Digital Signal Processing:

Size: px
Start display at page:

Download "Digital Signal Processing:"

Transcription

1 Digital Signal Processing: Mathematical and algorithmic manipulation of discretized and quantized or naturally digital signals in order to extract the most relevant and pertinent information that is carried by the signal. What is a signal? What is a system? What is processing? Applied Signal Processing - Lecture 1

2 Examples of signals: Applied Signal Processing - Lecture 1

3 Characterization of signals: Continuous time signals vs. discrete time signals e.g. Temperature in the building at any time Continuous valued signals vs. digital signals e.g. Amount of current drawn by a device; average exam grades - Continuous time and continuous valued: Analog signal - Continuous time and discrete valued: Quantized signal - Discrete time and continuous valued: Sampled signal - Discrete time and discrete values: Digital signal (CD audio) Real-valued signals vs. complex-valued signals Single channel vs. multi-channel signals e.g. Blood pressure signal 128 channel EEG Deterministic vs. random signal One-dimensional vs. two-dimensional vs. multi-dimensional signals Applied Signal Processing - Lecture 1

4 Applied Signal Processing - Lecture 1

5 - Any physical quantity that is represented as a function of an independent variable is called a signal. independent varables can be time, frequency, space etc. - Every signal carries information. However, not all that information is typically of interest to the user. The goal of signal processing is to extract the useful information from the signal - The part of the signal that is not useful is called noise. Noise is not necessarily noisy. Any part of the signal we are not interested in is by definition noise. Applied Signal Processing - Lecture 1

6 Applied Signal Processing - Lecture 1

7 Sinusoids play a very important role in signal processing, because They are easy to generate They are easy to work with; their mathematical properties are well known Most importantly: all signals can be written as a sum of sinusoids, through Fourier transforms (later). In continuous time: Applied Signal Processing - Lecture 1

8 - A discrete-time signal, commonly referred to as a sequence, is only defined at discrete time instances, where t is defined to take integer values only. - Discrete-time signals may also be written as a sequence of numbers inside braces: {x[n]} = {..., -0.2, 2.2, 1.1, 0.2, -3.7, 2.9,...} n indicates discrete time, in integer intervals, the bold-face number is at t = 0. Applied Signal Processing - Lecture 1

9 - Discrete-time signals are often generated from continuous time signals by sampling, which can roughly be interpreted as quantizing the independent variable (time). {x[n]} = x(nt S ) = x( t ) t=nts n =...,-2,-1,0,1,2,... T S = Sampling interval/period f S = 1/T S = Sampling frequency Applied Signal Processing - Lecture 1

10 Applied Signal Processing - Lecture 1

11 Applied Signal Processing - Lecture 1

12 Applied Signal Processing - Lecture 1

13 Applied Signal Processing - Lecture 1

14 ZERO ORDER HOLD Applied Signal Processing - Lecture 1

15 Applied Signal Processing - Lecture 1

16 Applied Signal Processing - Lecture 1

17 Applied Signal Processing - Lecture 1

18 Applied Signal Processing - Lecture 1

19 Applied Signal Processing - Lecture 1

20 Applied Signal Processing - Lecture 1

21 Examples of filtering Applied Signal Processing - Lecture 1

22 Applied Signal Processing - Lecture 1

23 Analysis of ECG Signals Applied Signal Processing - Lecture 1

24 Analysis of seismic waves: study the structure of the soil by analyzing seismic waves, wither natural (earthquakes, volcanic eruptions) or man-made (explosions etc.) Useful e.g. for exploration of oil. Depending on the material in the soil the reflected waves have different frequencies (modes). Applied Signal Processing - Lecture 1

25 travel time Seismic signals as a function of position Applied Signal Processing - Lecture 1

26 Dolby Noise Reduction Scheme A Compressor Applied Signal Processing - Lecture 1

27 Dolby Noise Reduction Scheme Applied Signal Processing - Lecture 1

28 Applied Signal Processing - Lecture 1

29

30

31

32

33

34 μn 1 n 0 μn 0 n< 0

35

36

37

38

39

40

41

42

43 [ ] [ ] [ n] x n=x n+x ev od [ ] [ ] [ ] x n=x n+x n cs ca

44 E = x n= [ ] ( x n ) 2

45

46 1 1 N n= 0 ( [ ]) P= x xn N 2

47

48

49 bounded summable square summable

Digital Signal Processing Lecture 1

Digital Signal Processing Lecture 1 Remote Sensing Laboratory Dept. of Information Engineering and Computer Science University of Trento Via Sommarive, 14, I-38123 Povo, Trento, Italy Digital Signal Processing Lecture 1 Prof. Begüm Demir

More information

II Year (04 Semester) EE6403 Discrete Time Systems and Signal Processing

II Year (04 Semester) EE6403 Discrete Time Systems and Signal Processing Class Subject Code Subject II Year (04 Semester) EE6403 Discrete Time Systems and Signal Processing 1.CONTENT LIST: Introduction to Unit I - Signals and Systems 2. SKILLS ADDRESSED: Listening 3. OBJECTIVE

More information

Статистическая обработка сигналов. Введение

Статистическая обработка сигналов. Введение Статистическая обработка сигналов. Введение А.Г. Трофимов к.т.н., доцент, НИЯУ МИФИ lab@neuroinfo.ru http://datalearning.ru Курс Статистическая обработка временных рядов Сентябрь 2018 А.Г. Трофимов Введение

More information

Overview of Digital Signal Processing

Overview of Digital Signal Processing Overview of Digital Signal Processing Chapter Intended Learning Outcomes: (i) Understand basic terminology in digital signal processing (ii) Differentiate digital signal processing and analog signal processing

More information

Overview of Signal Processing

Overview of Signal Processing Overview of Signal Processing Chapter Intended Learning Outcomes: (i) Understand basic terminology in signal processing (ii) Differentiate digital signal processing and analog signal processing (iii) Describe

More information

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2 Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2 The Fourier transform of single pulse is the sinc function. EE 442 Signal Preliminaries 1 Communication Systems and

More information

Introduction to Digital Signal Processing (Discrete-time Signal Processing)

Introduction to Digital Signal Processing (Discrete-time Signal Processing) Introduction to Digital Signal Processing (Discrete-time Signal Processing) Prof. Chu-Song Chen Research Center for Info. Tech. Innovation, Academia Sinica, Taiwan Dept. CSIE & GINM National Taiwan University

More information

Lecture 4 Biosignal Processing. Digital Signal Processing and Analysis in Biomedical Systems

Lecture 4 Biosignal Processing. Digital Signal Processing and Analysis in Biomedical Systems Lecture 4 Biosignal Processing Digital Signal Processing and Analysis in Biomedical Systems Contents - Preprocessing as first step of signal analysis - Biosignal acquisition - ADC - Filtration (linear,

More information

Audio /Video Signal Processing. Lecture 1, Organisation, A/D conversion, Sampling Gerald Schuller, TU Ilmenau

Audio /Video Signal Processing. Lecture 1, Organisation, A/D conversion, Sampling Gerald Schuller, TU Ilmenau Audio /Video Signal Processing Lecture 1, Organisation, A/D conversion, Sampling Gerald Schuller, TU Ilmenau Gerald Schuller gerald.schuller@tu ilmenau.de Organisation: Lecture each week, 2SWS, Seminar

More information

CMPT 318: Lecture 4 Fundamentals of Digital Audio, Discrete-Time Signals

CMPT 318: Lecture 4 Fundamentals of Digital Audio, Discrete-Time Signals CMPT 318: Lecture 4 Fundamentals of Digital Audio, Discrete-Time Signals Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 16, 2006 1 Continuous vs. Discrete

More information

Continuous vs. Discrete signals. Sampling. Analog to Digital Conversion. CMPT 368: Lecture 4 Fundamentals of Digital Audio, Discrete-Time Signals

Continuous vs. Discrete signals. Sampling. Analog to Digital Conversion. CMPT 368: Lecture 4 Fundamentals of Digital Audio, Discrete-Time Signals Continuous vs. Discrete signals CMPT 368: Lecture 4 Fundamentals of Digital Audio, Discrete-Time Signals Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 22,

More information

ece 429/529 digital signal processing robin n. strickland ece dept, university of arizona ECE 429/529 RNS

ece 429/529 digital signal processing robin n. strickland ece dept, university of arizona ECE 429/529 RNS ece 429/529 digital signal processing robin n. strickland ece dept, university of arizona 2007 SPRING 2007 SCHEDULE All dates are tentative. Lesson Day Date Learning outcomes to be Topics Textbook HW/PROJECT

More information

Signal Processing. Naureen Ghani. December 9, 2017

Signal Processing. Naureen Ghani. December 9, 2017 Signal Processing Naureen Ghani December 9, 27 Introduction Signal processing is used to enhance signal components in noisy measurements. It is especially important in analyzing time-series data in neuroscience.

More information

Music 270a: Fundamentals of Digital Audio and Discrete-Time Signals

Music 270a: Fundamentals of Digital Audio and Discrete-Time Signals Music 270a: Fundamentals of Digital Audio and Discrete-Time Signals Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego October 3, 2016 1 Continuous vs. Discrete signals

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 01 Introduction 14/01/21 http://www.ee.unlv.edu/~b1morris/ee482/

More information

SARDAR RAJA COLLEGE OF ENGINEERING ALANGULAM

SARDAR RAJA COLLEGE OF ENGINEERING ALANGULAM SARDAR RAJA COLLEGES SARDAR RAJA COLLEGE OF ENGINEERING ALANGULAM DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING MICRO LESSON PLAN SUBJECT NAME SUBJECT CODE SEMESTER YEAR : SIGNALS AND SYSTEMS

More information

Pseudo-Random Testing and Signature Analysis for Mixed-Signal Circuits

Pseudo-Random Testing and Signature Analysis for Mixed-Signal Circuits Pseudo-Random Testing and Signature Analysis for Mixed-Signal Circuits Chen-Yang Pan and Kwang-Ting Cheng Deptartment of Electrical and Computer Engineering University of California, Santa Barbara Abstract

More information

(i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods

(i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods Tools and Applications Chapter Intended Learning Outcomes: (i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods

More information

Sampling and Reconstruction of Analog Signals

Sampling and Reconstruction of Analog Signals Sampling and Reconstruction of Analog Signals Chapter Intended Learning Outcomes: (i) Ability to convert an analog signal to a discrete-time sequence via sampling (ii) Ability to construct an analog signal

More information

Biosignal Analysis Biosignal Processing Methods. Medical Informatics WS 2007/2008

Biosignal Analysis Biosignal Processing Methods. Medical Informatics WS 2007/2008 Biosignal Analysis Biosignal Processing Methods Medical Informatics WS 2007/2008 JH van Bemmel, MA Musen: Handbook of medical informatics, Springer 1997 Biosignal Analysis 1 Introduction Fig. 8.1: The

More information

Continuous time and Discrete time Signals and Systems

Continuous time and Discrete time Signals and Systems Continuous time and Discrete time Signals and Systems 1. Systems in Engineering A system is usually understood to be an engineering device in the field, and a mathematical representation of this system

More information

PYKC 27 Feb 2017 EA2.3 Electronics 2 Lecture PYKC 27 Feb 2017 EA2.3 Electronics 2 Lecture 11-2

PYKC 27 Feb 2017 EA2.3 Electronics 2 Lecture PYKC 27 Feb 2017 EA2.3 Electronics 2 Lecture 11-2 In this lecture, I will introduce the mathematical model for discrete time signals as sequence of samples. You will also take a first look at a useful alternative representation of discrete signals known

More information

Digital Signal Processing. VO Embedded Systems Engineering Armin Wasicek WS 2009/10

Digital Signal Processing. VO Embedded Systems Engineering Armin Wasicek WS 2009/10 Digital Signal Processing VO Embedded Systems Engineering Armin Wasicek WS 2009/10 Overview Signals and Systems Processing of Signals Display of Signals Digital Signal Processors Common Signal Processing

More information

Computing for Engineers in Python

Computing for Engineers in Python Computing for Engineers in Python Lecture 10: Signal (Image) Processing Autumn 2011-12 Some slides incorporated from Benny Chor s course 1 Lecture 9: Highlights Sorting, searching and time complexity Preprocessing

More information

ECE 556 BASICS OF DIGITAL SPEECH PROCESSING. Assıst.Prof.Dr. Selma ÖZAYDIN Spring Term-2017 Lecture 2

ECE 556 BASICS OF DIGITAL SPEECH PROCESSING. Assıst.Prof.Dr. Selma ÖZAYDIN Spring Term-2017 Lecture 2 ECE 556 BASICS OF DIGITAL SPEECH PROCESSING Assıst.Prof.Dr. Selma ÖZAYDIN Spring Term-2017 Lecture 2 Analog Sound to Digital Sound Characteristics of Sound Amplitude Wavelength (w) Frequency ( ) Timbre

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. OpenCourseWare 2006

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. OpenCourseWare 2006 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.341: Discrete-Time Signal Processing OpenCourseWare 2006 Lecture 6 Quantization and Oversampled Noise Shaping

More information

TE 302 DISCRETE SIGNALS AND SYSTEMS. Chapter 1: INTRODUCTION

TE 302 DISCRETE SIGNALS AND SYSTEMS. Chapter 1: INTRODUCTION TE 302 DISCRETE SIGNALS AND SYSTEMS Study on the behavior and processing of information bearing functions as they are currently used in human communication and the systems involved. Chapter 1: INTRODUCTION

More information

Signals & Signal Processing

Signals & Signal Processing Chapter 1 Signals & Signal Processing 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 #33120 Original PowerPoint slides prepared by S. K. Mitra 1-1-1 Signal & Signal Processing Signal: quantity that carries information

More information

Signals & Signal Processing

Signals & Signal Processing Chapter 1 Signals & Signal Processing 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 #33120 Original PowerPoint slides prepared by S. K. Mitra 1-1-1 Signal & Signal Processing Signal: quantity that carries information

More information

Masters of Engineering in Electrical Engineering Course Syllabi ( ) City University of New York--College of Staten Island

Masters of Engineering in Electrical Engineering Course Syllabi ( ) City University of New York--College of Staten Island City University of New York--College of Staten Island Masters of Engineering in Electrical Engineering Course Syllabi (2017-2018) Required Core Courses ELE 600/ MTH 6XX Probability Theory and Stochastic

More information

Lecture 7 Frequency Modulation

Lecture 7 Frequency Modulation Lecture 7 Frequency Modulation Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/3/15 1 Time-Frequency Spectrum We have seen that a wide range of interesting waveforms can be synthesized

More information

FPGA implementation of DWT for Audio Watermarking Application

FPGA implementation of DWT for Audio Watermarking Application FPGA implementation of DWT for Audio Watermarking Application Naveen.S.Hampannavar 1, Sajeevan Joseph 2, C.B.Bidhul 3, Arunachalam V 4 1, 2, 3 M.Tech VLSI Students, 4 Assistant Professor Selection Grade

More information

Lecture #2. EE 313 Linear Systems and Signals

Lecture #2. EE 313 Linear Systems and Signals Lecture #2 EE 313 Linear Systems and Signals Preview of today s lecture What is a signal and what is a system? o Define the concepts of a signal and a system o Why? This is essential for a course on Signals

More information

Analogue Interfacing. What is a signal? Continuous vs. Discrete Time. Continuous time signals

Analogue Interfacing. What is a signal? Continuous vs. Discrete Time. Continuous time signals Analogue Interfacing What is a signal? Signal: Function of one or more independent variable(s) such as space or time Examples include images and speech Continuous vs. Discrete Time Continuous time signals

More information

Image analysis. CS/CME/BIOPHYS/BMI 279 Fall 2015 Ron Dror

Image analysis. CS/CME/BIOPHYS/BMI 279 Fall 2015 Ron Dror Image analysis CS/CME/BIOPHYS/BMI 279 Fall 2015 Ron Dror A two- dimensional image can be described as a function of two variables f(x,y). For a grayscale image, the value of f(x,y) specifies the brightness

More information

Based with permission on lectures by John Getty Laboratory Electronics II (PHSX262) Spring 2011 Lecture 9 Page 1

Based with permission on lectures by John Getty Laboratory Electronics II (PHSX262) Spring 2011 Lecture 9 Page 1 Today 3// Lecture 9 Analog Digital Conversion Sampled Data Acquisition Systems Discrete Sampling and Nyquist Digital to Analog Conversion Analog to Digital Conversion Homework Study for Exam next week

More information

Introduction. Chapter Time-Varying Signals

Introduction. Chapter Time-Varying Signals Chapter 1 1.1 Time-Varying Signals Time-varying signals are commonly observed in the laboratory as well as many other applied settings. Consider, for example, the voltage level that is present at a specific

More information

Basic Signals and Systems

Basic Signals and Systems Chapter 2 Basic Signals and Systems A large part of this chapter is taken from: C.S. Burrus, J.H. McClellan, A.V. Oppenheim, T.W. Parks, R.W. Schafer, and H. W. Schüssler: Computer-based exercises for

More information

CSCD 433 Network Programming Fall Lecture 5 Physical Layer Continued

CSCD 433 Network Programming Fall Lecture 5 Physical Layer Continued CSCD 433 Network Programming Fall 2016 Lecture 5 Physical Layer Continued 1 Topics Definitions Analog Transmission of Digital Data Digital Transmission of Analog Data Multiplexing 2 Different Types of

More information

ON THE VALIDITY OF THE NOISE MODEL OF QUANTIZATION FOR THE FREQUENCY-DOMAIN AMPLITUDE ESTIMATION OF LOW-LEVEL SINE WAVES

ON THE VALIDITY OF THE NOISE MODEL OF QUANTIZATION FOR THE FREQUENCY-DOMAIN AMPLITUDE ESTIMATION OF LOW-LEVEL SINE WAVES Metrol. Meas. Syst., Vol. XXII (215), No. 1, pp. 89 1. METROLOGY AND MEASUREMENT SYSTEMS Index 3393, ISSN 86-8229 www.metrology.pg.gda.pl ON THE VALIDITY OF THE NOISE MODEL OF QUANTIZATION FOR THE FREQUENCY-DOMAIN

More information

MULTIMEDIA SYSTEMS

MULTIMEDIA SYSTEMS 1 Department of Computer Engineering, Faculty of Engineering King Mongkut s Institute of Technology Ladkrabang 01076531 MULTIMEDIA SYSTEMS Pk Pakorn Watanachaturaporn, Wt ht Ph.D. PhD pakorn@live.kmitl.ac.th,

More information

Lecture 2: SIGNALS. 1 st semester By: Elham Sunbu

Lecture 2: SIGNALS. 1 st semester By: Elham Sunbu Lecture 2: SIGNALS 1 st semester 1439-2017 1 By: Elham Sunbu OUTLINE Signals and the classification of signals Sine wave Time and frequency domains Composite signals Signal bandwidth Digital signal Signal

More information

Detection and Estimation of Signals in Noise. Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia

Detection and Estimation of Signals in Noise. Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia Detection and Estimation of Signals in Noise Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia Vancouver, August 24, 2010 2 Contents 1 Basic Elements

More information

EE 230 Lecture 39. Data Converters. Time and Amplitude Quantization

EE 230 Lecture 39. Data Converters. Time and Amplitude Quantization EE 230 Lecture 39 Data Converters Time and Amplitude Quantization Review from Last Time: Time Quantization How often must a signal be sampled so that enough information about the original signal is available

More information

Speech Enhancement Based On Spectral Subtraction For Speech Recognition System With Dpcm

Speech Enhancement Based On Spectral Subtraction For Speech Recognition System With Dpcm International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Speech Enhancement Based On Spectral Subtraction For Speech Recognition System With Dpcm A.T. Rajamanickam, N.P.Subiramaniyam, A.Balamurugan*,

More information

Digital Video and Audio Processing. Winter term 2002/ 2003 Computer-based exercises

Digital Video and Audio Processing. Winter term 2002/ 2003 Computer-based exercises Digital Video and Audio Processing Winter term 2002/ 2003 Computer-based exercises Rudolf Mester Institut für Angewandte Physik Johann Wolfgang Goethe-Universität Frankfurt am Main 6th November 2002 Chapter

More information

Laboratory Assignment 4. Fourier Sound Synthesis

Laboratory Assignment 4. Fourier Sound Synthesis Laboratory Assignment 4 Fourier Sound Synthesis PURPOSE This lab investigates how to use a computer to evaluate the Fourier series for periodic signals and to synthesize audio signals from Fourier series

More information

Principles of Communications

Principles of Communications 1 Principles of Communications Lin DAI 2 Lecture 1. Overview of Communication Systems Block Diagram of Communication Systems Noise and Distortion 3 SOURCE Source Info. Transmitter Transmitted signal Received

More information

Frequency-Domain Sharing and Fourier Series

Frequency-Domain Sharing and Fourier Series MIT 6.02 DRAFT Lecture Notes Fall 200 (Last update: November 9, 200) Comments, questions or bug reports? Please contact 6.02-staff@mit.edu LECTURE 4 Frequency-Domain Sharing and Fourier Series In earlier

More information

Frequency Division Multiplexing Spring 2011 Lecture #14. Sinusoids and LTI Systems. Periodic Sequences. x[n] = x[n + N]

Frequency Division Multiplexing Spring 2011 Lecture #14. Sinusoids and LTI Systems. Periodic Sequences. x[n] = x[n + N] Frequency Division Multiplexing 6.02 Spring 20 Lecture #4 complex exponentials discrete-time Fourier series spectral coefficients band-limited signals To engineer the sharing of a channel through frequency

More information

Sampling and reconstruction. CS 4620 Lecture 13

Sampling and reconstruction. CS 4620 Lecture 13 Sampling and reconstruction CS 4620 Lecture 13 Lecture 13 1 Outline Review signal processing Sampling Reconstruction Filtering Convolution Closely related to computer graphics topics such as Image processing

More information

Topic 6. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith)

Topic 6. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) Topic 6 The Digital Fourier Transform (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) 10 20 30 40 50 60 70 80 90 100 0-1 -0.8-0.6-0.4-0.2 0 0.2 0.4

More information

Fundamentals of Music Technology

Fundamentals of Music Technology Fundamentals of Music Technology Juan P. Bello Office: 409, 4th floor, 383 LaFayette Street (ext. 85736) Office Hours: Wednesdays 2-5pm Email: jpbello@nyu.edu URL: http://homepages.nyu.edu/~jb2843/ Course-info:

More information

BME 3113, Dept. of BME Lecture on Introduction to Biosignal Processing

BME 3113, Dept. of BME Lecture on Introduction to Biosignal Processing What is a signal? A signal is a varying quantity whose value can be measured and which conveys information. A signal can be simply defined as a function that conveys information. Signals are represented

More information

Experiments #6. Convolution and Linear Time Invariant Systems

Experiments #6. Convolution and Linear Time Invariant Systems Experiments #6 Convolution and Linear Time Invariant Systems 1) Introduction: In this lab we will explain how to use computer programs to perform a convolution operation on continuous time systems and

More information

The Scientist and Engineer's Guide to Digital Signal Processing By Steven W. Smith, Ph.D.

The Scientist and Engineer's Guide to Digital Signal Processing By Steven W. Smith, Ph.D. The Scientist and Engineer's Guide to Digital Signal Processing By Steven W. Smith, Ph.D. Home The Book by Chapters About the Book Steven W. Smith Blog Contact Book Search Download this chapter in PDF

More information

DIGITAL SIGNAL PROCESSING. Chapter 1 Introduction to Discrete-Time Signals & Sampling

DIGITAL SIGNAL PROCESSING. Chapter 1 Introduction to Discrete-Time Signals & Sampling DIGITAL SIGNAL PROCESSING Chapter 1 Introduction to Discrete-Time Signals & Sampling by Dr. Norizam Sulaiman Faculty of Electrical & Electronics Engineering norizam@ump.edu.my OER Digital Signal Processing

More information

CSCD 433 Network Programming Fall Lecture 5 Physical Layer Continued

CSCD 433 Network Programming Fall Lecture 5 Physical Layer Continued CSCD 433 Network Programming Fall 2016 Lecture 5 Physical Layer Continued 1 Topics Definitions Analog Transmission of Digital Data Digital Transmission of Analog Data Multiplexing 2 Different Types of

More information

EENG 479 Digital signal processing Dr. Mohab A. Mangoud

EENG 479 Digital signal processing Dr. Mohab A. Mangoud EENG 479 Digital signal processing Dr. Mohab A. Mangoud Associate Professor Department of Electrical and Electronics Engineering College of Engineering University of Bahrain P.O.Box 32038- Kingdom of Bahrain

More information

DOWNLOAD OR READ : THE VALUE OF SIGNALS IN HIDDEN ACTION MODELS PDF EBOOK EPUB MOBI

DOWNLOAD OR READ : THE VALUE OF SIGNALS IN HIDDEN ACTION MODELS PDF EBOOK EPUB MOBI DOWNLOAD OR READ : THE VALUE OF SIGNALS IN HIDDEN ACTION MODELS PDF EBOOK EPUB MOBI Page 1 Page 2 the value of signals in hidden action models the value of signals pdf the value of signals in hidden action

More information

Recall. Sampling. Why discrete time? Why discrete time? Many signals are continuous-time signals Light Object wave CCD

Recall. Sampling. Why discrete time? Why discrete time? Many signals are continuous-time signals Light Object wave CCD Recall Many signals are continuous-time signals Light Object wave CCD Sampling mic Lens change of voltage change of voltage 2 Why discrete time? With the advance of computer technology, we want to process

More information

DISCRETE FOURIER TRANSFORM AND FILTER DESIGN

DISCRETE FOURIER TRANSFORM AND FILTER DESIGN DISCRETE FOURIER TRANSFORM AND FILTER DESIGN N. C. State University CSC557 Multimedia Computing and Networking Fall 2001 Lecture # 03 Spectrum of a Square Wave 2 Results of Some Filters 3 Notation 4 x[n]

More information

THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA. Department of Electrical and Computer Engineering. ELEC 423 Digital Signal Processing

THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA. Department of Electrical and Computer Engineering. ELEC 423 Digital Signal Processing THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA Department of Electrical and Computer Engineering ELEC 423 Digital Signal Processing Project 2 Due date: November 12 th, 2013 I) Introduction In ELEC

More information

TABLE OF CONTENTS TOPIC NUMBER NAME OF THE TOPIC 1. OVERVIEW OF SIGNALS & SYSTEMS 2. ANALYSIS OF LTI SYSTEMS- Z TRANSFORM 3. ANALYSIS OF FT, DFT AND FFT SIGNALS 4. DIGITAL FILTERS CONCEPTS & DESIGN 5.

More information

Antennas and Propagation. Chapter 6b: Path Models Rayleigh, Rician Fading, MIMO

Antennas and Propagation. Chapter 6b: Path Models Rayleigh, Rician Fading, MIMO Antennas and Propagation b: Path Models Rayleigh, Rician Fading, MIMO Introduction From last lecture How do we model H p? Discrete path model (physical, plane waves) Random matrix models (forget H p and

More information

Moving from continuous- to discrete-time

Moving from continuous- to discrete-time Moving from continuous- to discrete-time Sampling ideas Uniform, periodic sampling rate, e.g. CDs at 44.1KHz First we will need to consider periodic signals in order to appreciate how to interpret discrete-time

More information

Lecture5: Lossless Compression Techniques

Lecture5: Lossless Compression Techniques Fixed to fixed mapping: we encoded source symbols of fixed length into fixed length code sequences Fixed to variable mapping: we encoded source symbols of fixed length into variable length code sequences

More information

Sampling and Reconstruction

Sampling and Reconstruction Sampling and reconstruction COMP 575/COMP 770 Fall 2010 Stephen J. Guy 1 Review What is Computer Graphics? Computer graphics: The study of creating, manipulating, and using visual images in the computer.

More information

I am very pleased to teach this class again, after last year s course on electronics over the Summer Term. Based on the SOLE survey result, it is clear that the format, style and method I used worked with

More information

Lecture 7: Superposition and Fourier Theorem

Lecture 7: Superposition and Fourier Theorem Lecture 7: Superposition and Fourier Theorem Sound is linear. What that means is, if several things are producing sounds at once, then the pressure of the air, due to the several things, will be and the

More information

E C E S I G N A L S A N D S Y S T E M S. ECE 2221 Signals and Systems, Sem /2011, Dr. Sigit Jarot

E C E S I G N A L S A N D S Y S T E M S. ECE 2221 Signals and Systems, Sem /2011, Dr. Sigit Jarot 1 E C E 2 2 2 1 S I G N A L S A N D S Y S T E M S ECE 2221 Signals and Systems, Sem 3 2010/2011, Dr. Sigit Jarot Outline Course Objectives Learning Outcomes Course Synopsis Text and Supporting Books Course

More information

CS Lecture 10:

CS Lecture 10: CS 1101101 Lecture 10: Digital Encoding---Representing the world in symbols Review: Analog vs Digital (Symbolic) Information Text encoding: ASCII and Unicode Encoding pictures: Sampling Quantizing Analog

More information

Application of Fourier Transform in Signal Processing

Application of Fourier Transform in Signal Processing 1 Application of Fourier Transform in Signal Processing Lina Sun,Derong You,Daoyun Qi Information Engineering College, Yantai University of Technology, Shandong, China Abstract: Fourier transform is a

More information

ELEC-C5230 Digitaalisen signaalinkäsittelyn perusteet

ELEC-C5230 Digitaalisen signaalinkäsittelyn perusteet ELEC-C5230 Digitaalisen signaalinkäsittelyn perusteet Lecture 10: Summary Taneli Riihonen 16.05.2016 Lecture 10 in Course Book Sanjit K. Mitra, Digital Signal Processing: A Computer-Based Approach, 4th

More information

Audio processing methods on marine mammal vocalizations

Audio processing methods on marine mammal vocalizations Audio processing methods on marine mammal vocalizations Xanadu Halkias Laboratory for the Recognition and Organization of Speech and Audio http://labrosa.ee.columbia.edu Sound to Signal sound is pressure

More information

Contents. Introduction 1 1 Suggested Reading 2 2 Equipment and Software Tools 2 3 Experiment 2

Contents. Introduction 1 1 Suggested Reading 2 2 Equipment and Software Tools 2 3 Experiment 2 ECE363, Experiment 02, 2018 Communications Lab, University of Toronto Experiment 02: Noise Bruno Korst - bkf@comm.utoronto.ca Abstract This experiment will introduce you to some of the characteristics

More information

Module 1: Introduction to Experimental Techniques Lecture 2: Sources of error. The Lecture Contains: Sources of Error in Measurement

Module 1: Introduction to Experimental Techniques Lecture 2: Sources of error. The Lecture Contains: Sources of Error in Measurement The Lecture Contains: Sources of Error in Measurement Signal-To-Noise Ratio Analog-to-Digital Conversion of Measurement Data A/D Conversion Digitalization Errors due to A/D Conversion file:///g /optical_measurement/lecture2/2_1.htm[5/7/2012

More information

The Noise about Noise

The Noise about Noise The Noise about Noise I have found that few topics in astrophotography cause as much confusion as noise and proper exposure. In this column I will attempt to present some of the theory that goes into determining

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 11: February 20, 2018 Data Converters, Noise Shaping Lecture Outline! Review: Multi-Rate Filter Banks " Quadrature Mirror Filters! Data Converters " Anti-aliasing

More information

ESE531 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Signal Processing

ESE531 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Signal Processing University of Pennsylvania Department of Electrical and System Engineering Digital Signal Processing ESE531, Spring 2017 Final Project: Audio Equalization Wednesday, Apr. 5 Due: Tuesday, April 25th, 11:59pm

More information

Chapter 1 INTRODUCTION TO SOURCE CODING AND CHANNEL CODING. Whether a source is analog or digital, a digital communication

Chapter 1 INTRODUCTION TO SOURCE CODING AND CHANNEL CODING. Whether a source is analog or digital, a digital communication 1 Chapter 1 INTRODUCTION TO SOURCE CODING AND CHANNEL CODING 1.1 SOURCE CODING Whether a source is analog or digital, a digital communication system is designed to transmit information in digital form.

More information

Introduction. BME208 Logic Circuits Yalçın İŞLER

Introduction. BME208 Logic Circuits Yalçın İŞLER Introduction BME208 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com 1 Lecture Three hours a week (three credits) No other sections, please register this section Tuesday: 09:30 12:15

More information

CS 262 Lecture 01: Digital Images and Video. John Magee Some material copyright Jones and Bartlett

CS 262 Lecture 01: Digital Images and Video. John Magee Some material copyright Jones and Bartlett CS 262 Lecture 01: Digital Images and Video John Magee Some material copyright Jones and Bartlett 1 Overview/Questions What is digital information? What is color? How do pictures get encoded into binary

More information

EEE 311: Digital Signal Processing I

EEE 311: Digital Signal Processing I EEE 311: Digital Signal Processing I Course Teacher: Dr Newaz Md Syur Rahim Associated Proessor, Dept o EEE, BUET, Dhaka 1000 Syllabus: As mentioned in your course calendar Reerence Books: 1 Digital Signal

More information

DSP First Lab 08: Frequency Response: Bandpass and Nulling Filters

DSP First Lab 08: Frequency Response: Bandpass and Nulling Filters DSP First Lab 08: Frequency Response: Bandpass and Nulling Filters Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment and go over all exercises in the

More information

Department of Electronic Engineering NED University of Engineering & Technology. LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202)

Department of Electronic Engineering NED University of Engineering & Technology. LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202) Department of Electronic Engineering NED University of Engineering & Technology LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202) Instructor Name: Student Name: Roll Number: Semester: Batch:

More information

EE 403: Digital Signal Processing

EE 403: Digital Signal Processing OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE 1 EEE 403 DIGITAL SIGNAL PROCESSING (DSP) 01 INTRODUCTION FALL 2012 Yrd. Doç. Dr. Didem Kıvanç Türeli didem.kivanc@okan.edu.tr EE 403: Digital Signal

More information

MATHEMATICS IN COMMUNICATIONS: INTRODUCTION TO CODING. A Public Lecture to the Uganda Mathematics Society

MATHEMATICS IN COMMUNICATIONS: INTRODUCTION TO CODING. A Public Lecture to the Uganda Mathematics Society Abstract MATHEMATICS IN COMMUNICATIONS: INTRODUCTION TO CODING A Public Lecture to the Uganda Mathematics Society F F Tusubira, PhD, MUIPE, MIEE, REng, CEng Mathematical theory and techniques play a vital

More information

DIGITAL SIGNAL PROCESSING. Introduction

DIGITAL SIGNAL PROCESSING. Introduction DIGITAL SIGNAL PROCESSING Introduction What is Signal? A SIGNAL is a measurement of a physical quantity of certain medium. Examples of signals: Audio patterns (voice, speech, music) Visual patterns (written

More information

Chapter 1 INTRODUCTION TO DIGITAL SIGNAL PROCESSING. 1.1 Introduction 1.2 The Sampling Process

Chapter 1 INTRODUCTION TO DIGITAL SIGNAL PROCESSING. 1.1 Introduction 1.2 The Sampling Process Chapter 1 INTRODUCTION TO DIGITAL SIGNAL PROCESSING 1.1 Introduction 1.2 The Sampling Process Copyright c 2005- Andreas Antoniou Victoria, BC, Canada Email: aantoniou@ieee.org January 31, 2008 Frame #

More information

Matched filter. Contents. Derivation of the matched filter

Matched filter. Contents. Derivation of the matched filter Matched filter From Wikipedia, the free encyclopedia In telecommunications, a matched filter (originally known as a North filter [1] ) is obtained by correlating a known signal, or template, with an unknown

More information

Chapter 8. Representing Multimedia Digitally

Chapter 8. Representing Multimedia Digitally Chapter 8 Representing Multimedia Digitally Learning Objectives Explain how RGB color is represented in bytes Explain the difference between bits and binary numbers Change an RGB color by binary addition

More information

Lecture Outline. ESE 531: Digital Signal Processing. Anti-Aliasing Filter with ADC ADC. Oversampled ADC. Oversampled ADC

Lecture Outline. ESE 531: Digital Signal Processing. Anti-Aliasing Filter with ADC ADC. Oversampled ADC. Oversampled ADC Lecture Outline ESE 531: Digital Signal Processing Lec 12: February 21st, 2017 Data Converters, Noise Shaping (con t)! Data Converters " Anti-aliasing " ADC " Quantization "! Noise Shaping 2 Anti-Aliasing

More information

Lab 8. Signal Analysis Using Matlab Simulink

Lab 8. Signal Analysis Using Matlab Simulink E E 2 7 5 Lab June 30, 2006 Lab 8. Signal Analysis Using Matlab Simulink Introduction The Matlab Simulink software allows you to model digital signals, examine power spectra of digital signals, represent

More information

Digital and Analog Communication (EE-217-F)

Digital and Analog Communication (EE-217-F) Digital and Analog Communication (EE-217-F) BOOK Text Book: Data Communications, Computer Networks and Open Systems Halsall Fred, (4thediton) 2000, Addison Wesley, Low Price edition Reference Books: Business

More information

DIGITAL SIGNAL PROCESSING (Date of document: 6 th May 2014)

DIGITAL SIGNAL PROCESSING (Date of document: 6 th May 2014) Course Code : EEEB363 DIGITAL SIGNAL PROCESSING (Date of document: 6 th May 2014) Course Status : Core for BEEE and BEPE Level : Degree Semester Taught : 6 Credit : 3 Co-requisites : Signals and Systems

More information

Week 1 Introduction of Digital Signal Processing with the review of SMJE 2053 Circuits & Signals for Filter Design

Week 1 Introduction of Digital Signal Processing with the review of SMJE 2053 Circuits & Signals for Filter Design SMJE3163 DSP2016_Week1-04 Week 1 Introduction of Digital Signal Processing with the review of SMJE 2053 Circuits & Signals for Filter Design 1) Signals, Systems, and DSP 2) DSP system configuration 3)

More information

Assistant Lecturer Sama S. Samaan

Assistant Lecturer Sama S. Samaan MP3 Not only does MPEG define how video is compressed, but it also defines a standard for compressing audio. This standard can be used to compress the audio portion of a movie (in which case the MPEG standard

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 12: February 21st, 2017 Data Converters, Noise Shaping (con t) Lecture Outline! Data Converters " Anti-aliasing " ADC " Quantization " Practical DAC! Noise Shaping

More information

Sampling and reconstruction

Sampling and reconstruction Sampling and reconstruction CS 5625 Lecture 6 Lecture 6 1 Sampled representations How to store and compute with continuous functions? Common scheme for representation: samples write down the function s

More information