U.A.R.C. Unmanned Aerial Reconnaissance Copter Summer Critical Design Review. Group# 9 Clint Mansfield Edwin Giraldo Jeremy Brooks

Size: px
Start display at page:

Download "U.A.R.C. Unmanned Aerial Reconnaissance Copter Summer Critical Design Review. Group# 9 Clint Mansfield Edwin Giraldo Jeremy Brooks"

Transcription

1 U.A.R.C. Critical Design Review Group# 9 Clint Mansfield Edwin Giraldo Jeremy Brooks Unmanned Aerial Reconnaissance Copter Summer 2009

2 MOTIVATION Design a low-cost Unmanned Vehicle that can gather information. Military application to protect personnel in unknown terrain. Build a vehicle that t uses little or no user input.

3 GOALS Fly autonomously without user interaction. Utilizes GPS to give headings. Stable hover Low maintenance Lightweight components Data acquisition through the use of streaming video Obstacle avoidance Low power consumption

4 SPECIFICATIONS Small in design (portable) ~2ft. X 2 ft. X 7 in. Electrically powered by a standard 2-cell 7.4 V rechargeable Li-Po battery minute flight time operation. 6 Degrees of freedom monitored by sensors to maintain stability. Throttle is controlled by a 1 2 ms PWM signals sent from µc, one pulse per 20 ms. Fail safe system of less than 15 feet away. ay Step down input voltage to 3.3V and 5V for sensors Avoid obstacles that range 3 feet or less.

5 HARDWARE BLOCK DIAGRAM Speed C # 1 Distance sensor Tilt sensing Analog To Digital Converter i 2 C PWM Output Speed C # 2 Speed C # 3 Speed C # 4 Rotation sensing Digital compass UARC Gps Module UART LEGEND INPUT OUTPUT Edwin Sensors and software coding Clint Control systems and Simulation Jeremy Systems implementation, PCB, and testing CONTROL MEMORY

6 SOFTWARE BLOCK DIAGRAM Orientation Rotation Proximity to Obstacles Failsafe mechanism Level with Horizon? Pitch, Roll, Inversion Physical Distance Manual override to shutdown Main Program Will take in the values of all necessary inputs and implement the digital PID controllers to send out appropriate PWM signal for adjustments to height, speed, orientation, and direction PWM signal PWM signal PWM signal PWM signal Speed Controller Front Motor Speed Controller o Right Motor Speed Controller Rear Motor Speed Controller Left Motor GPS Coordinates X, Y, Z Any data to be stored or read from memory LEGEND INPUT OUTPUT Compass Coordinates Pointing North, South, East, or West Memory CONTROL MEMORY

7 FLIGHT ALGORITHM FLOW Basic States of flight No Yes X = -Xd? Move Left No Ground Take off? Yes Lift Z = Zd? Yes No Move Right Yes X = Xd? No Hover No Y = -Yd? Yes Move Back No Land Z = 0? Move Front No Y = Yd? Yes Yes Ground

8 COMPONENT SELECTION DECISION Microcontroller With the development board; small in design. Enough ports to accept all sensors we have. Easy to program. UART compliant. Produce PWM signals

9 CONTROLLER OPTIONS µc Active CPU PWM RAM Flash I/O Power speed TI MSP430 Coridium ARMmite Microchip 18F4550 ~220 µa 16 MHz 1-ch 128 B 2K 10 GPIO 1-ch ADC ~50 ma 60 MHz 8-ch 8 K 32K 32 GPIO 8-ch ADC UART ~11 µa 48 MHz 2-ch 1 Kb 16K 35 GPIO 13-ch ADC

10 COMPONENT SELECTION DECISION Tilt Sensing Low Power Consumption Small and Lightweight Good Sensitivity Manufacturer Part Number # of Axes Sensitivity Current Draw Price Analog Devices ADXL /- 5g 480uA $ Analog Devices ADXL /- 3g 320uA $34.95 STMicroelectronics LIS3LV02DQ 3 +/-2 or 6 400uA $43.95

11 COMPONENT SELECTION Analog Devices ADXL330 Accelerometer Triple axis V 3V operation Analog output Vref 1.4V

12 COMPONENT SELECTION DECISION Rotation Sensing Low Power Consumption Small and Lightweight Good Sensitivity Manufacturer Part Number # of Axes Range Current Draw Price Analog Devices ADXRS º/ sec. 5mA $64.95 STMicroelectronics LISY300AL º / sec. 4.8mA $29.95 Invensense IDG º / sec 9.5mA $74.95

13 COMPONENT SELECTION Analog Devices ADXRS614 Gyroscope 50 /sec rate sensitivity Single axis 5 5V operation Analog output Vref 2.3V

14 COMPONENT SELECTION DECISION Height Sensing Obstacle Avoidance Low Power Consumption Small and Lightweight Good Sensitivity Manufacturer Part Number Technology Range Current Draw Price Maxbotix EZ0 Ultrasonic ma $27.95 Sharp GP2Y0A02YK0F Infrared ma $15.95

15 COMPONENT SELECTION Ultrasonic Range Finder - Maxbotix LV- EZ0 Multiple signal output 2 5V operation 6 254in range with 1 inch resolution Refresh rate every 49 millisecs Vref 51.2mV At 6 inches

16 FLIGHT HARDWARE Frame Carbon Fiber Design Includes: Motor mounts Propellers Main gears Brushed Motors Set of clockwise and counterclockwise blades

17 SPEED CONTROLLERS Castle Creations Thunderbird - 9 9A, 15V Max. Weight: 8g Auto Motor Cut-off Fully Programmable

18 MOTORS/PROPS Feigao Brushless Motor S 6A, Inrunner 2283 RPM/V Weight: 43.4g Dia. Propellers 2-Piece Black Nylon Folding Design

19 POWER SUPPLY Thunder Power Lithium Polymer (Li-po) 7.4V, 2 cell, 2100mAh Max. Continuous Current: 31.5A Max Burst Current: 50A Weight: 95g Rechargeable

20 FLIGHT DYNAMICS A good dynamical derivation will allow for realistic simulation design UARC is modeled as a symmetrical rigid body There are 6 degrees of freedom The system is controlled by four inputs being F - total thrust on z-axis T1 - torque about x-axis T2 - torque about y-axis T3 - torque about z-axis Since the number of input actuators is less than the DOF, the system is under actuated UARC body frame B will be represented in inertial frame E.

21 FLIGHT DYNAMICS (CON T) The equations of motion are derived d through h Newton - Euler formulation These lead to the following

22 FLIGHT DYNAMICS (CON T) Ultimately the following equations of translation and rotation can be derived Below represent the actuator control inputs. These control inputs relate the thrust induced from the individual motors to the square of angular velocity and other aerodynamic coefficients from the prop.s Vertical force input Roll actuator input Pitch actuator input Yaw moment input

23 SIMULATION Translational Dynamics

24 SIMULATION (CON T) SIMULATION (CON T) Rotational Dynamics

25 SIMULATION (CON T) Now the whole system can be compiled DC motors are simulated to real as possible Desired angles are implemented to induce translation along x and y axis

26 OPEN LOOP

27 VALUES USED FOR SIMULATION VARIABLE VALUE Jz kg*m^2 Jx kg*m^2 Jy kg*m^2 phi_d -1 rad/sec theta_d 1 rad/sec psi_d 0 length 0.3 m mass kg b 2 gravity 9.8 m/sec^2

28 2D DESIGN PROTOTYPE 2 Degrees of freedom Will assist in feedback control implementation Uses final design hardware

29 SIMULATION 2D Design and Dynamics Translational Rotational

30 Translational

31 Rotational

32 CONTROL SYSTEM There are many theoretical and implemented control techniques for the quad rotor A couple methods considered Linear Quadratic Regulator (LQR) Proportional Integral Derivative (PID) Advantages LQR is an optimal controller which minimizes error input to the plant, among stability PID control is simple, can be analog or digital, and it s a reliable classic Disadvantages LQR requires a precise linear dynamical model of the plant, if not precise system will become unstable A digital PID requires limiting conditions to prevent integral overflow and derivative spikes and must have a constant sampling time UARC will implement basic digital PID controllers for stability

33 CONTROL SYSTEM

34 CONTROL SPECIFICATIONS Digital implementation in C Must limit error overflow and integral runaway Sampling frequency must be at least 250 Hz, which is approximately 4 milliseconds Must limit PWM duty cycle between 1000 and 2000 us Establish PWM change in duty cycle through pidupdate pidout = pid_gyro + pid_accel PWM_M1 M1 = MINDUTY + DUTYCYCLE + pidout PWM_M2 = MINDUTY + DUTYCYCLE - pidout STATE DUTYCYCLE (us) IDLE 0 LIFT 550 HOVER 500 LAND 450

35

36 FUNCTIONS init_coridium(); // starts up the coridium microprocessor void init_sensors ( ); // initializes sensors void init_pid (double p_gain, double i_gain, double d_gain, piddata *pid); // initialize pid gains and overflow limits double pid_controller (double setpoint, double processvalue, piddata *pid_st); // update controlled plant input signal Void setpwm(int pidout); // set pwm for each individual motor depending on pid output Int getgyro_x ( ); // get corresponding sensors signals from max127 ADC Int getgyro_y ( ); Int getaccel_x ( ); // get accelerometer values to determine phi and x acceleration Int getaccel_y ( ); // get accelerometer values to determine theta and y acceleration Int getaccel_z ( ); // get accelerometer values to determine z acceleration Int getultratop ( ); // get top ultrasonic sensor reading Int getultrabot () ); // get bottom ultrasonic sensor reading

37 TESTING Thrust Vs. Amperage Force (N Newtons) Current Consumption (Amps) Amps Duty Cycle Force 0.22 A 4.23% lbs 0.79 A 4.73% lbs 1.41 A 5.27% lbs 2.15 A 5.65% lbs

38 TESTING Digital output from normalized Gyro sensor m steady state % variance fro -150 CW movement Flat CCW movement Flat Note: 250 Hz through a first order low-pass filter with cutoff at 1KHz.

39 TESTING Digital output from normalized accelerometer sensor CW movement Flat CCW movement Flat Note: 250 Hz through a first order low-pass filter with cutoff at 1KHz.

40 TESTING Ultrasonic normalized distance sensor Note: 250 Hz through a first order low-pass filter with cutoff at 1KHz.

41

42 PROJECT BUDGET Item Vendor Cost Spent Draganflyer airframe ebay $ $85.90 TI MSP430 Microcontroller Digi-key $59.06 $24.53 Brushless Motors; pinion gears; adapter ring (X4) BP Hobbies $ $ Speed Controllers (X2) Graves RC $54.34 $54.34 Gryo Breakout Board (X2) Sparkfun $ $ Triple Axis Accelerometer Sparkfun $34.95 $34.95 Coridium ARMmite Microcontroller Sparkfun $59.08 $59.08 Ultrasonic Range Finder - Maxbotix LV-EZ0 (X2) SuperDroid $61.60 $ D Assembly Lowes $6.62 $6.62 Max127 A/D converter I 2 C compliant (X4) Maxim IC $ $0.00 Over/Under Dual Voltage detector (X2) Intersil $7.20 $ Lipo Battery Charger On hand $21.95 $ V Rechargeable Battery 2100 mah ebay $ PCB Pending $0.00 $0.00 Passive Components Various $35.00 $35.00 $1, $640.90

43 PROJECT PROGRESS 0% 20% 40% 60% 80% 100% Research 95% Hardware Design 80% Coding 25% Parts Acquisition 85% Hardware Testing 80% Software Testing 25% Assembly and Integration 15% System Testing 0%

44 PROJECT MILESTONE

45 CONCLUSION Issues PID values to maintain stability are trial and error. Incorporating fail-safe system. GPS implementation. Digital compass. Improvements Digital battery indicator. GUI system to transmit manual coordinates. Improved obstacle avoidance system.

DESIGN CONSTRAINTS ANALYSIS

DESIGN CONSTRAINTS ANALYSIS TEAM 9 -MRAV DESIGN CONSTRAINTS ANALYSIS by Nick Gentry UPDATED PSSC 1. An ability to remotely monitor remaining battery life (fuel gauge). 2. An ability to hover in a stable position (based on autonomous

More information

UARC. Jeremy Brooks, Edwin Giraldo, and Clint Mansfield

UARC. Jeremy Brooks, Edwin Giraldo, and Clint Mansfield UARC Jeremy Brooks, Edwin Giraldo, and Clint Mansfield School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, 32816-2450 Abstract This paper will discuss

More information

Introducing the Quadrotor Flying Robot

Introducing the Quadrotor Flying Robot Introducing the Quadrotor Flying Robot Roy Brewer Organizer Philadelphia Robotics Meetup Group August 13, 2009 What is a Quadrotor? A vehicle having 4 rotors (propellers) at each end of a square cross

More information

Classical Control Based Autopilot Design Using PC/104

Classical Control Based Autopilot Design Using PC/104 Classical Control Based Autopilot Design Using PC/104 Mohammed A. Elsadig, Alneelain University, Dr. Mohammed A. Hussien, Alneelain University. Abstract Many recent papers have been written in unmanned

More information

Design and Implementation of FPGA Based Quadcopter

Design and Implementation of FPGA Based Quadcopter Design and Implementation of FPGA Based Quadcopter G Premkumar 1 SCSVMV, Kanchipuram, Tamil Nadu, INDIA R Jayalakshmi 2 Assistant Professor, SCSVMV, Kanchipuram, Tamil Nadu, INDIA Md Akramuddin 3 Project

More information

ECE 477 Digital Systems Senior Design Project Rev 8/09. Homework 5: Theory of Operation and Hardware Design Narrative

ECE 477 Digital Systems Senior Design Project Rev 8/09. Homework 5: Theory of Operation and Hardware Design Narrative ECE 477 Digital Systems Senior Design Project Rev 8/09 Homework 5: Theory of Operation and Hardware Design Narrative Team Code Name: _ATV Group No. 3 Team Member Completing This Homework: Sebastian Hening

More information

TEAM AERO-I TEAM AERO-I JOURNAL PAPER DELHI TECHNOLOGICAL UNIVERSITY Journal paper for IARC 2014

TEAM AERO-I TEAM AERO-I JOURNAL PAPER DELHI TECHNOLOGICAL UNIVERSITY Journal paper for IARC 2014 TEAM AERO-I TEAM AERO-I JOURNAL PAPER DELHI TECHNOLOGICAL UNIVERSITY DELHI TECHNOLOGICAL UNIVERSITY Journal paper for IARC 2014 2014 IARC ABSTRACT The paper gives prominence to the technical details of

More information

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station The platform provides a high performance basis for electromechanical system control. Originally designed for autonomous aerial vehicle

More information

Testing Autonomous Hover Algorithms Using a Quad rotor Helicopter Test Bed

Testing Autonomous Hover Algorithms Using a Quad rotor Helicopter Test Bed Testing Autonomous Hover Algorithms Using a Quad rotor Helicopter Test Bed In conjunction with University of Washington Distributed Space Systems Lab Justin Palm Andy Bradford Andrew Nelson Milestone One

More information

Study of M.A.R.S. (Multifunctional Aero-drone for Remote Surveillance)

Study of M.A.R.S. (Multifunctional Aero-drone for Remote Surveillance) Study of M.A.R.S. (Multifunctional Aero-drone for Remote Surveillance) Supriya Bhuran 1, Rohit V. Agrawal 2, Kiran D. Bombe 2, Somiran T. Karmakar 2, Ninad V. Bapat 2 1 Assistant Professor, Dept. Instrumentation,

More information

SELF STABILIZING PLATFORM

SELF STABILIZING PLATFORM SELF STABILIZING PLATFORM Shalaka Turalkar 1, Omkar Padvekar 2, Nikhil Chavan 3, Pritam Sawant 4 and Project Guide: Mr Prathamesh Indulkar 5. 1,2,3,4,5 Department of Electronics and Telecommunication,

More information

The Next Generation Design of Autonomous MAV Flight Control System SmartAP

The Next Generation Design of Autonomous MAV Flight Control System SmartAP The Next Generation Design of Autonomous MAV Flight Control System SmartAP Kirill Shilov Department of Aeromechanics and Flight Engineering Moscow Institute of Physics and Technology 16 Gagarina st, Zhukovsky,

More information

Control System Design for Tricopter using Filters and PID controller

Control System Design for Tricopter using Filters and PID controller Control System Design for Tricopter using Filters and PID controller Abstract The purpose of this paper is to present the control system design of Tricopter. We have presented the implementation of control

More information

Quad-Copter. David Malgoza, Engers F Davance Mercedes, Stephen Smith, and Joshua West

Quad-Copter. David Malgoza, Engers F Davance Mercedes, Stephen Smith, and Joshua West Quad-Copter David Malgoza, Engers F Davance Mercedes, Stephen Smith, and Joshua West School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, 32816-2450 where

More information

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January ISSN

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January ISSN International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 500 DESIGN AND FABRICATION OF VOICE CONTROLLED UNMANNED AERIAL VEHICLE Author-Shubham Maindarkar, Co-author-

More information

Hopper Spacecraft Simulator. Billy Hau and Brian Wisniewski

Hopper Spacecraft Simulator. Billy Hau and Brian Wisniewski Hopper Spacecraft Simulator Billy Hau and Brian Wisniewski Agenda Introduction Flight Dynamics Hardware Design Avionics Control System Future Works Introduction Mission Overview Collaboration with Penn

More information

GPS System Design and Control Modeling. Chua Shyan Jin, Ronald. Assoc. Prof Gerard Leng. Aeronautical Engineering Group, NUS

GPS System Design and Control Modeling. Chua Shyan Jin, Ronald. Assoc. Prof Gerard Leng. Aeronautical Engineering Group, NUS GPS System Design and Control Modeling Chua Shyan Jin, Ronald Assoc. Prof Gerard Leng Aeronautical Engineering Group, NUS Abstract A GPS system for the autonomous navigation and surveillance of an airship

More information

CENG 5931 HW 5 Mobile Robotics Due March 5. Sensors for Mobile Robots

CENG 5931 HW 5 Mobile Robotics Due March 5. Sensors for Mobile Robots CENG 5931 HW 5 Mobile Robotics Due March 5 Sensors for Mobile Robots Dr. T. L. Harman: 281 283-3774 Office D104 For reports: Read HomeworkEssayRequirements on the web site and follow instructions which

More information

Project Name: Tail-Gator

Project Name: Tail-Gator EEL 4924 Electrical Engineering Design (Senior Design) Final Report 22 April 2013 Project Name: Tail-Gator Team Name: Eye in the Sky Team Members: Name: Anthony Incardona Name: Fredrik Womack Page 2/14

More information

OughtToPilot. Project Report of Submission PC128 to 2008 Propeller Design Contest. Jason Edelberg

OughtToPilot. Project Report of Submission PC128 to 2008 Propeller Design Contest. Jason Edelberg OughtToPilot Project Report of Submission PC128 to 2008 Propeller Design Contest Jason Edelberg Table of Contents Project Number.. 3 Project Description.. 4 Schematic 5 Source Code. Attached Separately

More information

Design of Self-tuning PID Controller Parameters Using Fuzzy Logic Controller for Quad-rotor Helicopter

Design of Self-tuning PID Controller Parameters Using Fuzzy Logic Controller for Quad-rotor Helicopter Design of Self-tuning PID Controller Parameters Using Fuzzy Logic Controller for Quad-rotor Helicopter Item type Authors Citation Journal Article Bousbaine, Amar; Bamgbose, Abraham; Poyi, Gwangtim Timothy;

More information

Nautical Autonomous System with Task Integration (Code name)

Nautical Autonomous System with Task Integration (Code name) Nautical Autonomous System with Task Integration (Code name) NASTI 10/6/11 Team NASTI: Senior Students: Terry Max Christy, Jeremy Borgman Advisors: Nick Schmidt, Dr. Gary Dempsey Introduction The Nautical

More information

Construction and signal filtering in Quadrotor

Construction and signal filtering in Quadrotor Construction and signal filtering in Quadrotor Arkadiusz KUBACKI, Piotr OWCZAREK, Adam OWCZARKOWSKI*, Arkadiusz JAKUBOWSKI Institute of Mechanical Technology, *Institute of Control and Information Engineering,

More information

Modeling And Pid Cascade Control For Uav Type Quadrotor

Modeling And Pid Cascade Control For Uav Type Quadrotor IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-issn: 2279-0853, p-issn: 2279-0861.Volume 15, Issue 8 Ver. IX (August. 2016), PP 52-58 www.iosrjournals.org Modeling And Pid Cascade Control For

More information

QUADROTOR STABILITY USING PID JULKIFLI BIN AWANG BESAR

QUADROTOR STABILITY USING PID JULKIFLI BIN AWANG BESAR QUADROTOR STABILITY USING PID JULKIFLI BIN AWANG BESAR A project report submitted in partial fulfillment of the requirement for the award of the Master of Electrical Engineering Faculty of Electrical &

More information

Application of an Inertial Navigation System to the Quad-rotor UAV using MEMS Sensors

Application of an Inertial Navigation System to the Quad-rotor UAV using MEMS Sensors World Academy of Science, Engineering and echnology 4 008 Application of an Inertial Navigation System to the Quad-rotor AV using MEMS Sensors in het Nwe, han Htike, Khine Myint Mon, Dr.Zaw Min Naing and

More information

AG-VA Fully Autonomous UAV Sprayers

AG-VA Fully Autonomous UAV Sprayers AG-VA Fully Autonomous UAV Sprayers One of the most advance sprayer technology on the market! Best Price - Best Flight Time - Best Coverage Rate - 1 Yr Warranty* The AG-VA UAV Sprayer is available in 3

More information

University of Florida. Jordan Street Fred Taylor

University of Florida. Jordan Street Fred Taylor Hercules Autopilot University of Florida TI Innovation Challenge 015 Project Report Team Leader: Team Members: Advising Professor: Video Mentor (if applicable): Jordan Street

More information

Electronic Speed Controls and RC Motors

Electronic Speed Controls and RC Motors Electronic Speed Controls and RC Motors ESC Power Control Modern electronic speed controls regulate the electric power applied to an electric motor by rapidly switching the power on and off using power

More information

EL6483: Sensors and Actuators

EL6483: Sensors and Actuators EL6483: Sensors and Actuators EL6483 Spring 2016 EL6483 EL6483: Sensors and Actuators Spring 2016 1 / 15 Sensors Sensors measure signals from the external environment. Various types of sensors Variety

More information

SMART BIRD TEAM UAS JOURNAL PAPER

SMART BIRD TEAM UAS JOURNAL PAPER SMART BIRD TEAM UAS JOURNAL PAPER 2010 AUVSI STUDENT COMPETITION MARYLAND ECOLE POLYTECHNIQUE DE MONTREAL Summary 1 Introduction... 4 2 Requirements of the competition... 4 3 System Design... 5 3.1 Design

More information

Electric Bike BLDC Hub Motor Control Using the Z8FMC1600 MCU

Electric Bike BLDC Hub Motor Control Using the Z8FMC1600 MCU Application Note Electric Bike BLDC Hub Motor Control Using the Z8FMC1600 MCU AN026002-0608 Abstract This application note describes a controller for a 200 W, 24 V Brushless DC (BLDC) motor used to power

More information

Estimation and Control of a Tilt-Quadrotor Attitude

Estimation and Control of a Tilt-Quadrotor Attitude Estimation and Control of a Tilt-Quadrotor Attitude Estanislao Cantos Mateos Mechanical Engineering Department, Instituto Superior Técnico, Lisboa, E-mail: est8ani@gmail.com Abstract - The aim of the present

More information

Frequency-Domain System Identification and Simulation of a Quadrotor Controller

Frequency-Domain System Identification and Simulation of a Quadrotor Controller AIAA SciTech 13-17 January 2014, National Harbor, Maryland AIAA Modeling and Simulation Technologies Conference AIAA 2014-1342 Frequency-Domain System Identification and Simulation of a Quadrotor Controller

More information

Ordering Part Numbers: SAE J1939 version Controller: AX022400

Ordering Part Numbers: SAE J1939 version Controller: AX022400 TECHNICAL DATASHEET #TDAX022400 2 Universal Inputs, Dual Valve Controller 2 Universal Inputs 2-3A Outputs CAN (SAE J1939) Programmable with Electronic Assistant P/N: AX022400 Features: 2 universal signal

More information

Development of Hybrid Flight Simulator with Multi Degree-of-Freedom Robot

Development of Hybrid Flight Simulator with Multi Degree-of-Freedom Robot Development of Hybrid Flight Simulator with Multi Degree-of-Freedom Robot Kakizaki Kohei, Nakajima Ryota, Tsukabe Naoki Department of Aerospace Engineering Department of Mechanical System Design Engineering

More information

TigreSAT 2010 &2011 June Monthly Report

TigreSAT 2010 &2011 June Monthly Report 2010-2011 TigreSAT Monthly Progress Report EQUIS ADS 2010 PAYLOAD No changes have been done to the payload since it had passed all the tests, requirements and integration that are necessary for LSU HASP

More information

Hardware in the Loop Simulation for Unmanned Aerial Vehicles

Hardware in the Loop Simulation for Unmanned Aerial Vehicles NATIONAL 1 AEROSPACE LABORATORIES BANGALORE-560 017 INDIA CSIR-NAL Hardware in the Loop Simulation for Unmanned Aerial Vehicles Shikha Jain Kamali C Scientist, Flight Mechanics and Control Division National

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 13.11.2014

More information

Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor

Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor Recommended Due Date: By your lab time the week of February 12 th Possible Points: If checked off before

More information

Actuators. DC Motor Servo Motor Stepper Motor. Sensors

Actuators. DC Motor Servo Motor Stepper Motor. Sensors Actuators Sensors 2 Actuators DC Motor Servo Motor Stepper Motor Sensors 3 1. The stator generates a stationary magnetic field surrounding the rotor. 2. The rotor/armature is composed of a coil which generates

More information

Georgia Tech Aerial Robotics Team 2009 International Aerial Robotics Competition Entry

Georgia Tech Aerial Robotics Team 2009 International Aerial Robotics Competition Entry Georgia Tech Aerial Robotics Team 2009 International Aerial Robotics Competition Entry Girish Chowdhary, H. Claus Christmann, Dr. Eric N. Johnson, M. Scott Kimbrell, Dr. Erwan Salaün, D. Michael Sobers,

More information

DESIGN & FABRICATION OF UAV FOR DATA TRANSMISSION. Department of ME, CUET, Bangladesh

DESIGN & FABRICATION OF UAV FOR DATA TRANSMISSION. Department of ME, CUET, Bangladesh Proceedings of the International Conference on Mechanical Engineering and Renewable Energy 2017 (ICMERE2017) 18 20 December, 2017, Chittagong, Bangladesh ICMERE2017-PI-177 DESIGN & FABRICATION OF UAV FOR

More information

A 3D Gesture Based Control Mechanism for Quad-copter

A 3D Gesture Based Control Mechanism for Quad-copter I J C T A, 9(13) 2016, pp. 6081-6090 International Science Press A 3D Gesture Based Control Mechanism for Quad-copter Adarsh V. 1 and J. Subhashini 2 ABSTRACT Objectives: The quad-copter is one of the

More information

SimpleBGC 32bit controllers Using with encoders. Last edit date: 23 October 2014 Version: 0.5

SimpleBGC 32bit controllers Using with encoders. Last edit date: 23 October 2014 Version: 0.5 SimpleBGC 32bit controllers Using with encoders Last edit date: 23 October 2014 Version: 0.5 Basecamelectronics 2013-2014 CONTENTS 1. Encoders in the SimpleBGC project...3 2. Installing encoders...4 3.

More information

istand I can Stand SPECIAL SENSOR REPORT

istand I can Stand SPECIAL SENSOR REPORT istand I can Stand SPECIAL SENSOR REPORT SUBRAT NAYAK UFID: 5095-9761 For EEL 5666 - Intelligent Machines Design Laboratory (Spring 2008) Department of Electrical and Computer Engineering University of

More information

Oakland University Microraptor 2009 AUVSI Student UAS Competition Entry

Oakland University Microraptor 2009 AUVSI Student UAS Competition Entry Oakland University Microraptor 2009 AUVSI Student UAS Competition Entry Keith Jones, Maurice Farah, Gentian Godo, Hong Chul Yang, Rami AbouSleiman, and Belal Sababha Faculty Advisor: Dr. Osamah Rawashdeh

More information

THE IMPORTANCE OF PLANNING AND DRAWING IN DESIGN

THE IMPORTANCE OF PLANNING AND DRAWING IN DESIGN PROGRAM OF STUDY ENGR.ROB Standard 1 Essential UNDERSTAND THE IMPORTANCE OF PLANNING AND DRAWING IN DESIGN The student will understand and implement the use of hand sketches and computer-aided drawing

More information

Design and Development of an Indoor UAV

Design and Development of an Indoor UAV Design and Development of an Indoor UAV Muhamad Azfar bin Ramli, Chin Kar Wei, Gerard Leng Aeronautical Engineering Group Department of Mechanical Engineering National University of Singapore Abstract

More information

MICRO AERIAL VEHICLE PRELIMINARY FLIGHT CONTROL SYSTEM

MICRO AERIAL VEHICLE PRELIMINARY FLIGHT CONTROL SYSTEM Multi-Disciplinary Senior Design Conference Kate Gleason College of Engineering Rochester Institute of Technology Rochester, New York 14623 Project Number: 09122 MICRO AERIAL VEHICLE PRELIMINARY FLIGHT

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 05.11.2015

More information

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G P R O F. S L A C K L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G G B S E E E @ R I T. E D U B L D I N G 9, O F F I C E 0 9-3 1 8 9 ( 5 8 5 ) 4 7 5-5 1 0

More information

DC motor control using arduino

DC motor control using arduino DC motor control using arduino 1) Introduction: First we need to differentiate between DC motor and DC generator and where we can use it in this experiment. What is the main different between the DC-motor,

More information

Robotics Challenge. Team Members Tyler Quintana Tyler Gus Josh Cogdill Raul Davila John Augustine Kelty Tobin

Robotics Challenge. Team Members Tyler Quintana Tyler Gus Josh Cogdill Raul Davila John Augustine Kelty Tobin Robotics Challenge Team Members Tyler Quintana Tyler Gus Josh Cogdill Raul Davila John Augustine Kelty Tobin 1 Robotics Challenge: Team Multidisciplinary: Computer, Electrical, Mechanical Currently split

More information

Autonomous Following RObot Initial Design Review

Autonomous Following RObot Initial Design Review Autonomous Following RObot Initial Design Review James Tse (Leader) Wei Dai Travis Frecker Peter Verlangieri Professor John Johnson ECE 189A Fall 2012 Initial Design Review: Project Description Original

More information

Autonomous Stair Climbing Algorithm for a Small Four-Tracked Robot

Autonomous Stair Climbing Algorithm for a Small Four-Tracked Robot Autonomous Stair Climbing Algorithm for a Small Four-Tracked Robot Quy-Hung Vu, Byeong-Sang Kim, Jae-Bok Song Korea University 1 Anam-dong, Seongbuk-gu, Seoul, Korea vuquyhungbk@yahoo.com, lovidia@korea.ac.kr,

More information

COMPACT MOLECULAR-ELECTRONIC SEISMIC SENSORS

COMPACT MOLECULAR-ELECTRONIC SEISMIC SENSORS COMPACT MOLECULAR-ELECTRONIC SEISMIC SENSORS Molecular-electronic seismic accelerometers and velocimeters are designed for measuring seismic vibrations of the ground surface, buildings and engineering

More information

Automated Pilot Control Assistance for a Micro-Scale Helicopter

Automated Pilot Control Assistance for a Micro-Scale Helicopter Automated Pilot Control Assistance for a Micro-Scale Helicopter Parker A. Evans and Jeffrey M. Hudson and Collin D. Weber Cornell University, Ithaca, NY, 14853, USA a A C d e(t) F F D g K D K I K P m T

More information

Microprocessor-Controlled Aerial Research Team Final Report

Microprocessor-Controlled Aerial Research Team Final Report Microprocessor-Controlled Aerial Research Team Final Report Group May15-28 Joe Boldrey, Adam Campbell, Paul Gerver, Tyler Kurtz, Ravi Nagaraju, Matt Post, Jacob Rigdon, Matt Vitale 04/28/2015 MicroCART

More information

Active Vibration Isolation of an Unbalanced Machine Tool Spindle

Active Vibration Isolation of an Unbalanced Machine Tool Spindle Active Vibration Isolation of an Unbalanced Machine Tool Spindle David. J. Hopkins, Paul Geraghty Lawrence Livermore National Laboratory 7000 East Ave, MS/L-792, Livermore, CA. 94550 Abstract Proper configurations

More information

EMBEDDED ONBOARD CONTROL OF A QUADROTOR AERIAL VEHICLE 5

EMBEDDED ONBOARD CONTROL OF A QUADROTOR AERIAL VEHICLE 5 EMBEDDED ONBOARD CONTROL OF A QUADROTOR AERIAL VEHICLE Cory J. Bryan, Mitchel R. Grenwalt, Adam W. Stienecker, Ohio Northern University Abstract The quadrotor aerial vehicle is a structure that has recently

More information

XC4e PWM Digital Drive

XC4e PWM Digital Drive PWM Digital Drive HyperWire fiber-optic interface Up to 30 A peak output current Integral power supply Amplifiers/Drives Drive brush, brushless, voice coil, or stepper motors Safe torque off (STO) safety

More information

Sensors Fundamentals. Renesas Electronics America Inc Renesas Electronics America Inc. All rights reserved.

Sensors Fundamentals. Renesas Electronics America Inc Renesas Electronics America Inc. All rights reserved. Sensors Fundamentals Renesas Electronics America Inc. Renesas Technology & Solution Portfolio 2 Agenda Introduction Sensors fundamentals ADI sensors Sensors data acquisition ADI support for sensors applications

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering ECGR 4161/5196 Introduction to Robotics Experiment No. 4 Tilt Detection Using Accelerometer Overview: The purpose

More information

ChRoMicro - Cheap Robotic Microhelicopter HOWTO (EN)

ChRoMicro - Cheap Robotic Microhelicopter HOWTO (EN) ChRoMicro - Cheap Robotic Microhelicopter HOWTO (EN) Copyright 2005, 2006, 2007 pabr@pabr.org All rights reserved. RC model helicopter prices have reached a point where all sorts of challenging (i.e. crash-prone)

More information

Design of a Flight Stabilizer System and Automatic Control Using HIL Test Platform

Design of a Flight Stabilizer System and Automatic Control Using HIL Test Platform Design of a Flight Stabilizer System and Automatic Control Using HIL Test Platform Şeyma Akyürek, Gizem Sezin Özden, Emre Atlas, and Coşku Kasnakoğlu Electrical & Electronics Engineering, TOBB University

More information

Group #17 Arian Garcia Javier Morales Tatsiana Smahliuk Christopher Vendette

Group #17 Arian Garcia Javier Morales Tatsiana Smahliuk Christopher Vendette Group #17 Arian Garcia Javier Morales Tatsiana Smahliuk Christopher Vendette Electrical Engineering Electrical Engineering Electrical Engineering Electrical Engineering Contents 1 2 3 4 5 6 7 8 9 Motivation

More information

Reference Diagram IDG-300. Coriolis Sense. Low-Pass Sensor. Coriolis Sense. Demodulator Y-RATE OUT YAGC R LPY C LPy ±10% EEPROM TRIM.

Reference Diagram IDG-300. Coriolis Sense. Low-Pass Sensor. Coriolis Sense. Demodulator Y-RATE OUT YAGC R LPY C LPy ±10% EEPROM TRIM. FEATURES Integrated X- and Y-axis gyro on a single chip Factory trimmed full scale range of ±500 /sec Integrated low-pass filters High vibration rejection over a wide frequency range High cross-axis isolation

More information

AQuaH Autonomous Quad-Propeller Helicopter

AQuaH Autonomous Quad-Propeller Helicopter AQuaH Autonomous Quad-Propeller Helicopter Jonathan Mejias Rydon Samaroo Sayyid Khan Chapter 1 - Introduction Abstract The purpose of this report is to show the methods taken to achieve hover from our

More information

ROBOTICS ENG YOUSEF A. SHATNAWI INTRODUCTION

ROBOTICS ENG YOUSEF A. SHATNAWI INTRODUCTION ROBOTICS INTRODUCTION THIS COURSE IS TWO PARTS Mobile Robotics. Locomotion (analogous to manipulation) (Legged and wheeled robots). Navigation and obstacle avoidance algorithms. Robot Vision Sensors and

More information

Actuators. EECS461, Lecture 5, updated September 16,

Actuators. EECS461, Lecture 5, updated September 16, Actuators The other side of the coin from sensors... Enable a microprocessor to modify the analog world. Examples: - speakers that transform an electrical signal into acoustic energy (sound) - remote control

More information

SMART SENSORS AND MEMS

SMART SENSORS AND MEMS 2 SMART SENSORS AND MEMS Dr. H. K. Verma Distinguished Professor (EEE) Sharda University, Greater Noida (Formerly: Deputy Director and Professor of Instrumentation Indian Institute of Technology Roorkee)

More information

Programmable with Electronic Assistant Simulink

Programmable with Electronic Assistant Simulink TECHNICAL DATASHEET #TDAX022410 2 Universal Inputs, Dual Valve Controller 2 Universal Signal Inputs 2-3A Outputs Drive Hydraulic Valves CAN (SAE J1939) Programmable with Electronic Assistant Simulink P/N:

More information

Various levels of Simulation for Slybird MAV using Model Based Design

Various levels of Simulation for Slybird MAV using Model Based Design Various levels of Simulation for Slybird MAV using Model Based Design Kamali C Shikha Jain Vijeesh T Sujeendra MR Sharath R Motivation In order to design robust and reliable flight guidance and control

More information

SELF-AWARE UNMANNED AERIAL VEHICLE

SELF-AWARE UNMANNED AERIAL VEHICLE SELF-AWARE UNMANNED AERIAL VEHICLE COMPUTER ENGINEERING SENIOR PROJECT 2010 http://pisco.flux.utah.edu/uav GRANT E. AYERS grant.ayers@utah.edu NICHOLAS G. MCDONALD nic.mcdonald@utah.edu DECEMBER 23, 2010

More information

BLuAC5 Brushless Universal Servo Amplifier

BLuAC5 Brushless Universal Servo Amplifier BLuAC5 Brushless Universal Servo Amplifier Description The BLu Series servo drives provide compact, reliable solutions for a wide range of motion applications in a variety of industries. BLu Series drives

More information

Advanced User Manual

Advanced User Manual Features Advanced User Manual Applications BL-3G Ultra stable 3-Axis Gyro Small size, weight and power USB / PC connection for set up and upgrade MEMS rate sensor - Ultra stable over temperature and time

More information

드론의제어원리. Professor H.J. Park, Dept. of Mechanical System Design, Seoul National University of Science and Technology.

드론의제어원리. Professor H.J. Park, Dept. of Mechanical System Design, Seoul National University of Science and Technology. 드론의제어원리 Professor H.J. Park, Dept. of Mechanical System Design, Seoul National University of Science and Technology. An Unmanned aerial vehicle (UAV) is a Unmanned Aerial Vehicle. UAVs include both autonomous

More information

Instruction for setting the ICE2 HV 120 governor mode with 800MX

Instruction for setting the ICE2 HV 120 governor mode with 800MX Instruction for setting the ICE2 HV 120 governor mode with 800MX We recommend using the governor mode of ESC with 800MX motor. If you are using the governor mode in Castle ICE2 HV 120 ESC, we recommend

More information

Dynamic Angle Estimation

Dynamic Angle Estimation Dynamic Angle Estimation with Inertial MEMS Analog Devices Bob Scannell Mark Looney Agenda Sensor to angle basics Accelerometer basics Accelerometer behaviors Gyroscope basics Gyroscope behaviors Key factors

More information

Design and Navigation Control of an Advanced Level CANSAT. Mansur ÇELEBİ Aeronautics and Space Technologies Institute Turkish Air Force Academy

Design and Navigation Control of an Advanced Level CANSAT. Mansur ÇELEBİ Aeronautics and Space Technologies Institute Turkish Air Force Academy Design and Navigation Control of an Advanced Level CANSAT Mansur ÇELEBİ Aeronautics and Space Technologies Institute Turkish Air Force Academy 1 Introduction Content Advanced Level CanSat Design Airframe

More information

GUIDED WEAPONS RADAR TESTING

GUIDED WEAPONS RADAR TESTING GUIDED WEAPONS RADAR TESTING by Richard H. Bryan ABSTRACT An overview of non-destructive real-time testing of missiles is discussed in this paper. This testing has become known as hardware-in-the-loop

More information

XC4e PWM Digital Drive

XC4e PWM Digital Drive XC4e PWM Digital Drive HyperWire fiber-optic interface Up to 30 A peak output current Integral power supply Drive brush, brushless, voice coil, or stepper motors Safe torque off (STO) safety circuit Drive

More information

Feel the Real World. The final haptic feedback design solution

Feel the Real World. The final haptic feedback design solution Feel the Real World The final haptic feedback design solution Touch is. how we interact with... how we feel... how we experience the WORLD. Touch Introduction Touch screens are replacing traditional user

More information

Teaching Mechanical Students to Build and Analyze Motor Controllers

Teaching Mechanical Students to Build and Analyze Motor Controllers Teaching Mechanical Students to Build and Analyze Motor Controllers Hugh Jack, Associate Professor Padnos School of Engineering Grand Valley State University Grand Rapids, MI email: jackh@gvsu.edu Session

More information

Modern Robotics Inc. Sensor Documentation

Modern Robotics Inc. Sensor Documentation Modern Robotics Inc. Sensor Documentation Version 1.4.3 December 11, 2017 Contents 1. Document Control... 3 2. Introduction... 4 3. Three-Wire Analog & Digital Sensors... 5 3.1. Program Control Button

More information

3D ULTRASONIC STICK FOR BLIND

3D ULTRASONIC STICK FOR BLIND 3D ULTRASONIC STICK FOR BLIND Osama Bader AL-Barrm Department of Electronics and Computer Engineering Caledonian College of Engineering, Muscat, Sultanate of Oman Email: Osama09232@cceoman.net Abstract.

More information

Based on the ARM and PID Control Free Pendulum Balance System

Based on the ARM and PID Control Free Pendulum Balance System Available online at www.sciencedirect.com Procedia Engineering 29 (2012) 3491 3495 2012 International Workshop on Information and Electronics Engineering (IWIEE) Based on the ARM and PID Control Free Pendulum

More information

SELF-BALANCING MOBILE ROBOT TILTER

SELF-BALANCING MOBILE ROBOT TILTER Tomislav Tomašić Andrea Demetlika Prof. dr. sc. Mladen Crneković ISSN xxx-xxxx SELF-BALANCING MOBILE ROBOT TILTER Summary UDC 007.52, 62-523.8 In this project a remote controlled self-balancing mobile

More information

Integrated Dual-Axis Gyro IDG-1004

Integrated Dual-Axis Gyro IDG-1004 Integrated Dual-Axis Gyro NOT RECOMMENDED FOR NEW DESIGNS. PLEASE REFER TO THE IDG-25 FOR A FUTIONALLY- UPGRADED PRODUCT APPLICATIONS GPS Navigation Devices Robotics Electronic Toys Platform Stabilization

More information

Castle Multi-Rotor ESC Series User Guide

Castle Multi-Rotor ESC Series User Guide Castle Multi-Rotor ESC Series User Guide This user guide is applicable to all models of Castle Multi-Rotor ESC. Important Warnings Castle Creations is not responsible for your use of this product or for

More information

BLuAC5 Brushless Universal Servo Amplifier

BLuAC5 Brushless Universal Servo Amplifier BLuAC5 Brushless Universal Servo Amplifier Description The BLu Series servo drives provide compact, reliable solutions for a wide range of motion applications in a variety of industries. BLu Series drives

More information

OS3D-FG MINIATURE ATTITUDE & HEADING REFERENCE SYSTEM MINIATURE 3D ORIENTATION SENSOR OS3D-P. Datasheet Rev OS3D-FG Datasheet rev. 2.

OS3D-FG MINIATURE ATTITUDE & HEADING REFERENCE SYSTEM MINIATURE 3D ORIENTATION SENSOR OS3D-P. Datasheet Rev OS3D-FG Datasheet rev. 2. OS3D-FG OS3D-FG MINIATURE ATTITUDE & HEADING REFERENCE SYSTEM MINIATURE 3D ORIENTATION SENSOR OS3D-P Datasheet Rev. 2.0 1 The Inertial Labs OS3D-FG is a multi-purpose miniature 3D orientation sensor Attitude

More information

PRESENTED BY HUMANOID IIT KANPUR

PRESENTED BY HUMANOID IIT KANPUR SENSORS & ACTUATORS Robotics Club (Science and Technology Council, IITK) PRESENTED BY HUMANOID IIT KANPUR October 11th, 2017 WHAT ARE WE GOING TO LEARN!! COMPARISON between Transducers Sensors And Actuators.

More information

TECHNICAL DATASHEET #TDAX022420

TECHNICAL DATASHEET #TDAX022420 TECHNICAL DATASHEET TDAX022420 Four Inputs, Two Outputs Universal Valve Controller 2 Universal Signal Inputs, Magnetic Pick Up Sensor, or Encoder Inputs 2-3A High Side, Low Side or Half-bridge Outputs

More information

ISSUE 5 VOLUME 3 ISSN: INTERNATIONAL JOURNAL FOR ENGINEERING APPLICATIONS AND TECHNOLOGY

ISSUE 5 VOLUME 3 ISSN: INTERNATIONAL JOURNAL FOR ENGINEERING APPLICATIONS AND TECHNOLOGY 1 IJFEAT INTERNATIONAL JOURNAL FOR ENGINEERING APPLICATIONS AND TECHNOLOGY Agriculture Drone for Fertilizers and Pesticides Spraying Neha S. Morey 1, Pratiksha N. Mehere 2, Komal Hedaoo 3 1 Student, Department

More information

ARDUINO BASED CALIBRATION OF AN INERTIAL SENSOR IN VIEW OF A GNSS/IMU INTEGRATION

ARDUINO BASED CALIBRATION OF AN INERTIAL SENSOR IN VIEW OF A GNSS/IMU INTEGRATION Journal of Young Scientist, Volume IV, 2016 ISSN 2344-1283; ISSN CD-ROM 2344-1291; ISSN Online 2344-1305; ISSN-L 2344 1283 ARDUINO BASED CALIBRATION OF AN INERTIAL SENSOR IN VIEW OF A GNSS/IMU INTEGRATION

More information

Project Final Report: Directional Remote Control

Project Final Report: Directional Remote Control Project Final Report: by Luca Zappaterra xxxx@gwu.edu CS 297 Embedded Systems The George Washington University April 25, 2010 Project Abstract In the project, a prototype of TV remote control which reacts

More information

Final Report. Chazer Gator. by Siddharth Garg

Final Report. Chazer Gator. by Siddharth Garg Final Report Chazer Gator by Siddharth Garg EEL 5666: Intelligent Machines Design Laboratory A. Antonio Arroyo, PhD Eric M. Schwartz, PhD Thomas Vermeer, Mike Pridgen No table of contents entries found.

More information

A3 Pro INSTRUCTION MANUAL. Oct 25, 2017 Revision IMPORTANT NOTES

A3 Pro INSTRUCTION MANUAL. Oct 25, 2017 Revision IMPORTANT NOTES A3 Pro INSTRUCTION MANUAL Oct 25, 2017 Revision IMPORTANT NOTES 1. Radio controlled (R/C) models are not toys! The propellers rotate at high speed and pose potential risk. They may cause severe injury

More information