Kate Allstadt s final project for ESS522 June 10, The Hilbert transform is the convolution of the function f(t) with the kernel (- πt) - 1.

Size: px
Start display at page:

Download "Kate Allstadt s final project for ESS522 June 10, The Hilbert transform is the convolution of the function f(t) with the kernel (- πt) - 1."

Transcription

1 Hilbert Transforms Signal envelopes, Instantaneous amplitude and instantaneous frequency! Kate Allstadt s final project for ESS522 June 10, 2010 The Hilbert transform is a useful way of looking at an evenly sampled signal. It is used to obtain the analytic signal - a complex signal from which the negative frequencies have been removed. The advantage of using this complex analytic signal over the original signal is that it separates the amplitude information from the frequency information. The amplitude information is represented by the signal envelope, which gives the overall shape of a signal. The frequency portion gives the instantaneous frequency at any given time, this is essentially the mean frequency at that point. The math The Hilbert transform is the convolution of the function f(t) with the kernel (- πt) - 1. This can be written as: H[ f (t)] = 1 πt * f (t) = 1 π f (τ)dτ τ t (because convolution is c(t) = a(t) * b(t) = a(τ)b(t τ)dτ and it is communative.) Because (- πt) - 1 goes to infinity at t=0, this integral is not solvable for a finite value this can be solved by removing an infinitesimal slice of the function centered at the singularity by using the Cauchy principal value, denoted by P: [ ] = 1 π P f (τ)dτ H f (t) Since convolution in the time domain is multiplication in the frequency domain, an easier way to grasp this is to go to the frequency domain. The fourier transform of the kernel function (- πt) - 1 is the signum (sgn) function times I = isgn(f). This is equal to +i for negative frequencies and i for negative frequencies. See Figure 2: τ t Figure 1 Showing the Kernel function (-π x) -1 at left, and its fourier transform, i* the signum function From Bracewell (1965). 1

2 The amplitude of the signal in the frequency domain is not changed by this because the signum is just multiplying by 1. The phase, on the other hand, is shifted by π/2 for positive frequencies, and - π/2 for negative frequencies. The shift is π/2 because the i*sgn(s) function flips the signal a quarter of the way around the imaginary axis. This means that two Hilbert transforms will recover the negative of the original signal (because phase was shifted by ± π), and four Hilbert transforms will recover the original signal (because phase is shifted by ± 2π ). This is illustrated in the figure below from Bracewell (1965): Figure 2 The column at left is in the time domain, at right in frequency domain. Each successive plot downwards is a Hilbert transform Bracewell (1965). The analytic signal The important part of all this is that the Hilbert transform is used to compute the analytic signal from a real signal. The analytic signal is computed by subtracting i times the Hilbert transform of the function f(t) from the function itself: f a (t) = f (t) ih [ f (t)] The analytic signal fa(t) is a complex helical sequence with a real part - the original data - and an imaginary part - the Hilbert transform. Again, the Hilbert transform is simply the real signal with a 90- degree phase shift. This means that if the real part of the signal is sine, the imaginary part becomes cosine and vice versa. The analytic signal fa(t) can be used to get the envelope (instantaneous amplitude), the phase and the instantaneous frequency by the following formulas: 2

3 envelope = Re( f a (t)) 2 + Im( f a (t)) 2 phase = arctan(im( f a (t)) /Re( f a (t))) inst.freq = phase t The envelope will give the overall shape of the signal, only touching at maxima. It is representing the combined amplitude of all frequencies involved but removes the frequency information. The formula above will give the upper envelope, the negative of that formula will give the lower envelope. This is different from just taking the absolute value the absolute value will only give the envelope at maxima or minima, while the envelope obtained from the analytic signal will give the envelope at all times. We will explore this in the exercise. The phase will be a value that is always increasing (except if there are jumps in frequency content). Changes in slope represent changes in frequency. Sometimes this can be a clearer way to see changes than the instantaneous frequency, which will vary rapidly due to small changes in the phase. The instantaneous frequency will represent the mean frequency contained in the signal at a given time (in radians per time unit it must be adjusted to obtain Hz). The advantage of this over a spectrogram is that is gives a single value - in a spectrogram it is easier to see how frequency is changing with time, but it is difficult to quantify and takes longer to compute. The instantaneous frequency often must be smoothed to be clear because a tiny sharp jump in phase will cause a huge jump in instantaneous frequency, even if it is from an insignificant small magnitude portion of the signal, like in the noise before an earthquake. How to do this for discrete signals Matlab uses FFT to move into the frequency domain, sets the second half of fft(x) (not including the nyquist) equal to zero (which is essentially removing the redundant negative frequency information). It then doubles the positive frequency and takes the IFFT of that to get the complex analytic signal. To get the envelope (instantaneous amplitude) we just need to take the magnitude of this signal sqrt(re^2+im^2). To get the phase, we just need to take the angle of the signal and unwrap it. The slope of the phase is the instantaneous frequency which can be obtained using the diff function. The reason that the analytic signal is equivalent to removing the negative frequencies and doubling the positive frequencies is illustrated on the last page of these notes. Examples Now we ll look at different types of seismic signals using the Hilbert transform. The following figures show what instantaneous amplitude, phase, and instantaneous frequency look like for different types of seismic events. Each plot also includes a spectrogram so we can better understand what the plots are showing us: 3

4 Figure 3 Broadband recording (horizonal component) in Washington state of the M8.8 Chile earthquake on Feb 27, Note the rapid change in phase when the P-waves arrive (~1050sec), and a lowering of the instantaneous frequency when the S-waves (~2800sec) and surface waves arrive (~2100sec Rayleigh, ~2600 Love?). Note that the inst. Freq. gradually increases again after the surface waves arrive, this is because surface waves are dispersive, lower frequencies arrive sooner than higher frequencies. 4

5 Figure 4 Local earthquake, M3.4 near Bellevue on May 25, Note that sudden high amplitude arrival of waves. This recording is from so close that the P and S waves are not distinguishable on this time scale. The slope of phase, and thus instantaneous frequency both decrease here showing that the earthquake has a lower average frequency than the ambient noise, particularly in the coda. 5

6 Figure 5 Mt Redoubt (near Anchorage, Alaska) volcanic eruption March 28, The actual eruption is the blast at about 3300 seconds, the noise before that is volcanic tremor which in this case had a strong fundamental frequency and higher modes and these actually increased in frequency approaching the eruption (gliding spectral lines their cause is still being investigated). This is apparent in the phase, which swoops upwards as the average frequency increases. This is represented as a linear increase in instantaneous frequency. Then, right before the eruption, frequency rapidly increases, then all is quiet for a few seconds the inst frequency drops way down, (very noticeable on the envelope) and then the blast occurs at lower frequencies. 6

7 Figure 6 Main event of Nile Valley Landslide near Naches, WA, Oct 11, This signal was recorded 12km away from the slide so it is not very strong, but the increase in noise between 0 and 10Hz is noticeable, particularly at 5Hz, which is probably due to a site amplification where the station is located. Note that the envelope shows that this event has an emergent onset, unlike the earthquakes which had sudden arrivals. This entire signal is dominated by the 5Hz amplification, so the instantaneous frequency is rather flat at 5Hz. As the amplitude of the 5Hz signal increases around 700seconds as the landsliding intensifies, the instantaneous frequency is more dominated by 5Hz. The higher frequency blip is due to local noise on the station, not due to the landslide, it clearly stands out in the instantaneous frequency. 7

8 Exercise (exercisek.m) A) What is the envelope of a sine wave? What do phase and instantaneous frequency look like? Construct a sine wave with a frequency of 1Hz that lasts for 5 seconds with a sample interval of 0.01 seconds: t=0:0.01:5-0.01; %subtract one sample so there is no jump xr=sin(1*2*pi*t); %1Hz sine wave plot(t,xr) hold on get the analytic signal (use function hilbert if have signal processing toolbox, otherwise follow these steps) xf=fft(xr); %take fft of sine wave half=ceil(length(xf)/2); %find the halfway point of the vector xf(half+1:end)=0; %set repeated part of FT to zero xf=2*xf; %double the amplitude of the freq. domain signal x=ifft(xf); take ifft to go back to time domain Now plot the envelope (a.k.a. instantaneous amplitude), what is the envelope of a sine? hilbx=sqrt(real(x).^2+imag(x).^2); %take magnitude of signal to get envelope plot(t,hilbx,'r'); %upper envelope hold off Now plot the phase phase1=unwrap(angle(x)); %get phase angle and unwrap so it plots as always increasing instead of repeating every 2pi plot(t,phase1) ylabel('radians') title('phase') Take the derivative of the phase to get the instantaneous frequency normalize by the sample interval and 2*pi to get to Hz (because the slope is in units of radians per sample). deriv=(diff(phase1)/0.01)/(2*pi); plot(t(1:end-1),deriv,'k') B) Same thing but with a real signal. How is envelope different from absolute value of signal? Now we will work with a real signal composed of ambient noise recorded at a seismometer. This is saved as signal.mat, it has a sampling rate of 100Hz. 8

9 First plot the signal and its upper and lower envelopes. Zoom in and look around. Also plot the phase and instantaneous frequency. Apply a lowpass filter to the instantaneous frequency to eliminate outlying spikes. Now replot the original signal, but this time take the absolute value. Plot the upper envelope over this, zoom in and look around and comment on the differences. The end. References Bracewell, R. (1965). The Fourier Transform and Its Applications. McGrawHill: New York, p Farnbach, J.S. (1975). The Complex Envelope in Seismic Signal Analysis. Bull. of Seis. Soc. of America: v.65, p King, F. (2009). Hilbert Transforms, Volume I. Cambridge University Press: Cambridge. p.??? Matlab help section 9

10

Principles of Communications ECS 332

Principles of Communications ECS 332 Principles of Communications ECS 332 Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 5. Angle Modulation Office Hours: BKD, 6th floor of Sirindhralai building Wednesday 4:3-5:3 Friday 4:3-5:3 Example

More information

The Discrete Fourier Transform. Claudia Feregrino-Uribe, Alicia Morales-Reyes Original material: Dr. René Cumplido

The Discrete Fourier Transform. Claudia Feregrino-Uribe, Alicia Morales-Reyes Original material: Dr. René Cumplido The Discrete Fourier Transform Claudia Feregrino-Uribe, Alicia Morales-Reyes Original material: Dr. René Cumplido CCC-INAOE Autumn 2015 The Discrete Fourier Transform Fourier analysis is a family of mathematical

More information

Lecture 3, Multirate Signal Processing

Lecture 3, Multirate Signal Processing Lecture 3, Multirate Signal Processing Frequency Response If we have coefficients of an Finite Impulse Response (FIR) filter h, or in general the impulse response, its frequency response becomes (using

More information

Section 5.2 Graphs of the Sine and Cosine Functions

Section 5.2 Graphs of the Sine and Cosine Functions A Periodic Function and Its Period Section 5.2 Graphs of the Sine and Cosine Functions A nonconstant function f is said to be periodic if there is a number p > 0 such that f(x + p) = f(x) for all x in

More information

Lecture 3 Complex Exponential Signals

Lecture 3 Complex Exponential Signals Lecture 3 Complex Exponential Signals Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/3/1 1 Review of Complex Numbers Using Euler s famous formula for the complex exponential The

More information

Biomedical Signals. Signals and Images in Medicine Dr Nabeel Anwar

Biomedical Signals. Signals and Images in Medicine Dr Nabeel Anwar Biomedical Signals Signals and Images in Medicine Dr Nabeel Anwar Noise Removal: Time Domain Techniques 1. Synchronized Averaging (covered in lecture 1) 2. Moving Average Filters (today s topic) 3. Derivative

More information

Topic 6. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith)

Topic 6. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) Topic 6 The Digital Fourier Transform (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) 10 20 30 40 50 60 70 80 90 100 0-1 -0.8-0.6-0.4-0.2 0 0.2 0.4

More information

Problem Set 1 (Solutions are due Mon )

Problem Set 1 (Solutions are due Mon ) ECEN 242 Wireless Electronics for Communication Spring 212 1-23-12 P. Mathys Problem Set 1 (Solutions are due Mon. 1-3-12) 1 Introduction The goals of this problem set are to use Matlab to generate and

More information

EE 215 Semester Project SPECTRAL ANALYSIS USING FOURIER TRANSFORM

EE 215 Semester Project SPECTRAL ANALYSIS USING FOURIER TRANSFORM EE 215 Semester Project SPECTRAL ANALYSIS USING FOURIER TRANSFORM Department of Electrical and Computer Engineering Missouri University of Science and Technology Page 1 Table of Contents Introduction...Page

More information

DFT: Discrete Fourier Transform & Linear Signal Processing

DFT: Discrete Fourier Transform & Linear Signal Processing DFT: Discrete Fourier Transform & Linear Signal Processing 2 nd Year Electronics Lab IMPERIAL COLLEGE LONDON Table of Contents Equipment... 2 Aims... 2 Objectives... 2 Recommended Textbooks... 3 Recommended

More information

2.1 BASIC CONCEPTS Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal.

2.1 BASIC CONCEPTS Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal. 1 2.1 BASIC CONCEPTS 2.1.1 Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal. 2 Time Scaling. Figure 2.4 Time scaling of a signal. 2.1.2 Classification of Signals

More information

Sinusoids. Lecture #2 Chapter 2. BME 310 Biomedical Computing - J.Schesser

Sinusoids. Lecture #2 Chapter 2. BME 310 Biomedical Computing - J.Schesser Sinusoids Lecture # Chapter BME 30 Biomedical Computing - 8 What Is this Course All About? To Gain an Appreciation of the Various Types of Signals and Systems To Analyze The Various Types of Systems To

More information

Chapter 3: Analog Modulation Cengage Learning Engineering. All Rights Reserved.

Chapter 3: Analog Modulation Cengage Learning Engineering. All Rights Reserved. Contemporary Communication Systems using MATLAB Chapter 3: Analog Modulation 2013 Cengage Learning Engineering. All Rights Reserved. 3.1 Preview In this chapter we study analog modulation & demodulation,

More information

CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION

CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION Broadly speaking, system identification is the art and science of using measurements obtained from a system to characterize the system. The characterization

More information

ENSC327 Communication Systems Fall 2011 Assignment #1 Due Wednesday, Sept. 28, 4:00 pm

ENSC327 Communication Systems Fall 2011 Assignment #1 Due Wednesday, Sept. 28, 4:00 pm ENSC327 Communication Systems Fall 2011 Assignment #1 Due Wednesday, Sept. 28, 4:00 pm All problem numbers below refer to those in Haykin & Moher s book. 1. (FT) Problem 2.20. 2. (Convolution) Problem

More information

DIGITAL SIGNAL PROCESSING CCC-INAOE AUTUMN 2015

DIGITAL SIGNAL PROCESSING CCC-INAOE AUTUMN 2015 DIGITAL SIGNAL PROCESSING CCC-INAOE AUTUMN 2015 Fourier Transform Properties Claudia Feregrino-Uribe & Alicia Morales Reyes Original material: Rene Cumplido "The Scientist and Engineer's Guide to Digital

More information

Frequency Division Multiplexing Spring 2011 Lecture #14. Sinusoids and LTI Systems. Periodic Sequences. x[n] = x[n + N]

Frequency Division Multiplexing Spring 2011 Lecture #14. Sinusoids and LTI Systems. Periodic Sequences. x[n] = x[n + N] Frequency Division Multiplexing 6.02 Spring 20 Lecture #4 complex exponentials discrete-time Fourier series spectral coefficients band-limited signals To engineer the sharing of a channel through frequency

More information

ESE 150 Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 Lab 04: The Discrete Fourier Transform (DFT) LAB 04 In this lab we will do the following: 1. Use Matlab to perform the Fourier Transform on sampled data in the time domain, converting it to the frequency domain 2. Add two sinewaves together of differing

More information

LABORATORY - FREQUENCY ANALYSIS OF DISCRETE-TIME SIGNALS

LABORATORY - FREQUENCY ANALYSIS OF DISCRETE-TIME SIGNALS LABORATORY - FREQUENCY ANALYSIS OF DISCRETE-TIME SIGNALS INTRODUCTION The objective of this lab is to explore many issues involved in sampling and reconstructing signals, including analysis of the frequency

More information

Fourier and Wavelets

Fourier and Wavelets Fourier and Wavelets Why do we need a Transform? Fourier Transform and the short term Fourier (STFT) Heisenberg Uncertainty Principle The continues Wavelet Transform Discrete Wavelet Transform Wavelets

More information

Lecture notes on Waves/Spectra Noise, Correlations and.

Lecture notes on Waves/Spectra Noise, Correlations and. Lecture notes on Waves/Spectra Noise, Correlations and. W. Gekelman Lecture 4, February 28, 2004 Our digital data is a function of time x(t) and can be represented as: () = a + ( a n t+ b n t) x t cos

More information

Fourier Signal Analysis

Fourier Signal Analysis Part 1B Experimental Engineering Integrated Coursework Location: Baker Building South Wing Mechanics Lab Experiment A4 Signal Processing Fourier Signal Analysis Please bring the lab sheet from 1A experiment

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Amplitude Amplitude Discrete Fourier Transform (DFT) DFT transforms the time domain signal samples to the frequency domain components. DFT Signal Spectrum Time Frequency DFT is often used to do frequency

More information

ESE 150 Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 Lab 04: The Discrete Fourier Transform (DFT) LAB 04 In this lab we will do the following: 1. Use Matlab to perform the Fourier Transform on sampled data in the time domain, converting it to the frequency domain 2. Add two sinewaves together of differing

More information

Phase demodulation using the Hilbert transform in the frequency domain

Phase demodulation using the Hilbert transform in the frequency domain Phase demodulation using the Hilbert transform in the frequency domain Author: Gareth Forbes Created: 3/11/9 Revision: The general idea A phase modulated signal is a type of signal which contains information

More information

Lab S-7: Spectrograms of AM and FM Signals. 2. Study the frequency resolution of the spectrogram for two closely spaced sinusoids.

Lab S-7: Spectrograms of AM and FM Signals. 2. Study the frequency resolution of the spectrogram for two closely spaced sinusoids. DSP First, 2e Signal Processing First Lab S-7: Spectrograms of AM and FM Signals Pre-Lab: Read the Pre-Lab and do all the exercises in the Pre-Lab section prior to attending lab. Verification: The Exercise

More information

Lecture 2: SIGNALS. 1 st semester By: Elham Sunbu

Lecture 2: SIGNALS. 1 st semester By: Elham Sunbu Lecture 2: SIGNALS 1 st semester 1439-2017 1 By: Elham Sunbu OUTLINE Signals and the classification of signals Sine wave Time and frequency domains Composite signals Signal bandwidth Digital signal Signal

More information

Understanding Digital Signal Processing

Understanding Digital Signal Processing Understanding Digital Signal Processing Richard G. Lyons PRENTICE HALL PTR PRENTICE HALL Professional Technical Reference Upper Saddle River, New Jersey 07458 www.photr,com Contents Preface xi 1 DISCRETE

More information

5.3-The Graphs of the Sine and Cosine Functions

5.3-The Graphs of the Sine and Cosine Functions 5.3-The Graphs of the Sine and Cosine Functions Objectives: 1. Graph the sine and cosine functions. 2. Determine the amplitude, period and phase shift of the sine and cosine functions. 3. Find equations

More information

Signals. Periodic vs. Aperiodic. Signals

Signals. Periodic vs. Aperiodic. Signals Signals 1 Periodic vs. Aperiodic Signals periodic signal completes a pattern within some measurable time frame, called a period (), and then repeats that pattern over subsequent identical periods R s.

More information

Phase demodulation using the Hilbert transform in the frequency domain

Phase demodulation using the Hilbert transform in the frequency domain Phase demodulation using the Hilbert transform in the frequency domain Author: Gareth Forbes Created: 3/11/9 Revised: 7/1/1 Revision: 1 The general idea A phase modulated signal is a type of signal which

More information

THE HONG KONG POLYTECHNIC UNIVERSITY Department of Electronic and Information Engineering. EIE2106 Signal and System Analysis Lab 2 Fourier series

THE HONG KONG POLYTECHNIC UNIVERSITY Department of Electronic and Information Engineering. EIE2106 Signal and System Analysis Lab 2 Fourier series THE HONG KONG POLYTECHNIC UNIVERSITY Department of Electronic and Information Engineering EIE2106 Signal and System Analysis Lab 2 Fourier series 1. Objective The goal of this laboratory exercise is to

More information

ECE 201: Introduction to Signal Analysis

ECE 201: Introduction to Signal Analysis ECE 201: Introduction to Signal Analysis Prof. Paris Last updated: October 9, 2007 Part I Spectrum Representation of Signals Lecture: Sums of Sinusoids (of different frequency) Introduction Sum of Sinusoidal

More information

Algebra and Trig. I. The graph of

Algebra and Trig. I. The graph of Algebra and Trig. I 4.5 Graphs of Sine and Cosine Functions The graph of The graph of. The trigonometric functions can be graphed in a rectangular coordinate system by plotting points whose coordinates

More information

Armstrong Atlantic State University Engineering Studies MATLAB Marina Sound Processing Primer

Armstrong Atlantic State University Engineering Studies MATLAB Marina Sound Processing Primer Armstrong Atlantic State University Engineering Studies MATLAB Marina Sound Processing Primer Prerequisites The Sound Processing Primer assumes knowledge of the MATLAB IDE, MATLAB help, arithmetic operations,

More information

+ a(t) exp( 2πif t)dt (1.1) In order to go back to the independent variable t, we define the inverse transform as: + A(f) exp(2πif t)df (1.

+ a(t) exp( 2πif t)dt (1.1) In order to go back to the independent variable t, we define the inverse transform as: + A(f) exp(2πif t)df (1. Chapter Fourier analysis In this chapter we review some basic results from signal analysis and processing. We shall not go into detail and assume the reader has some basic background in signal analysis

More information

Topic 2. Signal Processing Review. (Some slides are adapted from Bryan Pardo s course slides on Machine Perception of Music)

Topic 2. Signal Processing Review. (Some slides are adapted from Bryan Pardo s course slides on Machine Perception of Music) Topic 2 Signal Processing Review (Some slides are adapted from Bryan Pardo s course slides on Machine Perception of Music) Recording Sound Mechanical Vibration Pressure Waves Motion->Voltage Transducer

More information

DSP First. Laboratory Exercise #7. Everyday Sinusoidal Signals

DSP First. Laboratory Exercise #7. Everyday Sinusoidal Signals DSP First Laboratory Exercise #7 Everyday Sinusoidal Signals This lab introduces two practical applications where sinusoidal signals are used to transmit information: a touch-tone dialer and amplitude

More information

Laboratory Assignment 4. Fourier Sound Synthesis

Laboratory Assignment 4. Fourier Sound Synthesis Laboratory Assignment 4 Fourier Sound Synthesis PURPOSE This lab investigates how to use a computer to evaluate the Fourier series for periodic signals and to synthesize audio signals from Fourier series

More information

TRANSFORMS / WAVELETS

TRANSFORMS / WAVELETS RANSFORMS / WAVELES ransform Analysis Signal processing using a transform analysis for calculations is a technique used to simplify or accelerate problem solution. For example, instead of dividing two

More information

Project: Yukti Aggarwal

Project: Yukti Aggarwal Project: Yukti Aggarwal Origin, while maintaining features like that of excel where manipulation of columns, rows and applying operations which are familiar, has host of other features which may require

More information

ELECTRONOTES APPLICATION NOTE NO Hanshaw Road Ithaca, NY Nov 7, 2014 MORE CONCERNING NON-FLAT RANDOM FFT

ELECTRONOTES APPLICATION NOTE NO Hanshaw Road Ithaca, NY Nov 7, 2014 MORE CONCERNING NON-FLAT RANDOM FFT ELECTRONOTES APPLICATION NOTE NO. 416 1016 Hanshaw Road Ithaca, NY 14850 Nov 7, 2014 MORE CONCERNING NON-FLAT RANDOM FFT INTRODUCTION A curiosity that has probably long been peripherally noted but which

More information

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 10 Single Sideband Modulation We will discuss, now we will continue

More information

How to Graph Trigonometric Functions

How to Graph Trigonometric Functions How to Graph Trigonometric Functions This handout includes instructions for graphing processes of basic, amplitude shifts, horizontal shifts, and vertical shifts of trigonometric functions. The Unit Circle

More information

G(f ) = g(t) dt. e i2πft. = cos(2πf t) + i sin(2πf t)

G(f ) = g(t) dt. e i2πft. = cos(2πf t) + i sin(2πf t) Fourier Transforms Fourier s idea that periodic functions can be represented by an infinite series of sines and cosines with discrete frequencies which are integer multiples of a fundamental frequency

More information

THE SINUSOIDAL WAVEFORM

THE SINUSOIDAL WAVEFORM Chapter 11 THE SINUSOIDAL WAVEFORM The sinusoidal waveform or sine wave is the fundamental type of alternating current (ac) and alternating voltage. It is also referred to as a sinusoidal wave or, simply,

More information

Complex Sounds. Reading: Yost Ch. 4

Complex Sounds. Reading: Yost Ch. 4 Complex Sounds Reading: Yost Ch. 4 Natural Sounds Most sounds in our everyday lives are not simple sinusoidal sounds, but are complex sounds, consisting of a sum of many sinusoids. The amplitude and frequency

More information

Lab 8. Signal Analysis Using Matlab Simulink

Lab 8. Signal Analysis Using Matlab Simulink E E 2 7 5 Lab June 30, 2006 Lab 8. Signal Analysis Using Matlab Simulink Introduction The Matlab Simulink software allows you to model digital signals, examine power spectra of digital signals, represent

More information

INDEX TO SERIES OF TUTORIALS TO WAVELET TRANSFORM BY ROBI POLIKAR THE ENGINEER'S ULTIMATE GUIDE TO WAVELET ANALYSIS ROBI POLIKAR

INDEX TO SERIES OF TUTORIALS TO WAVELET TRANSFORM BY ROBI POLIKAR THE ENGINEER'S ULTIMATE GUIDE TO WAVELET ANALYSIS ROBI POLIKAR INDEX TO SERIES OF TUTORIALS TO WAVELET TRANSFORM BY ROBI POLIKAR THE ENGINEER'S ULTIMATE GUIDE TO WAVELET ANALYSIS THE WAVELET TUTORIAL by ROBI POLIKAR Also visit Rowan s Signal Processing and Pattern

More information

Final Exam Practice Questions for Music 421, with Solutions

Final Exam Practice Questions for Music 421, with Solutions Final Exam Practice Questions for Music 4, with Solutions Elementary Fourier Relationships. For the window w = [/,,/ ], what is (a) the dc magnitude of the window transform? + (b) the magnitude at half

More information

Introduction to Wavelets Michael Phipps Vallary Bhopatkar

Introduction to Wavelets Michael Phipps Vallary Bhopatkar Introduction to Wavelets Michael Phipps Vallary Bhopatkar *Amended from The Wavelet Tutorial by Robi Polikar, http://users.rowan.edu/~polikar/wavelets/wttutoria Who can tell me what this means? NR3, pg

More information

Digital Processing of Continuous-Time Signals

Digital Processing of Continuous-Time Signals Chapter 4 Digital Processing of Continuous-Time Signals 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 Digital Processing of Continuous-Time Signals Digital

More information

Figure 1: Block diagram of Digital signal processing

Figure 1: Block diagram of Digital signal processing Experiment 3. Digital Process of Continuous Time Signal. Introduction Discrete time signal processing algorithms are being used to process naturally occurring analog signals (like speech, music and images).

More information

Digital Processing of

Digital Processing of Chapter 4 Digital Processing of Continuous-Time Signals 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 Digital Processing of Continuous-Time Signals Digital

More information

ELT COMMUNICATION THEORY

ELT COMMUNICATION THEORY ELT 41307 COMMUNICATION THEORY Matlab Exercise #1 Sampling, Fourier transform, Spectral illustrations, and Linear filtering 1 SAMPLING The modeled signals and systems in this course are mostly analog (continuous

More information

FFT analysis in practice

FFT analysis in practice FFT analysis in practice Perception & Multimedia Computing Lecture 13 Rebecca Fiebrink Lecturer, Department of Computing Goldsmiths, University of London 1 Last Week Review of complex numbers: rectangular

More information

Reading: Johnson Ch , Ch.5.5 (today); Liljencrants & Lindblom; Stevens (Tues) reminder: no class on Thursday.

Reading: Johnson Ch , Ch.5.5 (today); Liljencrants & Lindblom; Stevens (Tues) reminder: no class on Thursday. L105/205 Phonetics Scarborough Handout 7 10/18/05 Reading: Johnson Ch.2.3.3-2.3.6, Ch.5.5 (today); Liljencrants & Lindblom; Stevens (Tues) reminder: no class on Thursday Spectral Analysis 1. There are

More information

Low wavenumber reflectors

Low wavenumber reflectors Low wavenumber reflectors Low wavenumber reflectors John C. Bancroft ABSTRACT A numerical modelling environment was created to accurately evaluate reflections from a D interface that has a smooth transition

More information

6.02 Practice Problems: Modulation & Demodulation

6.02 Practice Problems: Modulation & Demodulation 1 of 12 6.02 Practice Problems: Modulation & Demodulation Problem 1. Here's our "standard" modulation-demodulation system diagram: at the transmitter, signal x[n] is modulated by signal mod[n] and the

More information

IMAGE ENHANCEMENT IN SPATIAL DOMAIN

IMAGE ENHANCEMENT IN SPATIAL DOMAIN A First Course in Machine Vision IMAGE ENHANCEMENT IN SPATIAL DOMAIN By: Ehsan Khoramshahi Definitions The principal objective of enhancement is to process an image so that the result is more suitable

More information

Signal Processing. Introduction

Signal Processing. Introduction Signal Processing 0 Introduction One of the premiere uses of MATLAB is in the analysis of signal processing and control systems. In this chapter we consider signal processing. The final chapter of the

More information

Chapter 7 Repetitive Change: Cyclic Functions

Chapter 7 Repetitive Change: Cyclic Functions Chapter 7 Repetitive Change: Cyclic Functions 7.1 Cycles and Sine Functions Data that is periodic may often be modeled by trigonometric functions. This chapter will help you use Excel to deal with periodic

More information

Instruction Manual for Concept Simulators. Signals and Systems. M. J. Roberts

Instruction Manual for Concept Simulators. Signals and Systems. M. J. Roberts Instruction Manual for Concept Simulators that accompany the book Signals and Systems by M. J. Roberts March 2004 - All Rights Reserved Table of Contents I. Loading and Running the Simulators II. Continuous-Time

More information

Other Modulation Techniques - CAP, QAM, DMT

Other Modulation Techniques - CAP, QAM, DMT Other Modulation Techniques - CAP, QAM, DMT Prof. David Johns (johns@eecg.toronto.edu) (www.eecg.toronto.edu/~johns) slide 1 of 47 Complex Signals Concept useful for describing a pair of real signals Let

More information

3/15/2010. Distance Distance along the ground (km) Time, (sec)

3/15/2010. Distance Distance along the ground (km) Time, (sec) GG45 March 16, 21 Introduction to Seismic Exploration and Elementary Digital Analysis Some of the material I will cover today can be found in the book on pages 19-2 and 122-13. 13. However, much of what

More information

Signal Analysis. Young Won Lim 2/10/18

Signal Analysis. Young Won Lim 2/10/18 Signal Analysis Copyright (c) 2016 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Log Booklet for EE2 Experiments

Log Booklet for EE2 Experiments Log Booklet for EE2 Experiments Vasil Zlatanov DFT experiment Exercise 1 Code for sinegen.m function y = sinegen(fsamp, fsig, nsamp) tsamp = 1/fsamp; t = 0 : tsamp : (nsamp-1)*tsamp; y = sin(2*pi*fsig*t);

More information

FIR/Convolution. Visulalizing the convolution sum. Convolution

FIR/Convolution. Visulalizing the convolution sum. Convolution FIR/Convolution CMPT 368: Lecture Delay Effects Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University April 2, 27 Since the feedforward coefficient s of the FIR filter are

More information

Lab P-4: AM and FM Sinusoidal Signals. We have spent a lot of time learning about the properties of sinusoidal waveforms of the form: ) X

Lab P-4: AM and FM Sinusoidal Signals. We have spent a lot of time learning about the properties of sinusoidal waveforms of the form: ) X DSP First, 2e Signal Processing First Lab P-4: AM and FM Sinusoidal Signals Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment and go over all exercises

More information

Timbral Distortion in Inverse FFT Synthesis

Timbral Distortion in Inverse FFT Synthesis Timbral Distortion in Inverse FFT Synthesis Mark Zadel Introduction Inverse FFT synthesis (FFT ) is a computationally efficient technique for performing additive synthesis []. Instead of summing partials

More information

Reference Manual SPECTRUM. Signal Processing for Experimental Chemistry Teaching and Research / University of Maryland

Reference Manual SPECTRUM. Signal Processing for Experimental Chemistry Teaching and Research / University of Maryland Reference Manual SPECTRUM Signal Processing for Experimental Chemistry Teaching and Research / University of Maryland Version 1.1, Dec, 1990. 1988, 1989 T. C. O Haver The File Menu New Generates synthetic

More information

FIR/Convolution. Visulalizing the convolution sum. Frequency-Domain (Fast) Convolution

FIR/Convolution. Visulalizing the convolution sum. Frequency-Domain (Fast) Convolution FIR/Convolution CMPT 468: Delay Effects Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University November 8, 23 Since the feedforward coefficient s of the FIR filter are the

More information

CS 591 S1 Midterm Exam Solution

CS 591 S1 Midterm Exam Solution Name: CS 591 S1 Midterm Exam Solution Spring 2016 You must complete 3 of problems 1 4, and then problem 5 is mandatory. Each problem is worth 25 points. Please leave blank, or draw an X through, or write

More information

SIGNALS AND SYSTEMS LABORATORY 13: Digital Communication

SIGNALS AND SYSTEMS LABORATORY 13: Digital Communication SIGNALS AND SYSTEMS LABORATORY 13: Digital Communication INTRODUCTION Digital Communication refers to the transmission of binary, or digital, information over analog channels. In this laboratory you will

More information

Department of Electronic Engineering NED University of Engineering & Technology. LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202)

Department of Electronic Engineering NED University of Engineering & Technology. LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202) Department of Electronic Engineering NED University of Engineering & Technology LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202) Instructor Name: Student Name: Roll Number: Semester: Batch:

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Systems Prof. Mark Fowler D-T Systems: FIR Filters Note Set #29 1/16 FIR Filters (Non-Recursive Filters) FIR (Non-Recursive) filters are certainly the most widely used DT filters. There

More information

Reference: PMU Data Event Detection

Reference: PMU Data Event Detection Reference: PMU Data Event Detection This is to present how to analyze data from phasor measurement units (PMUs) Why important? Because so much data are being generated, it is difficult to detect events

More information

Swedish College of Engineering and Technology Rahim Yar Khan

Swedish College of Engineering and Technology Rahim Yar Khan PRACTICAL WORK BOOK Telecommunication Systems and Applications (TL-424) Name: Roll No.: Batch: Semester: Department: Swedish College of Engineering and Technology Rahim Yar Khan Introduction Telecommunication

More information

College of information Technology Department of Information Networks Telecommunication & Networking I Chapter DATA AND SIGNALS 1 من 42

College of information Technology Department of Information Networks Telecommunication & Networking I Chapter DATA AND SIGNALS 1 من 42 3.1 DATA AND SIGNALS 1 من 42 Communication at application, transport, network, or data- link is logical; communication at the physical layer is physical. we have shown only ; host- to- router, router-to-

More information

Fourier transforms, SIM

Fourier transforms, SIM Fourier transforms, SIM Last class More STED Minflux Fourier transforms This class More FTs 2D FTs SIM 1 Intensity.5 -.5 FT -1.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6 Time (s) IFT 4 2 5 1 15 Frequency (Hz) ff tt

More information

EEL 4350 Principles of Communication Project 2 Due Tuesday, February 10 at the Beginning of Class

EEL 4350 Principles of Communication Project 2 Due Tuesday, February 10 at the Beginning of Class EEL 4350 Principles of Communication Project 2 Due Tuesday, February 10 at the Beginning of Class Description In this project, MATLAB and Simulink are used to construct a system experiment. The experiment

More information

Basic Signals and Systems

Basic Signals and Systems Chapter 2 Basic Signals and Systems A large part of this chapter is taken from: C.S. Burrus, J.H. McClellan, A.V. Oppenheim, T.W. Parks, R.W. Schafer, and H. W. Schüssler: Computer-based exercises for

More information

Time-Frequency analysis of biophysical time series

Time-Frequency analysis of biophysical time series Time-Frequency analysis of biophysical time series Sept 9 th 2010, NCTU, Taiwan Arnaud Delorme Frequency analysis synchronicity of cell excitation determines amplitude and rhythm of the EEG signal 30-60

More information

ECEGR Lab #8: Introduction to Simulink

ECEGR Lab #8: Introduction to Simulink Page 1 ECEGR 317 - Lab #8: Introduction to Simulink Objective: By: Joe McMichael This lab is an introduction to Simulink. The student will become familiar with the Help menu, go through a short example,

More information

DSP First Lab 03: AM and FM Sinusoidal Signals. We have spent a lot of time learning about the properties of sinusoidal waveforms of the form: k=1

DSP First Lab 03: AM and FM Sinusoidal Signals. We have spent a lot of time learning about the properties of sinusoidal waveforms of the form: k=1 DSP First Lab 03: AM and FM Sinusoidal Signals Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment and go over all exercises in the Pre-Lab section before

More information

Signal Analysis. Young Won Lim 2/9/18

Signal Analysis. Young Won Lim 2/9/18 Signal Analysis Copyright (c) 2016 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Sound synthesis with Pure Data

Sound synthesis with Pure Data Sound synthesis with Pure Data 1. Start Pure Data from the programs menu in classroom TC307. You should get the following window: The DSP check box switches sound output on and off. Getting sound out First,

More information

Sampling and Reconstruction of Analog Signals

Sampling and Reconstruction of Analog Signals Sampling and Reconstruction of Analog Signals Chapter Intended Learning Outcomes: (i) Ability to convert an analog signal to a discrete-time sequence via sampling (ii) Ability to construct an analog signal

More information

WP 33 Geophysikalische Datenanalyse

WP 33 Geophysikalische Datenanalyse WP 33 Geophysikalische Datenanalyse Goals: Get a feel for information contained in seismograms Understand the concept of the spectral domain (frequency domain) See how the frequency representation can

More information

5.1 Graphing Sine and Cosine Functions.notebook. Chapter 5: Trigonometric Functions and Graphs

5.1 Graphing Sine and Cosine Functions.notebook. Chapter 5: Trigonometric Functions and Graphs Chapter 5: Trigonometric Functions and Graphs 1 Chapter 5 5.1 Graphing Sine and Cosine Functions Pages 222 237 Complete the following table using your calculator. Round answers to the nearest tenth. 2

More information

PROBLEM SET 6. Note: This version is preliminary in that it does not yet have instructions for uploading the MATLAB problems.

PROBLEM SET 6. Note: This version is preliminary in that it does not yet have instructions for uploading the MATLAB problems. PROBLEM SET 6 Issued: 2/32/19 Due: 3/1/19 Reading: During the past week we discussed change of discrete-time sampling rate, introducing the techniques of decimation and interpolation, which is covered

More information

A Dissertation Presented for the Doctor of Philosophy Degree. The University of Memphis

A Dissertation Presented for the Doctor of Philosophy Degree. The University of Memphis A NEW PROCEDURE FOR ESTIMATION OF SHEAR WAVE VELOCITY PROFILES USING MULTI STATION SPECTRAL ANALYSIS OF SURFACE WAVES, REGRESSION LINE SLOPE, AND GENETIC ALGORITHM METHODS A Dissertation Presented for

More information

Digital Video and Audio Processing. Winter term 2002/ 2003 Computer-based exercises

Digital Video and Audio Processing. Winter term 2002/ 2003 Computer-based exercises Digital Video and Audio Processing Winter term 2002/ 2003 Computer-based exercises Rudolf Mester Institut für Angewandte Physik Johann Wolfgang Goethe-Universität Frankfurt am Main 6th November 2002 Chapter

More information

Theory of Telecommunications Networks

Theory of Telecommunications Networks Theory of Telecommunications Networks Anton Čižmár Ján Papaj Department of electronics and multimedia telecommunications CONTENTS Preface... 5 Introduction... 6. Mathematical models for communication channels...

More information

THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA. Department of Electrical and Computer Engineering. ELEC 423 Digital Signal Processing

THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA. Department of Electrical and Computer Engineering. ELEC 423 Digital Signal Processing THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA Department of Electrical and Computer Engineering ELEC 423 Digital Signal Processing Project 2 Due date: November 12 th, 2013 I) Introduction In ELEC

More information

2009 A-level Maths Tutor All Rights Reserved

2009 A-level Maths Tutor All Rights Reserved 2 This book is under copyright to A-level Maths Tutor. However, it may be distributed freely provided it is not sold for profit. Contents radians 3 sine, cosine & tangent 7 cosecant, secant & cotangent

More information

Chapter 2 Channel Equalization

Chapter 2 Channel Equalization Chapter 2 Channel Equalization 2.1 Introduction In wireless communication systems signal experiences distortion due to fading [17]. As signal propagates, it follows multiple paths between transmitter and

More information

Section 5.2 Graphs of the Sine and Cosine Functions

Section 5.2 Graphs of the Sine and Cosine Functions Section 5.2 Graphs of the Sine and Cosine Functions We know from previously studying the periodicity of the trigonometric functions that the sine and cosine functions repeat themselves after 2 radians.

More information

21/01/2014. Fundamentals of the analysis of neuronal oscillations. Separating sources

21/01/2014. Fundamentals of the analysis of neuronal oscillations. Separating sources 21/1/214 Separating sources Fundamentals of the analysis of neuronal oscillations Robert Oostenveld Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen, The Netherlands Use

More information

06: Thinking in Frequencies. CS 5840: Computer Vision Instructor: Jonathan Ventura

06: Thinking in Frequencies. CS 5840: Computer Vision Instructor: Jonathan Ventura 06: Thinking in Frequencies CS 5840: Computer Vision Instructor: Jonathan Ventura Decomposition of Functions Taylor series: Sum of polynomials f(x) =f(a)+f 0 (a)(x a)+ f 00 (a) 2! (x a) 2 + f 000 (a) (x

More information