Optical Network Optimization based on Physical Layer Impairments

Size: px
Start display at page:

Download "Optical Network Optimization based on Physical Layer Impairments"

Transcription

1 Optical Network Optimization based on Physical Layer Impairments Joaquim F. Martins-Filho Photonics Group, Department of Electronics and Systems Federal University of Pernambuco - Recife Brazil jfmf@ufpe.br

2 Outlook Introduction Routing based on physical impairments Amplifiers for network optimization Considering four wave mixing (FWM) Wavelength assignment based on FWM Conclusions

3 Optical Network Scenario Dynamic, wavelength routed, transparent network MANAGEMENT PLANE A1 Connect A1-E1 CLIENT DOMAIN CONTROL PLANE A TRANSPORT PLANE B NNI (signaling) C NNI (transport) D TRANSPORT DOMAIN UNI (signaling) UNI (transport) E E1 CLIENT DOMAIN

4 Optical Network Scenario We have: Circuit-switched wavelength-routed networks Dispersion is compensated or managed Optical amplifiers to compensate for losses However, we have degradation of OSNR due to: Amplifier noise insertion Shot noise Amplifier gain saturation Noise induced by non-linear effects (FWM) Noise inserted in switching devices (OXC) The OSNR Degradation sets the limits of the transparent network, for a given QoS (BER).

5 Optical Network Scenario We need a Compensator for OSNR Degradation (3R-regeneration) And/Or we need: Low noise, high saturation-power amplifiers Low loss devices Intelligent RWA algorithms to mitigate the physical layer impairments (getting the best out of your infrastructure)

6 Basic Definitions Degradation of OSNR = Noise Factor The Noise Factor: The Noise Figure: F = F excess + F shot OSNR F = OSNR in out NF =10log F D. M. Baney, P. Gallion, e R. S. Tucker, Theory and measurement techniques for the noise figure of optical amplifiers, Optical Fiber Technology, vol. 6, pp , 000.

7 Cascade of Elements G F 1 = F excess1 + F = 1/L (L>1) shot1 F 3 = F excess3 + F shot3 F excess = 0 F shot1 = 1/G 1 F shot3 = 1/G F 3 = 1/G = L F F 0 c excess = excess1 + + G1 F c shot = G L 1 G 3 F excess3 G 1 L

8 Node Configuration In each node we have: EDFA Tx SWITCH WRS λ 1 WRS λ.. WRS λ N WRN (k) MUX DEMUX Rx TAP FIBERS F G LINKshot LINK = L = L G SW + MUX SW + MUX G PRE AMP L L PRE AMP G FIBER+ TAP FIBER+ TAP G BOOSTER L L BOOSTER DEMUX + SW DEMUX + SW PRE AMP FIBER+ TAP FLINKsig, sp = FBOOSTER + GBOOSTER F L

9 Noise Factor of a Lightpath FLink sig,sp1 FLink sig,sp FLink sig,sp3 FLink sig,sp4 FLink shot1 FLink shot FLink shot3 FLink shot4 GLink 1 F LIGHTPATH GLink GLink 3 GLink 4 = n F LINKsig, sp i + i 1 i= 1 i= 1 j= 0 G LINK n F LINKshot j i

10 Gain Saturation We also consider the effect of amplifier gain saturation: G = 1+ G P P sig sat A decrease in G causes an increase in F 0

11 Block Diagram of our RWA Algorithm Call Requests Select Wavelength Wavelength Available? Yes Select Lightpath Calculate BER BER < 10-1? Yes No No Block Call - Wavelength selection by first fit. - Lightpath selection by minimum F, using a modified Dijkstra algorithm, where F is the cost parameter. - BER calculation from OSNR and F OSNR out = OSNR F in For OSNR out > 3 db BER <10-1.

12 Simulated Network Mesh network. circuit-switched bidirectional connections in fibers. No wavelength conversion. Poisson distribution of call arrivals and call holding time. Uniform distribution of source-destination nodes calls simulated. 70km 1 70km 30km 3 70km 4 40km 80km 40km 80km 30km 5 50km 6

13 Simulation Parameters Parameter Typical Value Number of wavelengths 16 Number of fibers 1 Amplifier Gain Amplifier Noise Figure Amplifier Saturation Power OSNR in Switch loss MUX / DEMUX loss Tap loss Transmission fiber loss Compensating losses 5 db 16 dbm 39 db db 4 db 0.5 db 0. db/km

14 Simulation Results No. of wavelengths x No. of fibers Blocking Probability 0,1 0, Load (Erlangs) 16x1 08x 04x4

15 Simulation Results Blocking probability 0,1 0,01 1E-3 Number of available wavelengths Routing algorithm Solid symbols - Noise Figure Open symbols - Shortest path Load (Erlangs)

16 Simulation Results Blocking Probability 0,1 0,01 1E-3 1E Load (Erlangs) Amplifier Noise Figure NF4dB NF5dB NF6dB NF7dB NF8dB

17 Simulation Results 1 Blocking Probability 0,1 0,01 1E-3 1E-4 1E Load (Erlangs) Saturation Power 13dBm 15dBm 17dBm 19dBm 1dBm 3dBm

18 All-Optical gain clamping Laser cavity Attenuator Defines the laser threshold Power (dbm) Filter Should be tuned in the ASE range Wavelength (nm)

19 Gain-clamping implications Gain medium moderately saturated Population inversion: constant Lower gain dependency with signal power

20 Typical all-optical gain clamped configurations

21 Experimental setup (Circulator) Clamping laser copropagates with the signal Optical filter Lower losses for signal lightpath (lower NF) Suppressed clamping laser in the output Optical filter

22 Experimental Results: Gain and Noise Figure Gain (db) ( a ) Copropagating pump Pump power 43 mw 65 mw 75 mw Feedback atenuator losses (db) NF penalty is about 1 db Noise figure (db) Gain (db) Counterpropagating pump ( b ) Pump power 43 mw 65 mw 75 mw Feedback atenuator losses (db) Noise figure (db)

23 Experimental Results: Saturation Output Power Gain (db) Feedback loss: 18dB (clamped) 34dB (unclamped) Output Power (dbm) Unclamped amplifier: P sat = 9,5 dbm Clamped amplifier: P sat = 1 dbm 3 db 3 db

24 Network Simulation Results Blocking Probability 0,1 0, Load (Erlangs) Unclamped amplifiers Clamped amplifiers Unclamped amplifier: P sat = 9,5 dbm, NF = 5 db Camped amplifier: P sat = 1 dbm, NF = 6 db

25 How to take FWM into account? FWM generated power is already well modeled: S. Song et al, Intensity-Dependent Phase-Matching Effects on Four-Wave Mixing in Optical Fibers, IEEE J. of Lightwave Technology, vol. 17, no. 11, pp , Nov FWM generated power can act as noise One can not evaluate the impact on transmission performance directly from FWM generated power Example: Channel FWM - Noise

26 Proposed model Our model: Considers FWM as fiber noise components (FWM is the source of excess noise in fiber) Evaluate all the beating processes involved in the transmission Includes FWM and other sources of excess noise in the noise budget calculation of the system Features the QoS degradation due to FWM Can be used as a design tool

27 Model - Formulation Noise factor F = SNR SNR in out Signal to noise ratio < i signal < Δi Noise > > SNR < i Signal = < ΔiNoise Photocurrent generated by the optical signal of power level P Mean-square value of a single-sided noise power spectrum > >

28 Optoelectronic model < i signal > + < Δ i >, in noise, in No medium SNR entrada laser laser (a) Optical fiber (b) < Photodetector i signal > + < Δ i, out noise, out photodetector > SNR saída

29 Model - Formulation Electrical signal < Δi < i >= R P signal signal Noise power spectrum noise >= R B 0 S noise ( f ) df

30 Model - Formulation In the fiber input SNR in = < isignal, in > < isignal, in > = < Δi > < Δi > + < Δi noise, in noise, shot noise, SSEin > < Δ < Δi SNR i noise,shot noise,ssein in > > Shot noise component Beat noise between signal and source spontaneous emission R P signal = 0 qrp B + < Δi signal noise SSEin, >

31 Model - Formulation In the fiber output SNR out = qrb < Δi noise FWM + 0 P signal, SSEout R > P exp signal exp ( αl) ( ) αl + < Δi > noisefwm, + SSEout Square mean value of the noise due to additive noise components: FWM + SSE attenuated

32 Model - Formulation F = F Noise factor = qrb ( αl) 0 qrp P signal R That is equal to exp qrb 0 signal P exp P signal R B 0 signal P + < signal exp Δi noise, SSEin ( αl) ( ) αl + < Δi > qrp exp signal ( αl) B 0 > noise, FWM + SSEout + < Δi + < Δi noise, FWM noise, SSEin > + SSEout >

33 Model Evaluation of additive noise components Considering a square law photodetector k = r E i na ε = i 0 c E i det e j = Rk ( i ω it+φ ) Constant i r E i Electromagnetic fields involved

34 General formula >= R < Δ = = = + = = = = + = = n i n j i j j n i n i j n j i k k k n k k j i n i n i j j i n i i noise P n u P PP P n P P PP PP P i 0, , ] [ 4 3] [ δ P0 signal power Pi noise power components in the signal wavelength δ[n] delta function u[n] discrete step function

35 Model - In the fiber input P = 0 P signal < Δi noise, SSEin P = P 1 SSE >= R P + SSE 4 + P 6P signal signal P SSE P SSE ( P + P ) signal SSE

36 Simulation Channel FWM - Noise

37 Simulation - Fiber parameters Length 5.6 km Linear attenuation coefficient km -1 Modal area 50 μm non-linear refractive index.68x10-0 m /W Wavelength of the first signal in the grid Dispersion Dispersion Coefficient nm 0.84 ps/nm.km ps/nm km

38 Simulation Results: 100 GHz channel spacing FWM power (dbm) (a) Linksim S. Formulation Song et.al Power per channel (mw)

39 Simulation Results: 100 GHz channel spacing 0 (a) BER = 1 erfc SNR in F Log(BER) Linksim Formulation Power per channel (mw)

40 Simulation Results: 50 GHz channel spacing FWM power (dbm) (b) Linksim Formulation S. Song et.al Power per channel (mw)

41 Simulation Results: 50 GHz channel spacing 0 (b) Log(BER) Linksim Formulation Power per channel (mw)

42 Applications Wavelength assignment in optical networks. Include FWM in our routing algorithm by Noise Factor

43 Application: Optimization of Wavelength Assignment SNR (db) 3 Wavelength BER = 10-1

44 Conclusions (1/) For network optimization (from the performance point of view): Low noise figure, high saturation-power amplifiers Gain-clamped amplifiers are good candidates, but transient effects should be considered. Low loss devices Intelligent RWA algorithms to mitigate the physical layer impairments. It can increase the network capacity without changing infrastructure It can provide QoS at the physical layer It can provide Service Differentiation (some users at BER of 10-1, others at 10-9, and so on )

45 Conclusions (/) Future work: Addition of FWM effect in the routing algorithm Consideration of FWM in wavelength assignment Development of a network design tool, for physical layer optimization (use of Genetic Algorithm).

46 DWDM Network Laboratory: Experiment

47 DWDM Network Laboratory: Simulation

48 Acknowledgments Team: - Dr. Carmelo J. A. Bastos Filho - Daniel A. R. Chaves - Eric A. J. Arantes - Dr. Farshad Yazdani -HelderAlves Pereira - Dr. Isnaldo J. de Souza Coelho - Luciana Pedrosa Salles - Marcela Martins Melo - Rafaelli Neves de Alencar Vidal - Dr. Raul Camelo de A. Almeida Jr. - Sergio Campello Oliveira

49 Acknowledgements Financial Support: SIEMENS Support: U F P E

50 References D. M. Baney, P. Gallion, e R. S. Tucker, Theory and measurement techniques for the noise figure of optical amplifiers, Optical Fiber Technology, vol. 6, pp , 000. S. Song et al, Intensity-Dependent Phase-Matching Effects on Four-Wave Mixing in Optical Fibers, IEEE J. of Lightwave Technology, vol. 17, no. 11, pp , Nov J. F. MARTINS-FILHO, et. al., Novel Routing Algorithm for Optical Networks Based on Noise Figure and Physical Impairments. In: ECOC European Conference on Optical Communications, 003, Rimini - Itália. Proceeding of ECOC 003, 003. v. 3. p J. F. MARTINS-FILHO, et. al. Impact of device characteristics on network performance from a physical-impairment-based routing algorithm. In: OFC Optical Fiber Communication Conference and Exhibit, 004, Los Angeles - EUA. Proceedings of OFC 004 on CD-ROM, 004. p C. J. A. BASTOS FILHO, J. F. MARTINS-FILHO, Noise Figure Model for Transmission Performance Evaluation Considering Four Wave Mixing and Source Spontaneous Emission. In: SBMO/IEEE MTT-S IMOC International Microwave and Optoelectronics Conference, 005, Brasília. Proceedings of IMOC 005. IEEE / SBMO, 005. v. 1. p C. J. A. BASTOS FILHO, M. M. MELO, J. F. MARTINS-FILHO, Influence of Pump Direction in All-Optical Gain-Clamped Erbium Doped Fiber Amplifier. In: SBMO/IEEE MTT-S IMOC International Microwave and Optoelectronics Conference, 005, Brasília. Proceedings of IMOC 005. IEEE / SBMO, 005. v. 1. p. 1-5.

51 Thank you! Joaquim F. Martins Filho

Optical Fibre Amplifiers Continued

Optical Fibre Amplifiers Continued 1 Optical Fibre Amplifiers Continued Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus ECE 445 Lecture 09 Fall Semester 2016 2 ERBIUM-DOPED FIBRE AMPLIFIERS BASIC

More information

Optical Amplifiers (Chapter 6)

Optical Amplifiers (Chapter 6) Optical Amplifiers (Chapter 6) General optical amplifier theory Semiconductor Optical Amplifier (SOA) Raman Amplifiers Erbium-doped Fiber Amplifiers (EDFA) Read Chapter 6, pp. 226-266 Loss & dispersion

More information

Technical Feasibility of 4x25 Gb/s PMD for 40km at 1310nm using SOAs

Technical Feasibility of 4x25 Gb/s PMD for 40km at 1310nm using SOAs Technical Feasibility of 4x25 Gb/s PMD for 40km at 1310nm using SOAs Ramón Gutiérrez-Castrejón RGutierrezC@ii.unam.mx Tel. +52 55 5623 3600 x8824 Universidad Nacional Autonoma de Mexico Introduction A

More information

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion M. A. Khayer Azad and M. S. Islam Institute of Information and Communication

More information

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique Chien-Hung Yeh 1, *, Ming-Ching Lin 3, Ting-Tsan Huang 2, Kuei-Chu Hsu 2 Cheng-Hao Ko 2, and Sien Chi

More information

PERFORMANCE ANALYSIS OF WDM AND EDFA IN C-BAND FOR OPTICAL COMMUNICATION SYSTEM

PERFORMANCE ANALYSIS OF WDM AND EDFA IN C-BAND FOR OPTICAL COMMUNICATION SYSTEM www.arpapress.com/volumes/vol13issue1/ijrras_13_1_26.pdf PERFORMANCE ANALYSIS OF WDM AND EDFA IN C-BAND FOR OPTICAL COMMUNICATION SYSTEM M.M. Ismail, M.A. Othman, H.A. Sulaiman, M.H. Misran & M.A. Meor

More information

Photonics and Optical Communication Spring 2005

Photonics and Optical Communication Spring 2005 Photonics and Optical Communication Spring 2005 Final Exam Instructor: Dr. Dietmar Knipp, Assistant Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Final Exam: 2 hour You

More information

Erbium-Doper Fiber Amplifiers

Erbium-Doper Fiber Amplifiers Seminar presentation Erbium-Doper Fiber Amplifiers 27.11.2009 Ville Pale Presentation Outline History of EDFA EDFA operating principle Stimulated Emission Stark Splitting Gain Gain flatness Gain Saturation

More information

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor P. S. Chan, C. Y. Chow, and H. K. Tsang Department of Electronic Engineering, The

More information

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 4, January - March Bandwidth of 13GHz

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 4, January - March Bandwidth of 13GHz Simulation and Analysis of GFF at WDM Mux Bandwidth of 13GHz Warsha Balani Department of ECE, BIST Bhopal, India balani.warsha@gmail.com Manish Saxena Department of ECE,BIST Bhopal, India manish.saxena2008@gmail.com

More information

OBSERVATION AND MITIGATION OF POWER TRANSIENTS IN 160Gbps OPTICAL BACKHAUL NETWORKS

OBSERVATION AND MITIGATION OF POWER TRANSIENTS IN 160Gbps OPTICAL BACKHAUL NETWORKS OBSERVATION AND MITIGATION OF POWER TRANSIENTS IN 160Gbps OPTICAL BACKHAUL NETWORKS Vikrant Sharma Anurag Sharma Electronics and Communication Engineering, CT Group of Institutions, Jalandhar Dalveer Kaur

More information

PERFORMANCE ENHANCEMENT OF 32 CHANNEL LONG HAUL DWDM SOLITON LINK USING ELECTRONIC DISPERSION COMPENSATION

PERFORMANCE ENHANCEMENT OF 32 CHANNEL LONG HAUL DWDM SOLITON LINK USING ELECTRONIC DISPERSION COMPENSATION International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN 2249-684X Vol. 2 Issue 4 Dec - 2012 11-16 TJPRC Pvt. Ltd., PERFORMANCE ENHANCEMENT

More information

Bit error rate and cross talk performance in optical cross connect with wavelength converter

Bit error rate and cross talk performance in optical cross connect with wavelength converter Vol. 6, No. 3 / March 2007 / JOURNAL OF OPTICAL NETWORKING 295 Bit error rate and cross talk performance in optical cross connect with wavelength converter M. S. Islam and S. P. Majumder Department of

More information

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion 36 Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion Supreet Singh 1, Kulwinder Singh 2 1 Department of Electronics and Communication Engineering, Punjabi

More information

Study of All-Optical Wavelength Conversion and Regeneration Subsystems for use in Wavelength Division Multiplexing (WDM) Telecommunication Networks.

Study of All-Optical Wavelength Conversion and Regeneration Subsystems for use in Wavelength Division Multiplexing (WDM) Telecommunication Networks. Study of All-Optical Wavelength Conversion and Regeneration Subsystems for use in Wavelength Division Multiplexing (WDM) Telecommunication Networks. Hercules Simos * National and Kapodistrian University

More information

Dr. Monir Hossen ECE, KUET

Dr. Monir Hossen ECE, KUET Dr. Monir Hossen ECE, KUET 1 Outlines of the Class Principles of WDM DWDM, CWDM, Bidirectional WDM Components of WDM AWG, filter Problems with WDM Four-wave mixing Stimulated Brillouin scattering WDM Network

More information

Pass Cisco Exam

Pass Cisco Exam Pass Cisco 642-321 Exam Number: 642-321 Passing Score: 800 Time Limit: 120 min File Version: 38.8 http://www.gratisexam.com/ Pass Cisco 642-321 Exam Exam Name : Cisco Optical SDH Exam (SDH) Braindumps

More information

Current Trends in Unrepeatered Systems

Current Trends in Unrepeatered Systems Current Trends in Unrepeatered Systems Wayne Pelouch (Xtera, Inc.) Email: wayne.pelouch@xtera.com Xtera, Inc. 500 W. Bethany Drive, suite 100, Allen, TX 75013, USA. Abstract: The current trends in unrepeatered

More information

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs)

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Prof. Dr. Yaocheng SHI ( 时尧成 ) yaocheng@zju.edu.cn http://mypage.zju.edu.cn/yaocheng 1 Traditional Optical Communication System Loss

More information

Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing

Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing Viyoma Sarup* and Amit Gupta Chandigarh University Punjab, India *viyoma123@gmail.com Abstract A RoF

More information

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings Optimisation of DSF and SOA based Phase Conjugators by Incorporating Noise-Suppressing Fibre Gratings Paper no: 1471 S. Y. Set, H. Geiger, R. I. Laming, M. J. Cole and L. Reekie Optoelectronics Research

More information

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender Journal of the Optical Society of Korea Vol. 15, No. 3, September 2011, pp. 222-226 DOI: http://dx.doi.org/10.3807/josk.2011.15.3.222 An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources

More information

Performance of Digital Optical Communication Link: Effect of In-Line EDFA Parameters

Performance of Digital Optical Communication Link: Effect of In-Line EDFA Parameters PCS-7 766 CSDSP 00 Performance of Digital Optical Communication Link: Effect of n-line EDFA Parameters Ahmed A. Elkomy, Moustafa H. Aly, Member of SOA, W. P. g 3, Senior Member, EEE, Z. Ghassemlooy 3,

More information

A novel 3-stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier *

A novel 3-stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier * Journal of Zhejiang University SCIENCE ISSN 9-9 http://www.zju.edu.cn/jzus E-mail: jzus@zju.edu.cn A novel -stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier

More information

To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks

To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks 289 To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks Areet Aulakh 1, Kulwinder Singh Malhi 2 1 Student, M.Tech, ECE department, Punjabi University,

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 37

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 37 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 37 Introduction to Raman Amplifiers Fiber Optics, Prof. R.K. Shevgaonkar, Dept.

More information

Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique

Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique Avneet Kour 1, Neena Gupta 2 1,2 Electronics and Communication Department, PEC University of Technology, Chandigarh

More information

Emerging Subsea Networks

Emerging Subsea Networks Highly efficient submarine C+L EDFA with serial architecture Douglas O. M. de Aguiar, Reginaldo Silva (Padtec S/A) Giorgio Grasso, Aldo Righetti, Fausto Meli (Fondazione Cife) Email: douglas.aguiar@padtec.com.br

More information

Analysis of EDFA Gain Variation in Dynamic Optical Networks

Analysis of EDFA Gain Variation in Dynamic Optical Networks 96 Analysis of EDFA Gain Variation in Dynamic Optical Networks Victor André P. de Oliveira, Fco A. de Oliveira Neto & Iguatemi Eduardo da Fonseca Abstract This paper presents an analysis of the Erbium-

More information

The Report of Gain Performance Characteristics of the Erbium Doped Fiber Amplifier (EDFA)

The Report of Gain Performance Characteristics of the Erbium Doped Fiber Amplifier (EDFA) The Report of Gain Performance Characteristics of the Erbium Doped Fiber Amplifier (EDFA) Masruri Masruri (186520) 22/05/2008 1 Laboratory Setup The laboratory setup using in this laboratory experiment

More information

Selection of Lightpath for BER and PMD Constraints

Selection of Lightpath for BER and PMD Constraints Research Inventy: International Journal Of Engineering And Science Issn: 2278-4721, Vol.2 Issue 2(January 2013) Pp 28-33 Www.Researchinventy.Com Selection of Lightpath for BER and PMD Constraints Prof.

More information

FIBER OPTIC COMMUNICATION LINK LOSS, OSNR AND FEC PERFORMANCE

FIBER OPTIC COMMUNICATION LINK LOSS, OSNR AND FEC PERFORMANCE Tallinn University of Technology Laboratory exercise 2 of Fiber Optical Communication course FIBER OPTIC COMMUNICATION LINK LOSS, OSNR AND FEC PERFORMANCE Tallinn 2016 Please note that the OSA (Optical

More information

Communications Group - Politecnico di Torino Pirelli Cables Systems Conclusions. Outline Introduction. The origin of Parametric Gain (PG) and its syst

Communications Group - Politecnico di Torino Pirelli Cables Systems Conclusions. Outline Introduction. The origin of Parametric Gain (PG) and its syst Theoretical and Experimental Results on Transmission Penalty Due to Fiber Parametric Gain in Normal Dispersion A. Carena, V. Curri, R. Gaudino, P. Poggiolini, S.Benedetto F. Bentivoglio, M. Frascolla,

More information

Transient Control in Dynamically Reconfigured Networks with Cascaded Erbium Doped Fiber Amplifiers

Transient Control in Dynamically Reconfigured Networks with Cascaded Erbium Doped Fiber Amplifiers Transient Control in Dynamically Reconfigured Networks with Cascaded Erbium Doped Fiber Amplifiers Lei Zong, Ting Wang lanezong@nec-labs.com NEC Laboratories America, Princeton, New Jersey, USA WOCC 2007

More information

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber I. H. M. Nadzar 1 and N. A.Awang 1* 1 Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, Johor,

More information

Introduction Fundamental of optical amplifiers Types of optical amplifiers

Introduction Fundamental of optical amplifiers Types of optical amplifiers ECE 6323 Introduction Fundamental of optical amplifiers Types of optical amplifiers Erbium-doped fiber amplifiers Semiconductor optical amplifier Others: stimulated Raman, optical parametric Advanced application:

More information

S Optical Networks Course Lecture 4: Transmission System Engineering

S Optical Networks Course Lecture 4: Transmission System Engineering S-72.3340 Optical Networks Course Lecture 4: Transmission System Engineering Edward Mutafungwa Communications Laboratory, Helsinki University of Technology, P. O. Box 2300, FIN-02015 TKK, Finland Tel:

More information

Gain-clamping techniques in two-stage double-pass L-band EDFA

Gain-clamping techniques in two-stage double-pass L-band EDFA PRAMANA c Indian Academy of Sciences Vol. 66, No. 3 journal of March 2006 physics pp. 539 545 Gain-clamping techniques in two-stage double-pass L-band EDFA S W HARUN 1, N Md SAMSURI 2 and H AHMAD 2 1 Faculty

More information

Strictly Non-Blocking Optical Cross Connect for WDM Wavelength Path Networks

Strictly Non-Blocking Optical Cross Connect for WDM Wavelength Path Networks Strictly Non-Blocking Optical Cross Connect for WDM Wavelength Path Networks P. S. André 1, 2, J. Pinto 1, A. J. Teixeira 1,3, T. Almeida 1, 4, A. Nolasco Pinto 1, 3, J. L. Pinto 1, 2, F. Morgado 4 and

More information

Power Transients in Hybrid Optical Amplifier (EDFA + DFRA) Cascades

Power Transients in Hybrid Optical Amplifier (EDFA + DFRA) Cascades Power Transients in Hybrid Optical Amplifier (EDFA + DFRA) Cascades Bárbara Dumas and Ricardo Olivares Electronic Engineering Department Universidad Técnica Federico Santa María Valparaíso, Chile bpilar.dumas@gmail.com,

More information

1 COPYRIGHT 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

1 COPYRIGHT 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED. 1 ECOC 2011 WORKSHOP Space-Division Multiplexed Transmission in Strongly Coupled Few-Mode and Multi-Core Fibers Roland Ryf September 18 th 2011 CONTENTS 1. THE CAPACITY CRUNCH 2. SPACE DIVISION MULTIPLEXING

More information

4x25-Gb/s 40-km 1310-nm PMD with SOA Pre-Amplifier: Impact of Channel Spacing

4x25-Gb/s 40-km 1310-nm PMD with SOA Pre-Amplifier: Impact of Channel Spacing 4x25-Gb/s 40-km 1310-nm PMD with SOA Pre-Amplifier: Impact of Channel Spacing Ramón Gutiérrez-Castrejón, email: RGutierrezC@ii.unam.mx Universidad Nacional Autonoma de Mexico-UNAM (collaboration with Marcus

More information

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration 22 Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration Jun-Hyuk Seo, and Woo-Young Choi Department of Electrical and

More information

Signal Conditioning Parameters for OOFDM System

Signal Conditioning Parameters for OOFDM System Chapter 4 Signal Conditioning Parameters for OOFDM System 4.1 Introduction The idea of SDR has been proposed for wireless transmission in 1980. Instead of relying on dedicated hardware, the network has

More information

RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM

RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM Prof. Muthumani 1, Mr. Ayyanar 2 1 Professor and HOD, 2 UG Student, Department of Electronics and Communication Engineering,

More information

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber H. Ahmad 1, S. Shahi 1 and S. W. Harun 1,2* 1 Photonics Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia 2 Department

More information

Design and optimization of WDM PON system using Spectrum Sliced Technique

Design and optimization of WDM PON system using Spectrum Sliced Technique Design and optimization of WDM PON system using Spectrum Sliced Technique Sukhwinder Kaur 1, Neena Gupta 2 P.G. Student, Department of Electronics and Communication Engineering, PEC University of Technology,

More information

DWDM Theory. ZTE Corporation Transmission Course Team. ZTE University

DWDM Theory. ZTE Corporation Transmission Course Team. ZTE University DWDM Theory ZTE Corporation Transmission Course Team DWDM Overview Multiplexing Technology WDM TDM SDM What is DWDM? Gas Station High Way Prowl Car Definition l 1 l 2 l N l 1 l 2 l 1 l 2 l N OA l N OMU

More information

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm Khaled O. Basulaim, Samah Ali Al-Azani Dept. of Information Technology Faculty of Engineering,

More information

EDFA SIMULINK MODEL FOR ANALYZING GAIN SPECTRUM AND ASE. Stephen Z. Pinter

EDFA SIMULINK MODEL FOR ANALYZING GAIN SPECTRUM AND ASE. Stephen Z. Pinter EDFA SIMULINK MODEL FOR ANALYZING GAIN SPECTRUM AND ASE Stephen Z. Pinter Ryerson University Department of Electrical and Computer Engineering spinter@ee.ryerson.ca December, 2003 ABSTRACT A Simulink model

More information

Improved Analysis of Hybrid Optical Amplifier in CWDM System

Improved Analysis of Hybrid Optical Amplifier in CWDM System Improved Analysis of Hybrid Optical Amplifier in CWDM System 1 Bandana Mallick, 2 Reeta Kumari, 3 Anirban Mukherjee, 4 Kunwar Parakram 1. Asst Proffesor in Dept. of ECE, GIET Gunupur 2, 3,4. Student in

More information

Qualifying Fiber for 10G Deployment

Qualifying Fiber for 10G Deployment Qualifying Fiber for 10G Deployment Presented by: Bob Chomycz, P.Eng. Email: BChomycz@TelecomEngineering.com Tel: 1.888.250.1562 www.telecomengineering.com 2017, Slide 1 of 25 Telecom Engineering Introduction

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April ISSN International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 197 A Novel Method for Non linear effect Cross Phase Modulation due to various data rates in Dynamic Wavelength

More information

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1 Lecture 8 Bit error rate The Q value Receiver sensitivity Sensitivity degradation Extinction ratio RIN Timing jitter Chirp Forward error correction Fiber Optical Communication Lecture 8, Slide Bit error

More information

Theoretical and Simulation Approaches for Studying Compensation Strategies of Nonlinear Effects Digital Lightwave Links Using DWDM Technology

Theoretical and Simulation Approaches for Studying Compensation Strategies of Nonlinear Effects Digital Lightwave Links Using DWDM Technology Journal of Computer Science (11): 887-89, 007 ISSN 1549-66 007 Science Publications Theoretical and Simulation Approaches for Studying Compensation Strategies of Nonlinear Effects Digital Lightwave Links

More information

EDFA-WDM Optical Network Analysis

EDFA-WDM Optical Network Analysis EDFA-WDM Optical Network Analysis Narruvala Lokesh, kranthi Kumar Katam,Prof. Jabeena A Vellore Institute of Technology VIT University, Vellore, India Abstract : Optical network that apply wavelength division

More information

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs)

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs) DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs) Ahmet Altuncu Arif Başgümüş Burçin Uzunca Ekim Haznedaroğlu e-mail: altuncu@dumlupinar.edu.tr e-mail:

More information

Emerging Subsea Networks

Emerging Subsea Networks A NEW CABLE FAILURE QUICK ISOLATION TECHNIQUE OF OADM BRANCHING UNIT IN SUBMARINE NETWORKS Hongbo Sun, Likun Zhang, Xin Wang, Wendou Zhang, Liping Ma (Huawei Marine Networks Co., LTD) Email: sunhongbo@huaweimarine.com

More information

Design and Implementation of All-optical Demultiplexer using Four-Wave Mixing (FWM) in a Highly Nonlinear Fiber (HNLF)

Design and Implementation of All-optical Demultiplexer using Four-Wave Mixing (FWM) in a Highly Nonlinear Fiber (HNLF) International Journal of Scientific and Research Publications, Volume 4, Issue 5, May 2014 1 Design and Implementation of All-optical Demultiplexer using Four-Wave Mixing (FWM) in a Highly Nonlinear Fiber

More information

Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System

Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System Gagandeep Singh Walia 1, Kulwinder Singh 2, Manjit Singh Bhamrah 3

More information

Design Coordination of Pre-amp EDFAs and PIN Photon Detectors For Use in Telecommunications Optical Receivers

Design Coordination of Pre-amp EDFAs and PIN Photon Detectors For Use in Telecommunications Optical Receivers Paper 010, ENT 201 Design Coordination of Pre-amp EDFAs and PIN Photon Detectors For Use in Telecommunications Optical Receivers Akram Abu-aisheh, Hisham Alnajjar University of Hartford abuaisheh@hartford.edu,

More information

CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE

CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE Progress In Electromagnetics Research Letters, Vol. 6, 107 113, 2009 CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE S.-J. Tzeng, H.-H. Lu, C.-Y. Li, K.-H. Chang,and C.-H.

More information

Emerging Subsea Networks

Emerging Subsea Networks EVALUATION OF NONLINEAR IMPAIRMENT FROM NARROW- BAND UNPOLARIZED IDLERS IN COHERENT TRANSMISSION ON DISPERSION-MANAGED SUBMARINE CABLE SYSTEMS Masashi Binkai, Keisuke Matsuda, Tsuyoshi Yoshida, Naoki Suzuki,

More information

Transient gain dynamics in long-haul transmission systems with electronic EDFA gain control

Transient gain dynamics in long-haul transmission systems with electronic EDFA gain control Vol. 6, No. 9 / September 2007 / JOURNAL OF OPTICAL NETWORKING 1129 Transient gain dynamics in long-haul transmission systems with electronic EDFA gain control Stephan Pachnicke, 1, * Peter M. Krummrich,

More information

Semiconductor Optical Amplifiers (SOAs) as Power Boosters. Applications Note No. 0001

Semiconductor Optical Amplifiers (SOAs) as Power Boosters. Applications Note No. 0001 Semiconductor Optical Amplifiers (s) as Power Boosters Applications Note No. 0001 Semiconductor Optical Amplifiers (s) as Power Boosters There is a growing need to manage the increase in loss budgets associated

More information

[Jain* et al., 5(6): June, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Jain* et al., 5(6): June, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY ELIMINATING FOUR WAVE MIXING WITH DYNAMIC CHANNEL SHUFFLING IN DWDM OPTICAL NETWORK Alisha Jain*, Harpreet Kaur * Student, Deptt.

More information

SIMULATION OF FIBER LOOP BUFFER MEMORY OF ALL-OPTICAL PACKET SWITCH. Mandar Naik, Yatindra Nath Singh

SIMULATION OF FIBER LOOP BUFFER MEMORY OF ALL-OPTICAL PACKET SWITCH. Mandar Naik, Yatindra Nath Singh SIMULATION OF FIBER LOOP BUFFER MEMORY ABSTRACT OF ALL-OPTICAL PACKET SWITCH Mandar Naik, Yatindra Nath Singh Center for Laser Technology Indian Institute of Technology Kanpur - 28 16 India {mandy,ynsingh}@iitk.ac.in

More information

40Gb/s & 100Gb/s Transport in the WAN Dr. Olga Vassilieva Fujitsu Laboratories of America, Inc. Richardson, Texas

40Gb/s & 100Gb/s Transport in the WAN Dr. Olga Vassilieva Fujitsu Laboratories of America, Inc. Richardson, Texas 40Gb/s & 100Gb/s Transport in the WAN Dr. Olga Vassilieva Fujitsu Laboratories of America, Inc. Richardson, Texas All Rights Reserved, 2007 Fujitsu Laboratories of America, Inc. Outline Introduction Challenges

More information

DWDM 101 BRKOPT Rodger Nutt High-End Routing and Optical BU Technical Leader

DWDM 101 BRKOPT Rodger Nutt High-End Routing and Optical BU Technical Leader DWDM 101 Rodger Nutt High-End Routing and Optical BU Technical Leader Agenda Introduction What is DWDM Fiber Types Linear Effects The BIG Three: Attenuation, Chromatic Dispersion, OSNR Solutions to the

More information

11.1 Gbit/s Pluggable Small Form Factor DWDM Optical Transceiver Module

11.1 Gbit/s Pluggable Small Form Factor DWDM Optical Transceiver Module INFORMATION & COMMUNICATIONS 11.1 Gbit/s Pluggable Small Form Factor DWDM Transceiver Module Yoji SHIMADA*, Shingo INOUE, Shimako ANZAI, Hiroshi KAWAMURA, Shogo AMARI and Kenji OTOBE We have developed

More information

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier Aied K. Mohammed, PhD Department of Electrical Engineering, University

More information

Notes on Optical Amplifiers

Notes on Optical Amplifiers Notes on Optical Amplifiers Optical amplifiers typically use energy transitions such as those in atomic media or electron/hole recombination in semiconductors. In optical amplifiers that use semiconductor

More information

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers Chapter 8 Wavelength-Division Multiplexing (WDM) Part II: Amplifiers Introduction Traditionally, when setting up an optical link, one formulates a power budget and adds repeaters when the path loss exceeds

More information

UNREPEATERED SYSTEMS: STATE OF THE ART

UNREPEATERED SYSTEMS: STATE OF THE ART UNREPEATERED SYSTEMS: STATE OF THE ART Hans Bissessur, Isabelle Brylski, Dominique Mongardien (Alcatel-Lucent Submarine Networks), Philippe Bousselet (Alcatel-Lucent Bell Labs) Email: < hans.bissessur@alcatel-lucent.com

More information

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Optical fiber-fault surveillance for passive optical networks in S-band operation window Optical fiber-fault surveillance for passive optical networks in S-band operation window Chien-Hung Yeh 1 and Sien Chi 2,3 1 Transmission System Department, Computer and Communications Research Laboratories,

More information

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University Photonics Group Department of Micro- and Nanosciences Aalto University Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Last Lecture Topics Course introduction Ray optics & optical

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW #5 is assigned (due April 9) April 9 th class will be in

More information

Practical Aspects of Raman Amplifier

Practical Aspects of Raman Amplifier Practical Aspects of Raman Amplifier Contents Introduction Background Information Common Types of Raman Amplifiers Principle Theory of Raman Gain Noise Sources Related Information Introduction This document

More information

LABORATORY INSTRUCTION NOTES ERBIUM-DOPED FIBER AMPLIFIER

LABORATORY INSTRUCTION NOTES ERBIUM-DOPED FIBER AMPLIFIER ECE1640H Advanced Labs for Special Topics in Photonics LABORATORY INSTRUCTION NOTES ERBIUM-DOPED FIBER AMPLIFIER Fictitious moving pill box in a fiber amplifier Faculty of Applied Science and Engineering

More information

ELSEVIER FIRST PROOFS

ELSEVIER FIRST PROOFS OPTICAL AMPLIFIERS / Semiconductor Optical Amplifiers 1 OPTICAL AMPLIFIERS A5 S5 P5 P1 Semiconductor Optical Amplifiers M J Connelly, University of Limerick, Limerick, Ireland q 24, Elsevier Ltd. All Rights

More information

Photonics (OPTI 510R 2017) - Final exam. (May 8, 10:30am-12:30pm, R307)

Photonics (OPTI 510R 2017) - Final exam. (May 8, 10:30am-12:30pm, R307) Photonics (OPTI 510R 2017) - Final exam (May 8, 10:30am-12:30pm, R307) Problem 1: (30pts) You are tasked with building a high speed fiber communication link between San Francisco and Tokyo (Japan) which

More information

Spectral Response of FWM in EDFA for Long-haul Optical Communication

Spectral Response of FWM in EDFA for Long-haul Optical Communication Spectral Response of FWM in EDFA for Long-haul Optical Communication Lekshmi.S.R 1, Sindhu.N 2 1 P.G.Scholar, Govt. Engineering College, Wayanad, Kerala, India 2 Assistant Professor, Govt. Engineering

More information

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

Linear cavity erbium-doped fiber laser with over 100 nm tuning range Linear cavity erbium-doped fiber laser with over 100 nm tuning range Xinyong Dong, Nam Quoc Ngo *, and Ping Shum Network Technology Research Center, School of Electrical & Electronics Engineering, Nanyang

More information

LW Technology. Passive Components. LW Technology (Passive Components).PPT - 1 Copyright 1999, Agilent Technologies

LW Technology. Passive Components. LW Technology (Passive Components).PPT - 1 Copyright 1999, Agilent Technologies LW Technology Passive Components LW Technology (Passive Components).PPT - 1 Patchcords Jumper cables to connect devices and instruments Adapter cables to connect interfaces using different connector styles

More information

Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations

Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations Mayur Date M.E. Scholar Department of Electronics and Communication Ujjain Engineering College, Ujjain (M.P.) datemayur3@gmail.com

More information

Comparison of Various Configurations of Hybrid Raman Amplifiers

Comparison of Various Configurations of Hybrid Raman Amplifiers IJCST Vo l. 3, Is s u e 4, Oc t - De c 2012 ISSN : 0976-8491 (Online) ISSN : 2229-4333 (Print) Comparison of Various Configurations of Hybrid Raman Amplifiers Sunil Gautam Dept. of ECE, Shaheed Bhagat

More information

Performance Analysis of WDM RoF-EPON Link with and without DCF and FBG

Performance Analysis of WDM RoF-EPON Link with and without DCF and FBG Optics and Photonics Journal, 2013, 3, 163-168 http://dx.doi.org/10.4236/opj.2013.32027 Published Online June 2013 (http://www.scirp.org/journal/opj) Performance Analysis of WDM RoF-EPON Link with and

More information

CHAPTER 5 SPECTRAL EFFICIENCY IN DWDM

CHAPTER 5 SPECTRAL EFFICIENCY IN DWDM 61 CHAPTER 5 SPECTRAL EFFICIENCY IN DWDM 5.1 SPECTRAL EFFICIENCY IN DWDM Due to the ever-expanding Internet data traffic, telecommunication networks are witnessing a demand for high-speed data transfer.

More information

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source JOURNAL OF L A TEX CLASS FILES, VOL. X, NO. XX, XXXX XXX 1 Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source Jérôme Vasseur, Jianjun Yu Senior Member,

More information

Simulative Analysis of 40 Gbps DWDM System Using Combination of Hybrid Modulators and Optical Filters for Suppression of Four-Wave Mixing

Simulative Analysis of 40 Gbps DWDM System Using Combination of Hybrid Modulators and Optical Filters for Suppression of Four-Wave Mixing Vol.9, No.7 (2016), pp.213-220 http://dx.doi.org/10.14257/ijsip.2016.9.7.18 Simulative Analysis of 40 Gbps DWDM System Using Combination of Hybrid Modulators and Optical Filters for Suppression of Four-Wave

More information

Soliton Transmission in DWDM Network

Soliton Transmission in DWDM Network International Journal of Scientific and Research Publications, Volume 7, Issue 5, May 2017 28 Soliton Transmission in DWDM Network Dr. Ali Y. Fattah 1, Sadeq S. Madlool 2 1 Department of Communication

More information

Module 10 - Optical Amplifiers

Module 10 - Optical Amplifiers Module 10 - Optical Amplifiers Dr. Alan Kost Associate Research Professor Of Optical Sciences, University Of Arizona Dr. Alan Kost is an Associate Research Professor of Optical Sciences in the University

More information

Opto-VLSI-based reconfigurable photonic RF filter

Opto-VLSI-based reconfigurable photonic RF filter Research Online ECU Publications 29 Opto-VLSI-based reconfigurable photonic RF filter Feng Xiao Mingya Shen Budi Juswardy Kamal Alameh This article was originally published as: Xiao, F., Shen, M., Juswardy,

More information

OBSERVATION AND EVALUATION OF POWER TRANSIENTS IN 45 CHANNEL SSDWDM OPTICAL NETWORK

OBSERVATION AND EVALUATION OF POWER TRANSIENTS IN 45 CHANNEL SSDWDM OPTICAL NETWORK OBSERVATION AND EVALUATION OF POWER TRANSIENTS IN 45 CHANNEL SSDWDM OPTICAL NETWORK Vikrant Sharma, Dalveer Kaur 1,2 Department of ECE,IKG PTU, Jalandhar, India Abstract: Erbium doped fiber amplifiers

More information

FWM Aware Fuzzy Dynamic Routing and Wavelength Assignment in Transparent Optical Networks

FWM Aware Fuzzy Dynamic Routing and Wavelength Assignment in Transparent Optical Networks FWM Aware Fuzzy Dynamic Routing and Wavelength Assignment in Transparent Optical Networks Debajyoti Mishra, Urmila Bhanja Abstract In this paper, a novel fuzzy approach is developed while solving the Dynamic

More information

EDFA Applications in Test & Measurement

EDFA Applications in Test & Measurement EDFA Applications in Test & Measurement White Paper PN 200-0600-00 Revision 1.1 September 2003 Calmar Optcom, Inc www.calamropt.com Overview Erbium doped fiber amplifiers (EDFAs) amplify optical pulses

More information

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE Progress In Electromagnetics Research Letters, Vol. 7, 25 33, 2009 RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE H.-H. Lu, C.-Y. Li, C.-H. Lee,

More information

Single channel and WDM transmission of 28 Gbaud zero-guard-interval CO-OFDM

Single channel and WDM transmission of 28 Gbaud zero-guard-interval CO-OFDM Single channel and WDM transmission of 28 Gbaud zero-guard-interval CO-OFDM Qunbi Zhuge, * Mohamed Morsy-Osman, Mohammad E. Mousa-Pasandi, Xian Xu, Mathieu Chagnon, Ziad A. El-Sahn, Chen Chen, and David

More information

Exam : : Cisco Optical SONET Exam. Title. Ver :

Exam : : Cisco Optical SONET Exam. Title. Ver : Exam : 642-311 Title : Cisco Optical SONET Exam Ver : 10.05.07 QUESTION 1: The exhibit shows a 15454/15216 DWDM system and alarm indications. What are two possible sources of trouble shown in the system?

More information

PERFORMANCE ANALYSIS OF 4 CHANNEL WDM_EDFA SYSTEM WITH GAIN EQUALISATION

PERFORMANCE ANALYSIS OF 4 CHANNEL WDM_EDFA SYSTEM WITH GAIN EQUALISATION PERFORMANCE ANALYSIS OF 4 CHANNEL WDM_EDFA SYSTEM WITH GAIN EQUALISATION S.Hemalatha 1, M.Methini 2 M.E.Student, Department Of ECE, Sri Sairam Engineering College,Chennai,India1 Assistant professsor,department

More information