ECEGR Lab #8: Introduction to Simulink

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "ECEGR Lab #8: Introduction to Simulink"

Transcription

1 Page 1 ECEGR Lab #8: Introduction to Simulink Objective: By: Joe McMichael This lab is an introduction to Simulink. The student will become familiar with the Help menu, go through a short example, and finally implement a modulation and demodulation circuit in Simulink. Procedure: Part 1: Using the Help menu 1) Start and go to Help -> Matlab Help. Expand the Simulink folder and scan read through the following sections: What is Simulink? Building a Model Setting Simulink Preferences Simulink Basics Figure 1: Matlab Help: What is Simulink?

2 Page 2 Figure 2: Matlab Help: Building a Model 2) Build and simulate the example in the help page Building a Model. Figure 3: Matlab Help: Building a Model Simulink Schematic

3 Page 3 Figure 4: Matlab Help: Building a Model Simulink Output Figure 5: Matlab Help: Setting Simulink Preferences

4 Page 4 Figure 6: Matlab Help: Simulink Basics Figure 7: Matlab Help: Modeling and Simulating Discrete Systems

5 Page 5 Figure 8: Matlab Help: Signal Processing Blockset: Discrete- Time Signals Part 2: Creating and displaying signals 3) Create a model that adds 2 sinusoids, stores the result in the Workspace, and displays the result on the scope. Change the parameters of the Sine Waves, the To Workspace block, the Scope, and the Simulation. Run the model for 0.1 seconds. Figure 9: Simulink Schematic for Adder

6 Page 6 Figure 10: Scope Output (Summation of Two Sine Waves) at Sample Time of 1e-5 First Window: 100 Hz, Amplitude 10 Second Window: 800 Hz, Amplitude 3 Third Window: Summation 4) Plot the twosinewaves variable in the workspace. Figure 11: Matlab Workspace Displaying twosinewaves variable

7 Page 7 Figure 12: Matlab Plot of twosinewaves with respect to time Figure 13: Matlab Plot of twosinewaves with respect to time (zoomed in)

8 Page 8 5) To observe the samples change the sample time for both sine waves to 1e-3 seconds and run the simulation for 0.1 seconds. Figure 14: Scope Output (Summation of Two Sine Waves) at Sample Time of 1e-3 First Window: 100 Hz, Amplitude 10 Second Window: 800 Hz, Amplitude 3 Third Window: Summation 6) Next, leave one of the sample times at 1e-3 seconds and change the other sample time to 5e-3 seconds. Go to Simulation- >Configuration Parameters and change the discrete solver to a variable step. Run the model.

9 Page 9 Figure 15: Scope Output (Summation of Two Sine Waves) with Samples Time of 1e-3 and 1e-5 and Variable Step Solver First Window: 100 Hz, Amplitude 10, Ts=1e-5 Second Window: 800 Hz, Amplitude 3, Ts=1e-3 Third Window: Summation 7) Next, add to our model 3 more blocks: Matrix Sum, Sine Wave block, and Scope. The Sine Wave block can be configured to give you 2 or more different signals by entering vectors for the amplitude and frequency.

10 Page 10 Figure 16: Scope Output (Summation of Two Sine Waves) using the Matrix Sum block First Window: 100 Hz, Amplitude 10, Ts=1e-5 and 800 Hz, Amplitude 3, Ts=1e-3 Second Window: Summation 8) Finally, add to our model 3 more blocks: Matrix Sum, Signal Processing Sine Wave block, and Scope. The Sine Wave block can be configured to give you 2 or more different signals by entering vectors for the amplitude and frequency.

11 Page 11 Figure 17: Scope Output (Summation of Two Sine Waves) using the Matrix Sum block and DSP sine wave block First Window: 100 Hz, Amplitude 10, Ts=1e-5 and 800 Hz, Amplitude 3, Ts=1e-3 Second Window: Summation

12 Figure 18: Schematic for Part 2 Joe McMichael Page 12 Part 3: Computing the Fourier Transform of a Signal 9) Go through the FFT Example you can find by going to: Help- >Matlab Help->Signal Processing Blockset->Transforms->Signals in the Time Domain->Transforming Time-Domain Data into the Frequency Domain. The model is called doc_fft_tut.mdl. Figure 19: Schematic of Doc_fft_tut.mdl Example 10) Draw and run the model for 3 sinusoids with equal amplitude and frequencies of 1000, 2000, and 4000 Hz. Figure out the sample time you need to use to avoid aliasing. Answers to Questions: Nyquist Frequency = 4,000 Hz * 2 = 8 khz

13 Page 13 11) Use the FFT program to investigate the relationship between sampling frequency (Fs), samples/frame, and resolution. Remember to autoscale all plots. Figure 20: FFT of Three Sinusoids at 1000 Hz, 2000 Hz, and 4000 Hz Fs = 240 khz Sample Time = e samples/frame

14 Page 14 Figure 21: FFT of Three Sinusoids at 1000 Hz, 2000 Hz, and 4000 Hz Fs = 240 khz Sample Time = e samples/frame

15 Page 15 Figure 22: FFT of Three Sinusoids at 1000 Hz, 2000 Hz, and 4000 Hz Fs = 40 khz Sample Time = 2.5e samples/frame

16 Page 16 Figure 23: FFT of Three Sinusoids at 1000 Hz, 2000 Hz, and 4000 Hz Fs = 40 khz Sample Time = 2.5e samples/frame

17 Page 17 Figure 24: FFT of Three Sinusoids at 1000 Hz, 2000 Hz, and 4000 Hz Fs = 8.8 khz Sample Time = e samples/frame

18 Page 18 Figure 25: FFT of Three Sinusoids at 1000 Hz, 2000 Hz, and 4000 Hz Fs = 8.8 khz Sample Time = e samples/frame Answers to Questions: One must pick a sampling rate just above the Nyquist rate in order to achieve higher spectral resolution. Oversampling will often distort the FFT, because the algorithm only calculates a finite number of points. During oversampling, these points will be too far apart (because they must span a higher frequency), and will cause the FFT to have a lower spectral resolution. When a signal is undersampled, it will not meet the Nyquist theorem and will be aliased. Taking more samples per frame will increase the spectral resolution. To achieve the best results, one must sample slightly above the Nyquist rate with a large number of samples/frame.

19 Page 19 For example, at an 8.8 khz sampling rate with 128 samples/frame, the spectral components are wide and slightly off, but with an 8.8 khz sampling rate with 2048 samples/frame, the spectral components are right on, at 1 khz, 2 khz, and 4 khz. The size of the frame increases with a higher sampling frequency. However, above the Nyquist frequency this is unnecessary and can make it hard to see the spectral components. Part 4: Modeling the modulator and demodulator system from previous labs 12) Create a model for the modulation, frequency division multiplexing, and demodulation system that you built in a previous lab. 13) For the modulator and demodulator simply use the multiplier blocks. Model the bandpass filter with the transfer function you had from a previous lab. Model the lowpass filter with a transfer function. Figure 26: Matlab Program for Computing Fourier Coefficients for Bandpass Filter %Compute the Transfer Function Values for a Bandpass Filter %Joe McMichael %November 27th, 2007 clear clc f0 = 20000; BW = 3000; Q = 6.667; Gain = ; C = ; R2 = ; R1 = ; w0 = (2*pi*f0); numerator = -(2*Q*w0) denominator_s2 = 1 denominator_s = w0/q denominator_1 = w0^2

20 Page 20 Figure 27: Matlab Output Computing Fourier Coefficients for Bandpass Filter numerator = e+006 denominator_s2 = 1 denominator_s = e+004 denominator_1 = e+010 >> Figure 28: Matlab Program for Computing Fourier Coefficients for Lowpass Filter %Compute the Transfer Function Values for a Lowpass Filter %Joe McMichael %November 27th, 2007 clear clc fc = 2000; wc = (2*pi*fc); numerator = wc^2 denominator_s2 = 1 denominator_s = 2*0.707*wc denominator_1 = wc^2 Figure 29: Matlab Output Computing Fourier Coefficients for Lowpass Filter numerator = e+008 denominator_s2 = 1 denominator_s = e+004 denominator_1 = e+008 >>

21 Page 21 Figure 30: Simulink Schematic Carrier 1: 20 khz Message 1: 1 khz Carrier 2: 10 khz Message 2: 3 khz

22 Joe McMichael December 4th, 2007 Page 22 Figure 31: Output in the Time Domain Carrier 1: 20 khz Message 1: 1 khz Carrier 2: 10 khz Message 2: 3 khz 1st Panel: Output of Adder Circuit 2nd Panel: Output of Bandpass Filter 3rd Panel: Output of Demodulator 4th Panel: Ouput of Low Pass Filter

23 Figure 32: FFT of Adder Circuit Output Carrier 1: 20 khz Message 1: 1 khz Carrier 2: 10 khz Message 2: 3 khz Joe McMichael Page 23

24 Figure 33: FFT of Bandpass Filter Carrier 1: 20 khz Message 1: 1 khz Carrier 2: 10 khz Message 2: 3 khz Bandpass Filter Center = 20 khz Bandwidth = 3 khz Joe McMichael Page 24

25 Figure 34: FFT of Demodulator Carrier 1: 20 khz Message 1: 1 khz Carrier 2: 10 khz Message 2: 3 khz Joe McMichael Page 25

26 Figure 35: FFT of Low Pass Filter Carrier 1: 20 khz Message 1: 1 khz Carrier 2: 10 khz Message 2: 3 khz Cutoff Frequency = 2 khz Joe McMichael Page 26 Modulation & Demodulation Successful!

Sampling and Reconstruction of Analog Signals

Sampling and Reconstruction of Analog Signals Sampling and Reconstruction of Analog Signals Chapter Intended Learning Outcomes: (i) Ability to convert an analog signal to a discrete-time sequence via sampling (ii) Ability to construct an analog signal

More information

CME 312-Lab Communication Systems Laboratory

CME 312-Lab Communication Systems Laboratory Objective: By the end of this experiment, the student should be able to: 1. Demonstrate the Modulation and Demodulation of the AM. 2. Observe the relation between modulation index and AM signal envelope.

More information

Experiment # 4. Frequency Modulation

Experiment # 4. Frequency Modulation ECE 416 Fall 2002 Experiment # 4 Frequency Modulation 1 Purpose In Experiment # 3, a modulator and demodulator for AM were designed and built. In this experiment, another widely used modulation technique

More information

FYS3240 PC-based instrumentation and microcontrollers. Signal sampling. Spring 2015 Lecture #5

FYS3240 PC-based instrumentation and microcontrollers. Signal sampling. Spring 2015 Lecture #5 FYS3240 PC-based instrumentation and microcontrollers Signal sampling Spring 2015 Lecture #5 Bekkeng, 29.1.2015 Content Aliasing Nyquist (Sampling) ADC Filtering Oversampling Triggering Analog Signal Information

More information

Laboratory Experiment #1 Introduction to Spectral Analysis

Laboratory Experiment #1 Introduction to Spectral Analysis J.B.Francis College of Engineering Mechanical Engineering Department 22-403 Laboratory Experiment #1 Introduction to Spectral Analysis Introduction The quantification of electrical energy can be accomplished

More information

Experiment 2 Effects of Filtering

Experiment 2 Effects of Filtering Experiment 2 Effects of Filtering INTRODUCTION This experiment demonstrates the relationship between the time and frequency domains. A basic rule of thumb is that the wider the bandwidth allowed for the

More information

Laboratory Assignment 1 Sampling Phenomena

Laboratory Assignment 1 Sampling Phenomena 1 Main Topics Signal Acquisition Audio Processing Aliasing, Anti-Aliasing Filters Laboratory Assignment 1 Sampling Phenomena 2.171 Analysis and Design of Digital Control Systems Digital Filter Design and

More information

Sound synthesis with Pure Data

Sound synthesis with Pure Data Sound synthesis with Pure Data 1. Start Pure Data from the programs menu in classroom TC307. You should get the following window: The DSP check box switches sound output on and off. Getting sound out First,

More information

Laboratory Assignment 5 Amplitude Modulation

Laboratory Assignment 5 Amplitude Modulation Laboratory Assignment 5 Amplitude Modulation PURPOSE In this assignment, you will explore the use of digital computers for the analysis, design, synthesis, and simulation of an amplitude modulation (AM)

More information

Spectrum Analysis - Elektronikpraktikum

Spectrum Analysis - Elektronikpraktikum Spectrum Analysis Introduction Why measure a spectra? In electrical engineering we are most often interested how a signal develops over time. For this time-domain measurement we use the Oscilloscope. Like

More information

Lab 4 An FPGA Based Digital System Design ReadMeFirst

Lab 4 An FPGA Based Digital System Design ReadMeFirst Lab 4 An FPGA Based Digital System Design ReadMeFirst Lab Summary This Lab introduces a number of Matlab functions used to design and test a lowpass IIR filter. As you have seen in the previous lab, Simulink

More information

Experiment 02: Amplitude Modulation

Experiment 02: Amplitude Modulation ECE316, Experiment 02, 2017 Communications Lab, University of Toronto Experiment 02: Amplitude Modulation Bruno Korst - bkf@comm.utoronto.ca Abstract In this second laboratory experiment, you will see

More information

Presentation Outline. Advisors: Dr. In Soo Ahn Dr. Thomas L. Stewart. Team Members: Luke Vercimak Karl Weyeneth. Karl. Luke

Presentation Outline. Advisors: Dr. In Soo Ahn Dr. Thomas L. Stewart. Team Members: Luke Vercimak Karl Weyeneth. Karl. Luke Bradley University Department of Electrical and Computer Engineering Senior Capstone Project Presentation May 2nd, 2006 Team Members: Luke Vercimak Karl Weyeneth Advisors: Dr. In Soo Ahn Dr. Thomas L.

More information

Lab 1B LabVIEW Filter Signal

Lab 1B LabVIEW Filter Signal Lab 1B LabVIEW Filter Signal Due Thursday, September 12, 2013 Submit Responses to Questions (Hardcopy) Equipment: LabVIEW Setup: Open LabVIEW Skills learned: Create a low- pass filter using LabVIEW and

More information

Recap of Last 2 Classes

Recap of Last 2 Classes Recap of Last 2 Classes Transmission Media Analog versus Digital Signals Bandwidth Considerations Attentuation, Delay Distortion and Noise Nyquist and Shannon Analog Modulation Digital Modulation What

More information

EE452 Senior Capstone Project: Integration of Matlab Tools for DSP Code Generation. Kwadwo Boateng Charles Badu. May 8, 2006

EE452 Senior Capstone Project: Integration of Matlab Tools for DSP Code Generation. Kwadwo Boateng Charles Badu. May 8, 2006 EE452 Senior Capstone Project: Integration of Matlab Tools for DSP Code Generation Kwadwo Boateng Charles Badu May 8, 2006 Bradley University College of Engineering and Technology Electrical and Computer

More information

Signal Processing Toolbox

Signal Processing Toolbox Signal Processing Toolbox Perform signal processing, analysis, and algorithm development Signal Processing Toolbox provides industry-standard algorithms for analog and digital signal processing (DSP).

More information

AC : FIR FILTERS FOR TECHNOLOGISTS, SCIENTISTS, AND OTHER NON-PH.D.S

AC : FIR FILTERS FOR TECHNOLOGISTS, SCIENTISTS, AND OTHER NON-PH.D.S AC 29-125: FIR FILTERS FOR TECHNOLOGISTS, SCIENTISTS, AND OTHER NON-PH.D.S William Blanton, East Tennessee State University Dr. Blanton is an associate professor and coordinator of the Biomedical Engineering

More information

Reading: Johnson Ch , Ch.5.5 (today); Liljencrants & Lindblom; Stevens (Tues) reminder: no class on Thursday.

Reading: Johnson Ch , Ch.5.5 (today); Liljencrants & Lindblom; Stevens (Tues) reminder: no class on Thursday. L105/205 Phonetics Scarborough Handout 7 10/18/05 Reading: Johnson Ch.2.3.3-2.3.6, Ch.5.5 (today); Liljencrants & Lindblom; Stevens (Tues) reminder: no class on Thursday Spectral Analysis 1. There are

More information

ECE 203 LAB 2 PRACTICAL FILTER DESIGN & IMPLEMENTATION

ECE 203 LAB 2 PRACTICAL FILTER DESIGN & IMPLEMENTATION Version 1. 1 of 7 ECE 03 LAB PRACTICAL FILTER DESIGN & IMPLEMENTATION BEFORE YOU BEGIN PREREQUISITE LABS ECE 01 Labs ECE 0 Advanced MATLAB ECE 03 MATLAB Signals & Systems EXPECTED KNOWLEDGE Understanding

More information

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2 Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, 2006 6.082 Introduction to EECS 2 Modulation and Demodulation Introduction A communication system

More information

Experiment 1 Introduction to Simulink

Experiment 1 Introduction to Simulink 1 Experiment 1 Introduction to Simulink 1.1 Objective The objective of Experiment #1 is to familiarize the students with simulation of power electronic circuits in Matlab/Simulink environment. Please follow

More information

Frequency Domain Representation of Signals

Frequency Domain Representation of Signals Frequency Domain Representation of Signals The Discrete Fourier Transform (DFT) of a sampled time domain waveform x n x 0, x 1,..., x 1 is a set of Fourier Coefficients whose samples are 1 n0 X k X0, X

More information

Digital Filters IIR (& Their Corresponding Analog Filters) Week Date Lecture Title

Digital Filters IIR (& Their Corresponding Analog Filters) Week Date Lecture Title http://elec3004.com Digital Filters IIR (& Their Corresponding Analog Filters) 2017 School of Information Technology and Electrical Engineering at The University of Queensland Lecture Schedule: Week Date

More information

6.02 Practice Problems: Modulation & Demodulation

6.02 Practice Problems: Modulation & Demodulation 1 of 12 6.02 Practice Problems: Modulation & Demodulation Problem 1. Here's our "standard" modulation-demodulation system diagram: at the transmitter, signal x[n] is modulated by signal mod[n] and the

More information

Biomedical Signals. Signals and Images in Medicine Dr Nabeel Anwar

Biomedical Signals. Signals and Images in Medicine Dr Nabeel Anwar Biomedical Signals Signals and Images in Medicine Dr Nabeel Anwar Noise Removal: Time Domain Techniques 1. Synchronized Averaging (covered in lecture 1) 2. Moving Average Filters (today s topic) 3. Derivative

More information

SAMPLING AND RECONSTRUCTING SIGNALS

SAMPLING AND RECONSTRUCTING SIGNALS CHAPTER 3 SAMPLING AND RECONSTRUCTING SIGNALS Many DSP applications begin with analog signals. In order to process these analog signals, the signals must first be sampled and converted to digital signals.

More information

Lab 1: Simulating Control Systems with Simulink and MATLAB

Lab 1: Simulating Control Systems with Simulink and MATLAB Lab 1: Simulating Control Systems with Simulink and MATLAB EE128: Feedback Control Systems Fall, 2006 1 Simulink Basics Simulink is a graphical tool that allows us to simulate feedback control systems.

More information

Fourier Theory & Practice, Part I: Theory (HP Product Note )

Fourier Theory & Practice, Part I: Theory (HP Product Note ) Fourier Theory & Practice, Part I: Theory (HP Product Note 54600-4) By: Robert Witte Hewlett-Packard Co. Introduction: This product note provides a brief review of Fourier theory, especially the unique

More information

Topic. Filters, Reverberation & Convolution THEY ARE ALL ONE

Topic. Filters, Reverberation & Convolution THEY ARE ALL ONE Topic Filters, Reverberation & Convolution THEY ARE ALL ONE What is reverberation? Reverberation is made of echoes Echoes are delayed copies of the original sound In the physical world these are caused

More information

The Fundamentals of Mixed Signal Testing

The Fundamentals of Mixed Signal Testing The Fundamentals of Mixed Signal Testing Course Information The Fundamentals of Mixed Signal Testing course is designed to provide the foundation of knowledge that is required for testing modern mixed

More information

SAMPLING THEORY. Representing continuous signals with discrete numbers

SAMPLING THEORY. Representing continuous signals with discrete numbers SAMPLING THEORY Representing continuous signals with discrete numbers Roger B. Dannenberg Professor of Computer Science, Art, and Music Carnegie Mellon University ICM Week 3 Copyright 2002-2013 by Roger

More information

Multirate Digital Signal Processing

Multirate Digital Signal Processing Multirate Digital Signal Processing Basic Sampling Rate Alteration Devices Up-sampler - Used to increase the sampling rate by an integer factor Down-sampler - Used to increase the sampling rate by an integer

More information

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system 1 2 TSTE17 System Design, CDIO Introduction telecommunication OFDM principle How to combat ISI How to reduce out of band signaling Practical issue: Group definition Project group sign up list will be put

More information

Problems from the 3 rd edition

Problems from the 3 rd edition (2.1-1) Find the energies of the signals: a) sin t, 0 t π b) sin t, 0 t π c) 2 sin t, 0 t π d) sin (t-2π), 2π t 4π Problems from the 3 rd edition Comment on the effect on energy of sign change, time shifting

More information

The 29 th Annual ARRL and TAPR Digital Communications Conference. DSP Short Course Session 1: DSP Intro and Basics. Rick Muething, KN6KB/AAA9WK

The 29 th Annual ARRL and TAPR Digital Communications Conference. DSP Short Course Session 1: DSP Intro and Basics. Rick Muething, KN6KB/AAA9WK The 29 th Annual ARRL and TAPR Digital Communications Conference DSP Short Course Session 1: DSP Intro and Basics Rick Muething, KN6KB/AAA9WK Session 1 Overview What is DSP? Why is DSP better/different

More information

Orthogonal frequency division multiplexing (OFDM)

Orthogonal frequency division multiplexing (OFDM) Orthogonal frequency division multiplexing (OFDM) OFDM was introduced in 1950 but was only completed in 1960 s Originally grew from Multi-Carrier Modulation used in High Frequency military radio. Patent

More information

UNIT TEST I Digital Communication

UNIT TEST I Digital Communication Time: 1 Hour Class: T.E. I & II Max. Marks: 30 Q.1) (a) A compact disc (CD) records audio signals digitally by using PCM. Assume the audio signal B.W. to be 15 khz. (I) Find Nyquist rate. (II) If the Nyquist

More information

ECE 4670 Spring 2014 Lab 1 Linear System Characteristics

ECE 4670 Spring 2014 Lab 1 Linear System Characteristics ECE 4670 Spring 2014 Lab 1 Linear System Characteristics 1 Linear System Characteristics The first part of this experiment will serve as an introduction to the use of the spectrum analyzer in making absolute

More information

Chapter 5 Window Functions. periodic with a period of N (number of samples). This is observed in table (3.1).

Chapter 5 Window Functions. periodic with a period of N (number of samples). This is observed in table (3.1). Chapter 5 Window Functions 5.1 Introduction As discussed in section (3.7.5), the DTFS assumes that the input waveform is periodic with a period of N (number of samples). This is observed in table (3.1).

More information

Lab 4: Using the CODEC

Lab 4: Using the CODEC Lab 4: Using the CODEC ECE 2060 Spring, 2016 Haocheng Zhu Gregory Ochs Monday 12:40 15:40 Date of Experiment: 03/28/16 Date of Submission: 04/08/16 Abstract This lab covers the use of the CODEC that is

More information

Cyclone II Filtering Lab

Cyclone II Filtering Lab May 2005, ver. 1.0 Application Note 376 Introduction The Cyclone II filtering lab design provided in the DSP Development Kit, Cyclone II Edition, shows you how to use the Altera DSP Builder for system

More information

Lab 0: Introduction to TIMS AND MATLAB

Lab 0: Introduction to TIMS AND MATLAB TELE3013 TELECOMMUNICATION SYSTEMS 1 Lab 0: Introduction to TIMS AND MATLAB 1. INTRODUCTION The TIMS (Telecommunication Instructional Modelling System) system was first developed by Tim Hooper, then a

More information

PART I: The questions in Part I refer to the aliasing portion of the procedure as outlined in the lab manual.

PART I: The questions in Part I refer to the aliasing portion of the procedure as outlined in the lab manual. Lab. #1 Signal Processing & Spectral Analysis Name: Date: Section / Group: NOTE: To help you correctly answer many of the following questions, it may be useful to actually run the cases outlined in the

More information

Applications of Linear Algebra in Signal Sampling and Modeling

Applications of Linear Algebra in Signal Sampling and Modeling Applications of Linear Algebra in Signal Sampling and Modeling by Corey Brown Joshua Crawford Brett Rustemeyer and Kenny Stieferman Abstract: Many situations encountered in engineering require sampling

More information

Design and Implementation of Software Defined Radio Using Xilinx System Generator

Design and Implementation of Software Defined Radio Using Xilinx System Generator International Journal of Scientific and Research Publications, Volume 2, Issue 12, December 2012 1 Design and Implementation of Software Defined Radio Using Xilinx System Generator Rini Supriya.L *, Mr.Senthil

More information

Stratix Filtering Reference Design

Stratix Filtering Reference Design Stratix Filtering Reference Design December 2004, ver. 3.0 Application Note 245 Introduction The filtering reference designs provided in the DSP Development Kit, Stratix Edition, and in the DSP Development

More information

When and How to Use FFT

When and How to Use FFT B Appendix B: FFT When and How to Use FFT The DDA s Spectral Analysis capability with FFT (Fast Fourier Transform) reveals signal characteristics not visible in the time domain. FFT converts a time domain

More information

DFT: Discrete Fourier Transform & Linear Signal Processing

DFT: Discrete Fourier Transform & Linear Signal Processing DFT: Discrete Fourier Transform & Linear Signal Processing 2 nd Year Electronics Lab IMPERIAL COLLEGE LONDON Table of Contents Equipment... 2 Aims... 2 Objectives... 2 Recommended Textbooks... 3 Recommended

More information

DSP First. Laboratory Exercise #11. Extracting Frequencies of Musical Tones

DSP First. Laboratory Exercise #11. Extracting Frequencies of Musical Tones DSP First Laboratory Exercise #11 Extracting Frequencies of Musical Tones This lab is built around a single project that involves the implementation of a system for automatically writing a musical score

More information

Multirate DSP, part 1: Upsampling and downsampling

Multirate DSP, part 1: Upsampling and downsampling Multirate DSP, part 1: Upsampling and downsampling Li Tan - April 21, 2008 Order this book today at www.elsevierdirect.com or by calling 1-800-545-2522 and receive an additional 20% discount. Use promotion

More information

Solutions to Information Theory Exercise Problems 5 8

Solutions to Information Theory Exercise Problems 5 8 Solutions to Information Theory Exercise roblems 5 8 Exercise 5 a) n error-correcting 7/4) Hamming code combines four data bits b 3, b 5, b 6, b 7 with three error-correcting bits: b 1 = b 3 b 5 b 7, b

More information

14 fasttest. Multitone Audio Analyzer. Multitone and Synchronous FFT Concepts

14 fasttest. Multitone Audio Analyzer. Multitone and Synchronous FFT Concepts Multitone Audio Analyzer The Multitone Audio Analyzer (FASTTEST.AZ2) is an FFT-based analysis program furnished with System Two for use with both analog and digital audio signals. Multitone and Synchronous

More information

Multirate DSP, part 3: ADC oversampling

Multirate DSP, part 3: ADC oversampling Multirate DSP, part 3: ADC oversampling Li Tan - May 04, 2008 Order this book today at www.elsevierdirect.com or by calling 1-800-545-2522 and receive an additional 20% discount. Use promotion code 92562

More information

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Spring Semester, Introduction to EECS 2

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Spring Semester, Introduction to EECS 2 Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Spring Semester, 2007 6.082 Introduction to EECS 2 Lab #3: Modulation and Filtering Goal:... 2 Instructions:...

More information

Modeling Communication Systems Using Simulink

Modeling Communication Systems Using Simulink Modeling Communication Systems Using Simulink SSB Modulation System Model (Filtering Method) Eng. Anas Alashqar Modeling Communication Systems Using Simulink: SSB Modulation System Model (Filtering Method)

More information

Communication Systems Lab Manual

Communication Systems Lab Manual SWEDISH COLLEGE OF ENGINEERING & TECHNOLOGY Communication Systems Lab Manual Submitted by: Roll No.: Board Roll No.: Submitted to: Ahmad Bilal COMMUNICATION SYSTEMS Table of Contents SAMPLING Understanding

More information

Spring 2018 EE 445S Real-Time Digital Signal Processing Laboratory Prof. Evans. Homework #1 Sinusoids, Transforms and Transfer Functions

Spring 2018 EE 445S Real-Time Digital Signal Processing Laboratory Prof. Evans. Homework #1 Sinusoids, Transforms and Transfer Functions Spring 2018 EE 445S Real-Time Digital Signal Processing Laboratory Prof. Homework #1 Sinusoids, Transforms and Transfer Functions Assigned on Friday, February 2, 2018 Due on Friday, February 9, 2018, by

More information

Theoretical 1 Bit A/D Converter

Theoretical 1 Bit A/D Converter Acquisition 16.1 Chapter 4 - Acquisition D/A converter (or DAC): Digital to Analog converters are used to map a finite number of values onto a physical output range (usually a ) A/D converter (or ADC):

More information

Practical Application of Wavelet to Power Quality Analysis. Norman Tse

Practical Application of Wavelet to Power Quality Analysis. Norman Tse Paper Title: Practical Application of Wavelet to Power Quality Analysis Author and Presenter: Norman Tse 1 Harmonics Frequency Estimation by Wavelet Transform (WT) Any harmonic signal can be described

More information

Reference: PMU Data Event Detection

Reference: PMU Data Event Detection Reference: PMU Data Event Detection This is to present how to analyze data from phasor measurement units (PMUs) Why important? Because so much data are being generated, it is difficult to detect events

More information

Coming to Grips with the Frequency Domain

Coming to Grips with the Frequency Domain XPLANATION: FPGA 101 Coming to Grips with the Frequency Domain by Adam P. Taylor Chief Engineer e2v aptaylor@theiet.org 48 Xcell Journal Second Quarter 2015 The ability to work within the frequency domain

More information

Chapter 2. Signals and Spectra

Chapter 2. Signals and Spectra Chapter 2 Signals and Spectra Outline Properties of Signals and Noise Fourier Transform and Spectra Power Spectral Density and Autocorrelation Function Orthogonal Series Representation of Signals and Noise

More information

The quality of the transmission signal The characteristics of the transmission medium. Some type of transmission medium is required for transmission:

The quality of the transmission signal The characteristics of the transmission medium. Some type of transmission medium is required for transmission: Data Transmission The successful transmission of data depends upon two factors: The quality of the transmission signal The characteristics of the transmission medium Some type of transmission medium is

More information

C.8 Comb filters 462 APPENDIX C. LABORATORY EXERCISES

C.8 Comb filters 462 APPENDIX C. LABORATORY EXERCISES 462 APPENDIX C. LABORATORY EXERCISES C.8 Comb filters The purpose of this lab is to use a kind of filter called a comb filter to deeply explore concepts of impulse response and frequency response. The

More information

Experiment # 2. Pulse Code Modulation: Uniform and Non-Uniform

Experiment # 2. Pulse Code Modulation: Uniform and Non-Uniform 10 8 6 4 2 0 2 4 6 8 3 2 1 0 1 2 3 2 3 4 5 6 7 8 9 10 3 2 1 0 1 2 3 4 1 2 3 4 5 6 7 8 9 1.5 1 0.5 0 0.5 1 ECE417 c 2017 Bruno Korst-Fagundes CommLab Experiment # 2 Pulse Code Modulation: Uniform and Non-Uniform

More information

Lecture 3 Complex Exponential Signals

Lecture 3 Complex Exponential Signals Lecture 3 Complex Exponential Signals Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/3/1 1 Review of Complex Numbers Using Euler s famous formula for the complex exponential The

More information

Digital Front-End for Software Defined Radio Wideband Channelizer

Digital Front-End for Software Defined Radio Wideband Channelizer Digital Front-End for Software Defined Radio Wideband Channelizer Adedotun O. Owojori Federal University of Technology, Akure Dept of Elect/Elect School of Eng & Eng Technology Temidayo O. Otunniyi Federal

More information

Chapter-2 SAMPLING PROCESS

Chapter-2 SAMPLING PROCESS Chapter-2 SAMPLING PROCESS SAMPLING: A message signal may originate from a digital or analog source. If the message signal is analog in nature, then it has to be converted into digital form before it can

More information

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 17. Aliasing. Again, engineers collect accelerometer data in a variety of settings.

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 17. Aliasing. Again, engineers collect accelerometer data in a variety of settings. SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 17. Aliasing By Tom Irvine Email: tomirvine@aol.com Introduction Again, engineers collect accelerometer data in a variety of settings. Examples include:

More information

Spectrum Analysis: The FFT Display

Spectrum Analysis: The FFT Display Spectrum Analysis: The FFT Display Equipment: Capstone, voltage sensor 1 Introduction It is often useful to represent a function by a series expansion, such as a Taylor series. There are other series representations

More information

MAE143A Signals & Systems - Homework 9, Winter 2015 due by the end of class Friday March 13, 2015.

MAE143A Signals & Systems - Homework 9, Winter 2015 due by the end of class Friday March 13, 2015. MAEA Signals & Systems - Homework 9, Winter due by the end of class Friday March,. Question Three audio files have been placed on the class website: Waits.wav, WaitsAliased.wav, WaitsDecimated.wav. These

More information

Noise Power Ratio for the GSPS

Noise Power Ratio for the GSPS Noise Power Ratio for the GSPS ADC Marjorie Plisch 1 Noise Power Ratio (NPR) Overview Concept History Definition Method of Measurement Notch Considerations Theoretical Values RMS Noise Loading Level 2

More information

Design of FIR Filters

Design of FIR Filters Design of FIR Filters Elena Punskaya www-sigproc.eng.cam.ac.uk/~op205 Some material adapted from courses by Prof. Simon Godsill, Dr. Arnaud Doucet, Dr. Malcolm Macleod and Prof. Peter Rayner 1 FIR as a

More information

Lecture 13. Introduction to OFDM

Lecture 13. Introduction to OFDM Lecture 13 Introduction to OFDM Ref: About-OFDM.pdf Orthogonal frequency division multiplexing (OFDM) is well-known to be effective against multipath distortion. It is a multicarrier communication scheme,

More information

Removal of Line Noise Component from EEG Signal

Removal of Line Noise Component from EEG Signal 1 Removal of Line Noise Component from EEG Signal Removal of Line Noise Component from EEG Signal When carrying out time-frequency analysis, if one is interested in analysing frequencies above 30Hz (i.e.

More information

6.555 Lab1: The Electrocardiogram

6.555 Lab1: The Electrocardiogram 6.555 Lab1: The Electrocardiogram Tony Hyun Kim Spring 11 1 Data acquisition Question 1: Draw a block diagram to illustrate how the data was acquired. The EKG signal discussed in this report was recorded

More information

AC : TEACHING COMMUNICATION SYSTEMS WITH SIMULINK AND THE USRP

AC : TEACHING COMMUNICATION SYSTEMS WITH SIMULINK AND THE USRP AC 202-3429: TEACHING COMMUNICATION SYSTEMS WITH SIMULINK AND THE USRP Dr. Joseph P. Hoffbeck, University of Portland Joseph P. Hoffbeck is an Associate Professor of electrical engineering at the University

More information

FINITE IMPULSE RESPONSE (FIR) FILTERS

FINITE IMPULSE RESPONSE (FIR) FILTERS CHAPTER 5 FINITE IMPULSE RESPONSE (FIR) FILTERS This chapter introduces finite impulse response (FIR) digital filters. Several methods for designing FIR filters are covered. The Filter Design and Analysis

More information

EEL 4514L COMMUNICATION LABORATORY. Laboratory Manual G.K. Heitman Electrical and Computer Engineering University of Florida Spring 2007

EEL 4514L COMMUNICATION LABORATORY. Laboratory Manual G.K. Heitman Electrical and Computer Engineering University of Florida Spring 2007 EEL 4514L COMMUNICATION LABORATORY Laboratory Manual G.K. Heitman Electrical and Computer Engineering University of Florida Spring 2007 TABLE OF CONTENTS Laboratory Title Introduction To the Communication

More information

6.02 Fall 2012 Lecture #15

6.02 Fall 2012 Lecture #15 6.02 Fall 2012 Lecture #15 Modulation to match the transmitted signal to the physical medium Demodulation 6.02 Fall 2012 Lecture 15 Slide #1 Single Link Communication Model Original source End-host computers

More information

Linguistic Phonetics. Spectral Analysis

Linguistic Phonetics. Spectral Analysis 24.963 Linguistic Phonetics Spectral Analysis 4 4 Frequency (Hz) 1 Reading for next week: Liljencrants & Lindblom 1972. Assignment: Lip-rounding assignment, due 1/15. 2 Spectral analysis techniques There

More information

Subcarrier Placement in a PCM-FM-FM/FM Modulation Scheme

Subcarrier Placement in a PCM-FM-FM/FM Modulation Scheme Subcarrier Placement in a PCM-FM-FM/FM Modulation Scheme presented to The International Foundation for Telemetering International Telemetering Conference '91 Student Paper Contest by Juliette Lyn Moser

More information

EE470 Electronic Communication Theory Exam II

EE470 Electronic Communication Theory Exam II EE470 Electronic Communication Theory Exam II Open text, closed notes. For partial credit, you must show all formulas in symbolic form and you must work neatly!!! Date: November 6, 2013 Name: 1. [16%]

More information

EXPERIMENT WISE VIVA QUESTIONS

EXPERIMENT WISE VIVA QUESTIONS EXPERIMENT WISE VIVA QUESTIONS Pulse Code Modulation: 1. Draw the block diagram of basic digital communication system. How it is different from analog communication system. 2. What are the advantages of

More information

SP.718 Special Topics at Edgerton Center: D-Lab Health: Medical Technologies for the Developing World

SP.718 Special Topics at Edgerton Center: D-Lab Health: Medical Technologies for the Developing World MIT OpenCourseWare http://ocw.mit.edu SP.718 Special Topics at Edgerton Center: D-Lab Health: Medical Technologies for the Developing World Spring 2009 For information about citing these materials or our

More information

User-friendly Matlab tool for easy ADC testing

User-friendly Matlab tool for easy ADC testing User-friendly Matlab tool for easy ADC testing Tamás Virosztek, István Kollár Budapest University of Technology and Economics, Department of Measurement and Information Systems Budapest, Hungary, H-1521,

More information

Advanced 3G & 4G Wireless Communication Prof. Aditya K. Jaganathan Department of Electrical Engineering Indian Institute of Technology, Kanpur

Advanced 3G & 4G Wireless Communication Prof. Aditya K. Jaganathan Department of Electrical Engineering Indian Institute of Technology, Kanpur (Refer Slide Time: 00:17) Advanced 3G & 4G Wireless Communication Prof. Aditya K. Jaganathan Department of Electrical Engineering Indian Institute of Technology, Kanpur Lecture - 32 MIMO-OFDM (Contd.)

More information

EK307 Passive Filters and Steady State Frequency Response

EK307 Passive Filters and Steady State Frequency Response EK307 Passive Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of passive signal-processing filters Learning Objectives: Passive filters, Frequency domain, Bode plots

More information

Presentation Outline. Advisors: Dr. In Soo Ahn Dr. Thomas L. Stewart. Team Members: Luke Vercimak Karl Weyeneth

Presentation Outline. Advisors: Dr. In Soo Ahn Dr. Thomas L. Stewart. Team Members: Luke Vercimak Karl Weyeneth Bradley University Department of Electrical and Computer Engineering Senior Capstone Project Proposal December 6 th, 2005 Team Members: Luke Vercimak Karl Weyeneth Advisors: Dr. In Soo Ahn Dr. Thomas L.

More information

Timbral Distortion in Inverse FFT Synthesis

Timbral Distortion in Inverse FFT Synthesis Timbral Distortion in Inverse FFT Synthesis Mark Zadel Introduction Inverse FFT synthesis (FFT ) is a computationally efficient technique for performing additive synthesis []. Instead of summing partials

More information

EC310 Security Exercise 20

EC310 Security Exercise 20 EC310 Security Exercise 20 Introduction to Sinusoidal Signals This lab demonstrates a sinusoidal signal as described in class. In this lab you will identify the different waveform parameters for a pure

More information

PYKC 27 Feb 2017 EA2.3 Electronics 2 Lecture PYKC 27 Feb 2017 EA2.3 Electronics 2 Lecture 11-2

PYKC 27 Feb 2017 EA2.3 Electronics 2 Lecture PYKC 27 Feb 2017 EA2.3 Electronics 2 Lecture 11-2 In this lecture, I will introduce the mathematical model for discrete time signals as sequence of samples. You will also take a first look at a useful alternative representation of discrete signals known

More information

Using the CODEC ReadMeFirst

Using the CODEC ReadMeFirst Using the CODEC ReadMeFirst Lab Summary This lab covers the use of the CODEC that is necessary in nearly all of the future labs. This lab is divided into three parts. In the first part, you will work with

More information

Signal Characteristics

Signal Characteristics Data Transmission The successful transmission of data depends upon two factors:» The quality of the transmission signal» The characteristics of the transmission medium Some type of transmission medium

More information

Set-up. Equipment required: Your issued Laptop MATLAB ( if you don t already have it on your laptop)

Set-up. Equipment required: Your issued Laptop MATLAB ( if you don t already have it on your laptop) All signals found in nature are analog they re smooth and continuously varying, from the sound of an orchestra to the acceleration of your car to the clouds moving through the sky. An excerpt from http://www.netguru.net/ntc/ntcc5.htm

More information

Outline / Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing. Cartoon View 1 A Wave of Energy

Outline / Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing. Cartoon View 1 A Wave of Energy Outline 18-452/18-750 Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing Peter Steenkiste Carnegie Mellon University Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17/

More information

Solution of ECE 342 Test 3 S12

Solution of ECE 342 Test 3 S12 Solution of ECE 34 Test 3 S1 1 A random power signal has a mean of three and a standard deviation of five Find its numerical total average signal power Signal Power P = 3 + 5 = 34 A random energy signal

More information

DSP First. Laboratory Exercise #2. Introduction to Complex Exponentials

DSP First. Laboratory Exercise #2. Introduction to Complex Exponentials DSP First Laboratory Exercise #2 Introduction to Complex Exponentials The goal of this laboratory is gain familiarity with complex numbers and their use in representing sinusoidal signals as complex exponentials.

More information

CHAPTER 5 NOVEL CARRIER FUNCTION FOR FUNDAMENTAL FORTIFICATION IN VSI

CHAPTER 5 NOVEL CARRIER FUNCTION FOR FUNDAMENTAL FORTIFICATION IN VSI 98 CHAPTER 5 NOVEL CARRIER FUNCTION FOR FUNDAMENTAL FORTIFICATION IN VSI 5.1 INTRODUCTION This chapter deals with the design and development of FPGA based PWM generation with the focus on to improve the

More information