Mech 296: Vision for Robotic Applications. Logistics

Size: px
Start display at page:

Download "Mech 296: Vision for Robotic Applications. Logistics"

Transcription

1 Mech 296: Vision for Robotic Applications Lecture 6: Embedded Vision and Control 6.1 Logistics Homework #3 / Lab #1 return Homework #4 questions Lab #2 discussion Final Project discussion 6.2 1

2 Embedded Vision and Control Embedded System: Hardware and software that forms a component of some larger system and is expected to function without human intervention. 1 Embedded Vision: An embedded systems that perform image processing operations on digital images or video inputs Embedded Visual Servoing: An embedded vision application that uses video input as a sensor for feedback control 1 techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi 6.3 Today s Summary 1. Embedded Vision Systems Elements of Embedded Visual Servoing Hardware Paradigms, Software Environments 2. Lab System Hardware Overview Microprocessor Software Communications Modeling 6.4 2

3 System Components Elements of an Embedded Visual Servoing System Lens Camera Frame Grabber Vision Processor μprocessor Power Electronics & Motor Transfer Protocol: NTSC USB Firewire Camera Link Communications Link Sensor Data OR Control Commands 6.5 Hardware Paradigms Commercially available hardware for embedded vision is shipped in a variety of forms Unpackaged Components Acquisition/Processing Boxes Camera/Processing Boxes 6.6 3

4 Unpackaged Components Many vision systems are quickly and inexpensively assembled using conventional PCs Typical software development with C/C++ and framegrabber drivers Accelerated development with code libraries (Intel s OpenCV) or Integrated acquistion and processing products (LabView, Matlab) Compact systems, using single-board computers or digital signal processors (DSPs), may require longer development time Specialized development software may be required DSP optimization requires knowledge of processor, memory, and bus Lens Camera Frame Grabber Vision Processor μcontroller Power Electronics & Motor Photo Sources: Acquisition/Processing Boxes Many companies package frame grabbers and general purpose processors together in a compact package In many case, these companies also offer a development environment or toolkit to assist in rapid product design Lens Camera Frame Grabber Vision Processor μcontroller Power Electronics & Motor Photo Sources:

5 Camera/Processing Boxes A few companies package cameras, frame grabbers and processors together in a compact package Lens Camera Frame Grabber Vision Processor μcontroller Power Electronics & Motor Photo Sources: Lab Project Control Boebot using offboard (overhead) vision and offboard processing Lens Camera Frame Grabber Vision Processor μcontroller Power Electronics & Motor Program Vision Sensor and Control Law in Matlab Wireless Communications Program BS2 Processor of a Parallax Boebot

6 Programming BS2 Microcontroller We ll cover the fundamentals of Basic Stamp 2 (BS2) programming in class For a complete guide to programming the BS2 microcontroller, see the Basic Stamp Manual Required equipment PC with Basic Stamp Editor installed Serial cable Basic Stamp Board 6V Power: Power supply / 9 V battery / 4 AA battery* * Rechargeable batteries rated at 1.2 V, Alkaline at 1.5 V 6.11 Basic Stamp Editor Application: Stampw.exe or BASIC Stamp Editor v2.1 Download from Parallax Website Downloads Basic Stamp Software PBASIC Syntax: No character for line break Capitalization ignored Comments ('): Use single quote to comment remaining characters in line Single quote mark also used to identify processor type at beginning of program. Examples: '{$Stamp bs2} 'Standard BS2 Chip or '{$Stamp bs2sx} 'BS2sx Chip

7 RAM and Static Memory BS2, like most microcontrollers, is severely resource constrained Dynamic Memory (RAM): 26 Bytes available, plus an added 6 Bytes dedicated to I/O Static Memory (EEPROM): ~2kB available 6.13 Declaration & Assignment Integer Data Variable Size bit: 0-1 nib: 0-3 (4 bit) byte: (8 bit) word: (16 bit) Numbering Systems decimal: 99 binary: %1010 ascii: "a" Data Declaration Form: < name> VAR <data type> loop_count VAR WORD Constant Definitions Form: <name> CON <value> max_control CON 5 default_mode CON "b" Assignment Form: <name> = <constant> <name1> = <name2> loop_count = %101 'same as loop_count = 5 Note: Remember to declare and intialize variables before you use them in your code

8 Input/Output Pins Vdd: Regulated Voltage (5V) Servo Pins: P12-P15 Vss: Ground Dedicated Serial I/O Digital I/O Pins: P0-P Pin Variables: Assignment Pin variables are automatically declared for the 16 Input/Output (I/O) pins. Each pin variable has three binary member variables. Input state (0 or 1) (0 V or 5 V) Output state (0 or 1) (0 V or 5 V) Direction (0 or 1) (Input or Output) To assign direction use INPUT or OUTPUT (default direction is input) Form: OUTPUT <pin number / pin variable> OUTPUT 0 'sets I/O port 0 to output To assign voltage value to an output pin, use HIGH or LOW (these commands automatically switch pin direction to output) Form: HIGH <pin number / pin variable> HIGH 0 'sets direction to output and state to

9 Mathematical Operations Integer Arithmetic (+, -, *, /) All variables are unsigned integers Overflow: Excess bits lost (ex. % %0001 = %0000) Subtraction: 2 s complement rule (ex. % %0001 = %1111) Division round down (ex. %0011 / %0010 = %0001) 6.17 Flow Control Labels: PBASIC instructions execute consecutively. Labels, indicated by a trailing colon (:) can redirect flow. 1. Subroutines: GOSUB <label> (Note: Subroutines use shared namespace all variables are global) led_toggle: high 0 'toggle LED on pause 50 'delay execution for 50 ms low 0 'toggle LED off pause 50 'delay execution for 50 ms return 'return to line following GOSUB 2. While loops: GOTO <label> main: gosub led_toggle 'call subroutine LED_TOGGLE goto main Incremented Loops: FOR < name> = <constant/variable> TO <constant/variable> NEXT for loop_count = 1 to 10 gosub led_toggle 'call subroutine LED_TOGGLE next

10 Comparison Conditional Statements Form: IF <condition> THEN <statement> if control < maxcontrol then control = maxcontrol Form: IF <condition> THEN <address> if loop_count = 5 then led_toggle led_toggle: 'THEN address acts as a goto Comparison Operators Comparisons: =, <>, >, <, <=, >= Logic: AND, OR, NOT, XOR Note on '=': The same operator used for assignment and comparison Unsigned integers: All comparisons are made assuming unsigned integers. (Be careful of negatives!) 6.19 Blink light at 10 Hz Sample Program ' Blinking Light Sample Program ' {$Stamp bs2} 'Initialization high 0 'Main Loop main: low 0 pause 50 high 0 pause 50 goto main 'LED on by default, pin zero 'toggle LED off 'delay execution for N = 50 ms 'toggle LED on 'delay execution

11 Running Sample Code on BS2 Hardware With power off, connect LED and resistor in series to ground and pin 0 Use at least a 300 Ohm resistor Each individual pin can source up to 20 ma All pins together can source no more than 50 ma 5 V / 300 Ω = 17 ma Attach serial cable to computer and BS2 Apply power to BS2 P0 LED R = 300 Ω + Vss Download code Use Run Menu 6.21 The Boebot The Boebot package puts a BS2 microcontroller on wheels and adds two servo motors For our lab project, we will also add a wireless coms board

12 Servo Motor Control Continuous Rotation Servos Servo motor combines DC motor, gearbox, and H-bridge, and additional circuitry Motor Control Lines: Black (ground), Red (+5 V), White (command signal) make sure pins hooked up correctly The servo controls DC motor speed (open-loop) Commanding the Servo Microcontroller issues pulse trains on an output pin Servo measures width of each pulse (between 1 and 2 ms) to determine control command Servo accepts commands once each 20 ms period (50 Hz) 1-2 ms 20 ms 6.23 Motor Control in PBASIC Generate a pulse in PBASIC Form: PULSOUT <pin>, <width in 2 μs increments> PULSOUT 12, 500 'Generate a 1 ms pulse 'Toggle output + pause + toggle Generate a pulse train in PBASIC loop_count VAR BYTE 'declare counter LOW 12 'initialize pin 12 (servo) main: pause 1000 'wait for 1 s (1000 ms) GOSUB spin_motor 'call subroutine goto main '/********** SUBROUTINES ********************/ spin_motor: 'motor subroutine FOR loop_count = 1 TO 50 PULSOUT 12, 500 'generate a 1 ms pulse PAUSE 20 'pause for 20 ms NEXT RETURN

13 Motor Calibration Nominal zero Nominally, motor stops rotating at pulse width of 1.5 ms Pulse widths of ms result in forward rotation Pulse widths of ms result in reverse rotation Linear range The motor rotational speed will vary approximately linearly between ms Rotational speed will saturate quickly beyond this range Calibration Calibrate zero: For actual motor, zero rotational speed will occur near, but generally not at, 1.5 ms Calibrate velocity: The slope of the linear range (speed vs. pulse width) is a function of the assembled vehicle 6.25 Serial Communications Lab system uses two stage serial communication to transmit data from Matlab to Boebot 1. Wired connection from computer to basic stamp transmitter RS-232 Voltages (± 12 V) 2. Wireless connection from basic stamp transmitter to Boebot TTL Voltages (0 or 5 V)

14 Wireless Coms Ensure Connections Check 4 pins on each wireless carad Pin 1: GND to Vss Pin 2: +5VDC to Vdd Pin 3: MODE to Vdd Pin 4: TXD to pin Pin 6: RXD to pin Boebot BS2 Transmitter 6.27 Serial I/O One set of PBASIC commands may be used to send and transmit data over both connections (wired and wireless) For wired link to computer, Pin 16 is dedicated serial port For wireless card TXD and RXD, any pin P0-P15 can be used Read serial string Form: SERIN <Pin>, <BaudMode>, <Data> xpos VAR BYTE SERIN 10, 16780, xpos '2400 BAUD, No parity bit on Pin 10 Write serial string Form: SEROUT <Pin>, <BaudMode>, <Data> xpos VAR BYTE xpos = 127 SEROUT 11, 16780, xpos '2400 BAUD, No parity bit on Pin 11 Note: The BaudMode code depends on the version of the BS2 microcontroller. Consult Basic Stamp Manual for details. Note: If the SEROUT command is not functioning, try pausing at least 15 ms between characters

15 Intermediate Serial I/O Serial communication parameters Baud rate (bits per second): try 2400 to start Parity: parity allows error checking disable parity to start Asynchronous/synchronous: we ll operate in asynchronous mode (without an extra line dedicated to clock) Serial string headers If one side of the serial link drops a byte, the reading and writing devices will fall out of synch. To ensure proper synchronization of bytes in a serial string, consider adding a header byte. The SERIN <Data> block can be modified with a WAIT statement to hold processing until the header byte is received SEROUT 11, 16780, [WAIT("s"), xpos] 'wait for s to 'be transmitted 6.29 Basic Stamp Transmitter Sample Code for Basic Stamp Transmitter 'Declarations xpos VAR BYTE ypos VAR BYTE main: 'Read 2 byte serial string with 1 byte header SERIN 16, 16780, [Wait(0), xpos] 'Input from DB9 port SERIN 16, 16780, ypos 'Write 2 byte serial string with 1 byte header SEROUT 11, 16780, 0 'Output to wireless device SEROUT 11, 16780, xpos SEROUT 11, 16780, ypos GOTO main When the serial string is short, communication will not be continuous. There is a distinction between bit rate (baud) and the number of bits transmitted per second. This code can be made more compact by using a PBASIC byte array (see Basic Stamp Manual)

16 Matlab Serial Out Matlab can talk to the BS2 transmitter via a serial line plugged into the DB9 port (Pin 16) Sample Matlab code %Initialize Serial object s = serial('com1'); set(s,'baudrate',2400); fopen(s); %Create serial port object on COM1 %Default is 8 bits, no parity %Open serial port Looping = true; while looping fprintf(s,char(0)) %Print out 3 bytes starting with 0 header fprintf(s,char(100)) %Data bytes are in the range fprintf(s,char(121)) pause(0.2); %force 5 Hz output %Cleanup fclose(s); %Port must be closed prior to reuse delete(s); 6.31 Designing Serial Message Considerations Longer message contains more data Maximum number of bytes per second at 2400 baud is 300 For 10 Hz sample rate, max of 30 bytes per message However, longer message means greater control delay Two possibilities using two bytes of data Transmit sensor data, implement control law on Boebot X-Position resampled to range of Y-Position resampled to range of Transmit servo commands, with control law in Matlab Right servo motor commands between ms Left servo motor commands between ms Because one byte can t span this range, lab uses with steps at intervals of 3 milliseconds

17 Control Limiting Real servos are not ideal actuators Be nice to your servos Use nonlinear limiters in your control code Control saturation: The control law may request a larger motor speed than the no-load (maximum possible) speed Add a block to your control code that limits the maximum amplitude of the control command Slew-Rate Limiting Rapid changes in control cause wear to servos Plastic gears not built for dramatic acceleration Add a block to your control code that limits the maximum change in control between subsequent time steps 6.33 Control Design Design control using the Race-Car model from Lecture 5 Do not neglect rotational damping I θ = τ b( θ) and Damping dominates over inertia e = vθ θ b 1 ( τ ) and e = vθ Actuator commands control wheel velocities, reducing the 3 rd order problem to 2 nd order Open Task: determine actuator map

18 Boebot Kinematics Assuming no-slip between wheel and ground, kinematics are: vr () = vr ( ) + θ ( rr) 0 0 θ v L v R v 1 2 ( R L) ( )/ v= v + v θ = v v Δl Rough calibration: Assume motor performance in forward and backward directions is the same; calibrate vehicle velocity vs. servo command using vision sensor So R L 6.35 Review Commercial embedded vision products are still heavily reliant on general purpose processors Lab Project: Control Boebot using offboard (overhead) vision and offboard processing Lens Camera Frame Grabber Vision Processor μcontroller Power Electronics & Motor Program Vision Sensor and Control Law in Matlab Wireless Communications Program BS2 Processor of a Parallax Boebot

19 Final Projects Final Project will extend Lab Project using the Boebots and overhead vision 1. Speed Racer: Refine software to minimize time to complete two laps around oval 2. Dodge Ball: Complete two laps around oval, avoiding obstacles placed on the track 3. Follow the Leader: Track and pursue a Boebot pace car for two laps around the oval

ME 2110 Controller Box Manual. Version 2.3

ME 2110 Controller Box Manual. Version 2.3 ME 2110 Controller Box Manual Version 2.3 I. Introduction to the ME 2110 Controller Box A. The Controller Box B. The Programming Editor & Writing PBASIC Programs C. Debugging Controller Box Problems II.

More information

B Robo Claw 2 Channel 25A Motor Controller Data Sheet

B Robo Claw 2 Channel 25A Motor Controller Data Sheet B0098 - Robo Claw 2 Channel 25A Motor Controller Feature Overview: 2 Channel at 25A, Peak 30A Hobby RC Radio Compatible Serial Mode TTL Input Analog Mode 2 Channel Quadrature Decoding Thermal Protection

More information

Compass Module AppMod (#29113) Electro-Mechanical Compass

Compass Module AppMod (#29113) Electro-Mechanical Compass 599 Menlo Drive, Suite 100 Rocklin, California 95765, USA Office: (916) 624-8333 Fax: (916) 624-8003 General: info@parallax.com Technical: support@parallax.com Web Site: www.parallax.com Educational: www.parallax.com/sic

More information

B RoboClaw 2 Channel 30A Motor Controller Data Sheet

B RoboClaw 2 Channel 30A Motor Controller Data Sheet B0098 - RoboClaw 2 Channel 30A Motor Controller (c) 2010 BasicMicro. All Rights Reserved. Feature Overview: 2 Channel at 30Amp, Peak 60Amp Battery Elimination Circuit (BEC) Switching Mode BEC Hobby RC

More information

Experiment #3: Micro-controlled Movement

Experiment #3: Micro-controlled Movement Experiment #3: Micro-controlled Movement So we re already on Experiment #3 and all we ve done is blinked a few LED s on and off. Hang in there, something is about to move! As you know, an LED is an output

More information

In this activity, you will program the BASIC Stamp to control the rotation of each of the Parallax pre-modified servos on the Boe-Bot.

In this activity, you will program the BASIC Stamp to control the rotation of each of the Parallax pre-modified servos on the Boe-Bot. Week 3 - How servos work Testing the Servos Individually In this activity, you will program the BASIC Stamp to control the rotation of each of the Parallax pre-modified servos on the Boe-Bot. How Servos

More information

Contents. Part list 2 Preparartion 4 izebot. izebot Collision detection via Switch. izebot Serial Communication. izebot Remote Control

Contents. Part list 2 Preparartion 4 izebot. izebot Collision detection via Switch. izebot Serial Communication. izebot Remote Control Contents Part list 2 Preparartion 4 izebot Activity #1 : Building izebot 9 Activity #2 : izebot motor driveing 11 Activity #3 : izebot Moving 13 izebot Collision detection via Switch Activity #4 : Installing

More information

HB-25 Motor Controller (#29144)

HB-25 Motor Controller (#29144) Web Site: www.parallax.com Forums: forums.parallax.com Sales: sales@parallax.com Technical: support@parallax.com Office: (916) 624-8333 Fax: (916) 624-8003 Sales: (888) 512-1024 Tech Support: (888) 997-8267

More information

PAK-Vb/c PWM Coprocessor Data Sheet by AWC

PAK-Vb/c PWM Coprocessor Data Sheet by AWC PAK-Vb/c PWM Coprocessor Data Sheet 1998-2003 by AWC AWC 310 Ivy Glen League City, TX 77573 (281) 334-4341 http://www.al-williams.com/awce.htm V1.8 23 Oct 2003 Table of Contents Overview...1 If You Need

More information

WEEK 5 Remembering Long Lists Using EEPROM

WEEK 5 Remembering Long Lists Using EEPROM WEEK 5 Remembering Long Lists Using EEPROM EEPROM stands for Electrically Erasable Programmable Read Only Memory. It is a small black chip on the BASIC Stamp II module labeled 24LC16B. It is used to store

More information

the Board of Education

the Board of Education the Board of Education Voltage regulator electrical power (V dd, V in, V ss ) breadboard (for building circuits) power jack digital input / output pins 0 to 15 reset button Three-position switch 0 = OFF

More information

Directions for Wiring and Using The GEARS II (2) Channel Combination Controllers

Directions for Wiring and Using The GEARS II (2) Channel Combination Controllers Directions for Wiring and Using The GEARS II (2) Channel Combination Controllers PWM Input Signal Cable for the Valve Controller Plugs into the RC Receiver or Microprocessor Signal line. White = PWM Input

More information

ZX-SERVO16. Features : Packing List. Before You Begin

ZX-SERVO16. Features : Packing List. Before You Begin Features : ZX-SERVO16 Runtime Selectable Baud rate. 2400 to 38k4 Baud. 16 Servos. All servos driven simultaneously all of the time. 180 degrees of rotation. Servo Ramping. 63 ramp rates (0.75-60 seconds)

More information

Chapter 2: Your Boe-Bot's Servo Motors

Chapter 2: Your Boe-Bot's Servo Motors Chapter 2: Your Boe-Bot's Servo Motors Vocabulary words used in this lesson. Argument in computer science is a value of data that is part of a command. Also data passed to a procedure or function at the

More information

Web Site: Forums: forums.parallax.com Sales: Technical:

Web Site:  Forums: forums.parallax.com Sales: Technical: Web Site: www.parallax.com Forums: forums.parallax.com Sales: sales@parallax.com Technical: support@parallax.com Office: (916) 624-8333 Fax: (916) 624-8003 Sales: (888) 512-1024 Tech Support: (888) 997-8267

More information

EE 314 Spring 2003 Microprocessor Systems

EE 314 Spring 2003 Microprocessor Systems EE 314 Spring 2003 Microprocessor Systems Laboratory Project #9 Closed Loop Control Overview and Introduction This project will bring together several pieces of software and draw on knowledge gained in

More information

PROGRAMMABLE CFE PULLER

PROGRAMMABLE CFE PULLER PROGRAMMABLE CFE PULLER Manual Pulling of PE tubing is a critical step in CFE fabrication. Getting constant shapes in CFE is difficult and to achieve a high success rate in pulling CFE requires patience

More information

Infrared Remote AppKit (#29122)

Infrared Remote AppKit (#29122) Web Site: www.parallax.com Forums: forums.parallax.com Sales: sales@parallax.com Technical: support@parallax.com Office: (916) 624-8333 Fax: (916) 624-8003 Sales: (888) 512-1024 Tech Support: (888) 997-8267

More information

Hitachi HM55B Compass Module (#29123)

Hitachi HM55B Compass Module (#29123) Web Site: www.parallax.com Forums: forums@parallax.com Sales: sales@parallax.com Technical: support@parallax.com Office: (916) 624-8333 Fax: (916) 624-8003 Sales: (888) 512-1024 Tech Support: (888) 997-8267

More information

Parallax MHz RF Transmitter (#27980) Parallax MHz RF Receiver (#27981)

Parallax MHz RF Transmitter (#27980) Parallax MHz RF Receiver (#27981) Web Site: www.parallax.com Forums: forums.parallax.com Sales: sales@parallax.com Technical: support@parallax.com Office: (916) 624-8333 Fax: (916) 624-8003 Sales: (888) 512-1024 Tech Support: (888) 997-8267

More information

Controlling Your Robot

Controlling Your Robot Controlling Your Robot The activities on this week are about instructing the Boe-Bot where to go and how to get there. You will write programs to make the Boe-Bot perform a variety of maneuvers. You will

More information

Development of a MATLAB Data Acquisition and Control Toolbox for BASIC Stamp Microcontrollers

Development of a MATLAB Data Acquisition and Control Toolbox for BASIC Stamp Microcontrollers Chapter 4 Development of a MATLAB Data Acquisition and Control Toolbox for BASIC Stamp Microcontrollers 4.1. Introduction Data acquisition and control boards, also known as DAC boards, are used in virtually

More information

Tarocco Closed Loop Motor Controller

Tarocco Closed Loop Motor Controller Contents Safety Information... 3 Overview... 4 Features... 4 SoC for Closed Loop Control... 4 Gate Driver... 5 MOSFETs in H Bridge Configuration... 5 Device Characteristics... 6 Installation... 7 Motor

More information

SC16A SERVO CONTROLLER

SC16A SERVO CONTROLLER SC16A SERVO CONTROLLER User s Manual V2.0 September 2008 Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by

More information

RFID Reader Module (#28140) RFID 54 mm x 85 mm Rectangle Tag (#28141) RFID 50 mm Round Tag (#28142)

RFID Reader Module (#28140) RFID 54 mm x 85 mm Rectangle Tag (#28141) RFID 50 mm Round Tag (#28142) 599 Menlo Drive, Suite 100 Rocklin, California 95765, USA Office: (916) 624-8333 Fax: (916) 624-8003 General: info@parallax.com Technical: support@parallax.com Web Site: www.parallax.com Educational: www.stampsinclass.com

More information

Parallax Servo Controller (#28023) Rev B 16-Channel Servo Control with Ramping

Parallax Servo Controller (#28023) Rev B 16-Channel Servo Control with Ramping 599 Menlo Drive, Suite 100 Rocklin, California 95765, USA Office: (916) 6248333 Fax: (916) 6248003 General: info@parallax.com Technical: support@parallax.com Web Site: www.parallax.com Educational: www.parallax.com/sic

More information

Chapter #4: Controlling Motion

Chapter #4: Controlling Motion Chapter #4: Controlling Motion Page 101 Chapter #4: Controlling Motion MICROCONTROLLED MOTION Microcontrollers make sure things move to the right place all around you every day. If you have an inkjet printer,

More information

Microcontroller interfacing

Microcontroller interfacing Introduction to Microcontroller interfacing Prepared By : Eng : Ahmed Youssef Alaa El-Din Youssef El-Kashef Date : 20/08/2011 Contents What is a PIC Microcontroller? Simple Microcontroller Standard Interfacing

More information

Introduction to the ME2110 Kit. Controller Box Electro Mechanical Actuators & Sensors Pneumatics

Introduction to the ME2110 Kit. Controller Box Electro Mechanical Actuators & Sensors Pneumatics Introduction to the ME2110 Kit Controller Box Electro Mechanical Actuators & Sensors Pneumatics Features of the Controller Box BASIC Stamp II-SX microcontroller Interfaces with various external devices

More information

Thinking Robotics: Teaching Robots to Make Decisions. Jeffrey R. Peters and Rushabh Patel

Thinking Robotics: Teaching Robots to Make Decisions. Jeffrey R. Peters and Rushabh Patel Thinking Robotics: Teaching Robots to Make Decisions Jeffrey R. Peters and Rushabh Patel Adapted From Robotics with the Boe-Bot by Andy Lindsay, Parallax, inc., 2010 Preface This manual was developed as

More information

BASIC-Tiger Application Note No. 059 Rev Motor control with H bridges. Gunther Zielosko. 1. Introduction

BASIC-Tiger Application Note No. 059 Rev Motor control with H bridges. Gunther Zielosko. 1. Introduction Motor control with H bridges Gunther Zielosko 1. Introduction Controlling rather small DC motors using micro controllers as e.g. BASIC-Tiger are one of the more common applications of those useful helpers.

More information

Project Final Report: Directional Remote Control

Project Final Report: Directional Remote Control Project Final Report: by Luca Zappaterra xxxx@gwu.edu CS 297 Embedded Systems The George Washington University April 25, 2010 Project Abstract In the project, a prototype of TV remote control which reacts

More information

USER GUIDE. Piezo Motor with Encoder. Installation & Software Control Guide. (For Piezo Motor Model LPM-2M, LPM-5, PM-1124R)

USER GUIDE. Piezo Motor with Encoder. Installation & Software Control Guide. (For Piezo Motor Model LPM-2M, LPM-5, PM-1124R) www.dtimotors.com USER GUIDE Piezo Motor with Encoder Installation & Software Control Guide (For Piezo Motor Model LPM-2M, LPM-5, PM-1124R) Version 05312018v11 Page 0 Table of Contents 1.0 Introduction...

More information

Servo 8 Torque Board Doc V 1.2

Servo 8 Torque Board Doc V 1.2 Features: Servo 8 Torque Board Doc V 1.2 RS-232 hobby servo controller with torque feedback No servo modifications required Eight independent 8-bit servo control outputs allow 254 positions for each servo.

More information

Chapter #5: Measuring Rotation

Chapter #5: Measuring Rotation Chapter #5: Measuring Rotation Page 139 Chapter #5: Measuring Rotation ADJUSTING DIALS AND MONITORING MACHINES Many households have dials to control the lighting in a room. Twist the dial one direction,

More information

Integrated Easy Servo

Integrated Easy Servo ies 1706 Integrated Easy Servo Motor + Drive + Encoder, 18 32VDC, NEMA17, 0.6Nm Features Easy servo control technology to combine advantages of open loop stepper systems and brushless servo systems Closed

More information

Nifty Networking Chips Link Stamps Far and Wide Use an RS-485 transceiver for reliable network comms

Nifty Networking Chips Link Stamps Far and Wide Use an RS-485 transceiver for reliable network comms Column #28, June 1997 by Scott Edwards: Nifty Networking Chips Link Stamps Far and Wide Use an RS-485 transceiver for reliable network comms STAMPS ARE GREAT for bridging the gap between PCs and hardware

More information

Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators

Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators Ahmed Okasha, Assistant Lecturer okasha1st@gmail.com Objective Have a

More information

Balancing Robot. Daniel Bauen Brent Zeigler

Balancing Robot. Daniel Bauen Brent Zeigler Balancing Robot Daniel Bauen Brent Zeigler December 3, 2004 Initial Plan The objective of this project was to design and fabricate a robot capable of sustaining a vertical orientation by balancing on only

More information

Chapter 3: Assemble and Test Your Boe-Bot

Chapter 3: Assemble and Test Your Boe-Bot Chapter 3: Assemble and Test Your Boe-Bot Page 91 Chapter 3: Assemble and Test Your Boe-Bot This chapter contains instructions for building and testing your Boe-Bot. It s especially important to complete

More information

Need Analog Output from the Stamp? Dial it in with a Digital Potentiometer Using the DS1267 potentiometer as a versatile digital-to-analog converter

Need Analog Output from the Stamp? Dial it in with a Digital Potentiometer Using the DS1267 potentiometer as a versatile digital-to-analog converter Column #18, August 1996 by Scott Edwards: Need Analog Output from the Stamp? Dial it in with a Digital Potentiometer Using the DS1267 potentiometer as a versatile digital-to-analog converter GETTING AN

More information

Understanding the Arduino to LabVIEW Interface

Understanding the Arduino to LabVIEW Interface E-122 Design II Understanding the Arduino to LabVIEW Interface Overview The Arduino microcontroller introduced in Design I will be used as a LabVIEW data acquisition (DAQ) device/controller for Experiments

More information

PING))) Ultrasonic Distance Sensor (#28015)

PING))) Ultrasonic Distance Sensor (#28015) 599 Menlo Drive, Suite 100 Rocklin, California 95765, USA Office: (916) 624-8333 Fax: (916) 624-8003 General: info@parallax.com Technical: support@parallax.com Web Site: www.parallax.com Educational: www.stampsinclass.com

More information

DASL 120 Introduction to Microcontrollers

DASL 120 Introduction to Microcontrollers DASL 120 Introduction to Microcontrollers Lecture 2 Introduction to 8-bit Microcontrollers Introduction to 8-bit Microcontrollers Introduction to 8-bit Microcontrollers Introduction to Atmel Atmega328

More information

Programmable Control Introduction

Programmable Control Introduction Programmable Control Introduction By the end of this unit you should be able to: Give examples of where microcontrollers are used Recognise the symbols for different processes in a flowchart Construct

More information

Get Your Motor Runnin

Get Your Motor Runnin Column #100 August 2003 by Jon Williams: Get Your Motor Runnin Most people dont realize that the BASIC Stamp 2 has actually been around for quite a long time. Like the BASIC Stamp 1, it was designed to

More information

AT-XTR-7020A-4. Multi-Channel Micro Embedded Transceiver Module. Features. Typical Applications

AT-XTR-7020A-4. Multi-Channel Micro Embedded Transceiver Module. Features. Typical Applications AT-XTR-7020A-4 Multi-Channel Micro Embedded Transceiver Module The AT-XTR-7020A-4 radio data transceiver represents a simple and economical solution to wireless data communications. The employment of an

More information

ies-2309 Integrated Easy Servo

ies-2309 Integrated Easy Servo Datasheet of the integrated easy servo motor ies-09 ies-09 Integrated Easy Servo Motor + Drive + Encoder, 0-0VDC, NEMA, 0.9Nm Features Easy servo control technology to combine advantages of open-loop stepper

More information

maxon document number:

maxon document number: maxon document number: 791272-04 1 Table of contents... 2 2 Table of figures... 3 3 Introduction... 4 4 How to use this guide... 4 5 Safety Instructions... 5 6 Performance Data... 6 6.1 Motor data... 6

More information

Parameter Value Unit Notes

Parameter Value Unit Notes Features Single axis measurement from ±5 to ±60 High resolution and accuracy. Low temperature drift, with optional temperature compensation to further improve temperature performance. RS232 and RS485 output

More information

Figure 1. CheapBot Smart Proximity Detector

Figure 1. CheapBot Smart Proximity Detector The CheapBot Smart Proximity Detector is a plug-in single-board sensor for almost any programmable robotic brain. With it, robots can detect the presence of a wall extending across the robot s path or

More information

LaserPING Rangefinder Module (#28041)

LaserPING Rangefinder Module (#28041) Web Site: www.parallax.com Forums: forums.parallax.com Sales: sales@parallax.com Technical:support@parallax.com Office: (916) 624-8333 Fax: (916) 624-8003 Sales: (888) 512-1024 Tech Support: (888) 997-8267

More information

Advanced Mechatronics 1 st Mini Project. Remote Control Car. Jose Antonio De Gracia Gómez, Amartya Barua March, 25 th 2014

Advanced Mechatronics 1 st Mini Project. Remote Control Car. Jose Antonio De Gracia Gómez, Amartya Barua March, 25 th 2014 Advanced Mechatronics 1 st Mini Project Remote Control Car Jose Antonio De Gracia Gómez, Amartya Barua March, 25 th 2014 Remote Control Car Manual Control with the remote and direction buttons Automatic

More information

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs Introduction to Arduino

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs Introduction to Arduino EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs 10-11 Introduction to Arduino In this lab we will introduce the idea of using a microcontroller as a tool for controlling

More information

Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge

Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge L298 Full H-Bridge HEF4071B OR Gate Brushed DC Motor with Optical Encoder & Load Inertia Flyback Diodes Arduino Microcontroller

More information

Feed-back loop. open-loop. closed-loop

Feed-back loop. open-loop. closed-loop Servos AJLONTECH Overview Servo motors are used for angular positioning, such as in radio control airplanes. They typically have a movement range of 180 deg but can go up to 210 deg. The output shaft of

More information

Laboratory 11. Pulse-Width-Modulation Motor Speed Control with a PIC

Laboratory 11. Pulse-Width-Modulation Motor Speed Control with a PIC Laboratory 11 Pulse-Width-Modulation Motor Speed Control with a PIC Required Components: 1 PIC16F88 18P-DIP microcontroller 3 0.1 F capacitors 1 12-button numeric keypad 1 NO pushbutton switch 1 Radio

More information

TCSS 372 Laboratory Project 2 RS 232 Serial I/O Interface

TCSS 372 Laboratory Project 2 RS 232 Serial I/O Interface 11/20/06 TCSS 372 Laboratory Project 2 RS 232 Serial I/O Interface BACKGROUND In the early 1960s, a standards committee, known as the Electronic Industries Association (EIA), developed a common serial

More information

CMU232 User Manual Last Revised October 21, 2002

CMU232 User Manual Last Revised October 21, 2002 CMU232 User Manual Last Revised October 21, 2002 Overview CMU232 is a new low-cost, low-power serial smart switch for serial data communications. It is intended for use by hobbyists to control multiple

More information

Integrated Servo Motor UCS57

Integrated Servo Motor UCS57 Integrated Servo Motor Introduction is a new generation of high performance digital integrated servo drive motor, which is a series of low voltage AC servo products integrated with AC servo motor and drive

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 13.11.2014

More information

Citrus Circuits Fall Workshop Series. Roborio and Sensors. Paul Ngo and Ellie Hass

Citrus Circuits Fall Workshop Series. Roborio and Sensors. Paul Ngo and Ellie Hass Citrus Circuits Fall Workshop Series Roborio and Sensors Paul Ngo and Ellie Hass Introduction to Sensors Sensor: a device that detects or measures a physical property and records, indicates, or otherwise

More information

High Speed Continuous Rotation Servo (# )

High Speed Continuous Rotation Servo (# ) Web Site: www.parallax.com Forums: forums.parallax.com Sales: sales@parallax.com Technical: support@parallax.com Office: (916) 624-8333 Fax: (916) 624-8003 Sales: (888) 512-1024 Tech Support: (888) 997-8267

More information

SilverMax Datasheet. QuickSilver Controls, Inc. NEMA 23 Servomotors.

SilverMax Datasheet. QuickSilver Controls, Inc. NEMA 23 Servomotors. SilverMax Datasheet NEMA 23 Servomotors QuickSilver Controls, Inc. www.quicksilvercontrols.com SilverMax Datasheet - NEMA 23 Servomotors 23 Frame Sizes: 23-3, 23-5, 23H-1, 23H-3, 23H-5 / Series: E, E3,

More information

medlab Two Channel Invasive Blood Pressure OEM board EG 02000

medlab Two Channel Invasive Blood Pressure OEM board EG 02000 medlab Two Channel Invasive Blood Pressure OEM board EG 02000 Technical Manual Copyright Medlab 2003-2014 1 Version 2.02 01.04.2014 Contents: Mechanical dimensions, overview 3 Specifications 5 Connector

More information

Serial Servo Controller

Serial Servo Controller Document : Datasheet Model # : ROB - 1185 Date : 16-Mar -07 Serial Servo Controller - USART/I 2 C with ADC Rhydo Technologies (P) Ltd. (An ISO 9001:2008 Certified R&D Company) Golden Plaza, Chitoor Road,

More information

Interfacing Sensors & Modules to Microcontrollers

Interfacing Sensors & Modules to Microcontrollers Interfacing Sensors & Modules to Microcontrollers Presentation Topics I. Microprocessors & Microcontroller II. III. Hardware/software Tools for Interfacing Type of Sensors/Modules IV. Level Inputs (Digital

More information

CL86T. 24~80VDC, 8.2A Peak, Closed-loop, No Tuning. Descriptions. Closed-loop. Stepper. Applications. Datasheet of the Closed-loop Stepper CL86T

CL86T. 24~80VDC, 8.2A Peak, Closed-loop, No Tuning. Descriptions. Closed-loop. Stepper. Applications. Datasheet of the Closed-loop Stepper CL86T CL86T Closed-loop Stepper 24~80VDC, 8.2A Peak, Closed-loop, No Tuning Closed-loop, eliminates loss of synchronization Broader operating range higher torque and higher speed Reduced motor heating and more

More information

AC : THE UBIQUITOUS MICROCONTROLLER IN MECHANICAL ENGINEERING: MEASUREMENT SYSTEMS

AC : THE UBIQUITOUS MICROCONTROLLER IN MECHANICAL ENGINEERING: MEASUREMENT SYSTEMS AC 8-1513: THE UBIQUITOUS MICROCONTROLLER IN MECHANICAL ENGINEERING: MEASUREMENT SYSTEMS Michael Holden, California Maritime Academy Michael Holden teaches in the department of Mechanical Engineering at

More information

Features. Description. General Specifications. VS Series Inclinometer : Dual Axis, RS232 and Analogue Output

Features. Description. General Specifications. VS Series Inclinometer : Dual Axis, RS232 and Analogue Output Features Dual axis measurement from ±5 to ±60 High resolution and accuracy Low temperature drift, with optional temperature compensation to further improve temperature performance. RS232 output interface

More information

WWVB Receiver/Decoder With Serial BCD or ASCII Interface DESCRIPTION FEATURES APPLICATIONS

WWVB Receiver/Decoder With Serial BCD or ASCII Interface DESCRIPTION FEATURES APPLICATIONS Linking computers to the real world WWVB Receiver/Decoder With Serial BCD or ASCII Interface DESCRIPTION General The Model 321BS provides computer readable time and date information based on the United

More information

Programming PIC Microchips

Programming PIC Microchips Programming PIC Microchips Fís Foghlaim Forbairt Programming the PIC microcontroller using Genie Programming Editor Workshop provided & facilitated by the PDST www.t4.ie Page 1 DC motor control: DC motors

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 05.11.2015

More information

Jaguar Motor Controller (Stellaris Brushed DC Motor Control Module with CAN)

Jaguar Motor Controller (Stellaris Brushed DC Motor Control Module with CAN) Jaguar Motor Controller (Stellaris Brushed DC Motor Control Module with CAN) 217-3367 Ordering Information Product Number Description 217-3367 Stellaris Brushed DC Motor Control Module with CAN (217-3367)

More information

BASIC Stamp I Application Notes

BASIC Stamp I Application Notes 22: Interfacing a 2-bit ADC BASIC Stamp I Application Notes Introduction. This application note shows how to interface the LTC298 analog-to-digital converter (ADC) to the BASIC Stamp. Background. Many

More information

EG medlab. Three Lead ECG OEM board. Version Technical Manual. Medlab GmbH Three Lead ECG OEM Module EG01010 User Manual

EG medlab. Three Lead ECG OEM board. Version Technical Manual. Medlab GmbH Three Lead ECG OEM Module EG01010 User Manual Medlab GmbH Three Lead ECG OEM Module EG01010 User Manual medlab Three Lead ECG OEM board EG01010 Technical Manual Copyright Medlab 2008-2016 Version 1.03 1 Version 1.03 28.04.2016 Medlab GmbH Three Lead

More information

Simple Servo USER Instructions

Simple Servo USER Instructions Simple Servo USER Instructions Version 1V2 Copyright 2003-2007 Active Robots Limited 10A New Rock Ind. Est., Newrock, Chilcompton, Somerset BA3 4JE UK Tel: +44(0)1761 239 267 Fax: +44(0)176 123 3162 www.active-robots.com

More information

2F. No.25, Industry E. 9 th Rd., Science-Based Industrial Park, Hsinchu, Taiwan Application Note of OGM220, AN001 V1.8

2F. No.25, Industry E. 9 th Rd., Science-Based Industrial Park, Hsinchu, Taiwan Application Note of OGM220, AN001 V1.8 Application Note of OGM220, AN001 V1.8 1.0 Introduction OGM220 series is a dual channels NDIR module having a digital output directly proportional to CO2 concentration. OGM220 is designed for multi-dropped

More information

Hardware Platforms and Sensors

Hardware Platforms and Sensors Hardware Platforms and Sensors Tom Spink Including material adapted from Bjoern Franke and Michael O Boyle Hardware Platform A hardware platform describes the physical components that go to make up a particular

More information

Brushed DC Motor Control. Module with CAN (MDL-BDC24)

Brushed DC Motor Control. Module with CAN (MDL-BDC24) Stellaris Brushed DC Motor Control Module with CAN (MDL-BDC24) Ordering Information Product No. MDL-BDC24 RDK-BDC24 Description Stellaris Brushed DC Motor Control Module with CAN (MDL-BDC24) for Single-Unit

More information

WTPCT-M. eeder. Pulse Counter/Timer Module. Technologies FEATURES SPECIFICATIONS DESCRIPTION. Weeder Technologies

WTPCT-M. eeder. Pulse Counter/Timer Module. Technologies FEATURES SPECIFICATIONS DESCRIPTION. Weeder Technologies eeder Technologies 90-A Beal Pkwy NW, Fort Walton Beach, FL 32548 www.weedtech.com 850-863-5723 Pulse Counter/Timer Module FEATURES Reads frequency from 0.50000 to 1,400,000 Hz using 5 digit resolution

More information

Arduino Microcontroller Processing for Everyone!: Third Edition / Steven F. Barrett

Arduino Microcontroller Processing for Everyone!: Third Edition / Steven F. Barrett Arduino Microcontroller Processing for Everyone!: Third Edition / Steven F. Barrett Anatomy of a Program Programs written for a microcontroller have a fairly repeatable format. Slight variations exist

More information

Figure 1: One Possible Advanced Control System

Figure 1: One Possible Advanced Control System Control and Navigation 3 Cornerstone Electronics Technology and Robotics III (Notes primarily from Underwater Robotics Science Design and Fabrication, an excellent book for the design, fabrication, and

More information

Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor

Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor Recommended Due Date: By your lab time the week of February 12 th Possible Points: If checked off before

More information

Computational Crafting with Arduino. Christopher Michaud Marist School ECEP Programs, Georgia Tech

Computational Crafting with Arduino. Christopher Michaud Marist School ECEP Programs, Georgia Tech Computational Crafting with Arduino Christopher Michaud Marist School ECEP Programs, Georgia Tech Introduction What do you want to learn and do today? Goals with Arduino / Computational Crafting Purpose

More information

WTDIN-M. eeder. Digital Input Module. Technologies FEATURES SPECIFICATIONS DESCRIPTION. Weeder Technologies

WTDIN-M. eeder. Digital Input Module. Technologies FEATURES SPECIFICATIONS DESCRIPTION. Weeder Technologies eeder Technologies 90-A Beal Pkwy NW, Fort Walton Beach, FL 32548 www.weedtech.com 850-863-5723 Digital Input Module FEATURES 8 wide-range digital input channels with high voltage transient protection.

More information

30-80V, 8.2A Peak, No Tuning, Nulls loss of Synchronization

30-80V, 8.2A Peak, No Tuning, Nulls loss of Synchronization 2-phase Hybrid Servo Drive 30-80V, 8.2A Peak, No Tuning, Nulls loss of Synchronization Closed-loop, eliminates loss of synchronization Broader operating range higher torque and higher speed Reduced motor

More information

WTDOT-M. eeder. Digital Output Module. Technologies FEATURES SPECIFICATIONS DESCRIPTION. Weeder Technologies

WTDOT-M. eeder. Digital Output Module. Technologies FEATURES SPECIFICATIONS DESCRIPTION. Weeder Technologies eeder Technologies 90-A Beal Pkwy NW, Fort Walton Beach, FL 32548 www.weedtech.com 850-863-5723 Digital Output Module FEATURES 8 high-current open-collector output channels with automatic overload shutdown.

More information

Complete 2.4 GHz RF Transceiver Module with Built-In RFDP8 Application Protocol Part Numbers RFD21733, RFD21735, RFD21737, RFD21738, RFD21739

Complete 2.4 GHz RF Transceiver Module with Built-In RFDP8 Application Protocol Part Numbers RFD21733, RFD21735, RFD21737, RFD21738, RFD21739 Complete 2.4 GHz RF Transceiver Module with Built-In Application Protocol Part Numbers,,,, Optional Configuration For use with External Antenna 15mm x 15mm (0.600 inch x 0.600 inch) / is a complete, READY-TO-USE

More information

DS1807 Addressable Dual Audio Taper Potentiometer

DS1807 Addressable Dual Audio Taper Potentiometer Addressable Dual Audio Taper Potentiometer www.dalsemi.com FEATURES Operates from 3V or 5V Power Supplies Ultra-low power consumption Two digitally controlled, 65-position potentiometers Logarithmic resistor

More information

CEEN Bot Lab Design A SENIOR THESIS PROPOSAL

CEEN Bot Lab Design A SENIOR THESIS PROPOSAL CEEN Bot Lab Design by Deborah Duran (EENG) Kenneth Townsend (EENG) A SENIOR THESIS PROPOSAL Presented to the Faculty of The Computer and Electronics Engineering Department In Partial Fulfillment of Requirements

More information

SMART Funded by The National Science Foundation

SMART Funded by The National Science Foundation Lecture 5 Capacitors 1 Store electric charge Consists of two plates of a conducting material separated by a space filled by an insulator Measured in units called farads, F Capacitors 2 Mylar Ceramic Electrolytic

More information

LC-10 Chipless TagReader v 2.0 August 2006

LC-10 Chipless TagReader v 2.0 August 2006 LC-10 Chipless TagReader v 2.0 August 2006 The LC-10 is a portable instrument that connects to the USB port of any computer. The LC-10 operates in the frequency range of 1-50 MHz, and is designed to detect

More information

Use and Copyright Microcontroller Motion Activity #1: Connecting and Testing the Servo Servo on Board of Education Rev. C Servo on Board of Education

Use and Copyright Microcontroller Motion Activity #1: Connecting and Testing the Servo Servo on Board of Education Rev. C Servo on Board of Education Chapter 4: Controlling Motion Presentation based on: "What's a Microcontroller?" By Andy Lindsay Parallax, Inc Presentation developed by: Martin A. Hebel Southern Illinois University Carbondale C ll College

More information

The MP SERIES CONTROLLER. User s Manual. ISE, Inc.

The MP SERIES CONTROLLER. User s Manual. ISE, Inc. The MP SERIES CONTROLLER User s Manual ISE, Inc. 10100 Royalton Rd. Cleveland, OH 44133 USA Tel: (440) 237-3200 Fax: (440) 237-1744 http://variac.com Form No, 003-1622 Rev G 02/25/2009 Form No. 003-1622

More information

ROTRONIC HygroClip Digital Input / Output

ROTRONIC HygroClip Digital Input / Output ROTRONIC HygroClip Digital Input / Output OEM customers that use the HygroClip have the choice of using either the analog humidity and temperature output signals or the digital signal input / output (DIO).

More information

DMC-8 (SKU#ROB )

DMC-8 (SKU#ROB ) DMC-8 (SKU#ROB-01-007) Selectable serial or parallel interface Use with Microcontroller or PC Controls 2 DC motors For 5 24 Volt Motors 8 Amps per channel Windows software included Fuse protection Dual

More information

HAW-Arduino. Sensors and Arduino F. Schubert HAW - Arduino 1

HAW-Arduino. Sensors and Arduino F. Schubert HAW - Arduino 1 HAW-Arduino Sensors and Arduino 14.10.2010 F. Schubert HAW - Arduino 1 Content of the USB-Stick PDF-File of this script Arduino-software Source-codes Helpful links 14.10.2010 HAW - Arduino 2 Report for

More information

ME 461 Laboratory #5 Characterization and Control of PMDC Motors

ME 461 Laboratory #5 Characterization and Control of PMDC Motors ME 461 Laboratory #5 Characterization and Control of PMDC Motors Goals: 1. Build an op-amp circuit and use it to scale and shift an analog voltage. 2. Calibrate a tachometer and use it to determine motor

More information

RC-WIFI CONTROLLER USER MANUAL

RC-WIFI CONTROLLER USER MANUAL RC-WIFI CONTROLLER USER MANUAL In the rapidly growing Internet of Things (IoT), applications from personal electronics to industrial machines and sensors are getting wirelessly connected to the Internet.

More information