most Single-clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

Matlab source code for pid controller

Matlab source code for pid controller Matlab source code for pid controller I have a brushed DC motor, with unknown parameters (R,L, J,. ) How I can determine the parameters of such motor by using the output shaft speed. The above plot shows

More information

8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATmega169V ATmega169. Rev A to E

8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATmega169V ATmega169. Rev A to E Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 130 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash. Atmel ATtiny24/44/84. Automotive. Preliminary

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash. Atmel ATtiny24/44/84. Automotive. Preliminary Features High Performance, Low Power AVR 8-bit Microcontroller Advanced RISC Architecture 120 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

ATtiny25/45/85 Automotive

ATtiny25/45/85 Automotive ATtiny25/45/85 Automotive 8-bit AVR Microcontroller with 2/4/8K Bytes In-System Programmable Flash DATASHEET Features High performance, low power AVR 8-bit microcontroller Advanced RISC architecture 120

More information

8-bit Microcontroller with 4K/8K Bytes In-System Programmable Flash. ATmega48PA ATmega88PA

8-bit Microcontroller with 4K/8K Bytes In-System Programmable Flash. ATmega48PA ATmega88PA Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 131 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

8-bit Microcontroller with 32K Bytes In-System Programmable Flash. ATmega32A

8-bit Microcontroller with 32K Bytes In-System Programmable Flash. ATmega32A Features High-performance, Low-power AVR 8-bit Microcontroller Advanced RISC Architecture 3 Powerful Instructions Most Single-clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

ATmega16A Microcontroller

ATmega16A Microcontroller ATmega16A Microcontroller Timers 1 Timers Timer 0,1,2 8 bits or 16 bits Clock sources: Internal clock, Internal clock with prescaler, External clock (timer 2), Special input pin 2 Features The choice of

More information

High performance, low power AVR 8-bit microcontroller Advanced RISC architecture. Non-volatile program and data memories. Peripheral features

High performance, low power AVR 8-bit microcontroller Advanced RISC architecture. Non-volatile program and data memories. Peripheral features ATtiny24/44/84 8-bit AVR Microcontroller with 2/4/8K Bytes In-System Programmable Flash DATASHEET Features High performance, low power AVR 8-bit microcontroller Advanced RISC architecture 120 powerful

More information

CSCI1600 Lab 4: Sound

CSCI1600 Lab 4: Sound CSCI1600 Lab 4: Sound November 1, 2017 1 Objectives By the end of this lab, you will: Connect a speaker and play a tone Use the speaker to play a simple melody Materials: We will be providing the parts

More information

Timer/Counter with PWM

Timer/Counter with PWM Timer/Counter with PWM The AVR Microcontroller and Embedded Systems using Assembly and C) by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi ATMEL 8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System

More information

3DoT C++ Timer/Counter 4 with PWM

3DoT C++ Timer/Counter 4 with PWM 3DoT C++ Timer/Counter 4 with PWM This article is on the motor control section of the 3DoT board using Timer/Counter 4 operating in Fast PWM mode. The AVR Microcontroller and Embedded Systems using Assembly

More information

Exercise 5: PWM and Control Theory

Exercise 5: PWM and Control Theory Exercise 5: PWM and Control Theory Overview In the previous sessions, we have seen how to use the input capture functionality of a microcontroller to capture external events. This functionality can also

More information

CprE 288 Introduction to Embedded Systems (Output Compare and PWM) Instructors: Dr. Phillip Jones

CprE 288 Introduction to Embedded Systems (Output Compare and PWM) Instructors: Dr. Phillip Jones CprE 288 Introduction to Embedded Systems (Output Compare and PWM) Instructors: Dr. Phillip Jones 1 Announcements HW8: Due Sunday 10/29 (midnight) Exam 2: In class Thursday 11/9 This object detection lab

More information

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash. ATtiny24/44/84. Preliminary

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash. ATtiny24/44/84. Preliminary Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 120 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash. ATtiny24/44/84. Preliminary

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash. ATtiny24/44/84. Preliminary Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 120 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

8-bit Microcontroller with 2K Bytes In-System Programmable Flash. ATtiny20

8-bit Microcontroller with 2K Bytes In-System Programmable Flash. ATtiny20 Features High Performance, Low Power AVR 8-bit Microcontroller Advanced RISC Architecture 112 Powerful Instructions Most Single Clock Cycle Execution 16 x 8 General Purpose Working Registers Fully Static

More information

125kHz LF Reader/Writer with Integrated Atmel AVR Microcontroller. Atmel ATA5505

125kHz LF Reader/Writer with Integrated Atmel AVR Microcontroller. Atmel ATA5505 Features High Performance, Low Power Atmel AVR 8-bit Microcontroller Advanced RISC Architecture 123 Powerful Instructions - Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully

More information

8-bit Atmel Microcontroller with 4/8/16K Bytes In-System Programmable Flash. ATmega48/V ATmega88/V ATmega168/V

8-bit Atmel Microcontroller with 4/8/16K Bytes In-System Programmable Flash. ATmega48/V ATmega88/V ATmega168/V Features High performance, low power Atmel AVR 8-bit microcontroller Advanced RISC architecture 131 powerful instructions most single clock cycle execution 32 8 general purpose working registers Fully

More information

8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATmega169P ATmega169PV. Preliminary

8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATmega169P ATmega169PV. Preliminary Features High Performance, Low Power Atmel AVR 8-Bit Microcontroller Advanced RISC Architecture 130 Powerful Instructions Most Single Clock Cycle Execution 32 8 General Purpose Working Registers Fully

More information

Flux Gate Musical Toy

Flux Gate Musical Toy FGM-3 Flux Gate Toy..... Flux Gate Musical Toy While this could be classed as a toy, it's also a very sensitive magnetic sensing project which has many other applications. The "toy" idea came up from the

More information

8-bit Microcontroller with 4/8K Bytes In-System Programmable Flash. ATtiny48/88. Preliminary

8-bit Microcontroller with 4/8K Bytes In-System Programmable Flash. ATtiny48/88. Preliminary Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 23 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

Table 1: Cross Reference of Applicable Products. INTERNAL PIC NUMBER Arm Cortex M0+ UT32M0R PWM Module QS30

Table 1: Cross Reference of Applicable Products. INTERNAL PIC NUMBER Arm Cortex M0+ UT32M0R PWM Module QS30 Standard Product Enable the PWM Module UT32M0R500 32-bit Arm Cortex M0+ Microcontroller Application Note December 21, 2017 The most important thing we build is trust PRODUCT NAME Table 1: Cross Reference

More information

UHF ASK/FSK Transmitter with the Atmel AVR Microcontroller. Atmel ATA5771/73/74

UHF ASK/FSK Transmitter with the Atmel AVR Microcontroller. Atmel ATA5771/73/74 General Features Atmel AVR Microcontroller and RF Transmitter PLL in a Single QFN24 5mm 5mm Package (Pitch 0.65 mm) Operating Frequency Ranges 310MHz to 350MHz, 429MHz to 439MHz and 868MHz to 928MHz Temperature

More information

DYNAMIC CONTROL OF INTERLEAVED BOOST CONVERTER FOR AUTOMOTIVE LED LIGHTING APPLICATION

DYNAMIC CONTROL OF INTERLEAVED BOOST CONVERTER FOR AUTOMOTIVE LED LIGHTING APPLICATION Int. J. Elec&Electr.Eng&Telecoms. 2015 Ajith P and H Umesh Prabhu, 2015 Research Paper ISSN 2319 2518 www.ijeetc.com Special Issue, Vol. 1, No. 1, March 2015 National Level Technical Conference P&E- BiDD-2015

More information

Atmel ATA5771C/73C/74C

Atmel ATA5771C/73C/74C Atmel ATA5771C/73C/74C UHF ASK/FSK Transmitter with the Atmel AVR Microcontroller DATASHEET General Features Atmel AVR microcontroller and RF transmitter PLL in a single QFN24 5mm 5mm package (pitch 0.65mm)

More information

CHAPTER 5 HARDWARE IMPLEMENTATION AND PERFORMANCE ANALYSIS OF CUK CONVERTER-BASED MPPT SYSTEM

CHAPTER 5 HARDWARE IMPLEMENTATION AND PERFORMANCE ANALYSIS OF CUK CONVERTER-BASED MPPT SYSTEM 94 CHAPTER 5 HARDWARE IMPLEMENTATION AND PERFORMANCE ANALYSIS OF CUK CONVERTER-BASED MPPT SYSTEM 5.1 INTRODUCTION In coming up with a direct control adaptive perturb and observer MPPT method with Cuk converter,

More information

8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATmega165P ATmega165PV. Preliminary

8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATmega165P ATmega165PV. Preliminary Features High Performance, Low Power Atmel AVR 8-Bit Microcontroller Advanced RISC Architecture 130 Powerful Instructions Most Single Clock Cycle Execution 32 8 General Purpose Working Registers Fully

More information

8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATmega169P ATmega169PV. Preliminary

8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATmega169P ATmega169PV. Preliminary Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 130 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

OVEN INDUSTRIES, INC. Model 5C7-362

OVEN INDUSTRIES, INC. Model 5C7-362 OVEN INDUSTRIES, INC. OPERATING MANUAL Model 5C7-362 THERMOELECTRIC MODULE TEMPERATURE CONTROLLER TABLE OF CONTENTS Features... 1 Description... 2 Block Diagram... 3 RS232 Communications Connections...

More information

AVR 8-Bit Microcontroller

AVR 8-Bit Microcontroller ATmega8A Data Sheet Introduction The ATmega8A is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega8A

More information

8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATmega165P ATmega165PV. Preliminary. BDTIC

8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATmega165P ATmega165PV. Preliminary. BDTIC BDTIC www.bdtic.com/atmel Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 130 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working

More information

ELCT 912: Advanced Embedded Systems

ELCT 912: Advanced Embedded Systems ELCT 912: Advanced Embedded Systems Lecture 5: PIC Peripherals on Chip Dr. Mohamed Abd El Ghany, Department of Electronics and Electrical Engineering The PIC Family: Peripherals Different PICs have different

More information

AVR PWM 11 Aug In the table below you have symbols used in the text. The meaning of symbols is the same in the entire guide.

AVR PWM 11 Aug In the table below you have symbols used in the text. The meaning of symbols is the same in the entire guide. Aquaticus PWM guide AVR PWM 11 Aug 29 Introduction This guide describes principles of PWM for Atmel AVR micro controllers. It is not complete documentation for PWM nor AVR timers but tries to lighten some

More information

PWM research and implementation on MCS-51

PWM research and implementation on MCS-51 PWM research and implementation on MCS-51 PWM approach provides an efficient way for gaining output control, as well as another approach named PFM is the other popular way. The principle of PWM is very

More information

Experiment 4.B. Position Control. ECEN 2270 Electronics Design Laboratory 1

Experiment 4.B. Position Control. ECEN 2270 Electronics Design Laboratory 1 Experiment 4.B Position Control Electronics Design Laboratory 1 Procedures 4.B.1 4.B.2 4.B.3 4.B.4 Read Encoder with Arduino Position Control by Counting Encoder Pulses Demo Setup Extra Credit Electronics

More information

PIC Functionality. General I/O Dedicated Interrupt Change State Interrupt Input Capture Output Compare PWM ADC RS232

PIC Functionality. General I/O Dedicated Interrupt Change State Interrupt Input Capture Output Compare PWM ADC RS232 PIC Functionality General I/O Dedicated Interrupt Change State Interrupt Input Capture Output Compare PWM ADC RS232 General I/O Logic Output light LEDs Trigger solenoids Transfer data Logic Input Monitor

More information

Portland State University MICROCONTROLLERS

Portland State University MICROCONTROLLERS PH-315 MICROCONTROLLERS INTERRUPTS and ACCURATE TIMING I Portland State University OBJECTIVE We aim at becoming familiar with the concept of interrupt, and, through a specific example, learn how to implement

More information

8-bit Microcontroller with In-System Programmable Flash. ATmega329/V ATmega3290/V ATmega649/V ATmega6490/V. Preliminary

8-bit Microcontroller with In-System Programmable Flash. ATmega329/V ATmega3290/V ATmega649/V ATmega6490/V. Preliminary Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 130 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

8-bit Microcontroller with 32K Bytes In-System Programmable Flash

8-bit Microcontroller with 32K Bytes In-System Programmable Flash Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 130 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

CHAPTER 2 PID CONTROLLER BASED CLOSED LOOP CONTROL OF DC DRIVE

CHAPTER 2 PID CONTROLLER BASED CLOSED LOOP CONTROL OF DC DRIVE 23 CHAPTER 2 PID CONTROLLER BASED CLOSED LOOP CONTROL OF DC DRIVE 2.1 PID CONTROLLER A proportional Integral Derivative controller (PID controller) find its application in industrial control system. It

More information

Electronics Design Laboratory Lecture #9. ECEN 2270 Electronics Design Laboratory

Electronics Design Laboratory Lecture #9. ECEN 2270 Electronics Design Laboratory Electronics Design Laboratory Lecture #9 Electronics Design Laboratory 1 Notes Finishing Lab 4 this week Demo requires position control using interrupts and two actions Rotate a given angle Move forward

More information

Microcontroller Systems. ELET 3232 Topic 21: ADC Basics

Microcontroller Systems. ELET 3232 Topic 21: ADC Basics Microcontroller Systems ELET 3232 Topic 21: ADC Basics Objectives To understand the modes and features of the Analog-to-Digital Converter on the ATmega 128 To understand how to perform an Analog-to-Digital

More information

CT435. PC Board Mount Temperature Controller

CT435. PC Board Mount Temperature Controller CT435 PC Board Mount Temperature Controller Features Two RTD temperature sensor inputs: Pt100 or Pt1000. Wide temperature sensing range: -70 C to 650 C. All controller features are configurable through

More information

8-bit Microcontroller with 128K Bytes of ISP Flash and CAN Controller

8-bit Microcontroller with 128K Bytes of ISP Flash and CAN Controller Features High-performance, Low-power AVR 8-bit Microcontroller Advanced RISC Architecture 133 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers + Peripheral

More information