CHAPTER 3 Syllabus (2006 scheme syllabus) Differential pulse code modulation DPCM transmitter

Size: px
Start display at page:

Download "CHAPTER 3 Syllabus (2006 scheme syllabus) Differential pulse code modulation DPCM transmitter"

Transcription

1 CHAPTER 3 Syllabus 1) DPCM 2) DM 3) Base band shaping for data tranmission 4) Discrete PAM signals 5) Power spectra of discrete PAM signal. 6) Applications (2006 scheme syllabus) Differential pulse code modulation When a voice or video signals is sampled slightly higher than nyquist rate, The resulting signal exhibits high correlation between the adjacent samples i.e. the signal doesn t change rapidly from one sample to the next. When these highly correlated samples are encoded the resulting encoded signal carries redundant information. By removing this redundancy before encoding, we obtain a more efficient coded signal. IF past behavior of the signal is known, to certain point of time, it is possible to make some inference about the future values such a process iss known as prediction. DPCM transmitter Let x(nt s ) be sampled signal from figure we can write n s n s (1) Where n s is the difference between unquantized input sample and a prediction of it n s By encoding the quantizer output we obtain PCM, which is known as DPCM. 1

2 The quantizer output may be expressed as n s n s (2) The quantizer output n s is added to the predicted value n s to produce prediction filter output n s n s (3) Substituting (2) in (3) n s n s n s (4) However from equation (1) we observe that the sum term n s +, is equal to input signal. Therefore equation (4) maybe written as n s n s (5) The quantized signal n s at the predictor input differs from the original signal by the quantization error. Accordingly if prediction is good, the variance of the prediction error will be smaller than. So that a quantizer with a given number of representation levels can be adjusted to produce a quantization error with less variance than input signals. DPCM receiver The decoder reconstructs the quantized error signal, and there by the original signal is reconstructed by summing up the decoder output and the predictor output. The output differs from the original input by quantization error in the absence of channel noise. Prediction gain: The output signal to noise ratio is given by: 2

3 We may write above expression as: Where. For a given baseband signal is fixed so that G p is maximized by lowering accordingly our objective is to minimize. Delta modulation In delta modulation, an incoming signal is over sampled (at a rate much higher than the nyquist rate) to purposely increase the correlation between the adjacent samples of the signal. Delta modulation provides stair approximation to the oversampled version of the message signal. The difference between the input and the approximation is quantized in to two levels via. i.e. if appro imation falls below the signal it is increased by, on the other hand it is decreased by DM transmitter: The blockdiagram is as shown 3

4 The error between the sampled value and last approximated sample is given by n s n s (1) Let n s be the present sample approximation of staircase output From figure we have n s) n- ) s n s) n s - s ) (2) Substituting (2) in (1) we obtain n s n s - s ) (3) also we have, n s n s s ) The binary b n s ) is the algebraic sign of the error e n s ), e cept for the scaling factor δ. b n s ) δ n s ] (4) i.e. the sampled version of incoming message signal to a modulator that involves comparator, quantizer, and accumulator interconnected as shown in the figure. The comparator compiles the difference between its two inputs. The quantizer consists of a hard limiter with input output relation that is scaled version of the signum function DM receiver The receiver is as shown in the figure the staircase approximation U(t) is reconstructed by passing the sequence of positive and negative pulses through an accumulator in a manner similar to that used in a transmitter. The output of band signal is removed by passing it through a LPF. 4

5 Quantization noise Delta modulation is subjected to two types of errors 1) Slope overload error When stair approximation cannot follow the input signal x(t) with result u(t) falls behind x(t) as shown in the figure, this condition is called slope overload error. To reduce this error, the step size should be increased when slope of the signal x(t) is high. i.e. 2) Granular noise The granular noise occurs when step size is too large compared to small variations of input signal as shown in the figure Let Q(nT s ) denote the quantization error we may write n s n s ) We also have n s n s s ) n s s ) ] Where n s - s ) - digital approximation to the derivative of the input signal. Adaptive delta modulation (not in syllabus) The performance of delta modulator can be improved by making the step size of the modulator a time varying form i.e. for a steep segment of input signal the step size is increased, conversely when input signal is varying slowly the step size is reduced. In this way the stepsize is adapted to the level of the input signal. 5

6 The step sizes is constrained to lie between two limits The upper limit controls slope overload distortion the lower limit controls the amount of granular noise. The adaptation for is expressed as Where depends on the present binary output and M previous values. he algorithm is initiated with a starting step size The receiver of ADM is as shown in the figure: In the receiver the 1 st part generates step size from each incoming bit which is variable in size. The previous input and present input decides the step size. The LPF then smoothens out the staircase waveform to reconstruct the smooth signal. 6

7 Discrete PAM signals Line coding There are several line codes that can be used for the electrical representation of binary symbols 1 and 0 as described I) Unipolar format or on off signaling: In unipolar format, symbol 1 is represented by transmitting a pulse where as symbol 0 is represented by switching off the pulse. i) Unipolar NRZ format: When the pulse occupies the full duration off the symbol, then the unipolar format is said to be of non return to zero format. In this scheme signals are represented as: ii) Unipolar RZ format: When the pulse occupies the one half of the symbol duration, then the unipolar format is said to be of return to zero format. In this scheme signals are represented as: 0 for symbol 1 for 7

8 2) Polar format In polar format, symbol 1 is represented by transmitting a positive pulse where as symbol 0 is represented by the negative pulse. i) Polar NRZ format: When the pulse occupies the full duration off the symbol, then the polar format is said to be of non return to zero format. In this scheme signals are represented as: ii)polar RZ format: When the pulse occupies the one half of the symbol duration, then the polar format is said to be of return to zero format. In this scheme signals are represented as: 0 for symbol 1 for 0 for symbol 1 for 8

9 3) Bipolar format In bipolar format, positive pulse and negative pulses are used alternatively for transmission of 1 s and no pulse for symbol 0. i) Bipolar NRZ format: When the pulse occupies the full duration off the symbol, then the bipolar format is said to be of non return to zero format. In this scheme signals are represented as: ii) BiPolar RZ format: When the pulse occupies the one half of the symbol duration, then the bipolar format is said to be of return to zero format. In this scheme signals are represented as: 0 for symbol 1 for 9

10 4) Manchester format or biphase baseband signaling Symbol 1 is represented by a positive pulse for one half of the symbol duration, followed by negative pulse for the remaining half of the symbol duration. Symbol 0 is represented by a negative pulse for one half of symbol duration, followed by positive pulse for the remaining half of the symbol duration. 5) Polar quaternary NRZ 1. Natural code: It has four distinct symbols of dibits (pair of bits) i.e. four possible combination 00,01,10,11 to these four combination, four different amplitude levels are assigned as shown in the table Message combination Signal amplitude This system is designed to reduce the signaling rate and hence the bandwidth, thus for two messages bits only one pulse is transmitted. 10

11 2. Gray coding: It s a type of coding in which the adjacent bits are arranged in such a way that they differ by only one bit. Power spectral density The spectral density of wave when multiplied by the appropriate factor will give the power carried by the wave per unit frequency. Power spectral density of discrete PAM signal: 1) The PSD of discrete PAM signal is given by ] 2) Autocorrelation function is given by: ] 3) V(f) is a basic pulse having unit amplitude and duration T b given as [For unipolar format, polar and bipolar format] [For Manchester format] 11

12 1) Power spectral density of NRZ unipolar format In this scheme signals are represented as: Let us assume that symbol 1 and 0 occur with equal probabilities, We know that Autocorrelation function is given by: ] Case i) for n = 0 ] ] = Case i) for n 0 and will have four probabilities with probabilities ¼ each. Equally probable ¼ 0 a 0 ¼ a 0 0 ¼ a a a 2 ¼ = = 12

13 Thus we may express the auto correlation function as { We have The PSD of unipolar format is given by ] Substituting the value of V(f) and in above equation we have ] [ ] ]] ] [ ] ]] ] [ ] ] ] [ ]] ] [ ]] ] From poisson formula ] Hence 13

14 We have 2) Power spectral density of NRZ polar format In this scheme signals are represented as: Let us assume that symbol 1 and 0 occur with equal probabilities, We know that Autocorrelation function is given by: ] Case i) for n = 0 ] ] = Case i) for n 0 and will have four probabilities with probabilities ¼ each. Equally probable -a -a a 2 ¼ 0 a -a 2 ¼ a 0 -a 2 ¼ a a a 2 ¼ 14

15 = = 0 Thus we may express the auto correlation function as { We have The PSD of unipolar format is given by ] Substituting the value of V(f) and in above equation we have ] [ ] ]] ] ]] 3) Power spectral density of NRZ bi - polar format In this scheme signals are represented as: Let us assume that symbol 1 and 0 occur with equal probabilities, We know that Autocorrelation function is given by: ] 15

16 Case i) for n = 0 ] ] = Case i) for n and will have four probabilities with probabilities ¼ each. Equally probable ¼ 0 a 0 ¼ a 0 0 ¼ a a -a 2 ¼ = = Similarly for = Case i) for n = = 0 16

17 Thus we may express the auto correlation function as { We have The PSD of unipolar format is given by ] Substituting the value of V(f) and in above equation we have ] [ ] ] ]] ] ]] W.K.T ] ]] ] ] [ ] ] ] 17

18 4) Power spectral density of Manchester format In this scheme signals are represented as: Let us assume that symbol 1 and 0 occur with equal probabilities, We know that Autocorrelation function is given by: ] Case i) for n = 0 ] ] = Case i) for n 0 and will have four probabilities with probabilities ¼ each. Equally probable 0 0 -a2 ¼ 0 1 -a 2 ¼ 1 -a2 ¼ a 2 ¼ = = 0 18

19 Thus we may express the auto correlation function as { We have The PSD of unipolar format is given by ] Substituting the value of V(f) and in above equation we have [ ] ] ] ] Applications Digital multiplexer: Digital Multiplexers are used to combine digitized voice and video signals as well as digital data into one data stream. The digitized voice signals, digitized facsimile and television signals and computer outputs are of different rates but using multiplexers it combined into a single data stream. 19

20 Two Major groups of Digital Multiplexers: 1. To combine relatively Low-Speed Digital signals used for voice-grade channels. Modems are required for the implementation of this scheme. 2. Operates at higher bit rates for communication carriers. Basic Problems associated with Multiplexers: 1. Synchronization. 2. Multiplexed signal should include Framing. 3. Multiplexer Should be capable handling Small variations. Digital Hierarchy based on T1 carrier This was developed by Bell system. The T1 carrier is designed to operate at mega bits per second, the T2 at megabits per second, the T3 at megabits per second, and the T4 at mega bits per second. This system is made up of various combinations of lower order T-carrier subsystems. This system is designed to accommodate the transmission of voice signals, Picture phone service and television signals by using PCM and digital signals from data terminal equipment. The structure is shown in the figure The T1 carrier system has been adopted in USA, Canada and Japan. It is designed to accommodate 24 voice signals. The voice signals are filtered with low pass filter having cutoff of 3400 Hz. The filtered signals are sampled at 8KHz. he μ-law Companding technique is used with the constant μ = 255. With the sampling rate of 8KHz, each frame of the multiplexed signal occupies a period 20

21 of 125μsec. It consists of 24 8-bit words plus a single bit that is added at the end of the frame for the purpose of synchronization. Hence each frame consists of a total 193 bits. Each frame is of duration 125μsec, correspondingly, the bit rate is mega bits per second. Light Wave Transmission Optical fiber wave guides are very useful as transmission medium. They have a very low transmission losses and high bandwidths which is essential for high-speed communications. Other advantages include small size, light weight and immunity to electromagnetic interference. The basic optical fiber link is shown in the figure The binary data fed into the transmitter input, which emits the pulses of optical power., with each pulse being on or off in accordance with the input data. The choice of the light source determines the optical signal power available for transmission. The on-off light pulses produced by the transmitter are launched into the optical fiber wave guide. During the course of the propagation the light pulse suffers loss or attenuation that increases exponentially with the distance. At the receiver the original input data are regenerated by performing three basic operations which are: 1. Detection: the light pulses are converted back into pulses of electrical current. 2. Pulse Shaping and Timing: This involves amplification, filtering and equalization of the electrical pulses, as well as the extraction of timing information. 3. Decision Making: Depending the pulse received it should be decided that the received pulse is on or off. 21

EEE 309 Communication Theory

EEE 309 Communication Theory EEE 309 Communication Theory Semester: January 2017 Dr. Md. Farhad Hossain Associate Professor Department of EEE, BUET Email: mfarhadhossain@eee.buet.ac.bd Office: ECE 331, ECE Building Types of Modulation

More information

EEE 309 Communication Theory

EEE 309 Communication Theory EEE 309 Communication Theory Semester: January 2016 Dr. Md. Farhad Hossain Associate Professor Department of EEE, BUET Email: mfarhadhossain@eee.buet.ac.bd Office: ECE 331, ECE Building Part 05 Pulse Code

More information

EC 6501 DIGITAL COMMUNICATION UNIT - II PART A

EC 6501 DIGITAL COMMUNICATION UNIT - II PART A EC 6501 DIGITAL COMMUNICATION 1.What is the need of prediction filtering? UNIT - II PART A [N/D-16] Prediction filtering is used mostly in audio signal processing and speech processing for representing

More information

Comm 502: Communication Theory. Lecture 4. Line Coding M-ary PCM-Delta Modulation

Comm 502: Communication Theory. Lecture 4. Line Coding M-ary PCM-Delta Modulation Comm 502: Communication Theory Lecture 4 Line Coding M-ary PCM-Delta Modulation PCM Decoder PCM Waveform Types (Line Coding) Representation of binary sequence into the electrical signals that enter the

More information

Time division multiplexing The block diagram for TDM is illustrated as shown in the figure

Time division multiplexing The block diagram for TDM is illustrated as shown in the figure CHAPTER 2 Syllabus: 1) Pulse amplitude modulation 2) TDM 3) Wave form coding techniques 4) PCM 5) Quantization noise and SNR 6) Robust quantization Pulse amplitude modulation In pulse amplitude modulation,

More information

Chapter-3 Waveform Coding Techniques

Chapter-3 Waveform Coding Techniques Chapter-3 Waveform Coding Techniques PCM [Pulse Code Modulation] PCM is an important method of analog to-digital conversion. In this modulation the analog signal is converted into an electrical waveform

More information

PULSE CODE MODULATION (PCM)

PULSE CODE MODULATION (PCM) PULSE CODE MODULATION (PCM) 1. PCM quantization Techniques 2. PCM Transmission Bandwidth 3. PCM Coding Techniques 4. PCM Integrated Circuits 5. Advantages of PCM 6. Delta Modulation 7. Adaptive Delta Modulation

More information

Communications and Signals Processing

Communications and Signals Processing Communications and Signals Processing Dr. Ahmed Masri Department of Communications An Najah National University 2012/2013 1 Dr. Ahmed Masri Chapter 5 - Outlines 5.4 Completing the Transition from Analog

More information

Digital Communication (650533) CH 3 Pulse Modulation

Digital Communication (650533) CH 3 Pulse Modulation Philadelphia University/Faculty of Engineering Communication and Electronics Engineering Digital Communication (650533) CH 3 Pulse Modulation Instructor: Eng. Nada Khatib Website: http://www.philadelphia.edu.jo/academics/nkhatib/

More information

UNIT TEST I Digital Communication

UNIT TEST I Digital Communication Time: 1 Hour Class: T.E. I & II Max. Marks: 30 Q.1) (a) A compact disc (CD) records audio signals digitally by using PCM. Assume the audio signal B.W. to be 15 khz. (I) Find Nyquist rate. (II) If the Nyquist

More information

SEN366 Computer Networks

SEN366 Computer Networks SEN366 Computer Networks Prof. Dr. Hasan Hüseyin BALIK (5 th Week) 5. Signal Encoding Techniques 5.Outline An overview of the basic methods of encoding digital data into a digital signal An overview of

More information

QUESTION BANK. SUBJECT CODE / Name: EC2301 DIGITAL COMMUNICATION UNIT 2

QUESTION BANK. SUBJECT CODE / Name: EC2301 DIGITAL COMMUNICATION UNIT 2 QUESTION BANK DEPARTMENT: ECE SEMESTER: V SUBJECT CODE / Name: EC2301 DIGITAL COMMUNICATION UNIT 2 BASEBAND FORMATTING TECHNIQUES 1. Why prefilterring done before sampling [AUC NOV/DEC 2010] The signal

More information

Downloaded from 1

Downloaded from  1 VII SEMESTER FINAL EXAMINATION-2004 Attempt ALL questions. Q. [1] How does Digital communication System differ from Analog systems? Draw functional block diagram of DCS and explain the significance of

More information

QUESTION BANK EC 1351 DIGITAL COMMUNICATION YEAR / SEM : III / VI UNIT I- PULSE MODULATION PART-A (2 Marks) 1. What is the purpose of sample and hold

QUESTION BANK EC 1351 DIGITAL COMMUNICATION YEAR / SEM : III / VI UNIT I- PULSE MODULATION PART-A (2 Marks) 1. What is the purpose of sample and hold QUESTION BANK EC 1351 DIGITAL COMMUNICATION YEAR / SEM : III / VI UNIT I- PULSE MODULATION PART-A (2 Marks) 1. What is the purpose of sample and hold circuit 2. What is the difference between natural sampling

More information

Chapter 5: Modulation Techniques. Abdullah Al-Meshal

Chapter 5: Modulation Techniques. Abdullah Al-Meshal Chapter 5: Modulation Techniques Abdullah Al-Meshal Introduction After encoding the binary data, the data is now ready to be transmitted through the physical channel In order to transmit the data in the

More information

EXPERIMENT WISE VIVA QUESTIONS

EXPERIMENT WISE VIVA QUESTIONS EXPERIMENT WISE VIVA QUESTIONS Pulse Code Modulation: 1. Draw the block diagram of basic digital communication system. How it is different from analog communication system. 2. What are the advantages of

More information

QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61)

QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61) QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61) Module 1 1. Explain Digital communication system with a neat block diagram. 2. What are the differences between digital and analog communication systems?

More information

CODING TECHNIQUES FOR ANALOG SOURCES

CODING TECHNIQUES FOR ANALOG SOURCES CODING TECHNIQUES FOR ANALOG SOURCES Prof.Pratik Tawde Lecturer, Electronics and Telecommunication Department, Vidyalankar Polytechnic, Wadala (India) ABSTRACT Image Compression is a process of removing

More information

Practical Approach of Producing Delta Modulation and Demodulation

Practical Approach of Producing Delta Modulation and Demodulation IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 11, Issue 3, Ver. II (May-Jun.2016), PP 87-94 www.iosrjournals.org Practical Approach of

More information

Digital Communication - Analog to Digital

Digital Communication - Analog to Digital Unit 26. Digital Communication Digital Communication - Analog to Digital The communication that occurs in our day-to-day life is in the form of signals. These signals, such as sound signals, generally,

More information

Class 4 ((Communication and Computer Networks))

Class 4 ((Communication and Computer Networks)) Class 4 ((Communication and Computer Networks)) Lesson 5... SIGNAL ENCODING TECHNIQUES Abstract Both analog and digital information can be encoded as either analog or digital signals. The particular encoding

More information

Lecture 3 Concepts for the Data Communications and Computer Interconnection

Lecture 3 Concepts for the Data Communications and Computer Interconnection Lecture 3 Concepts for the Data Communications and Computer Interconnection Aim: overview of existing methods and techniques Terms used: -Data entities conveying meaning (of information) -Signals data

More information

Communications I (ELCN 306)

Communications I (ELCN 306) Communications I (ELCN 306) c Samy S. Soliman Electronics and Electrical Communications Engineering Department Cairo University, Egypt Email: samy.soliman@cu.edu.eg Website: http://scholar.cu.edu.eg/samysoliman

More information

Communication Systems Lecture-12: Delta Modulation and PTM

Communication Systems Lecture-12: Delta Modulation and PTM Communication Systems Lecture-12: Delta Modulation and PTM Department of Electrical and Computer Engineering Lebanese American University chadi.abourjeily@lau.edu.lb October 26, 2017 Delta Modulation (1)

More information

Sixth Semester B.E. Degree Examination, May/June 2010 Digital Communication Note: Answer any FIVEfull questions, selecting at least TWO questionsfrom each part. PART-A a. With a block diagram, explain

More information

Year : TYEJ Sub: Digital Communication (17535) Assignment No. 1. Introduction of Digital Communication. Question Exam Marks

Year : TYEJ Sub: Digital Communication (17535) Assignment No. 1. Introduction of Digital Communication. Question Exam Marks Assignment 1 Introduction of Digital Communication Sr. Question Exam Marks 1 Draw the block diagram of the basic digital communication system. State the function of each block in detail. W 2015 6 2 State

More information

Department of Electronics & Telecommunication Engg. LAB MANUAL. B.Tech V Semester [ ] (Branch: ETE)

Department of Electronics & Telecommunication Engg. LAB MANUAL. B.Tech V Semester [ ] (Branch: ETE) Department of Electronics & Telecommunication Engg. LAB MANUAL SUBJECT:-DIGITAL COMMUNICATION SYSTEM [BTEC-501] B.Tech V Semester [2013-14] (Branch: ETE) KCT COLLEGE OF ENGG & TECH., FATEHGARH PUNJAB TECHNICAL

More information

Fundamentals of Digital Communication

Fundamentals of Digital Communication Fundamentals of Digital Communication Network Infrastructures A.A. 2017/18 Digital communication system Analog Digital Input Signal Analog/ Digital Low Pass Filter Sampler Quantizer Source Encoder Channel

More information

COMPUTER COMMUNICATION AND NETWORKS ENCODING TECHNIQUES

COMPUTER COMMUNICATION AND NETWORKS ENCODING TECHNIQUES COMPUTER COMMUNICATION AND NETWORKS ENCODING TECHNIQUES Encoding Coding is the process of embedding clocks into a given data stream and producing a signal that can be transmitted over a selected medium.

More information

EC 2301 Digital communication Question bank

EC 2301 Digital communication Question bank EC 2301 Digital communication Question bank UNIT I Digital communication system 2 marks 1.Draw block diagram of digital communication system. Information source and input transducer formatter Source encoder

More information

Digital to Digital Encoding

Digital to Digital Encoding MODULATION AND ENCODING Data must be transformed into signals to send them from one place to another Conversion Schemes Digital-to-Digital Analog-to-Digital Digital-to-Analog Analog-to-Analog Digital to

More information

Department of Electronics and Communication Engineering 1

Department of Electronics and Communication Engineering 1 UNIT I SAMPLING AND QUANTIZATION Pulse Modulation 1. Explain in detail the generation of PWM and PPM signals (16) (M/J 2011) 2. Explain in detail the concept of PWM and PAM (16) (N/D 2012) 3. What is the

More information

Data Communications and Networking (Module 2)

Data Communications and Networking (Module 2) Data Communications and Networking (Module 2) Chapter 5 Signal Encoding Techniques References: Book Chapter 5 Data and Computer Communications, 8th edition, by William Stallings 1 Outline Overview Encoding

More information

Syllabus. osmania university UNIT - I UNIT - II UNIT - III CHAPTER - 1 : INTRODUCTION TO DIGITAL COMMUNICATION CHAPTER - 3 : INFORMATION THEORY

Syllabus. osmania university UNIT - I UNIT - II UNIT - III CHAPTER - 1 : INTRODUCTION TO DIGITAL COMMUNICATION CHAPTER - 3 : INFORMATION THEORY i Syllabus osmania university UNIT - I CHAPTER - 1 : INTRODUCTION TO Elements of Digital Communication System, Comparison of Digital and Analog Communication Systems. CHAPTER - 2 : DIGITAL TRANSMISSION

More information

7.1 Introduction 7.2 Why Digitize Analog Sources? 7.3 The Sampling Process 7.4 Pulse-Amplitude Modulation Time-Division i i Modulation 7.

7.1 Introduction 7.2 Why Digitize Analog Sources? 7.3 The Sampling Process 7.4 Pulse-Amplitude Modulation Time-Division i i Modulation 7. Chapter 7 Digital Representation of Analog Signals Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Contents 7.1 Introduction 7.2

More information

UNIT III -- DATA AND PULSE COMMUNICATION PART-A 1. State the sampling theorem for band-limited signals of finite energy. If a finite energy signal g(t) contains no frequency higher than W Hz, it is completely

More information

Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay

Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 03 Quantization, PCM and Delta Modulation Hello everyone, today we will

More information

Signal Encoding Techniques

Signal Encoding Techniques 2 Techniques ITS323: to Data Communications CSS331: Fundamentals of Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 3 August 2015

More information

Chapter 4 Digital Transmission 4.1

Chapter 4 Digital Transmission 4.1 Chapter 4 Digital Transmission 4.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 4-1 DIGITAL-TO-DIGITAL CONVERSION In this section, we see how we can represent

More information

DIGITAL COMMUNICATION

DIGITAL COMMUNICATION DIGITAL COMMUNICATION TRAINING LAB Digital communication has emerged to augment or replace the conventional analog systems, which had been used widely a few decades back. Digital communication has demonstrated

More information

Introduction: Presence or absence of inherent error detection properties.

Introduction: Presence or absence of inherent error detection properties. Introduction: Binary data can be transmitted using a number of different types of pulses. The choice of a particular pair of pulses to represent the symbols 1 and 0 is called Line Coding and the choice

More information

Chapter 3 Pulse Modulation

Chapter 3 Pulse Modulation Chapter 3 Pulse Modulation Outline Sampling Process: Sampling Theory, Anti-Aliasing Pulse Modulation Analog Pulse Modulation: PAM, PDM, PWM, PPM Digital Pulse Modulation: PCM, DM, DPCM Quantization Process:

More information

LATHA MATHAVAN ENGINEERING COLLEGE Alagarkovil, Madurai

LATHA MATHAVAN ENGINEERING COLLEGE Alagarkovil, Madurai UNIT I - SAMPLING & QUANTIZATION PART A 1. What is aliasing? (EC6501 June 2016) 2. What is Companding? Sketch the input-output characteristics of a compressor and an expander. (EC6501 June 2016) 3. An

More information

EEE482F: Problem Set 1

EEE482F: Problem Set 1 EEE482F: Problem Set 1 1. A digital source emits 1.0 and 0.0V levels with a probability of 0.2 each, and +3.0 and +4.0V levels with a probability of 0.3 each. Evaluate the average information of the source.

More information

Thus there are three basic modulation techniques: 1) AMPLITUDE SHIFT KEYING 2) FREQUENCY SHIFT KEYING 3) PHASE SHIFT KEYING

Thus there are three basic modulation techniques: 1) AMPLITUDE SHIFT KEYING 2) FREQUENCY SHIFT KEYING 3) PHASE SHIFT KEYING CHAPTER 5 Syllabus 1) Digital modulation formats 2) Coherent binary modulation techniques 3) Coherent Quadrature modulation techniques 4) Non coherent binary modulation techniques. Digital modulation formats:

More information

Waveform Encoding - PCM. BY: Dr.AHMED ALKHAYYAT. Chapter Two

Waveform Encoding - PCM. BY: Dr.AHMED ALKHAYYAT. Chapter Two Chapter Two Layout: 1. Introduction. 2. Pulse Code Modulation (PCM). 3. Differential Pulse Code Modulation (DPCM). 4. Delta modulation. 5. Adaptive delta modulation. 6. Sigma Delta Modulation (SDM). 7.

More information

Digital signal is denoted by discreet signal, which represents digital data.there are three types of line coding schemes available:

Digital signal is denoted by discreet signal, which represents digital data.there are three types of line coding schemes available: Digital-to-Digital Conversion This section explains how to convert digital data into digital signals. It can be done in two ways, line coding and block coding. For all communications, line coding is necessary

More information

Digital Modulation Lecture 01. Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris

Digital Modulation Lecture 01. Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris Digital Modulation Lecture 01 Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris Objectives You will be able to: Classify the various approaches to Analogue Modulation

More information

Objectives. Presentation Outline. Digital Modulation Lecture 01

Objectives. Presentation Outline. Digital Modulation Lecture 01 Digital Modulation Lecture 01 Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris Objectives You will be able to: Classify the various approaches to Analogue Modulation

More information

AMSEC/ECE

AMSEC/ECE EC6501 -DIGITAL COMMUNICATION UNIT-I SAMPLING & QUANTIZATION 1. Define Dirac comb or ideal sampling function. What is its Fourier Transform? Dirac comb is nothing but a periodic impulse train in which

More information

QUESTION BANK (VI SEM ECE) (DIGITAL COMMUNICATION)

QUESTION BANK (VI SEM ECE) (DIGITAL COMMUNICATION) QUESTION BANK (VI SEM ECE) (DIGITAL COMMUNICATION) UNIT-I: PCM & Delta modulation system Q.1 Explain the difference between cross talk & intersymbol interference. Q.2 What is Quantization error? How does

More information

Data Encoding g(p (part 2)

Data Encoding g(p (part 2) Data Encoding g(p (part 2) CSE 3213 Instructor: U.T. Nguyen 10/11/2007 12:44 PM 1 Analog Data, Digital Signals (5.3) 2 1 Analog Data, Digital Signals Digitization Conversion of analog data into digital

More information

Voice Transmission --Basic Concepts--

Voice Transmission --Basic Concepts-- Voice Transmission --Basic Concepts-- Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Amplitude Frequency Phase Telephone Handset (has 2-parts) 2 1. Transmitter

More information

Department of Electronics & Communication Engineering LAB MANUAL SUBJECT: DIGITAL COMMUNICATION LABORATORY [ECE324] (Branch: ECE)

Department of Electronics & Communication Engineering LAB MANUAL SUBJECT: DIGITAL COMMUNICATION LABORATORY [ECE324] (Branch: ECE) Department of Electronics & Communication Engineering LAB MANUAL SUBJECT: DIGITAL COMMUNICATION LABORATORY [ECE324] B.Tech Year 3 rd, Semester - 5 th (Branch: ECE) Version: 01 st August 2018 The LNM Institute

More information

Pulse Code Modulation

Pulse Code Modulation Pulse Code Modulation EE 44 Spring Semester Lecture 9 Analog signal Pulse Amplitude Modulation Pulse Width Modulation Pulse Position Modulation Pulse Code Modulation (3-bit coding) 1 Advantages of Digital

More information

Pulse Code Modulation

Pulse Code Modulation Pulse Code Modulation Modulation is the process of varying one or more parameters of a carrier signal in accordance with the instantaneous values of the message signal. The message signal is the signal

More information

EC6501 Digital Communication

EC6501 Digital Communication EC6501 Digital Communication UNIT -1 DIGITAL COMMUNICATION SYSTEMS Digital Communication system 1) Write the advantages and disadvantages of digital communication. [A/M 11] The advantages of digital communication

More information

6. has units of bits/second. a. Throughput b. Propagation speed c. Propagation time d. (b)or(c)

6. has units of bits/second. a. Throughput b. Propagation speed c. Propagation time d. (b)or(c) King Saud University College of Computer and Information Sciences Information Technology Department First Semester 1436/1437 IT224: Networks 1 Sheet# 10 (chapter 3-4-5) Multiple-Choice Questions 1. Before

More information

10 Speech and Audio Signals

10 Speech and Audio Signals 0 Speech and Audio Signals Introduction Speech and audio signals are normally converted into PCM, which can be stored or transmitted as a PCM code, or compressed to reduce the number of bits used to code

More information

UNIT-1. Basic signal processing operations in digital communication

UNIT-1. Basic signal processing operations in digital communication UNIT-1 Lecture-1 Basic signal processing operations in digital communication The three basic elements of every communication systems are Transmitter, Receiver and Channel. The Overall purpose of this system

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK. Subject Name: Digital Communication Techniques

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK. Subject Name: Digital Communication Techniques KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK Subject Code: EC1351 Year/Sem: III/IV Subject Name: Digital Communication Techniques UNIT I PULSE MODULATION

More information

CHAPTER 2. Instructor: Mr. Abhijit Parmar Course: Mobile Computing and Wireless Communication ( )

CHAPTER 2. Instructor: Mr. Abhijit Parmar Course: Mobile Computing and Wireless Communication ( ) CHAPTER 2 Instructor: Mr. Abhijit Parmar Course: Mobile Computing and Wireless Communication (2170710) Syllabus Chapter-2.3 Modulation Techniques Reasons for Choosing Encoding Techniques Digital data,

More information

UNIT I Source Coding Systems

UNIT I Source Coding Systems SIDDHARTH GROUP OF INSTITUTIONS: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: DC (16EC421) Year & Sem: III-B. Tech & II-Sem Course & Branch: B. Tech

More information

B. Tech. (SEM. VI) EXAMINATION, (2) All question early equal make. (3) In ease of numerical problems assume data wherever not provided.

B. Tech. (SEM. VI) EXAMINATION, (2) All question early equal make. (3) In ease of numerical problems assume data wherever not provided. " 11111111111111111111111111111111111111111111111111111111111111III *U-3091/8400* Printed Pages : 7 TEC - 601! I i B. Tech. (SEM. VI) EXAMINATION, 2007-08 DIGIT AL COMMUNICATION \ V Time: 3 Hours] [Total

More information

3.6 Intersymbol interference. 1 Your site here

3.6 Intersymbol interference. 1 Your site here 3.6 Intersymbol intererence 1 3.6 Intersymbol intererence what is intersymbol intererence and what cause ISI 1. The absolute bandwidth o rectangular multilevel pulses is ininite. The channels bandwidth

More information

SUMMER 15 EXAMINATION. 1) The answers should be examined by key words and not as word-to-word as given in the

SUMMER 15 EXAMINATION. 1) The answers should be examined by key words and not as word-to-word as given in the SUMMER 15 EXAMINATION Subject Code: 17535 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2)

More information

Chapter-1: Introduction

Chapter-1: Introduction Chapter-1: Introduction The purpose of a Communication System is to transport an information bearing signal from a source to a user destination via a communication channel. MODEL OF A COMMUNICATION SYSTEM

More information

ITM 1010 Computer and Communication Technologies

ITM 1010 Computer and Communication Technologies ITM 1010 Computer and Communication Technologies Lecture #14 Part II Introduction to Communication Technologies: Digital Signals: Digital modulation, channel sharing 2003 香港中文大學, 電子工程學系 (Prof. H.K.Tsang)

More information

Ș.l. dr. ing. Lucian-Florentin Bărbulescu

Ș.l. dr. ing. Lucian-Florentin Bărbulescu Ș.l. dr. ing. Lucian-Florentin Bărbulescu 1 Data: entities that convey meaning within a computer system Signals: are the electric or electromagnetic impulses used to encode and transmit data Characteristics

More information

DEPARTMENT OF CSE QUESTION BANK

DEPARTMENT OF CSE QUESTION BANK DEPARTMENT OF CSE QUESTION BANK SUBJECT CODE: CS6304 SUBJECT NAME: ANALOG AND DIGITAL COMMUNICATION Part-A UNIT-I ANALOG COMMUNICATION 1.Define modulation? Modulation is a process by which some characteristics

More information

Overview. Chapter 4. Design Factors. Electromagnetic Spectrum

Overview. Chapter 4. Design Factors. Electromagnetic Spectrum Chapter 4 Transmission Media Overview Guided - wire Unguided - wireless Characteristics and quality determined by medium and signal For guided, the medium is more important For unguided, the bandwidth

More information

Signal Encoding Techniques

Signal Encoding Techniques Signal Encoding Techniques Overview Have already noted previous chapters that both analog and digital information can be encoded as either analog or digital signals: Digital data, digital signals: simplest

More information

Digital Transmission (Line Coding) EE4367 Telecom. Switching & Transmission. Pulse Transmission

Digital Transmission (Line Coding) EE4367 Telecom. Switching & Transmission. Pulse Transmission Digital Transmission (Line Coding) Pulse Transmission Source Multiplexer Line Coder Line Coding: Output of the multiplexer (TDM) is coded into electrical pulses or waveforms for the purpose of transmission

More information

Lecture-8 Transmission of Signals

Lecture-8 Transmission of Signals Lecture-8 Transmission of Signals The signals are transmitted as electromagnetic waveforms. As the signal may be analog or digital, there four case of signal transmission. Analog data Analog Signal:- The

More information

CTD600 Communication Trainer kit

CTD600 Communication Trainer kit kit Digital RELATED PRODUCTS v Analog s v Optical Fibers s v Digital and Analog s v Communication Electronic Trainers v Function Generator and Power Supply v Multiple Signal Generator and 1 Line Code 2

More information

Digital Transceiver using H-Ternary Line Coding Technique

Digital Transceiver using H-Ternary Line Coding Technique Digital Transceiver using H-Ternary Line Coding Technique Abstract In this paper Digital Transceiver using Hybrid Ternary Technique gives the details about digital transmitter and receiver with the design

More information

(Refer Slide Time: 3:11)

(Refer Slide Time: 3:11) Digital Communication. Professor Surendra Prasad. Department of Electrical Engineering. Indian Institute of Technology, Delhi. Lecture-2. Digital Representation of Analog Signals: Delta Modulation. Professor:

More information

KINGS DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING DIGITAL COMMUNICATION TECHNIQUES YEAR/SEM: III / VI BRANCH : ECE PULSE MODULATION

KINGS DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING DIGITAL COMMUNICATION TECHNIQUES YEAR/SEM: III / VI BRANCH : ECE PULSE MODULATION KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SUB.NAME : EC1351 DIGITAL COMMUNICATION TECHNIQUES BRANCH : ECE YEAR/SEM: III / VI UNIT I PULSE MODULATION PART A (2

More information

An ISO 9001:2008 Certified Institution EC6501-Digital Communication 1 Unit-1: Sampling & Quantization The purpose of a Communication System is to transport an information bearing signal from a source to

More information

Digital Transmission

Digital Transmission Digital Transmission Line Coding Some Characteristics Line Coding Schemes Some Other Schemes Line coding Signal level versus data level DC component Pulse Rate versus Bit Rate Bit Rate = Pulse Rate x Log2

More information

COSC 3213: Computer Networks I: Chapter 3 Handout #4. Instructor: Dr. Marvin Mandelbaum Department of Computer Science York University Section A

COSC 3213: Computer Networks I: Chapter 3 Handout #4. Instructor: Dr. Marvin Mandelbaum Department of Computer Science York University Section A COSC 3213: Computer Networks I: Chapter 3 Handout #4 Instructor: Dr. Marvin Mandelbaum Department of Computer Science York University Section A Topics: 1. Line Coding: Unipolar, Polar,and Inverted ; Bipolar;

More information

Objectives. Presentation Outline. Digital Modulation Revision

Objectives. Presentation Outline. Digital Modulation Revision Digital Modulation Revision Professor Richard Harris Objectives To identify the key points from the lecture material presented in the Digital Modulation section of this paper. What is in the examination

More information

QUESTION BANK. Staff In-Charge: M.MAHARAJA, AP / ECE

QUESTION BANK. Staff In-Charge: M.MAHARAJA, AP / ECE FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai -625 020 An ISO 9001:2008 Certified Institution QUESTION BANK Sub. Code : EC 2301 Class : III

More information

DIGITAL COMMUNICATION

DIGITAL COMMUNICATION DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING DIGITAL COMMUNICATION Spring 00 Yrd. Doç. Dr. Burak Kelleci OUTLINE Quantization Pulse-Code Modulation THE QUANTIZATION PROCESS A continuous signal has

More information

EIE 441 Advanced Digital communications

EIE 441 Advanced Digital communications EIE 441 Advanced Digital communications MACHED FILER 1. Consider the signal s ( ) shown in Fig. 1. 1 t (a) Determine the impulse response of a filter matched to this signal and sketch it as a function

More information

Wireless Communications

Wireless Communications 2. Physical Layer DIN/CTC/UEM 2018 Periodic Signal Periodic signal: repeats itself in time, that is g(t) = g(t + T ) in which T (given in seconds [s]) is the period of the signal g(t) The number of cycles

More information

9.4. Synchronization:

9.4. Synchronization: 9.4. Synchronization: It is the process of timing the serial transmission to properly identify the data being sent. There are two most common modes: Synchronous transmission: Synchronous transmission relies

More information

Digital Transmission

Digital Transmission Digital Transmission 4.1 DIGITAL-TO-DIGITAL CONVERSION In this section, we see how we can represent digital data by using digital signals. The conversion involves three techniques: line coding, block coding,

More information

CHAPTER 4. PULSE MODULATION Part 2

CHAPTER 4. PULSE MODULATION Part 2 CHAPTER 4 PULSE MODULATION Part 2 Pulse Modulation Analog pulse modulation: Sampling, i.e., information is transmitted only at discrete time instants. e.g. PAM, PPM and PDM Digital pulse modulation: Sampling

More information

EE390 Final Exam Fall Term 2002 Friday, December 13, 2002

EE390 Final Exam Fall Term 2002 Friday, December 13, 2002 Name Page 1 of 11 EE390 Final Exam Fall Term 2002 Friday, December 13, 2002 Notes 1. This is a 2 hour exam, starting at 9:00 am and ending at 11:00 am. The exam is worth a total of 50 marks, broken down

More information

MODULATION AND MULTIPLE ACCESS TECHNIQUES

MODULATION AND MULTIPLE ACCESS TECHNIQUES 1 MODULATION AND MULTIPLE ACCESS TECHNIQUES Networks and Communication Department Dr. Marwah Ahmed Outlines 2 Introduction Digital Transmission Digital Modulation Digital Transmission of Analog Signal

More information

Hello and welcome to today s lecture. In the last couple of lectures we have discussed about various transmission media.

Hello and welcome to today s lecture. In the last couple of lectures we have discussed about various transmission media. Data Communication Prof. Ajit Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture No # 7 Transmission of Digital Signal-I Hello and welcome to today s lecture.

More information

Understanding Digital Communication Principles.

Understanding Digital Communication Principles. s Understanding Digital Communication Principles Scientech TechBooks are compact and user friendly learning platforms to provide a modern, portable, comprehensive and practical way to learn Technology.

More information

Data Encoding. Two devices are used for producing the signals: CODECs produce DIGITAL signals MODEMs produce ANALOGUE signals

Data Encoding. Two devices are used for producing the signals: CODECs produce DIGITAL signals MODEMs produce ANALOGUE signals Data Encoding Data are propagated from point to point by encoding data into signals The data may be analogue or digital Likewise the signals may be analogue or digital Two devices are used for producing

More information

SCHEME OF COURSE WORK. Course Code : 13EC1114 L T P C : ELECTRONICS AND COMMUNICATION ENGINEERING

SCHEME OF COURSE WORK. Course Code : 13EC1114 L T P C : ELECTRONICS AND COMMUNICATION ENGINEERING SCHEME OF COURSE WORK Course Details: Course Title : DIGITAL COMMUNICATIONS Course Code : 13EC1114 L T P C 4 0 0 3 Program Specialization Semester Prerequisites Courses to which it is a prerequisite :

More information

Real-Time Application of DPCM and ADM Systems

Real-Time Application of DPCM and ADM Systems 8th IEEE, IET International Symposium on Communication Systems, Networks and Digital Signal Processing Real-Time Application of DPCM and ADM Systems Roger Achkar, Ph.D, Member, IEEE. Department of Computer

More information

Lecture (06) Digital Coding techniques (II) Coverting Digital data to Digital Signals

Lecture (06) Digital Coding techniques (II) Coverting Digital data to Digital Signals Lecture (06) Digital Coding techniques (II) Coverting Digital data to Digital Signals Agenda Objective Line Coding Block Coding Scrambling Dr. Ahmed ElShafee ١ Dr. Ahmed ElShafee, ACU Spring 2016, Data

More information

Chapter 2: Fundamentals of Data and Signals

Chapter 2: Fundamentals of Data and Signals Chapter 2: Fundamentals of Data and Signals TRUE/FALSE 1. The terms data and signal mean the same thing. F PTS: 1 REF: 30 2. By convention, the minimum and maximum values of analog data and signals are

More information

SKP Engineering College

SKP Engineering College SKP Engineering College Tiruvannamalai 606611 A Course Material on Digital Communication By Dr.P.Sivakumar Professor Electronics and Communication Engineering Department Electronics and Communication Engineering

More information

Chapter 3: DIFFERENTIAL ENCODING

Chapter 3: DIFFERENTIAL ENCODING Chapter 3: DIFFERENTIAL ENCODING Differential Encoding Eye Patterns Regenerative Receiver Bit Synchronizer Binary to Mary Conversion Huseyin Bilgekul Eeng360 Communication Systems I Department of Electrical

More information