# CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION Broadly speaking, system identification is the art and science of using measurements obtained from a system to characterize the system. The characterization of the system is usually in some mathematical form. The limited cases considered here will use differential equations, in particular, first and second order differential equations. When the form of the differential equation is known the system identification problem is reduced to that of parameter identification. Present industrial practice presents several situations where system identification is used. An important application is in industrial controls. Before a controller can be designed some things must be known about the system which is to be controlled. Many systems do not lend themselves to modeling and the most effective way to find out about the system is to make measurements and apply the methods of system identification. The use of the methods covered in this course and even more sophisticated methods such as finite element methods for modeling real engineering systems, even simple ones, yield only approximate results and the models must be adjusted using data obtained from the system. For most mechanical systems there are no analytical methods for predicting system damping so that engineering judgment or system identification methods must be used. The measurements which are used for system identification can arise in one of several ways. For large systems such as a building, ambient data is used. That is, natural excitations such as wind, are used to excite the system. Even for uncontrolled random excitations such as this, spectra that show the average distribution of response signal power as a function of frequency can be used to identify system characteristics. These methods will not be discussed further here. We will use several controlled inputs to give system responses which are easier to analyze. These would include a step input (such as a sudden change in temperature of a thermo system), a snap back (such as deflecting a spring-mass system and then suddenly releasing it), an impulse (such as striking a spring-mass system with a sharp blow), or sinusoidal input. The selection of which input to use is a function of your ability to generate the input and record and analyze the response. These notes will only cover st and nd order systems. Real engineering systems are rarely st or nd order systems so the practical utility of these simple systems is questionable. Fortunately, from an analysis point of view, even complex mechanical systems can be represented by several connected first and second order systems. Consider as an example the measurement system shown in Figure. The first component is an accelerometer which is a second order system, it is connected to an amplifier which is a first order system, and a recording device which can be

2 6- modeled as a second order system. The total measurement system is thus fifth order but can be modeled as three simpler systems connected in series. acceleration accelerometer nd Order amplifier st Order recorder nd Order deflection Figure : A simple system for measuring acceleration. Having identified models of the system sub-components, they can be combined to form a model of the entire system. This is not always straightforward because systems interact when they are connected. Interaction between sub-components is discussed in the next chapter. At the end of the last chapter we showed how to combine descriptions of sub-system behavior to form a description of the total system behavior, for the case when the interaction effects can be ignored. In this case, often encountered in practice because measurement system sub-components are usually designed to virtually eliminate these interaction effects, the derivation of the total system model from the sub-component models is very straightforward. So while the systems and methods that we look at in detail in this chapter are fairly simple, by breaking down a complicated system into simpler sub-components, we can use these system identification methods to identify characteristics of more complicated systems. Thus, these simple methods are also often used by industry.

3 6-3 First Order Systems: The differential equation is given by y(t) y(t) K x(t) () where y(t) is the system response x(t) is the excitation is the time constant, an indication of how fast the system responds K is the static sensitivity. Thermocouples, amplifiers, resistance temperature devices and RC circuits are examples of systems whose behavior can be modeled with a first order differential equation such as equation ( ). Step Response of a First Order System Consider first the step response, that is, the response of the system subjected to a sudden change in the input which is then held constant. where C is the magnitude of the step. s x(t) Cu (t) s u s(t) is the unit step function defined below, u (t) 0 for t 0, and u (t) for t 0 Assume that the system is at rest at time t = 0, i.e., y(0) = y 0. As t gets large, y(t) y f, its final value. By solving the differential equation, the response after the step was input is found to be: t t y(t) yf e yoe () s This can be written in the form: y(t) y e steady state response f yo yf initial condition or transient response Note that if x(t) = 0 the response is that of a system with just the initial condition of y(0) y o. Also, yf KC, i.e., the step size times the static sensitivity. The response is shown in Figure. After τ seconds the response has moved 63.% of the way to its final value. From equation (), we show that: t change in y(t) y(t) yo final change yf yo t e 0.63 when t

4 6-4 Similarly when t, the response has moved 86.5% of the way to its final value. So by measuring when the response has moved 63.% of the way to its final value, we can estimate, the time constant. Figure : Another way of determining The Step Response of a st Order System. is described below. Rewrite equation () in the form, t y(t) y e f y y o f Take the natural log or log 0 of both sides of this equation to yield, y y y y ln or.306 log y(t) y y(t) y o f o f 0 f f (3) respectively. This is a linear equation in time, t, with slope if you took the natural logarithm, or with a slope.306 if you took the log 0. y y In f o Slope = τ - y f y(t) time - seconds NOTE: In X =.306 log 0 X Figure 3: Calculating the Time Constant

5 6-5 In an experiment you can sample the response, extract the data after the step has been applied, and fit a straight line to the rearranged (equation (3)) data plotted versus time. The inverse of the estimated gradient will yield an estimate of the time constant,. The linearity of the rearranged data is a measure of how well the system is represented by a st order differential equation. It is best not to use data very close to the final value because the calculation: (yf y(t)) yields very small values, and will be prone to error. Frequency Response of a st Order System (response to a sinusoidal excitation) A first order system is subjected to a sinusoidal excitation, Asin( t). We will assume that sufficient time has elapsed for the transient response to die out, the steady state response to a sine wave excitation is, KA y ss(t) sin( t ) ( ) (4) Equation (4) defines the frequency response of the system, i.e., the amplitude and phase of the output from the system as a function of frequency. Using complex notation, we can relate this to the complex frequency response function of the system, T( j ) T( j ) K j (5) The modulus or magnitude of the frequency response function is T( j ) and equals the ratio of the amplitude of the sine wave coming out of the system to the amplitude of the sine wave going into the system. So from equation (4), this yields T( j ) K ( ) (6) which could have been derived by taking the magnitude of the right hand side of equation (5). T( j ) is sometimes referred to as the dynamic gain. The difference in phase between the sine waves going into and coming out of the system, denoted by in equation (4), is the phase of T( j ). Here, we will use the notation arg(t( j )) to denote the phase of the complex function T( j ). arg(t( j )) tan ( )

6 6-6 Plots of T( j ) and arg(t( j )) versus (Bode plots) are shown in Figures 4(a) and (b). Note that both the frequency ( ) axes are logarithmic, and the magnitude is plotted in decibels: 0 log0 T( j ) 0 log0 T( j ) It is also traditional in controls applications to plot the phase in degrees, though it is not incorrect to plot the phase in radians. In this example was set to.0 seconds and K was set to 0. Note that at higher frequencies, the slope of the magnitude plot rolls off at a constant rate of 0 db every time the frequency increases by a factor of 0. We say that the roll-off is 0dB/decade. Figure 4: st Order System Frequency Response: (a) Magnitude and (b) Phase T( j ) can be derived directly from the differential equation shown in equation (). Having this frequency response function, we can calculate its magnitude and phase at the frequency of the sine wave input to the system and then, can immediately write down the steady state response of the system to this sine wave: x(t) Asin( t) and y(t) A T( j ) sin( t arg(t( j ))) (7) To generate T( j ) from the differential equation we assume an input and an output of the form: j t j t x(t) e and y(t) T( j ) e (8) respectively. We substitute these into the differential equation, equation (), differentiating the functions as necessary. This yields: j t j t j T( j ) e K e j t Comparing coefficients of e and rearranging yields equation (5). We will use this technique again later in this chapter to derive the frequency response function of a second order system.

7 6-7 From the frequency response plots in Figure 4, we see that the output amplitude drops by only 3db over the frequency range 0 < ω < /τ. τ in this example was 0.0 and so /τ = 00 rad/s. This is normally termed the bandwidth of the system, and c / is referred to as the cut-off frequency. Over this same frequency range the phase lag varies from 0 to 45. When / c, the phase lag of 45 indicates a shift of the output relative to the input in time. The time shift is calculated by dividing the phase lag in radians by the frequency. Hence, here the time shift would be /(4 c) seconds. At this frequency the amplitude would be K/ times the input amplitude. However, there would be no influence on the overall shape of the signal, i.e., the output would have the same sinusoidal form as the input. Consider, however, the case where the input consisted of a sum of two sinusoids, one at 0.5/ and another at 3/. Now the phase lag dependence on ω becomes important and the output signal will suffer phase distortion. There will also be amplitude distortion. This distortion is caused by the two sinusoidal components in the signal being treated differently by the system: different gains in amplitude and different phase shifts. This is illustrated in Figure 5, where a signal: x(t) 5sin50t 0sin300t is shown along with the response of the first order system to this signal. The system characteristics are as above: K=0 and c 00rad/s. The response is: y(t) 5 T( j50) sin 50t arg(t( j50)) 0 T( j300) sin 300t arg(t( j300)) y(t) sin 50t tan (.5) sin 300t tan (3).5 0 Figure 5: The input to and response of a first order system with c 00 rad/s and system gain = 0

8 6-8 These distortion effects will be even more prominent when the system is subjected to more complex signals that contain many sinusoidal components. Each frequency component will experience a different dynamic gain and phase lag, so the resulting output signal may be quite unlike the input. This is of considerable significance in instrumentation applications, where we would like the output of the measurement system to have the same shape as the input signal. With an ideal measurement system, all frequency components in the input signal will have the same gain and the same delay in time applied to them as they pass through the system; this will preserve the shape of the signal. In reality, this is not achievable exactly, and we would specify some error tolerance in gain and in phase (time delay) and design the measurement system to be within these tolerances over the region of frequencies contained in the input signals we are trying to measure. Example A transducer used in a measurement system can be modeled by a first order differential equation. It has a time constant of 0.5 seconds and a static sensitivity of 5.0 Volts/input units. a. Write down the differential equation of the system and also the frequency response function. b. What is the cut-off frequency of the transducer? c. A very low frequency sine wave fluctuation is input into the transducer and the output amplitude noted. Gradually the frequency is increased. At what frequency will the amplitude be half what it was at very low frequencies? d. What is the frequency range over which the amplitude distortion would be less than %? What is the phase shift at the upper end of this frequency range? Solution a. K = 5 and τ = 0.5. The differential equation describing the system is therefore: dy(t) 0.5 y(t) 5 x(t) dt where y(t) is the output of the transducer and x(t) the input. The frequency response function is therefore, K 5 j j0.5 b. The cut-off frequency is the inverse of the time constant and hence equals 4 rad/s. c. At low frequencies 0, therefore the frequency response function is approximately K = 5. So we wish to find at what value of ω does the magnitude of the frequency response function equal half of this, i.e.,.5. Actually, we set up the equation for the magnitude squared, which is: K 5 (.5) ( ) which implies,

9 , and hence 48 rad/s d. % amplitude distortion means that the magnitude of the frequency response function is either 0.99 or.0 times the magnitude at zero frequency or DC. From Figure 4 we can see that the magnitude of the frequency response function drops as frequency (ω) increases. At DC (ω = 0) the magnitude of the frequency response function is equal to K = 5. So we wish to find the frequency at which the magnitude is = 4.95, or the magnitude squared is Therefore we need to solve: This results in ω = rad/s. So the frequency range where amplitude distortion would be less than % is 0 to rad/s. The phase shift at the upper frequency is: phase tan tan ( ) 0.45 rads or 8.0 Using the Frequency Response for System Identification of a first order system If we have a system or part of a measurement system and we have a way of generating plots of the frequency response experimentally, we can use the plots to estimate the static sensitivity and the time constant. The first thing to do, however, is to verify that the frequency response function is that of a first order system. The plots should look like those in Figure 4, i.e., the magnitude (in db) will look flat at lower frequencies and then start to roll off at 0 db/decade at higher frequencies. The phase should start at 0 and at high frequencies flatten out to -90. Once you have confirmed that the system appears to be first order, you can then use it to estimate K and τ. At DC (ω = 0 rad/s), the magnitude of the frequency response function is K or 0log0 K. This gives you the static sensitivity. At the cut-off frequency, c /, the magnitude is K/ or 3dB down from 0log0 K. So we find at what frequency (in rad/s) the magnitude has dropped 3dB from its level at very low frequencies, the inverse of this frequency gives us the time constant, τ. τ can also be estimated from the phase plot. When c / the phase is 45. c c Arg(T( j )) tan ( ) tan 45. So identify at what frequency (in rad/s) the phase shift is -45, take the inverse of this frequency and that will give you an estimate of τ. To generate the frequency response function experimentally follow the procedure outlined below. The procedure will be very similar for higher order systems, the only difference being how you might select the frequency range of interest.

10 6-0 Generate a very low frequency sine wave as input to your system. Note the frequency and the amplitude of the response. Slowly increase the frequency and monitor the response of the system on the scope. When the amplitude drops to approximately /00th to /000th of its initial value, note the frequency. This now defines the frequency span of your plots of the frequency response function. Select a sequence of frequencies that cover this range. Because we usually plot on logarithmic frequency axes, the frequencies selected would normally be equally spaced on a logarithmic scale. (E.g are equally spaced on a logarithmic scale.) Set the input to one of the selected frequencies ( i) and let the system response come to steady state. The response should be a sine wave of the frequency you are putting into the system. If it is not, the transient response may be still contributing, the system may be nonlinear or the signal you are measuring may be corrupted with noise. Note the amplitude of the input and the output: Ain and A out, respectively. Now A calculate, M 0log out 0. Ain Measure the phase difference between the two signals. You can do this by using a Lissajous plot on the scope (see Laboratory of this course), or you can measure the difference in zero crossing times between the two signals. The output will be delayed relative to the input. Multiply the time difference by the frequency of the sine wave; the phase, in radians, is minus this value. Convert to degrees. P i (time difference) 80 Plot ( i,m) on the magnitude plot and ( i,p) on the phase plot. Repeat the last four steps until all the selected frequencies have been input to the system. It is possible to automate this procedure using a computer, if you have some way of controlling the amplitude and frequency of the sine wave generator from the computer. You will use a LABVIEW VI in your laboratory that does this. However, you should take care with three things when using this VI or similar computer programs.. You must allow the system response to reach steady state after any changes are made to the input signal, before any measurements are taken.. You must check that the system is behaving linearly. 3. You must check that the amplitude of the response is not too large to measure with your computer and data acquisition system, or so small that quantization noise is a problem.

11 6- Second Order Systems where The differential equation is given by: y(t) n y(t) n y(t) K nx(t) (9) y(t) is the system response (output) x(t) is the excitation (input) n is the undamped natural frequency, rad/sec is the fraction of critical damping or damping ratio K is the static sensitivity. Many accelerometers, mass-spring-dampers, galvanometers, force transducers and LRC circuits can be modeled as second order systems. Snap Back Response The snap back response is equivalent to an initial displacement with no forcing function. That is, x(t) 0, y(0) 0 and y(0) y o. The solution is given by which is plotted in Figure 6. nt nt o n o d y(t) y e cos t y e cos t (0) Figure 6: Snap Back Response The period, T d, and the damped natural frequency, (.08, and n 60 rad/s). d, are given by: T d ; d n () d Note that the envelope of the response is given by yoe. We can pick out this envelope function approximately by tracking the peaks of y(t). If one peak occurs at t i, a peak will also appear n cycles later at ti n ti nt d. The peak values above the final steady state value, y f, at these two times are: n t

12 6- ni t n (ti nt d ) i f o i n f o y y y e and y y y e () We include the subtraction of y f, the final steady state value, in order to give formulas that are applicable to the snap back response, the impulse response and the step response. For the snap back and impulse responses, y f is zero. From these expressions we can write down the formulas for the logarithmic decrement method. T n d yi y n f n y y i n f where δ is the logarithmic decrement that quantifies how much the response decays over time. Therefore: (3) if. Thus, the decay rate of the response is purely a function of the damping ratio. (4) Note that equations (3)-(4) can be used for the step response and the impulse response, but be careful and remember to subtract any DC offset from your signal. Even if the signal should not, theoretically, have an offset, data acquisition and instrumentation often introduces offsets which should be subtracted. Impulse Response The impulse response is equivalent to an initial velocity with no forcing function. That is x(t) = 0, y(0) = 0 and y(0) y o. The solution is given by Step Response y y(t) o e sin ( t) (5) d n t n The step response corresponds to x(t) C u s(t),y(0) 0,y(0) 0 and yf y( ) K C, where K is the static sensitivity of the system. u s(t) denotes the unit step function. The solution is nt d e y(t) yf sin ( t ) where tan (6) Figure 7 is a plot of the step response.

13 6-3 Figure 7: Step Response of a nd Order System (ζ =.08, and ( n = 60 rad/s). Note that the overshoot (OS) can be used to estimate the damping ratio. yf y n o OS This formula can be derived by finding out where the maxima of differentiating: e n t f f d y(t) y y sin ( t ) y(t) (7) yf occur, i.e. by (8) with respect to t and setting the result to zero. Note that we have set y i to zero here to simplify calculations. The resulting expression will include a tan term which results in multiple solutions for t: d t n where n is any integer. Choosing n =, and substituting back into the expression for overshoot in terms of the damping ratio. However, e OS yf sin( ) sin( ), see equation (6), and n t y(t) yf OS, will give the n d/ d if we assume that is approximately equal to. Furthermore, recall that at the maximum d t. Substituting this into the equation above will give: OS yf e Taking the natural logarithm of both sides and rearranging will give equation (7).

14 6-4 Frequency Response of a nd Order System (Response to sinusoidal input) In this case the excitation takes the form x(t) = B sin t and the initial conditions are such that there is no transient response, or the transient response can be assumed to have decayed away to zero. The steady state response is given by y(t) B T( j ) sin t arg(t( j )) (9) where T( j ) is the frequency response function of the second order system, denotes magnitude and arg(.) denotes phase. To calculate T( j ) we follow the procedure we adopted with the first order system. That is assume that the input and output of the system have the following forms: j t x(t) e and y(t) T( j ) e respectively. Substitute into equation (9), the differential equation describing the behavior, differentiating y(t) as necessary. This yields: Equating coefficients of system: j t j t j n n T( j ) e K n e (0) j t e and rearranging yields the frequency response of the second order j t T( j ) K n n j n () In Figure 8(a) is shown the system frequency response magnitude which is also the amplitude of the steady state response divided by the amplitude of the input (B), plotted against the frequency of the input, ω. In Figure 8(b) is shown the phase response, i.e., a plot of versus ω. The peak response occurs when: r n () This is referred to as the resonant natural frequency, and can be derived by finding the minimum of the magnitude squared of the denominator of equation (), i.e., differentiating it with respect to ω, setting the result to zero and solving for ω. Note that when is greater than 0.707, this expression becomes imaginary, indicating that there will be no peak observed in the frequency response. Note that at frequencies well above the natural frequency, the roll-off of the magnitude is 40 db/decade, i.e., if the frequency increases by a factor on 0 the magnitude drops by 40 db.

15 6-5 Figure 8: Frequency Response of a Second Order System (.08, and n 60 rad/s) Example Some accelerometers can be modeled as second order systems. The one being considered here has a natural frequency of 000 Hz, and is used to measure accelerations of frequencies below 00 Hz. The damping ratio is 0.05 and the sensitivity (K) is V/g. a. Write down the differential equation describing the accelerometer behavior, and write down its frequency response function. b. What is the steady state response of this accelerometer to an acceleration of the form: x(t) = 0. sin(0t- / ) + 0.5cos(00t). c. Would you expect to see a peak in the magnitude of the frequency response function? Why? d. Since the upper frequency limit, specified by the manufacturer is 00 Hz, what is the maximum percent amplitude distortion you will find when using the accelerometer in accordance with the manufacturer's specifications? What is the maximum phase distortion? Solution a. From equation (9) with K =, n 000 rad/s and 0.05, the differential equation describing the accelerometer behavior is: 6 6 y 00 y 4 0 y 8 0 x(t)

16 6-6 The frequency response function, from equation (), is: T( j ) j00 b. The steady state response is: y(t) 0. T( j0) sin 0t arg(t( j0)) 0.5 T( j00) cos 00t arg(t( j00)) T( j0) and T( j00) j j.4 0 Calculating the magnitude and phase of each of these expressions gives: T( j0).0000 V/g, arg(t( j0)) rad and T( j00).0753 V/g, arg(t( j00)) rad Note that the units for the magnitude are the same as for the sensitivity, K. Substituting in the expression for y(t) above gives the steady state response to this input, x(t), that consists of two oscillating components. Note that the cosine term has a frequency that has a frequency outside the manufacture's specified frequency range. y(t) sin 0t cos(00t 0.098) c. Since the damping ratio 0.05 is smaller than r n then r has a real value, because ( ). Therefore a peak will appear in the frequency response magnitude. d. The question being asked here is how different is the amplification of components of frequencies close to 00 Hz from the amplification of the DC component. You notice from Figure 8 that when the damping ratio is sufficiently low, the magnitude increases as frequency increases towards the resonant natural frequency. Simultaneously the phase is decreasing from 0. When 0 rad/s, from equation () we can see that the frequency response function is K =. At 00 Hz = 00 π rad/s, the frequency response function is: T( j00 ) j j0.0 Therefore, the magnitude and the phase of the frequency response function at the upper

17 6-7 end of the manufacturer's range are: T( j00 ).00 and arg(t( j )) 0.0 rad 0.57 Therefore the maximum percentage amplitude distortion is: (.00 ) 00 % The maximum phase distortion in the manufacturer's specified operating region also occurs at 00 Hz, and is The frequency response function can be generated experimentally by using the procedure described for first order systems. The only problem, as with first order systems, may be your ability to present and measure sinusoidal inputs to the system being investigated. When using the frequency response behavior to estimate the characteristics of a system you think is second order, you must first make certain that the system is indeed second order. As we have noted above, when damping is high there will not be a peak in the magnitude of the frequency response function, so at first glance the system may appear to look first order. Further investigation is needed. The characteristics to look for are:. The magnitude should appear flat (on a db scale) at lower frequencies. At higher frequencies the magnitude should roll off at 40 db/decade.. The phase should start close to 0 at low frequencies and at very high frequencies should be close to -80. Now, having confirmed that the system is second order, we can proceed to estimate K,. n and Methods of Calculating Natural Frequency and Damping by using e.g. a Frequency Generator and an Oscilloscope or a Data Acquisition System. Use an oscillator to generate a sine wave and put this through your system. Measure the input to your system on the st channel of the oscilloscope and the system response on the nd channel. To find the natural frequency set the scope to the x vs. y setting and increase the frequency until the phase delay is 90 between the signals. When this occurs a circle appears on the scope (see laboratory ). The frequency of the sine wave will be n, the natural frequency of the second order system. Having calculated n, there are several ways of calculating the damping ratio, ζ.

18 6-8 AMPLIFICATION METHOD T( j ) n T( j ) 0 Set input to a low frequency sine wave ( magnitude of response (linear not in db). Set the input frequency to (linear not in db). 0), measure n, measure magnitude of response HALF POWER METHOD n n Plot out magnitude of the frequency response function versus frequency around resonance, as shown in Figure 9(a). To do this measure the amplitude of the input (X) and the amplitude of the steady state response (Y), at each frequency. Plot Y/X versus frequency. Evaluate the parameters shown in Figure 9(a) and substitute into the formula., are the frequencies at which the magnitude has dropped by a factor of / from its peak value at the resonant natural frequency. On a db scale this corresponds to a drop of 3 db from the peak value. SLOPE OF PHASE ANGLE METHOD d d n n Plot out the phase, in radians, of the frequency response function around resonance on a linear frequency axis (radians/s), as shown in Figure 9(b). To do this you need to calculate the phase delay between the output and input signals. Find the slope of the phase (d /d ) at n and substitute into formula. NOTE: In practice the differences between n, d and r should not be used to estimate ζ, because the errors in measuring n, d and r will result in large errors in the estimate of ζ.

19 6-9 Figure 9: Calculating the damping ratio: (a) half-power method and (b) slope of the phase method. Note all axes are linear, frequency is in radians/second and phase is in radians.

### v(t) = V p sin(2π ft +φ) = V p cos(2π ft +φ + π 2 )

1 Let us revisit sine and cosine waves. A sine wave can be completely defined with three parameters Vp, the peak voltage (or amplitude), its frequency w in radians/second or f in cycles/second (Hz), and

### sin(wt) y(t) Exciter Vibrating armature ENME599 1

ENME599 1 LAB #3: Kinematic Excitation (Forced Vibration) of a SDOF system Students must read the laboratory instruction manual prior to the lab session. The lab report must be submitted in the beginning

### Experiment 2: Transients and Oscillations in RLC Circuits

Experiment 2: Transients and Oscillations in RLC Circuits Will Chemelewski Partner: Brian Enders TA: Nielsen See laboratory book #1 pages 5-7, data taken September 1, 2009 September 7, 2009 Abstract Transient

### SECTION 7: FREQUENCY DOMAIN ANALYSIS. MAE 3401 Modeling and Simulation

SECTION 7: FREQUENCY DOMAIN ANALYSIS MAE 3401 Modeling and Simulation 2 Response to Sinusoidal Inputs Frequency Domain Analysis Introduction 3 We ve looked at system impulse and step responses Also interested

### 10. Introduction and Chapter Objectives

Real Analog - Circuits Chapter 0: Steady-state Sinusoidal Analysis 0. Introduction and Chapter Objectives We will now study dynamic systems which are subjected to sinusoidal forcing functions. Previously,

### (A) Based on the second-order FRF provided, determine appropriate values for ω n, ζ, and K. ω n =500 rad/s; ζ=0.1; K=0.

ME35 Homework # Due: 1/1/1 Problem #1 (3%) A co-worker brings you an accelerometer spec sheet with the following frequency response function (FRF):. s G accelerometer = [volt +.1 jω.1 ω m ] (A) Based on

### 2.1 BASIC CONCEPTS Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal.

1 2.1 BASIC CONCEPTS 2.1.1 Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal. 2 Time Scaling. Figure 2.4 Time scaling of a signal. 2.1.2 Classification of Signals

### Dynamic Vibration Absorber

Part 1B Experimental Engineering Integrated Coursework Location: DPO Experiment A1 (Short) Dynamic Vibration Absorber Please bring your mechanics data book and your results from first year experiment 7

### Integrators, differentiators, and simple filters

BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

### Department of Electronic Engineering NED University of Engineering & Technology. LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202)

Department of Electronic Engineering NED University of Engineering & Technology LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202) Instructor Name: Student Name: Roll Number: Semester: Batch:

### Correction for Synchronization Errors in Dynamic Measurements

Correction for Synchronization Errors in Dynamic Measurements Vasishta Ganguly and Tony L. Schmitz Department of Mechanical Engineering and Engineering Science University of North Carolina at Charlotte

### STATION NUMBER: LAB SECTION: Filters. LAB 6: Filters ELECTRICAL ENGINEERING 43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS

Lab 6: Filters YOUR EE43/100 NAME: Spring 2013 YOUR PARTNER S NAME: YOUR SID: YOUR PARTNER S SID: STATION NUMBER: LAB SECTION: Filters LAB 6: Filters Pre- Lab GSI Sign- Off: Pre- Lab: /40 Lab: /60 Total:

### Response spectrum Time history Power Spectral Density, PSD

A description is given of one way to implement an earthquake test where the test severities are specified by time histories. The test is done by using a biaxial computer aided servohydraulic test rig.

### MTE 360 Automatic Control Systems University of Waterloo, Department of Mechanical & Mechatronics Engineering

MTE 36 Automatic Control Systems University of Waterloo, Department of Mechanical & Mechatronics Engineering Laboratory #1: Introduction to Control Engineering In this laboratory, you will become familiar

### EXPERIMENT 8: LRC CIRCUITS

EXPERIMENT 8: LRC CIRCUITS Equipment List S 1 BK Precision 4011 or 4011A 5 MHz Function Generator OS BK 2120B Dual Channel Oscilloscope V 1 BK 388B Multimeter L 1 Leeds & Northrup #1532 100 mh Inductor

### EE Experiment 8 Bode Plots of Frequency Response

EE16:Exp8-1 EE 16 - Experiment 8 Bode Plots of Frequency Response Objectives: To illustrate the relationship between a system frequency response and the frequency response break frequencies, factor powers,

### DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit

[International Campus Lab] Objective Determine the behavior of resistors, capacitors, and inductors in DC and AC circuits. Theory ----------------------------- Reference -------------------------- Young

### Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 23 The Phase Locked Loop (Contd.) We will now continue our discussion

### Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras

Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Lecture 26 Mathematical operations Hello everybody! In our series of lectures on basic

### ELECTRICAL CIRCUITS 6. OPERATIONAL AMPLIFIERS PART III DYNAMIC RESPONSE

77 ELECTRICAL CIRCUITS 6. PERATAL AMPLIIERS PART III DYNAMIC RESPNSE Introduction In the first 2 handouts on op-amps the focus was on DC for the ideal and non-ideal opamp. The perfect op-amp assumptions

### NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3

NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3 IIR FILTER DESIGN Structure of IIR System design of Discrete time

### Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Objectives Boise State University Department of Electrical and Computer Engineering ECE L Circuit Analysis and Design Lab Experiment #0: Frequency esponse Measurements The objectives of this laboratory

### MAE106 Laboratory Exercises Lab # 5 - PD Control of DC motor position

MAE106 Laboratory Exercises Lab # 5 - PD Control of DC motor position University of California, Irvine Department of Mechanical and Aerospace Engineering Goals Understand how to implement and tune a PD

### System Inputs, Physical Modeling, and Time & Frequency Domains

System Inputs, Physical Modeling, and Time & Frequency Domains There are three topics that require more discussion at this point of our study. They are: Classification of System Inputs, Physical Modeling,

### Kent Bertilsson Muhammad Amir Yousaf

Today s topics Analog System (Rev) Frequency Domain Signals in Frequency domain Frequency analysis of signals and systems Transfer Function Basic elements: R, C, L Filters RC Filters jw method (Complex

### Frequency Response Analysis and Design Tutorial

1 of 13 1/11/2011 5:43 PM Frequency Response Analysis and Design Tutorial I. Bode plots [ Gain and phase margin Bandwidth frequency Closed loop response ] II. The Nyquist diagram [ Closed loop stability

### AC BEHAVIOR OF COMPONENTS

AC BEHAVIOR OF COMPONENTS AC Behavior of Capacitor Consider a capacitor driven by a sine wave voltage: I(t) 2 1 U(t) ~ C 0-1 -2 0 2 4 6 The current: is shifted by 90 o (sin cos)! 1.0 0.5 0.0-0.5-1.0 0

### MAE334 - Introduction to Instrumentation and Computers. Final Exam. December 11, 2006

MAE334 - Introduction to Instrumentation and Computers Final Exam December 11, 2006 o Closed Book and Notes o No Calculators 1. Fill in your name on side 2 of the scoring sheet (Last name first!) 2. Fill

### Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination.

Name: Number: Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers Final Examination December 12, 2003 Closed Book and Notes 1. Be sure to fill in your

### Linear Time-Invariant Systems

Linear Time-Invariant Systems Modules: Wideband True RMS Meter, Audio Oscillator, Utilities, Digital Utilities, Twin Pulse Generator, Tuneable LPF, 100-kHz Channel Filters, Phase Shifter, Quadrature Phase

### Lab 11. Speed Control of a D.C. motor. Motor Characterization

Lab 11. Speed Control of a D.C. motor Motor Characterization Motor Speed Control Project 1. Generate PWM waveform 2. Amplify the waveform to drive the motor 3. Measure motor speed 4. Estimate motor parameters

### POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 5 RC Circuits Frequency Response

POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LORTORY Eperiment 5 RC Circuits Frequency Response Modified for Physics 18, rooklyn College I. Overview of Eperiment In this eperiment

### Advanced Circuits Topics Part 2 by Dr. Colton (Fall 2017)

Part 2: Some Possibly New Things Advanced Circuits Topics Part 2 by Dr. Colton (Fall 2017) These are some topics that you may or may not have learned in Physics 220 and/or 145. This handout continues where

### Experiment 9 AC Circuits

Experiment 9 AC Circuits "Look for knowledge not in books but in things themselves." W. Gilbert (1540-1603) OBJECTIVES To study some circuit elements and a simple AC circuit. THEORY All useful circuits

### Välkomna till TSRT15 Reglerteknik Föreläsning 5. Summary of lecture 4 Frequency response Bode plot

Välkomna till TSRT15 Reglerteknik Föreläsning 5 Summary of lecture 4 Frequency response Bode plot Summary of last lecture 2 Given a pole polynomial with a varying parameter P(s)+KQ(s)=0 We draw the location

### Free vibration of cantilever beam FREE VIBRATION OF CANTILEVER BEAM PROCEDURE

FREE VIBRATION OF CANTILEVER BEAM PROCEDURE AIM Determine the damped natural frequency, logarithmic decrement and damping ratio of a given system from the free vibration response Calculate the mass of

### Mini Project 3 Multi-Transistor Amplifiers. ELEC 301 University of British Columbia

Mini Project 3 Multi-Transistor Amplifiers ELEC 30 University of British Columbia 4463854 November 0, 207 Contents 0 Introduction Part : Cascode Amplifier. A - DC Operating Point.......................................

### Modeling Amplifiers as Analog Filters Increases SPICE Simulation Speed

Modeling Amplifiers as Analog Filters Increases SPICE Simulation Speed By David Karpaty Introduction Simulation models for amplifiers are typically implemented with resistors, capacitors, transistors,

### #8A RLC Circuits: Free Oscillations

#8A RL ircuits: Free Oscillations Goals In this lab we investigate the properties of a series RL circuit. Such circuits are interesting, not only for there widespread application in electrical devices,

### AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE

July 22, 2008 AC Currents, Voltages, Filters, Resonance 1 Name Date Partners AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE V(volts) t(s) OBJECTIVES To understand the meanings of amplitude, frequency, phase,

### FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY In this experiment we will analytically determine and measure the frequency response of networks containing resistors, AC source/sources, and energy storage

### Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2

Mechatronics Analog and Digital Electronics: Studio Exercises 1 & 2 There is an electronics revolution taking place in the industrialized world. Electronics pervades all activities. Perhaps the most important

### Michael F. Toner, et. al.. "Distortion Measurement." Copyright 2000 CRC Press LLC. <

Michael F. Toner, et. al.. "Distortion Measurement." Copyright CRC Press LLC. . Distortion Measurement Michael F. Toner Nortel Networks Gordon W. Roberts McGill University 53.1

### Experiment 3 Topic: Dynamic System Response Week A Procedure

Experiment 3 Topic: Dynamic System Response Week A Procedure Laboratory Assistant: Email: Office Hours: LEX-3 Website: Brock Hedlund bhedlund@nd.edu 11/05 11/08 5 pm to 6 pm in B14 http://www.nd.edu/~jott/measurements/measurements_lab/e3

### LECTURE FOUR Time Domain Analysis Transient and Steady-State Response Analysis

LECTURE FOUR Time Domain Analysis Transient and Steady-State Response Analysis 4.1 Transient Response and Steady-State Response The time response of a control system consists of two parts: the transient

### Filters And Waveform Shaping

Physics 3330 Experiment #3 Fall 2001 Purpose Filters And Waveform Shaping The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and

### ME scope Application Note 02 Waveform Integration & Differentiation

ME scope Application Note 02 Waveform Integration & Differentiation The steps in this Application Note can be duplicated using any ME scope Package that includes the VES-3600 Advanced Signal Processing

### Fundamentals of Servo Motion Control

Fundamentals of Servo Motion Control The fundamental concepts of servo motion control have not changed significantly in the last 50 years. The basic reasons for using servo systems in contrast to open

### Model Correlation of Dynamic Non-linear Bearing Behavior in a Generator

Model Correlation of Dynamic Non-linear Bearing Behavior in a Generator Dean Ford, Greg Holbrook, Steve Shields and Kevin Whitacre Delphi Automotive Systems, Energy & Chassis Systems Abstract Efforts to

### Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination.

Name: Number: Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers Final Examination December 12, 2002 Closed Book and Notes 1. Be sure to fill in your

### Fourier Signal Analysis

Part 1B Experimental Engineering Integrated Coursework Location: Baker Building South Wing Mechanics Lab Experiment A4 Signal Processing Fourier Signal Analysis Please bring the lab sheet from 1A experiment

### Lab 8 - INTRODUCTION TO AC CURRENTS AND VOLTAGES

08-1 Name Date Partners ab 8 - INTRODUCTION TO AC CURRENTS AND VOTAGES OBJECTIVES To understand the meanings of amplitude, frequency, phase, reactance, and impedance in AC circuits. To observe the behavior

### A study of Vibration Analysis for Gearbox Casing Using Finite Element Analysis

A study of Vibration Analysis for Gearbox Casing Using Finite Element Analysis M. Sofian D. Hazry K. Saifullah M. Tasyrif K.Salleh I.Ishak Autonomous System and Machine Vision Laboratory, School of Mechatronic,

### ME 365 FINAL EXAM. Monday, April 29, :30 pm-5:30 pm LILY Problem Score

Name: SOLUTION Section: 8:30_Chang 11:30_Meckl ME 365 FINAL EXAM Monday, April 29, 2013 3:30 pm-5:30 pm LILY 1105 Problem Score Problem Score Problem Score Problem Score Problem Score 1 5 9 13 17 2 6 10

### PYKC 13 Feb 2017 EA2.3 Electronics 2 Lecture 8-1

In this lecture, I will cover amplitude and phase responses of a system in some details. What I will attempt to do is to explain how would one be able to obtain the frequency response from the transfer

### Part 2: Second order systems: cantilever response

- cantilever response slide 1 Part 2: Second order systems: cantilever response Goals: Understand the behavior and how to characterize second order measurement systems Learn how to operate: function generator,

### Worksheet for Exploration 31.1: Amplitude, Frequency and Phase Shift

Worksheet for Exploration 31.1: Amplitude, Frequency and Phase Shift We characterize the voltage (or current) in AC circuits in terms of the amplitude, frequency (period) and phase. The sinusoidal voltage

### (i) Sine sweep (ii) Sine beat (iii) Time history (iv) Continuous sine

A description is given of one way to implement an earthquake test where the test severities are specified by the sine-beat method. The test is done by using a biaxial computer aided servohydraulic test

### Sinusoids. Lecture #2 Chapter 2. BME 310 Biomedical Computing - J.Schesser

Sinusoids Lecture # Chapter BME 30 Biomedical Computing - 8 What Is this Course All About? To Gain an Appreciation of the Various Types of Signals and Systems To Analyze The Various Types of Systems To

### EK307 Passive Filters and Steady State Frequency Response

EK307 Passive Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of passive signal-processing filters Learning Objectives: Passive filters, Frequency domain, Bode plots

### CHAPTER 9. Sinusoidal Steady-State Analysis

CHAPTER 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source A sinusoidal voltage source (independent or dependent) produces a voltage that varies sinusoidally with time. A sinusoidal current source

### Structure of Speech. Physical acoustics Time-domain representation Frequency domain representation Sound shaping

Structure of Speech Physical acoustics Time-domain representation Frequency domain representation Sound shaping Speech acoustics Source-Filter Theory Speech Source characteristics Speech Filter characteristics

### Transfer Function (TRF)

(TRF) Module of the KLIPPEL R&D SYSTEM S7 FEATURES Combines linear and nonlinear measurements Provides impulse response and energy-time curve (ETC) Measures linear transfer function and harmonic distortions

### Simple Oscillators. OBJECTIVES To observe some general properties of oscillatory systems. To demonstrate the use of an RLC circuit as a filter.

Simple Oscillators Some day the program director will attain the intelligent skill of the engineers who erected his towers and built the marvel he now so ineptly uses. Lee De Forest (1873-1961) OBJETIVES

### EE 42/100: Lecture 8. 1 st -Order RC Transient Example, Introduction to 2 nd -Order Transients. EE 42/100 Summer 2012, UC Berkeley T.

EE 42/100: Lecture 8 1 st -Order RC Transient Example, Introduction to 2 nd -Order Transients Circuits with non-dc Sources Recall that the solution to our ODEs is Particular solution is constant for DC

### Laboratory Assignment 5 Amplitude Modulation

Laboratory Assignment 5 Amplitude Modulation PURPOSE In this assignment, you will explore the use of digital computers for the analysis, design, synthesis, and simulation of an amplitude modulation (AM)

### APPENDIX MATHEMATICS OF DISTORTION PRODUCT OTOACOUSTIC EMISSION GENERATION: A TUTORIAL

In: Otoacoustic Emissions. Basic Science and Clinical Applications, Ed. Charles I. Berlin, Singular Publishing Group, San Diego CA, pp. 149-159. APPENDIX MATHEMATICS OF DISTORTION PRODUCT OTOACOUSTIC EMISSION

### Signals and Filtering

FILTERING OBJECTIVES The objectives of this lecture are to: Introduce signal filtering concepts Introduce filter performance criteria Introduce Finite Impulse Response (FIR) filters Introduce Infinite

### Unit 6 Operational Amplifiers Chapter 5 (Sedra and Smith)

Unit 6 Operational Amplifiers Chapter 5 (Sedra and Smith) Prepared by: S V UMA, Associate Professor, Department of ECE, RNSIT, Bangalore Reference: Microelectronic Circuits Adel Sedra and K C Smith 1 Objectives

### Complex Digital Filters Using Isolated Poles and Zeroes

Complex Digital Filters Using Isolated Poles and Zeroes Donald Daniel January 18, 2008 Revised Jan 15, 2012 Abstract The simplest possible explanation is given of how to construct software digital filters

### EMT212 Analog Electronic II. Chapter 4. Oscillator

EMT Analog Electronic II Chapter 4 Oscillator Objectives Describe the basic concept of an oscillator Discuss the basic principles of operation of an oscillator Analyze the operation of RC, LC and crystal

### Lab 5 Second Order Transient Response of Circuits

Lab 5 Second Order Transient Response of Circuits Lab Performed on November 5, 2008 by Nicole Kato, Ryan Carmichael, and Ti Wu Report by Ryan Carmichael and Nicole Kato E11 Laboratory Report Submitted

### , answer the next six questions.

Frequency Response Problems Conceptual Questions 1) T/F Given f(t) = A cos (ωt + θ): The amplitude of the output in sinusoidal steady-state increases as K increases and decreases as ω increases. 2) T/F

### SIGNALS AND SYSTEMS: 3C1 LABORATORY 1. 1 Dr. David Corrigan Electronic and Electrical Engineering Dept.

2012 Signals and Systems: Laboratory 1 1 SIGNALS AND SYSTEMS: 3C1 LABORATORY 1. 1 Dr. David Corrigan Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.mee.tcd.ie/ corrigad The aims of this

### Electronics basics for MEMS and Microsensors course

Electronics basics for course, a.a. 2017/2018, M.Sc. in Electronics Engineering Transfer function 2 X(s) T(s) Y(s) T S = Y s X(s) The transfer function of a linear time-invariant (LTI) system is the function

### Oscillations II: Damped and/or Driven Oscillations

Oscillations II: Damped and/or Driven Oscillations Michael Fowler 3/4/9 Introducing Damping We ll assume the damping force is proportional to the velocity, and, of course, in the opposite direction. Then

### Poles and Zeros of H(s), Analog Computers and Active Filters

Poles and Zeros of H(s), Analog Computers and Active Filters Physics116A, Draft10/28/09 D. Pellett LRC Filter Poles and Zeros Pole structure same for all three functions (two poles) HR has two poles and

### Frequency Domain Analysis

Required nowledge Fourier-series and Fourier-transform. Measurement and interpretation of transfer function of linear systems. Calculation of transfer function of simple networs (first-order, high- and

### ELEC3242 Communications Engineering Laboratory Amplitude Modulation (AM)

ELEC3242 Communications Engineering Laboratory 1 ---- Amplitude Modulation (AM) 1. Objectives 1.1 Through this the laboratory experiment, you will investigate demodulation of an amplitude modulated (AM)

### Application Note 106 IP2 Measurements of Wideband Amplifiers v1.0

Application Note 06 v.0 Description Application Note 06 describes the theory and method used by to characterize the second order intercept point (IP 2 ) of its wideband amplifiers. offers a large selection

### Lab Report 4: Root Locus and Proportional Controller

Lab Report 4: Root Locus and Proportional Controller University of Tennessee at Chattanooga Engineering 32 Blue Team Kevin Schrumpf Justin Anchanattu Justin Rehagen April 1, 212 Introduction The first

### Solutions to the problems from Written assignment 2 Math 222 Winter 2015

Solutions to the problems from Written assignment 2 Math 222 Winter 2015 1. Determine if the following limits exist, and if a limit exists, find its value. x2 y (a) The limit of f(x, y) = x 4 as (x, y)

### The units of vibration depend on the vibrational parameter, as follows:

Vibration Measurement Vibration Definition Basically, vibration is oscillating motion of a particle or body about a fixed reference point. Such motion may be simple harmonic (sinusoidal) or complex (non-sinusoidal).

### BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-13 Basic Characteristic of an Amplifier Simple Transistor Model, Common Emitter Amplifier Hello everybody! Today in our series

### Fourier Analysis. Chapter Introduction Distortion Harmonic Distortion

Chapter 5 Fourier Analysis 5.1 Introduction The theory, practice, and application of Fourier analysis are presented in the three major sections of this chapter. The theory includes a discussion of Fourier

### Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 16 Angle Modulation (Contd.) We will continue our discussion on Angle

### Electrochemical Impedance Spectroscopy

The Basics of Electrochemical Impedance Spectroscopy CORROSION COATINGS BATTERY TESTING PHOTOVOLTAICS C3 PROZESS- UND ANALYSENTECHNIK GmbH Peter-Henlein-Str. 20 D-85540 Haar b. München Telefon 089/45 60

### Lecture 9. Lab 16 System Identification (2 nd or 2 sessions) Lab 17 Proportional Control

246 Lecture 9 Coming week labs: Lab 16 System Identification (2 nd or 2 sessions) Lab 17 Proportional Control Today: Systems topics System identification (ala ME4232) Time domain Frequency domain Proportional

### Lab 9 - AC Filters and Resonance

Lab 9 AC Filters and Resonance L9-1 Name Date Partners Lab 9 - AC Filters and Resonance OBJECTIES To understand the design of capacitive and inductive filters. To understand resonance in circuits driven

### [ á{tå TÄàt. Chapter Four. Time Domain Analysis of control system

Chapter Four Time Domain Analysis of control system The time response of a control system consists of two parts: the transient response and the steady-state response. By transient response, we mean that

### Section 7 - Measurement of Transient Pressure Pulses

Section 7 - Measurement of Transient Pressure Pulses Special problems are encountered in transient pressure pulse measurement, which place stringent requirements on the measuring system. Some of these

### Lab 9 AC FILTERS AND RESONANCE

09-1 Name Date Partners ab 9 A FITES AND ESONANE OBJETIES OEIEW To understand the design of capacitive and inductive filters To understand resonance in circuits driven by A signals In a previous lab, you

### EE 3TP4: Signals and Systems Lab 5: Control of a Servomechanism

EE 3TP4: Signals and Systems Lab 5: Control of a Servomechanism Tim Davidson Ext. 27352 davidson@mcmaster.ca Objective To identify the plant model of a servomechanism, and explore the trade-off between