CHAPTER 2 PHASE SHIFTED SERIES RESONANT DC TO DC CONVERTER

Size: px
Start display at page:

Download "CHAPTER 2 PHASE SHIFTED SERIES RESONANT DC TO DC CONVERTER"

Transcription

1 30 CHAPTER 2 PHASE SHIFTED SERIES RESONANT DC TO DC CONVERTER 2.1 INTRODUCTION This chapter introduces the phase shifted series resonant converter (PSRC). Operation of the circuit is explained. Design procedure is presented. Simulation and experimental results are presented to support the design procedure. Phase shifted series resonant converter is described in section 2.2. Principle of operation is explained in section 2.3.Design procedure and factors affecting ZVS are explained in section 2.4. Simulation and experimental results are presented in section 2.5 and 2.6 respectively. 2.2 PHASE SHIFTED SERIES RESONANT CONVERTER The schematic diagram of the PSRC is shown in Figure 2.1. The basic H- bridge converter is modified by introducing soft-switching to the converter. The main components of the converter are two switching devices MOSFETs (S 1 and S 3, S 2 and S 4 ) in each leg of the H-bridge. The converter includes a resonant tank comprising a series inductor L r and series capacitor C r. A transformer is used to step down the voltage. The output rectifier consists of four diodes D 1 -D 4.

2 31 The control strategy of the converter is the switching devices MOSFETs, (S 1 and S 3, S 2 and S 4 ) in each leg of the converter conduct alternately in a switching cycle. It is assumed that the converter is under steady state operation and the output capacitor C H is large enough to be considered as a voltage source. The converter has four operation modes during one switching period. Figure 2.1 Circuit of the PSRC 2.3 OPERATING PRINCIPLE Phase shifted series resonant converter is shown in Figure 2.1. The operation of the circuit is divided in to four modes. Figure 2.2 Operation principle waveform of PSRC

3 32 Mode-1[t 0,t 1 ] The MOSFETs S 1 and S 4 are turned on. In steady state the output capacitor C H is charged. The current in the input side flows through S 1, primary, S 4 and back to the source. In the secondary side the diodes D 1 and D 4 conduct and the energy is transferred to the output capacitor. Mode-2 [t 1,t 2 ] The pulse to S 4 is withdrawn and the driving pulse is given to S 3 along with S 1.The charging started in the primary, circulates current through the MOSFETs S 1 and S 3.D 1 and D 4 continues to conduct in the secondary side. Mode-3 [t 2,t 3 ] The pulse to S 1 is withdrawn and pulse is applied to S 2 along with S 3.The diodes D 1 and D 4 continue to conduct due to the energy in the filter inductance. The diodes D 2 and D 3 conduct due to the forward bias given by the secondary of the transformer. This is called period of overlap. D 1 and D 4 gets turned off by the end of this mode. Mode-4 [t 3,t 4 ] The pulse to S 3 is withdrawn and pulse is applied to S 4.The energy in the primary circulates current through the devices S 2 and S 4. Diodes D 2 and D 3 continue to conduct. 2.4 DESIGN PROCEDURE The series capacitor functioning with the series inductor provides a resonant frequency ƒ r.

4 33 f r 2 1 L C r r (2.1) The switching frequency ƒ s of PSRC is always chosen to be close to the resonant frequency ƒ r, defined by the resonant inductor L r and resonant capacitor C r to make the resonant current waveform be quite sinusoidal. When the operating frequency ƒ is equal to ƒ s, the current in the resonant tank takes sine wave form. Voltage across capacitor C r is a pure sine waveform. The two switching devices (S 1 and S 3, S 2 and S 4 ) in each leg of the H-bridge are switched alternatively with almost 50% duty ratio. The switching pulses to the two legs have a phase angle of in order to change the voltage applied to the resonant tank. Unbalanced switching signal will not cause saturation to the transformer due to presence of the series resonant capacitor. The relationship between input voltage and output voltage can be expressed by V V o (2.2) n To reduce the size of the energy storage components such as inductor, capacitor and transformer, high switching frequency ƒ s is considered. The switches operate under zero voltage switching condition. T is the period of resonance. 1 T (2.3) f s The resonant current i r is regulated by changing the phase angle and rectified as the input power signal of the output filter. Thus the output voltage is controlled. The voltage across the primary side of the transformer has the same phase as the resonant current.

5 34 Normalized DC gain of this converter is a function of w where w is the normalized variable which is related to the parameters L r, C r of actual circuit. Design parameter calculations are as follows: Table 2.1 Design parameters of PSRC DC input voltage V i 48V DC output voltage V o 12V Resonant frequency f r 38.4KHz Resonant capacitor C r 2µF Ripple factor r 0.2% Volt/turn 4 Mean length L 0.7m Area of Secondary A 2 170mm 2 Current density 0.021A/ mm 2 Area of Primary A 1 5mm 2 Vi N 1 12 (2.4) Volt / turn Vo N2 3 (2.5) Volt / turn N L 1 r p (2.6) a p = milliohms N L 2 r s (2.7) a s = 25 milliohms C filter 1 r (2.8) 4 3 fcr C r = 470µF L r = 8.5 µh

6 35 ZVS condition The period between t 2 to t 4 is defined as dead time. During the dead time, currents in the two branches on the primary side should complete ultimate energy communication between the parasitic capacitors of the two main switches in each branch to create ZVS conditions. Similarly another dead time will be there at t 6 to t 8 after S 2 is switched off. Dead times are small compared to switching cycle. During dead time periods, the sum of primary current can be considered as the peak value of I Ls /n where n is the primary to secondary turn ratio. The PSRC has the advantage of inherent short circuit protection characteristic and high conversion efficiency. Normally the value of the load resistance and the input DC voltage are variable within a specific range, the voltage feedback and certain closed-loop control law should be employed to keep the output voltage at the desired values. Though the error can be eliminated through the algorithm of the controller, the dynamic performance may not be satisfied especially for nonlinear systems. To overcome this problem a closed loop control system for the PSRC is proposed in this chapter. By controlling the resonant current which is rectified for supplying the load, the dynamic control performance of the converter system is improved. This method is called quasi current mode because the current controlled is regulated indirectly using the resonant tank. 2.5 SIMULATION RESULTS The simulation is carried out for open loop system and closed loop system using Matlab/Simulink. Simulink model of Phase shifted series resonant converter is shown in Figure 2.3. DC input voltage and input current is shown in Figure 2.4. Simulation waveforms of PSRC are shown in Figure 2.5. In order to achieve constant frequency, variable duty cycle control, switches S 1 and S 3 are operated with approximately 50% duty cycle and

7 36 switches S 2 and S 4 have a duty cycle in the range from 0% to 50%duty cycle. Figure 2.6 shows Switch3 s driving signal V gs3, drain source voltage V ds3 and the current flowing through drain source I ds3. It is observed that I ds3 is negative before the arrival of the driving signal, which assures V ds3 decreases to zero before the switch turns on and achieves ZVS. Turn off loss is negligible. Figure 2.7 shows the driving pulse V gs4, drain source voltage V ds4 and the current flowing through drain source I ds4 of switch4. Figure 2.8 shows the transformer s secondary side voltage which is nearly quasi square wave. DC output voltage and output current are shown in Figure 2.9. DC output voltage is 12.2V and output current is 2.99A. The output voltage is free from ripple. Table 2.3 and 2.4 show the performance of the Phase shifted series resonant converter. Figure 2.3 Simulink model of Phase shifted Series Resonant converter Table 2.2 Simulation parameters of PSRC DC input voltage 48V Switching frequency 38.3 khz Resonant frequency 38 khz Resonant inductor 8.5µH Resonant capacitor 2µF Load resistance 4

8 37 Figure 2.4 (a) DC input voltage (b) Input current Figure 2.5 Simulation waveforms of PSRC

9 38 Figure 2.6 (a) Driving signal V gs3, (b) current I ds3 and (c) V ds3 of switch3 Figure 2.7 (a) Driving signal V gs4, (b) current I ds4 and (c) V ds4 of switch4 Figure 2.8 Secondary side voltage of the Transformer

10 39 Figure 2.9 DC output current and output voltage Table 2.3 Performance of the PSRC for changes in % load % of Output Output Output Input Efficiency load voltage (V) current (A) power (w) power (w) (%) Table 2.4 Performance of the PSRC for changes in input voltages Input Input Input Output Output Output Efficiency voltage current power voltage current Power (%) (V) (A) (w) (V) (A) (w)

11 40 Figure 2.10 R- load (%) versus output voltage Figure 2.11 R- load (%) versus output power Figure 2.12 R - load (%) versus efficiency From Figure 2.10 and Figure 2.11 it is observed that the output voltage is almost constant and the output power increases with the increase in load. From Figure 2.12 it is clear that the efficiency is high at high load and is found to be 84.2 % at 100% load and reduces to % at 50% load.

12 41 Figure 2.13 Input voltage versus output voltage Figure 2.14 Input voltage versus output power Figure 2.15 Input voltage versus efficiency From Figure 2.13 and Figure 2.14 it is observed that the output voltage and the output power increase with increase in input voltage. From Figure 2.15 it is clear that the efficiency increases slightly with the increase in input voltage. The value of output voltage is found to be 12.2 V at 48 V input voltage.

13 Comparison of Open Loop System with Closed Loop System for Step Change in Input Voltage The simulink model of open loop system is shown in Figure A step change in voltage is applied at the input. The DC input voltage, output current, and output voltage with input step change is shown in Figure When input voltage is increased at 0.4s to a value of 60V, the output voltage also increases and settles at a new value of 15.5V. Figure 2.16 Open loop system with step change in input Figure 2.17 Results of open loop system with step change in input (a) Input voltage (b) Output current (c) Output voltage

14 43 The simulink model of closed loop system is shown in Figure In order to maintain the required output voltage level, closed loop control is used. The instantaneous voltage signal is taken from the output and given to a comparator. Other input to the comparator is the set voltage of 12V.Output of comparator is the error signal which is given to the PI controller. The output of PI controller is given to the two comparators whose outputs are quasi waves. In order to generate control pulses the output of PI controller is compared with a triangular reference wave of peak value 8 and time period of 50s, which is shown in Figure The generated pulses are used as control signals for the gates of MOSFETs S 1 to S 4. The DC input voltage, output current, and output voltage with input step change is shown in Figure 2.19.The parameters of PI controller are shown in Table 2.5. Figure 2.18 Closed loop system with step change in input The step change is applied at 0.4 seconds for open loop system as shown in Figure From Figure 2.17 it is observed that the open loop system has steady state error. For the closed loop system shown in Figure 2.18, when the input voltage is increased to 60V at 0.4s the control circuit takes proper action and the output voltage is maintained at 12.08V as shown in Figure Set voltage is taken as 12V.The closed loop system reduces the steady state error. It settles at 0.75s. The settling time is 0.35s.

15 44 Figure 2.19 Results of closed loop system with step change in input (a) Input voltage (b) Output current (c) Output voltage Figure 2.20 (a) Output of PI controller (b) Triangular wave (c) Driving pulses Table 2.5 Parameters of PI controller Proportional gain(k p ) 0.5 Integral gain(k i ) 15 Output limits [10 10] Sample time 20 e-6

16 Comparison of open loop system with closed loop system for output load regulation The simulink model of open loop system without output load regulation is shown in Figure Input voltage is 48V DC. A breaker is connected in parallel with the load. Load resistance is 4. The breaker is opened at initial state and it is closed at 0.4s. DC output voltage is shown in Figure 2.22 where the output voltage is increased at 0.4s due to change in the load. Figure 2.21 Open loop system without output load regulation Figure 2.22 DC output voltage with step change in load

17 46 The simulink model of closed loop system for output load regulation is shown in Figure Input voltage is 48V DC. Set voltage is 12V DC. In order to maintain the required output voltage level, closed loop control is used. The instantaneous output voltage signal is given to a comparator. Other input to the comparator is the set voltage.output of comparator is the error signal which is given to the PI controller. The output of PI controller is given to the two comparators whose outputs are PWM waves. They are used as control signals for the gates of MOSFETs S 1 to S 4. Figure 2.23 Closed loop system with output load regulation Figure 2.24 DC output voltage of closed loop system

18 47 The breaker is opened at initial state and it is closed at 0.4s.When the breaker is closed, due to load side disturbance the output voltage increases to a value of 12.1V. But the closed loop system settles the output voltage to a value of 12V at 0.6s as shown in Figure 2.24.The settling time is 0.2s. 2.6 EXPERIMENTAL RESULTS The DC-DC converter was built and tested for open loop phase shifted series resonant converter at 48 V DC. The circuit parameters are as follows: Table 2.6 Experimental parameters of PSRC Switching frequency 38.3 khz Resonant capacitor C r 2µF Resonant inductor L r 8.5µH Filter capacitor C 470µF Load resistance R 4 Resonant frequency f r 38 khz Hardware layout of open loop Phase shifted series resonant converter is shown in Figure 2.25.Flow chart for generating the pulses is shown in Figure Experimental waveform of driving pulses of switch3 and switch1 is shown in Figure Driving pulses of switch4 and switch2 is shown in Figure The primary side voltage of the transformer is shown in Figure The secondary side voltage of the transformer is shown in Figure Load voltage wave form is shown in Figure 2.31 and the output voltage is shown in Figure 2.32.

19 48 Figure 2.25 Hardware layout of Phase shifted series resonant converter Microcontroller Program for Generation of Square wave Pulses START PORT INITIALIZATION MOVE DATA 05H TO PORT3 CALL DELAY MOVE DATA 00 H TO PORT3 MOVE DATA 0A H TO PORT3 CALL DELAY MOVE DATA 00 H TO PORT3 SJMP Figure 2.26 Flow chart for generating square pulses

20 49 follows: The assembly language program for generation of square pulse is as P3 EQU 90H ORG 0000H Equalizing port address 90H to port3 Initializing starting address as 0000H MOV P3, #00H Clearing the bits of Port 3 START : MOV P3, #0AH Send 0AH to P3 CALL DELAY1 CALL DELAY1 MOV P3,#00H CALL DELAY1 MOV P3,#05H CALL DELAY1 CALL DELAY1 MOV P3,#00H CALL DELAY1 SJMP START Call the subroutine delay1 Call the subroutine delay1 Send 00H to P3 Call the subroutine delay1 Send 05H to P3 Call the subroutine delay1 Call the subroutine delay1 Send 00H to P3 Call the subroutine delay1 Short jump to START DELAY1 : MOV R0,#15H Load register R0 with 15H AA : DJNZ R0,AA Decrement RO on no zero jump to AA RET Return to main program

21 50 Figure 2.27 Driving pulses for switch3 and switch1 Figure 2.28 Driving pulses for switch4 and switch2 X axis 1 div = 10 µs; Y axis 1div =20V Figure 2.29 Voltage across the primary of the transformer

22 51 X axis 1 div = 10µs. Y axis 1 div=10v Figure 2.30 Voltage across the secondary of the transformer X axis 1 div = 10µs, Y axis 1 div =10V Figure 2.31 Load voltage wave form Figure 2.32 Output voltage across the load

23 52 For 100% load the output voltage of the open loop experimental result is 12.1V and that of simulation is 12.2V. Hence the experimental results closely agree with the simulation result. 2.7 SUMMARY Soft switched Phase shifted series resonant DC to DC converter is analysed, simulated, tested and the results are presented. The configuration considered is the Phase shifted series resonant converter. The zero voltage switching technique is employed here in order to avoid the switching losses that are available in the circuit. Though the error can be eliminated through the algorithm of the controller, the dynamic performance may not be satisfied especially for nonlinear systems. To overcome this problem a closed loop control system for the PSRC is proposed. By controlling the resonant current which is rectified for supplying the load, the dynamic control performance of the converter system is improved. This method is called quasi current mode because the current controlled is regulated indirectly using the resonant tank. The error is eliminated through PI algorithm of the controller. The dynamic performance of the converter system is improved as compared to that of the conventional system. It is observed that the output voltage remains constant even when step disturbance is applied at the input 0.4s.Thus the output voltage is maintained constant by using a closed loop system. The open loop experimental results closely agree with the simulation results.

CHAPTER 3 MODIFIED FULL BRIDGE ZERO VOLTAGE SWITCHING DC-DC CONVERTER

CHAPTER 3 MODIFIED FULL BRIDGE ZERO VOLTAGE SWITCHING DC-DC CONVERTER 53 CHAPTER 3 MODIFIED FULL BRIDGE ZERO VOLTAGE SWITCHING DC-DC CONVERTER 3.1 INTRODUCTION This chapter introduces the Full Bridge Zero Voltage Switching (FBZVSC) converter. Operation of the circuit is

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER

CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER 61 CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER This Chapter deals with the procedure of embedding PI controller in the ARM processor LPC2148. The error signal which is generated from the reference

More information

Conventional Single-Switch Forward Converter Design

Conventional Single-Switch Forward Converter Design Maxim > Design Support > Technical Documents > Application Notes > Amplifier and Comparator Circuits > APP 3983 Maxim > Design Support > Technical Documents > Application Notes > Power-Supply Circuits

More information

LLC Resonant Converter for Battery Charging Application

LLC Resonant Converter for Battery Charging Application International Journal of Electrical Engineering. ISSN 0974-2158 Volume 8, Number 4 (2015), pp. 379-388 International Research Publication House http://www.irphouse.com LLC Resonant Converter for Battery

More information

CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM

CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM 64 CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM 4.1 INTRODUCTION Power electronic devices contribute an important part of harmonics in all kind of applications, such as power rectifiers, thyristor converters

More information

CHAPTER 3 H BRIDGE BASED DVR SYSTEM

CHAPTER 3 H BRIDGE BASED DVR SYSTEM 23 CHAPTER 3 H BRIDGE BASED DVR SYSTEM 3.1 GENERAL The power inverter is an electronic circuit for converting DC power into AC power. It has been playing an important role in our daily life, as well as

More information

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER 74 CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER 5.1 INTRODUCTION Pulse Width Modulation method is a fixed dc input voltage is given to the inverters and a controlled

More information

H-BRIDGE system used in high power dc dc conversion

H-BRIDGE system used in high power dc dc conversion IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 1, JANUARY 2008 353 Quasi Current Mode Control for the Phase-Shifted Series Resonant Converter Yan Lu, K. W. Eric Cheng, Senior Member, IEEE, and S.

More information

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES 47 CHAPTER 3 DC-DC CONVERTER TOPOLOGIES 3.1 INTRODUCTION In recent decades, much research efforts are directed towards finding an isolated DC-DC converter with high volumetric power density, low electro

More information

Soft Switched Resonant Converters with Unsymmetrical Control

Soft Switched Resonant Converters with Unsymmetrical Control IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 1 Ver. I (Jan Feb. 2015), PP 66-71 www.iosrjournals.org Soft Switched Resonant Converters

More information

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 3 Ver. IV (May June 2017), PP 68-76 www.iosrjournals.org Sepic Topology Based High

More information

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 105 CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 6.1 GENERAL The line current drawn by the conventional diode rectifier filter capacitor is peaked pulse current. This results in utility line

More information

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications WHITE PAPER High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications Written by: C. R. Swartz Principal Engineer, Picor Semiconductor

More information

DC-DC Resonant converters with APWM control

DC-DC Resonant converters with APWM control IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) ISSN: 2278-1676 Volume 2, Issue 5 (Sep-Oct. 2012), PP 43-49 DC-DC Resonant converters with APWM control Preeta John 1 Electronics Department,

More information

CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS

CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS 86 CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS 5.1 POWER QUALITY IMPROVEMENT This chapter deals with the harmonic elimination in Power System by adopting various methods. Due to the

More information

CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM

CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM 63 CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM 3.1 INTRODUCTION The power output of the PV module varies with the irradiation and the temperature and the output

More information

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter 3.1 Introduction DC/DC Converter efficiently converts unregulated DC voltage to a regulated DC voltage with better efficiency and high power density.

More information

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org) A High Power Density Single Phase Pwm Rectifier with Active Ripple Energy Storage A. Guruvendrakumar 1 and Y. Chiranjeevi 2 1 Student (Power Electronics), EEE Department, Sathyabama University, Chennai,

More information

A HIGH RELIABILITY SINGLE-PHASE BOOST RECTIFIER SYSTEM FOR DIFFERENT LOAD VARIATIONS. Prasanna Srikanth Polisetty

A HIGH RELIABILITY SINGLE-PHASE BOOST RECTIFIER SYSTEM FOR DIFFERENT LOAD VARIATIONS. Prasanna Srikanth Polisetty GRT A HIGH RELIABILITY SINGLE-PHASE BOOST RECTIFIER SYSTEM FOR DIFFERENT LOAD VARIATIONS Prasanna Srikanth Polisetty Department of Electrical and Electronics Engineering, Newton s College of Engineering

More information

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Current Rebuilding Concept Applied to Boost CCM for PF Correction Current Rebuilding Concept Applied to Boost CCM for PF Correction Sindhu.K.S 1, B. Devi Vighneshwari 2 1, 2 Department of Electrical & Electronics Engineering, The Oxford College of Engineering, Bangalore-560068,

More information

CHAPTER 4 4-PHASE INTERLEAVED BOOST CONVERTER FOR RIPPLE REDUCTION IN THE HPS

CHAPTER 4 4-PHASE INTERLEAVED BOOST CONVERTER FOR RIPPLE REDUCTION IN THE HPS 71 CHAPTER 4 4-PHASE INTERLEAVED BOOST CONVERTER FOR RIPPLE REDUCTION IN THE HPS 4.1 INTROUCTION The power level of a power electronic converter is limited due to several factors. An increase in current

More information

Chapter 6 ACTIVE CLAMP ZVS FLYBACK CONVERTER WITH OUTPUT VOLTAGE DOULER

Chapter 6 ACTIVE CLAMP ZVS FLYBACK CONVERTER WITH OUTPUT VOLTAGE DOULER 185 Chapter 6 ACTIVE CLAMP ZVS FLYBACK CONVERTER WITH OUTPUT VOLTAGE DOULER S. No. Name of the Sub-Title Page No. 6.1 Introduction 186 6.2 Single output Active Clamped ZVS Flyback Converter 186 6.3 Active

More information

A Novel Concept in Integrating PFC and DC/DC Converters *

A Novel Concept in Integrating PFC and DC/DC Converters * A Novel Concept in Integrating PFC and DC/DC Converters * Pit-Leong Wong and Fred C. Lee Center for Power Electronics Systems The Bradley Department of Electrical and Computer Engineering Virginia Polytechnic

More information

Comparison of Simulation and Experimental Results of Class - D Inverter Fed Induction Heater

Comparison of Simulation and Experimental Results of Class - D Inverter Fed Induction Heater Research Journal of Applied Sciences, Engineering and Technology 2(7): 635-641, 2010 ISSN: 2040-7467 Maxwell Scientific Organization, 2010 Submitted Date: July 01, 2010 Accepted Date: August 26, 2010 Published

More information

Series and Parallel Resonant Inverter Fed Ferromagnetic Load-A Comparative Analysis

Series and Parallel Resonant Inverter Fed Ferromagnetic Load-A Comparative Analysis Series and Parallel Resonant Inverter Fed Ferromagnetic Load-A Comparative Analysis A. Suresh and S. Rama Reddy Abstract Resonant converters find a very wide application in Induction heating, which requires

More information

K.Vijaya Bhaskar. Dept of EEE, SVPCET. AP , India. S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP , India.

K.Vijaya Bhaskar. Dept of EEE, SVPCET. AP , India. S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP , India. A Closed Loop for Soft Switched PWM ZVS Full Bridge DC - DC Converter S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP-517583, India. Abstract: - This paper propose soft switched PWM ZVS full bridge DC to

More information

Implementation Full Bridge Series Resonant Buck Boost Inverter

Implementation Full Bridge Series Resonant Buck Boost Inverter Implementation Full Bridge Series Resonant Buck Boost Inverter A.Srilatha Assoc.prof Joginpally College of engineering,hyderabad pradeep Rao.J Asst.prof Oxford college of Engineering,Bangalore Abstract:

More information

CHAPTER 3 MAXIMUM POWER TRANSFER THEOREM BASED MPPT FOR STANDALONE PV SYSTEM

CHAPTER 3 MAXIMUM POWER TRANSFER THEOREM BASED MPPT FOR STANDALONE PV SYSTEM 60 CHAPTER 3 MAXIMUM POWER TRANSFER THEOREM BASED MPPT FOR STANDALONE PV SYSTEM 3.1 INTRODUCTION Literature reports voluminous research to improve the PV power system efficiency through material development,

More information

A Novel Simple Reliability Enhancement Switching Topology for Single Phase Buck-Boost Inverter

A Novel Simple Reliability Enhancement Switching Topology for Single Phase Buck-Boost Inverter A Novel Simple Reliability Enhancement Switching Topology for Single Phase Buck-Boost Inverter Snehal Balaji Gatkine 1 PG Scholar, 1 Department of Electrical Engineering, 1 Tulsiramji Gaikwad - Patil College

More information

HIGH STEP UP SWITCHED CAPACITOR INDUCTOR DC VOLTAGE REGULATOR

HIGH STEP UP SWITCHED CAPACITOR INDUCTOR DC VOLTAGE REGULATOR INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM4) 30-3, December, 204, Ernakulam,

More information

Voltage Fed DC-DC Converters with Voltage Doubler

Voltage Fed DC-DC Converters with Voltage Doubler Chapter 3 Voltage Fed DC-DC Converters with Voltage Doubler 3.1 INTRODUCTION The primary objective of the research pursuit is to propose and implement a suitable topology for fuel cell application. The

More information

CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS

CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS 68 CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS 4.1 INTRODUCTION The main objective of this research work is to implement and compare four control methods, i.e., PWM

More information

A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter

A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter A. K. Panda and Aroul. K Abstract--This paper proposes a zero-voltage transition (ZVT) PWM synchronous buck converter, which

More information

Llc Resonant Converter for Battery Charging Applications

Llc Resonant Converter for Battery Charging Applications The International Journal Of Engineering And Science (IJES) Volume 3 Issue 3 Pages 37-44 2014 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Llc Resonant Converter for Battery Charging Applications 1 A.Sakul

More information

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS CHAPTER 3. SINGLE-STAGE PFC TOPOLOG GENERALIATION AND VARIATIONS 3.1. INTRODUCTION The original DCM S 2 PFC topology offers a simple integration of the DCM boost rectifier and the PWM DC/DC converter.

More information

High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit

High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit RESEARCH ARTICLE OPEN ACCESS High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit C. P. Sai Kiran*, M. Vishnu Vardhan** * M-Tech (PE&ED) Student, Department of EEE, SVCET,

More information

CHAPTER 2 PID CONTROLLER BASED CLOSED LOOP CONTROL OF DC DRIVE

CHAPTER 2 PID CONTROLLER BASED CLOSED LOOP CONTROL OF DC DRIVE 23 CHAPTER 2 PID CONTROLLER BASED CLOSED LOOP CONTROL OF DC DRIVE 2.1 PID CONTROLLER A proportional Integral Derivative controller (PID controller) find its application in industrial control system. It

More information

Series-Loaded Resonant Converter DC-DC Buck Operating for Low Power

Series-Loaded Resonant Converter DC-DC Buck Operating for Low Power Indonesian Journal of Electrical Engineering and Computer Science Vol. 8, No. 1, October 2017, pp. 159 ~ 168 DOI: 10.11591/ijeecs.v8.i1.pp159-168 159 Series-Loaded Resonant Converter DC-DC Buck Operating

More information

A NEW ZVT ZCT PWM DC-DC CONVERTER

A NEW ZVT ZCT PWM DC-DC CONVERTER A NEW ZVT ZCT PWM DC-DC CONVERTER 1 SUNITA, 2 M.S.ASPALLI Abstract A new boost converter with an active snubber cell is proposed. The active snubber cell provides main switch to turn ON with zero-voltage

More information

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS 73 CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS 6.1 INTRODUCTION Hybrid distributed generators are gaining prominence over the

More information

CHAPTER 2 SIMULATION AND EXPERIMENTAL INVESTIGATION OF THE LCL AND LCC RESONANT INVERTERS AND LCL RESONANT CONVERTER

CHAPTER 2 SIMULATION AND EXPERIMENTAL INVESTIGATION OF THE LCL AND LCC RESONANT INVERTERS AND LCL RESONANT CONVERTER 1 CHAPTER SIMULATION AND EXPERIMENTAL INESTIGATION OF THE LCL AND LCC RESONANT INERTERS AND LCL RESONANT CONERTER.1 INTRODUCTION Any independent system like aircraft and space systems depend on the battery/solar

More information

Design Consideration for High Power Zero Voltage Zero Current Switching Full Bridge Converter with Transformer Isolation and Current Doubler Rectifier

Design Consideration for High Power Zero Voltage Zero Current Switching Full Bridge Converter with Transformer Isolation and Current Doubler Rectifier IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 78-1676,p-ISSN: 30-3331, Volume 11, Issue 3 Ver. II (May. Jun. 016), PP 8-3 www.iosrjournals.org Design Consideration for High

More information

Power Factor Corrected Single Stage AC-DC Full Bridge Resonant Converter

Power Factor Corrected Single Stage AC-DC Full Bridge Resonant Converter Power Factor Corrected Single Stage AC-DC Full Bridge Resonant Converter Gokul P H Mar Baselios College of Engineering Mar Ivanios Vidya Nagar, Nalanchira C Sojy Rajan Assisstant Professor Mar Baselios

More information

TYPICALLY, a two-stage microinverter includes (a) the

TYPICALLY, a two-stage microinverter includes (a) the 3688 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 33, NO. 5, MAY 2018 Letters Reconfigurable LLC Topology With Squeezed Frequency Span for High-Voltage Bus-Based Photovoltaic Systems Ming Shang, Haoyu

More information

IMPLEMENTATION OF IGBT SERIES RESONANT INVERTERS USING PULSE DENSITY MODULATION

IMPLEMENTATION OF IGBT SERIES RESONANT INVERTERS USING PULSE DENSITY MODULATION IMPLEMENTATION OF IGBT SERIES RESONANT INVERTERS USING PULSE DENSITY MODULATION 1 SARBARI DAS, 2 MANISH BHARAT 1 M.E., Assistant Professor, Sri Venkateshwara College of Engg., Bengaluru 2 Sri Venkateshwara

More information

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications Karthik Sitapati Professor, EEE department Dayananda Sagar college of Engineering Bangalore, India Kirthi.C.S

More information

CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE

CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE 40 CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE 2.1 INTRODUCTION Interleaving technique in the boost converter effectively reduces the ripple current

More information

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Riya Philip 1, Reshmi V 2 Department of Electrical and Electronics, Amal Jyothi College of Engineering, Koovapally, India 1,

More information

Novel Soft-Switching DC DC Converter with Full ZVS-Range and Reduced Filter Requirement Part I: Regulated-Output Applications

Novel Soft-Switching DC DC Converter with Full ZVS-Range and Reduced Filter Requirement Part I: Regulated-Output Applications 184 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 2, MARCH 2001 Novel Soft-Switching DC DC Converter with Full ZVS-Range and Reduced Filter Requirement Part I: Regulated-Output Applications Rajapandian

More information

CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER

CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER 17 CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER 2.1 GENERAL Designing an efficient DC to DC buck-boost converter is very much important for many real-time

More information

IJMIE Volume 2, Issue 9 ISSN:

IJMIE Volume 2, Issue 9 ISSN: DESIGN AND SIMULATION OF A SOFT SWITCHED INTERLEAVED FLYBACK CONVERTER FOR FUEL CELLS Dr.R.Seyezhai* K.Kaarthika** S.Dipika Shree ** Madhuvanthani Rajendran** Abstract This paper presents a soft switched

More information

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications International OPEN ACCESS Journal Of Modern Engineering Research (IJMER A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications Aswathi M. Nair 1, K. Keerthana 2 1, 2 (P.G

More information

CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER

CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER 42 CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER 3.1 INTRODUCTION The concept of multilevel inverter control has opened a new avenue that induction motors can be controlled to achieve dynamic performance

More information

Design of a Wide Input Range DC-DC Converter Suitable for Lead-Acid Battery Charging

Design of a Wide Input Range DC-DC Converter Suitable for Lead-Acid Battery Charging ENGINEER - Vol. XXXXIV, No. 04, pp, [47-53], 2011 The Institution of Engineers, Sri Lanka Design of a Wide Input Range DC-DC Converter Suitable for Lead-Acid Battery Charging M.W.D.R. Nayanasiri and J.A.K.S.Jayasinghe,

More information

DESIGN OF SWITCHED MODE POWER SUPPLY

DESIGN OF SWITCHED MODE POWER SUPPLY DESIGN OF SWITCHED MODE POWER SUPPLY Monalisa Das 1, Dr. P.R Thakura 2 1,2 Dept.of Electrical and Electronics Engineering, BIT Mesra, India ABSTRACT This paper presents the design of SMPS. The fly back

More information

Lecture 19 - Single-phase square-wave inverter

Lecture 19 - Single-phase square-wave inverter Lecture 19 - Single-phase square-wave inverter 1. Introduction Inverter circuits supply AC voltage or current to a load from a DC supply. A DC source, often obtained from an AC-DC rectifier, is converted

More information

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL Journal of Engineering Science and Technology Vol. 10, No. 4 (2015) 420-433 School of Engineering, Taylor s University PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT

More information

Improvements of LLC Resonant Converter

Improvements of LLC Resonant Converter Chapter 5 Improvements of LLC Resonant Converter From previous chapter, the characteristic and design of LLC resonant converter were discussed. In this chapter, two improvements for LLC resonant converter

More information

A New ZVS Bidirectional DC-DC Converter With Phase-Shift Plus PWM Control Scheme

A New ZVS Bidirectional DC-DC Converter With Phase-Shift Plus PWM Control Scheme A New ZVS Bidirectional DC-DC Converter With Phase-Shift Plus PWM Control Scheme Huafeng Xiao, Liang Guo, Shaojun Xie College of Automation Engineering,Nanjing University of Aeronautics and Astronautics

More information

3. PARALLELING TECHNIQUES. Chapter Three. high-power applications to achieve the desired output power with smaller size power

3. PARALLELING TECHNIQUES. Chapter Three. high-power applications to achieve the desired output power with smaller size power 3. PARALLELING TECHNIQUES Chapter Three PARALLELING TECHNIQUES Paralleling of converter power modules is a well-known technique that is often used in high-power applications to achieve the desired output

More information

A Switched Boost Inverter Fed Three Phase Induction Motor Drive

A Switched Boost Inverter Fed Three Phase Induction Motor Drive A Switched Boost Inverter Fed Three Phase Induction Motor Drive 1 Riya Elizabeth Jose, 2 Maheswaran K. 1 P.G. student, 2 Assistant Professor 1 Department of Electrical and Electronics engineering, 1 Nehru

More information

Simulation of a novel ZVT technique based boost PFC converter with EMI filter

Simulation of a novel ZVT technique based boost PFC converter with EMI filter ISSN 1746-7233, England, UK World Journal of Modelling and Simulation Vol. 4 (2008) No. 1, pp. 49-56 Simulation of a novel ZVT technique based boost PFC converter with EMI filter P. Ram Mohan 1 1,, M.

More information

Improved Modification of the Closed-Loop-Controlled AC-AC Resonant Converter for Induction Heating

Improved Modification of the Closed-Loop-Controlled AC-AC Resonant Converter for Induction Heating Improved Modification of the losedoopontrolled AA Resonant onverter for Induction Heating Kirubakaran Dhandapani and Rama Reddy athi A singleswitch parallel resonant for induction heating is implemented.

More information

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier.

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier. Oscillators An oscillator may be described as a source of alternating voltage. It is different than amplifier. An amplifier delivers an output signal whose waveform corresponds to the input signal but

More information

Single Phase Induction Motor Drive using Modified SEPIC Converter and Three Phase Inverter

Single Phase Induction Motor Drive using Modified SEPIC Converter and Three Phase Inverter Single Phase Induction Motor Drive using Modified SEPIC Converter and Three Phase Inverter Ajeesh P R PG Student, M. Tech Power Electronics, Mar Athanasius College of Engineering, Kerala, India, Dr. Babu

More information

Implementation and Design of Advanced DC/AC Inverter for Renewable Energy

Implementation and Design of Advanced DC/AC Inverter for Renewable Energy International Journal of Electrical Energy, l. 3, No., March 2 Implementation and Design of Advanced DC/AC Inverter for Renewable Energy Ergun Ercelebi and Abubakir Aziz Shikhan Electrical and Electronic

More information

MICROCONTROLLER BASED BOOST PID MUNAJAH BINTI MOHD RUBAEE

MICROCONTROLLER BASED BOOST PID MUNAJAH BINTI MOHD RUBAEE MICROCONTROLLER BASED BOOST PID MUNAJAH BINTI MOHD RUBAEE This thesis is submitted as partial fulfillment of the requirement for the award of Bachelor of Electrical Engineering (Power System) Faculty of

More information

SCIENCE & TECHNOLOGY

SCIENCE & TECHNOLOGY Pertanika J. Sci. & Technol. 25 (S): 9-18 (2017) SCIENCE & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ A Single-stage LED Driver with Voltage Doubler Rectifier Nurul Asikin, Zawawi 1

More information

A Predictive Control Strategy for Power Factor Correction

A Predictive Control Strategy for Power Factor Correction IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 8, Issue 6 (Nov. - Dec. 2013), PP 07-13 A Predictive Control Strategy for Power Factor Correction

More information

PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter

PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter B.S.Nalina 1 Ms.V.J.Vijayalakshmi 2 Department Of EEE Department Of EEE 1 PG student,skcet, Coimbatore, India

More information

LeMeniz Infotech. 36, 100 Feet Road, Natesan Nagar, Near Indira Gandhi Statue, Pondicherry Call: , ,

LeMeniz Infotech. 36, 100 Feet Road, Natesan Nagar, Near Indira Gandhi Statue, Pondicherry Call: , , Analysis of the Interleaved Isolated Boost Converter with Coupled Inductors Abstract Introduction: A configuration with many parallel-connected boostflyback converters sharing a single active clamp has

More information

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor 770 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 48, NO. 4, AUGUST 2001 A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor Chang-Shiarn Lin, Member, IEEE, and Chern-Lin

More information

International Journal of Engineering Science Invention Research & Development; Vol. II Issue VIII February e-issn:

International Journal of Engineering Science Invention Research & Development; Vol. II Issue VIII February e-issn: ANALYSIS AND DESIGN OF SOFT SWITCHING BASED INTERLEAVED FLYBACK CONVERTER FOR PHOTOVOLTAIC APPLICATIONS K.Kavisindhu 1, P.Shanmuga Priya 2 1 PG Scholar, 2 Assistant Professor, Department of Electrical

More information

Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design procedure and concern

Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design procedure and concern Active Clamp Forward Converters Design Using UCC2897 Hong Huang August 2007 1 Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design

More information

Single Phase Bridgeless SEPIC Converter with High Power Factor

Single Phase Bridgeless SEPIC Converter with High Power Factor International Journal of Emerging Engineering Research and Technology Volume 2, Issue 6, September 2014, PP 117-126 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Single Phase Bridgeless SEPIC Converter

More information

Single Phase Single Stage Power Factor Correction Converter with Phase Shift PWM Technique

Single Phase Single Stage Power Factor Correction Converter with Phase Shift PWM Technique Single Phase Single Stage Power Factor Correction Converter with Phase Shift PWM Technique G.KAVIARASAN 1, M.G ANAND 2 1 PG Scholar, Department of Power Electronics and Drives THE KAVERY ENGINEERNG COLLEGE,salem

More information

VOLTAGE MODE CONTROL OF SOFT SWITCHED BOOST CONVERTER BY TYPE II & TYPE III COMPENSATOR

VOLTAGE MODE CONTROL OF SOFT SWITCHED BOOST CONVERTER BY TYPE II & TYPE III COMPENSATOR 1002 VOLTAGE MODE CONTROL OF SOFT SWITCHED BOOST CONVERTER BY TYPE II & TYPE III COMPENSATOR NIKITA SINGH 1 ELECTRONICS DESIGN AND TECHNOLOGY, M.TECH NATIONAL INSTITUTE OF ELECTRONICS AND INFORMATION TECHNOLOGY

More information

Bridgeless Buck Converter with Average Current Mode control for Power Factor Correction and Wide Input Voltage variation

Bridgeless Buck Converter with Average Current Mode control for Power Factor Correction and Wide Input Voltage variation Bridgeless Buck Converter with Average Current Mode control for Power Factor Correction and Wide Input Voltage variation Abstract In universal-line voltage (90-264 V) applications, maintaining a high efficiency

More information

Chapter 4 SOFT SWITCHED PUSH-PULL CONVERTER WITH OUTPUT VOLTAGE DOUBLER

Chapter 4 SOFT SWITCHED PUSH-PULL CONVERTER WITH OUTPUT VOLTAGE DOUBLER 61 Chapter 4 SOFT SWITCHED PUSH-PULL CONVERTER WITH OUTPUT VOLTAGE DOUBLER S.No. Name of the Sub-Title Page No. 4.1 Introduction 62 4.2 Single output primary ZVS push-pull Converter 62 4.3 Multi-Output

More information

CHAPTER 7 MAXIMUM POWER POINT TRACKING USING HILL CLIMBING ALGORITHM

CHAPTER 7 MAXIMUM POWER POINT TRACKING USING HILL CLIMBING ALGORITHM 100 CHAPTER 7 MAXIMUM POWER POINT TRACKING USING HILL CLIMBING ALGORITHM 7.1 INTRODUCTION An efficient Photovoltaic system is implemented in any place with minimum modifications. The PV energy conversion

More information

DESIGN OF COMPENSATOR FOR DC-DC BUCK CONVERTER

DESIGN OF COMPENSATOR FOR DC-DC BUCK CONVERTER DESIGN OF COMPENSATOR FOR DC-DC BUCK CONVERTER RAMYA H.S, SANGEETHA.K, SHASHIREKHA.M, VARALAKSHMI.K. SUPRIYA.P, ASSISTANT PROFESSOR Department of Electrical & Electronics Engineering, BNM Institute Of

More information

A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter

A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter Woo-Young Choi 1, Wen-Song Yu, and Jih-Sheng (Jason) Lai Virginia Polytechnic Institute and State University Future Energy Electronics Center

More information

Dual Output Quadratic Buck Boost Converter with Continuous Input And Output Port Current

Dual Output Quadratic Buck Boost Converter with Continuous Input And Output Port Current Dual Output Quadratic Buck Boost Converter with Continuous Input And Output Port Current Jisha Jasmine M M 1,Jeena Joy 2,Ninu JoyMohitha Thomas 3 1 Post Graduate student, 2 AssociateProfessor, Department

More information

A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER

A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER M. Mohamed Razeeth # and K. Kasirajan * # PG Research Scholar, Power Electronics and Drives, Einstein College of Engineering, Tirunelveli, India

More information

Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems

Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems T.

More information

Design and Implementation of Closed Loop LCL-T Resonant DC-to- DC Converter Using Low Cost Embedded Controller

Design and Implementation of Closed Loop LCL-T Resonant DC-to- DC Converter Using Low Cost Embedded Controller American Journal of Engineering and Applied Sciences, 2012, 5 (4), 291-300 ISSN: 1941-7020 2014 Annamalai and Kumar, This open access article is distributed under a Creative Commons Attribution (CC-BY)

More information

MICROCONTROLLER BASED ISOLATED BOOST DC-DC CONVERTER

MICROCONTROLLER BASED ISOLATED BOOST DC-DC CONVERTER International Journal on Intelligent Electronic Systems, Vol. 5, No.1, January 2011 17 Abstract MICROCONTROLLER BASED ISOLATED BOOST DC-DC CONVERTER Elankurisil.S.A. 1, Dash.S.S. 2 1 Research Scholar,

More information

A Pv Fed Buck Boost Converter Combining Ky And Buck Converter With Feedback

A Pv Fed Buck Boost Converter Combining Ky And Buck Converter With Feedback International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 2 (February 2014), PP.84-88 A Pv Fed Buck Boost Converter Combining Ky

More information

Demonstration. Agenda

Demonstration. Agenda Demonstration Edward Lee 2009 Microchip Technology, Inc. 1 Agenda 1. Buck/Boost Board with Explorer 16 2. AC/DC Reference Design 3. Pure Sinewave Inverter Reference Design 4. Interleaved PFC Reference

More information

Single Phase AC Converters for Induction Heating Application

Single Phase AC Converters for Induction Heating Application Single Phase AC Converters for Induction Heating Application Neethu Salim 1, Benny Cherian 2, Geethu James 3 P.G. student, Mar Athanasius College of Engineering, Kothamangalam, Kerala, India 1 Professor,

More information

Chapter 6 Soft-Switching dc-dc Converters Outlines

Chapter 6 Soft-Switching dc-dc Converters Outlines Chapter 6 Soft-Switching dc-dc Converters Outlines Classification of soft-switching resonant converters Advantages and disadvantages of ZCS and ZVS Zero-current switching topologies The resonant switch

More information

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 98 CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 6.1 INTRODUCTION Process industries use wide range of variable speed motor drives, air conditioning plants, uninterrupted power supply systems

More information

CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM

CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM 52 CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM 3.1 INTRODUCTION The power electronics interface, connected between a solar panel and a load or battery bus, is a pulse width modulated

More information

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India Design and Development of Single Phase Bridgeless Three Stage Interleaved Boost Converter with Fuzzy Logic Control System M.Pradeep kumar 1, M.Ramesh kannan 2 1 Student Department of EEE (M.E-PED), 2 Assitant

More information

Grid Connected photovoltaic system based on Chain cell converter Using Simulink

Grid Connected photovoltaic system based on Chain cell converter Using Simulink Grid Connected photovoltaic system based on Chain cell converter Using Simulink Problem statement To prove Chain cell converter performance superior when compared with the traditional Pulse width modulation

More information

A New Closed Loop AC-DC Pseudo boost Based Converter System for CFL

A New Closed Loop AC-DC Pseudo boost Based Converter System for CFL A New Closed Loop AC-DC Pseudo boost Based Converter System for CFL Nithin Shaji 1, Sreekala. K 2 1 Dept. of EEE, Sree Narayana Gurukulam College Of Engineering, Kerala, India 2 Dept. of EEE, Sree Narayana

More information

Design and Hardware Implementation of L-Type Resonant Step Down DC-DC Converter using Zero Current Switching Technique

Design and Hardware Implementation of L-Type Resonant Step Down DC-DC Converter using Zero Current Switching Technique Design and Hardware Implementation of L-Type Resonant Step Down DC-DC Converter using Zero Current Switching Technique Mouliswara Rao. R Assistant Professor, Department of EEE, AITAM, Tekkali, Andhra Pradesh,

More information

PV PANEL WITH CIDBI (COUPLED INDUCTANCE DOUBLE BOOST TOPOLOGY) DC-AC INVERTER

PV PANEL WITH CIDBI (COUPLED INDUCTANCE DOUBLE BOOST TOPOLOGY) DC-AC INVERTER PV PANEL WITH CIDBI (COUPLED INDUCTANCE DOUBLE BOOST TOPOLOGY) DC-AC INVERTER Mr.Thivyamoorthy.S 1,Mrs.Bharanigha 2 Abstract--In this paper the design and the control of an individual PV panel dc-ac converter

More information

Simulation of Soft Switched Pwm Zvs Full Bridge Converter

Simulation of Soft Switched Pwm Zvs Full Bridge Converter Simulation of Soft Switched Pwm Zvs Full Bridge Converter Deepak Kumar Nayak and S.Rama Reddy Abstract This paper deals with the analysis and simulation of soft switched PWM ZVS full bridge DC to DC converter.

More information