Improved Real/Reactive Power Management and Controls for Converter-Based DERs in Microgrids

Size: px
Start display at page:

Download "Improved Real/Reactive Power Management and Controls for Converter-Based DERs in Microgrids"

Transcription

1 Improved Real/Reactive Power Management and Controls for Converter-Based DERs in Microgrids Masoud Karimi and Thaer Qunais Mississippi State University

2 1. Introduction: Electric Power System Generation Transmission PCC PV Fuel Cell Power Electronic Converter Power Electronic Converter Storage Power Electronic Converter Main Grid Distribution Interface Switch Consumption Conventional: - Central generation - Uni-directional power flow Power Electronic Converter/ Ind. or Syn. Generator Load Gen Power Electronic Converter Load Wind A distribution microgrid with various DERs

3 2. Problem Statement Principles of Power Management and Control in Power System The real power is drooped with frequency. The reactive power is drooped with voltage magnitude. These are compatible with principles of operation of synchronous generators. f V fnl VNL Droop Principles P But most DERs are non synchronous! Q What is the best drooping strategy?

4 2. Problem Statement (continued) Reverse Droop: Has shown improved stability for microgrids containing DERs. Has shown improved efficiency (lower transmission and distribution losses). What if the MG operates parallel to the grid? (Incoherence!) Flexible Droop: sin 90 : 0 : normal droop reverse droop cos 0 90 What is the best value for?

5 3. Approach: study system and performance System Performance: Stability Stability robustness Transmission loss Power sharing Voltage profile Seamless Transition Study System

6 3. Approach: universal controller Structure of modified universal controller MUC3

7 3. Approach: Mathematical Model 1 Inverter and Controller: ) ) 2 = = sin cos cos sin Output L filter: Local Load: 1 1 Line: Common Load:

8 3. Approach: Mathematical Model 2 Linearized Model:

9 3. Approach: Performance Indices 1 1. Stability Indices Dominant Poles High Frequency Dominant Poles Pole with Low Frequency Dominant Poles Pole with Pole with High Frequency Critical Dominant Poles (HFCD Poles) Damping Improvement Index (DII) Pole with Low Frequency Critical Dominant Poles (LFCD Poles) Stability Indices Distance Stability Improvement Index (DSII)

10 3. Approach: Performance Indices 2 2. Voltage Regulation Error Index (VREI): : MG nominal voltage : the number of critical buses Power Loss Improvement Index : total transmission loss 4. Power Sharing Indices Active and reactive power sharing error indices (PSEI and QSEI) : number of inverters. : total transmitted apparent power and : output powers of each inverter and : ideal power shares of each inverter. 5. Sensitivity Index (SI): 100 : number of dominant poles that move to the right when the physical parameter is changed and : real parts of those poles at the initial and final values of that parameter.

11 4. Results System Parameter Value Inverter Rating 2 kva L filter Inductance 5 mh DC Bus Voltage 500 V Local Loads 400 W 300 Var Common Load 2.2 kva 0.82 PF lagging RMS Grid Voltage 208 V Grid Frequency 60 Hz Switching Frequency 10 khz Line Impedance j0.083 Ω/km Grid Impedance ( ) Ω 5.7 mh Grid Rating 20 kva Grid Load 12 kw 9 kvar Example 1: double DER microgrid

12 4. Results: indices for standalone mode Stability indices for HFCD poles Standalone Mode voltage regulation error index Stability indices for LFCD poles Standalone Mode P/Q sharing error indices. Power loss improvement index Sensitivity index when changes from 3 to 7mH

13 4. Results: simulations for standalone mode Voltage amplitudes (V): Load increase at t=2 s. More stability Less power loss More regulated voltages As decreases from 90 towards 30 degrees! Output real power of DG 2 (W). At 90 (top). At Load increase at t=2 s. 0 (bottom)

14 4. Results: indices for standalone mode at low R/X lines (R/X=0.85) DII and DSII for HFCD poles PLII More or less same results as high R/X ratio: Good for both distribution and transmission levels. DII and DSII for LFCD poles

15 4. Results: indices and responses for gridconnected mode Stability indices for HFCD poles Voltage regulation error index Power loss improvement index Stability indices for LFCD poles d axis current of grid (left). Zoomed in view (right). 0 (bottom). Load increase at t=10 s 90 (top) and

16 t1 4. Results: indices for grid-connected mode at low R/X (0.85) Unstable region DII and DSII for HFCD poles PLII Stability is (significantly) compromised as decreases! DII and DSII for LFCD poles

17 Slide 16 t1 tq39 3/22/2018

18 4. Results: transition mode Output Real power of the grid for transition from standalone to grid connected at t= 5 s. Seamless transition is compromised as decreases. Global conclusion is that a modest selection of cross coupling terms e.g will establish a desirable trade off between the system stability (in both grid connected and islanded modes) and efficiency while improves the voltage regulation.

19 5. Results: IEEE 13-Bus Case Study System Parameter Value DG2 and DG3 Ratings 4 kva DG1 and DG4 Ratings 8 kva Grid Rating 40 kva RMS Grid Voltage 208 V Grid Frequency 60 Hz Line Impedance j0.083 Ω/km Modified IEEE 13 bus distribution system

20 5. Results: IEEE 13-Bus (indices for standalone mode) (a) VREI % (b) PLII % (b) PSEI and QSEI % More stability Less power loss More regulated voltages As decreases from 90 towards 30 degrees!

21 5. Results: IEEE 13-Bus (responses for standalone mode) Improved stability & Improved Voltage Regulation are observed as decreases. P_DG2 when a load is connected at bus 692 at t=3 s Voltage amplitude of selected buses (V)

22 5. Results: IEEE 13-Bus (indices for gridconnected mode) (a) VREI % (b) PLII % (b) PSEI and QSEI % Less power loss As decreases from 90 towards 60 degrees!

23 5. Results: IEEE 13-Bus (responses for grid-connected mode) Stability is compromised as decreases. (Left) d axis current of grid. (Right) Apparent power of grid. Load connected at bus 634 increases at t= 5 s

24 5. Results: IEEE 13-Bus (responses for transition mode) Output Real power of the grid for transition from standalone to grid connected at t= 3 s. Seamless transition is compromised as decreases.

25 8. Conclusion Grid Connected Mode 1. Conventional droop controller will guarantee the highest level of stability. 2. Small amount of cross coupling can improve the system efficiency without compromising stability. Islanded Mode 1. A large amount of cross coupling up to the extreme point ( system stability and efficiency. 0 ) will both improve Global Conclusion 80 will establish a desirable 1. Modest selection of cross coupling terms e.g. 70 trade off between the system stability (in both modes) and efficiency while improving voltage regulation.

26 Thank You

Transition from Grid Connected Mode to Islanded Mode in VSI fed Microgrids

Transition from Grid Connected Mode to Islanded Mode in VSI fed Microgrids Transition from Grid Connected Mode to Islanded Mode in VSI fed Microgrids Dibakar Das, Gurunath Gurrala, U Jayachandra Shenoy Department of Electrical Engineering Indian Institute of Science, Bangalore-5612

More information

Voltage Support and Reactive Power Control in Micro-grid using DG

Voltage Support and Reactive Power Control in Micro-grid using DG International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Voltage Support and Reactive Power Control in Micro-grid using DG Nagashree. J. R 1, Vasantha Kumara. T. M 2, Narasimhegowda 3 1

More information

Parallel Operation of Distributed Generators by Virtual Synchronous Generator Control in Microgrids

Parallel Operation of Distributed Generators by Virtual Synchronous Generator Control in Microgrids Niagara 2016 Symposium on Microgrids October 2021, 2016 Niagara, Canada Parallel Operation of Distributed Generators by Virtual Synchronous Generator Control in Microgrids Jia Liu* and Toshifumi Ise Osaka

More information

Active Power Sharing and Frequency Control of Multiple Distributed Generators in A Microgrid

Active Power Sharing and Frequency Control of Multiple Distributed Generators in A Microgrid IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 01-07 www.iosrjournals.org Active Power Sharing and Frequency Control of Multiple Distributed

More information

IEEE sion/1547revision_index.html

IEEE sion/1547revision_index.html IEEE 1547 IEEE 1547: Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces http://grouper.ieee.org/groups/scc21/1547_revi sion/1547revision_index.html

More information

Islanding Detection and Frequency Circuit Measurement by Power Distribution Relation Depending on the Angle

Islanding Detection and Frequency Circuit Measurement by Power Distribution Relation Depending on the Angle 215 International Journal of Smart Electrical Engineering, Vol.5, No.4, Fall 2016 ISSN: 2251-9246 pp. 215:220 Islanding Detection and Frequency Circuit Measurement by Power Distribution Relation Depending

More information

Fuel cell power system connection. Dynamics and Control of Distributed Power Systems. DC storage. DC/DC boost converter (1)

Fuel cell power system connection. Dynamics and Control of Distributed Power Systems. DC storage. DC/DC boost converter (1) Dynamics and Control of Distributed Power Systems Fuel cell power system connection Ian A. Hiskens University of Wisconsin-Madison ACC Workshop June 12, 2006 This topology is fairly standard, though there

More information

Issued: September 2, 2014 Effective: October 3, 2014 WN U-60 Attachment C to Schedule 152, Page 1 PUGET SOUND ENERGY

Issued: September 2, 2014 Effective: October 3, 2014 WN U-60 Attachment C to Schedule 152, Page 1 PUGET SOUND ENERGY WN U-60 Attachment C to Schedule 152, Page 1 SCHEDULE 152 APPLICATION FOR INTERCONNECTING A GENERATING FACILITY TIER 2 OR TIER 3 This Application is considered complete when it provides all applicable

More information

Voltage Control with Distributed Generators to Enhance Voltage Stability

Voltage Control with Distributed Generators to Enhance Voltage Stability Advanced Electricity Infrastructure Workshop Global Climate & Energy Project STANFORD UNIVERSITY, Nov. 1~2, 2007 Voltage Control with Distributed Generators to Enhance Voltage Stability Presenter: Fangxing

More information

Synchronous Generators II EE 340

Synchronous Generators II EE 340 Synchronous Generators II EE 340 Generator P-f Curve All generators are driven by a prime mover, such as a steam, gas, water, wind turbines, diesel engines, etc. Regardless the power source, most of prime

More information

Form B. Connection Impact Assessment Application Form Distribution System

Form B. Connection Impact Assessment Application Form Distribution System Form B Connection Impact Assessment Application Form Distribution System This Application Form is for Generators applying for Connection Impact Assessment ( CIA ). It is important that the Generator provides

More information

Sizing Generators for Leading Power Factor

Sizing Generators for Leading Power Factor Sizing Generators for Leading Power Factor Allen Windhorn Kato Engineering 24 February, 2014 Generator Operation with a Leading Power Factor Generators operating with a leading power factor may experience

More information

WILEY CONTROL OF POWER INVERTERS IN RENEWABLE ENERGY AND SMART GRID INTEGRATION. Qing-Chang Zhong. Tomas Hornik IEEE PRESS

WILEY CONTROL OF POWER INVERTERS IN RENEWABLE ENERGY AND SMART GRID INTEGRATION. Qing-Chang Zhong. Tomas Hornik IEEE PRESS CONTROL OF POWER INVERTERS IN RENEWABLE ENERGY AND SMART GRID INTEGRATION Qing-Chang Zhong The University of Sheffield, UK Tomas Hornik Turbo Power Systems Ltd., UK WILEY A John Wiley & Sons, Ltd., Publication

More information

A Control Method of Parallel Inverter for Smart Islanding of a Microgrid

A Control Method of Parallel Inverter for Smart Islanding of a Microgrid A Control Method of Parallel Inverter for Smart Islanding of a Microgrid M. Hojo 1, K. Amo 1, T. Funabashi 2 and Y. Ueda 2 1 Institute of Technology and Science, the University of Tokushima 2-1 Minami-josanjima,

More information

DigSILENT Modelling of Power Electronic Converters for Distributed Generation Networks

DigSILENT Modelling of Power Electronic Converters for Distributed Generation Networks DigSILENT Modelling of Power Electronic Converters for Distributed Generation Networks R. Kabiri D. G. Holmes B. P. McGrath School of Electrical and Computer Engineering RMIT University, Melbourne, Australia

More information

IEEE 1547: Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces

IEEE 1547: Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces IEEE PES Boston Chapter Technical Meeting IEEE 1547: Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces P1547 Chair David

More information

Questions from the same exercise can be combined together to increase difficulty. Which one of the following properties of the diode is NOT true:

Questions from the same exercise can be combined together to increase difficulty. Which one of the following properties of the diode is NOT true: Questions from the same exercise can be combined together to increase difficulty. 21 1 Which one of the following properties of the diode is NOT true: a) When no voltage is applied across the diode, it

More information

Level 6 Graduate Diploma in Engineering Electrical Energy Systems

Level 6 Graduate Diploma in Engineering Electrical Energy Systems 9210-114 Level 6 Graduate Diploma in Engineering Electrical Energy Systems Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler,

More information

Apparent Power Sharing Optimization for Parallel Operated Distributed Generators in Microgrids

Apparent Power Sharing Optimization for Parallel Operated Distributed Generators in Microgrids 1 Apparent Power Sharing Optimization for Parallel Operated Distributed Generators in Microgrids Ramakrishnan Venkatraman, Student Member, IEEE and Siddhartha Kumar Khaitan, Senior Member, IEEE Abstract

More information

MODELING AND CONTROL OF DISTRIBUTED ENERGY SYSTEMS DURING TRANSITION BETWEEN GRID CONNECTED AND STANDALONE MODES. A Dissertation.

MODELING AND CONTROL OF DISTRIBUTED ENERGY SYSTEMS DURING TRANSITION BETWEEN GRID CONNECTED AND STANDALONE MODES. A Dissertation. MODELING AND CONTROL OF DISTRIBUTED ENERGY SYSTEMS DURING TRANSITION BETWEEN GRID CONNECTED AND STANDALONE MODES A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment

More information

Cost Based Dynamic Load Dispatch for an Autonomous Parallel Converter Hybrid AC-DC Microgrid

Cost Based Dynamic Load Dispatch for an Autonomous Parallel Converter Hybrid AC-DC Microgrid Cost Based Dynamic Load Dispatch for an Autonomous Parallel Converter Hybrid AC-DC Microgrid M. A. Hasan, N. K. Vemula and S. K. Parida Department of Electrical Engineering Indian Institute of Technology,

More information

Published in: Proceedings of the 2014 IEEE International Energy Conference (ENERGYCON)

Published in: Proceedings of the 2014 IEEE International Energy Conference (ENERGYCON) Aalborg Universitet Autonomous Control of Distributed Generation and Storage to Coordinate P/Q Sharing in Islanded Microgrids Wu, Dan; Tang, Fen; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez Published

More information

Microgrids and Energy Management SURYANARAYANA DOOLLA POWER ENGINEERING LAB DEPARTMENT OF ENERGY SCIENCE AND ENGINEERING INDIAN INSTITUTE OF

Microgrids and Energy Management SURYANARAYANA DOOLLA POWER ENGINEERING LAB DEPARTMENT OF ENERGY SCIENCE AND ENGINEERING INDIAN INSTITUTE OF Microgrids and Energy Management SURYANARAYANA DOOLLA POWER ENGINEERING LAB DEPARTMENT OF ENERGY SCIENCE AND ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY BOMBAY 1 Why Distributed Generation? Increase in

More information

Induction Machine Test Case for the 34-Bus Test Feeder -Distribution Feeders Steady State and Dynamic Solutions

Induction Machine Test Case for the 34-Bus Test Feeder -Distribution Feeders Steady State and Dynamic Solutions Induction Machine Test Case for the 34-Bus Test Feeder -Distribution Feeders Steady State and Dynamic Solutions Induction Machine Modeling for Distribution System Analysis panel IEEE PES General Meeting

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05310204 Set No. 1 III B.Tech I Semester Regular Examinations, November 2007 ELECTRICAL MACHINES-III (Electrical & Electronic Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

More information

NORTH CAROLINA INTERCONNECTION REQUEST. Utility: Designated Contact Person: Address: Telephone Number: Address:

NORTH CAROLINA INTERCONNECTION REQUEST. Utility: Designated Contact Person: Address: Telephone Number:  Address: NORTH CAROLINA INTERCONNECTION REQUEST Utility: Designated Contact Person: Address: Telephone Number: Fax: E-Mail Address: An is considered complete when it provides all applicable and correct information

More information

Published in: Proceedings of the 3rd IEEE Energy Conversion Congress and Exposition (ECCE 2011)

Published in: Proceedings of the 3rd IEEE Energy Conversion Congress and Exposition (ECCE 2011) Aalborg Universitet Controlled Inverters with Seamless Transition between Islanding and Grid Connected Operations Hu, ShangHung ; Kuo, ChunYi ; Lee, TzungLin; Guerrero, Josep M. Published in: Proceedings

More information

Coordinated Control of Power Electronic Converters in an Autonomous Microgrid

Coordinated Control of Power Electronic Converters in an Autonomous Microgrid University of South Carolina Scholar Commons Theses and Dissertations 1-1-2013 Coordinated Control of Power Electronic Converters in an Autonomous Microgrid Gholamreza Dehnavi University of South Carolina

More information

IDAHO PURPA GENERATOR INTERCONNECTION REQUEST (Application Form)

IDAHO PURPA GENERATOR INTERCONNECTION REQUEST (Application Form) IDAHO PURPA GENERATOR INTERCONNECTION REQUEST (Application Form) Transmission Provider: IDAHO POWER COMPANY Designated Contact Person: Jeremiah Creason Address: 1221 W. Idaho Street, Boise ID 83702 Telephone

More information

SOLAR POWERED REACTIVE POWER COMPENSATION IN SINGLE-PHASE OPERATION OF MICROGRID

SOLAR POWERED REACTIVE POWER COMPENSATION IN SINGLE-PHASE OPERATION OF MICROGRID SOLAR POWERED REACTIVE POWER COMPENSATION IN SINGLE-PHASE OPERATION OF MICROGRID B.Praveena 1, S.Sravanthi 2 1PG Scholar, Department of EEE, JNTU Anantapur, Andhra Pradesh, India 2 PG Scholar, Department

More information

Renewable Interconnection Standard & Experimental Tests. Yahia Baghzouz UNLV Las Vegas, NV, USA

Renewable Interconnection Standard & Experimental Tests. Yahia Baghzouz UNLV Las Vegas, NV, USA Renewable Interconnection Standard & Experimental Tests Yahia Baghzouz UNLV Las Vegas, NV, USA Overview IEEE Std 1547 Voltage limitations Frequency limitations Harmonic limitations Expansion of IEEE Std

More information

Current Control Strategy for Parallel Operation of Inverters Based On Micro grids M.Bavithra 1, Belwin J. Brearley 2

Current Control Strategy for Parallel Operation of Inverters Based On Micro grids M.Bavithra 1, Belwin J. Brearley 2 Current Control Strategy for Parallel Operation of Inverters Based On Micro grids M.Bavithra 1, Belwin J. Brearley 2 PG Student [PED], Dept. of EEE, B.S Abdur Rahman University, Chennai, Tamilnadu, India

More information

Modeling of Single Stage Grid-Connected Buck-Boost Inverter for Domestic Applications Maruthi Banakar 1 Mrs. Ramya N 2

Modeling of Single Stage Grid-Connected Buck-Boost Inverter for Domestic Applications Maruthi Banakar 1 Mrs. Ramya N 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 02, 2015 ISSN (online): 2321-0613 Modeling of Single Stage Grid-Connected Buck-Boost Inverter for Domestic Applications

More information

Power electronic converters in power systems. SINTEF Energy Research

Power electronic converters in power systems. SINTEF Energy Research Power electronic converters in power systems 1 Typical application of grid connected converters Active rectifier (sinusoidal line current, bi-directional power flow, adjustable power factor) Grid interface

More information

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY POWER QUALITY IMPROVEMENT OF GRID CONNECTED WIND ENERGY SYSTEM BY USING STATCOM Mr.Mukund S. Mahagaonkar*, Prof.D.S.Chavan * M.Tech

More information

Coping Smartly!! with Harmonic Penetration, Propagation and Interaction in the Distribution Network. Dr. Malabika Basu

Coping Smartly!! with Harmonic Penetration, Propagation and Interaction in the Distribution Network. Dr. Malabika Basu Coping Smartly!! with Harmonic Penetration, Propagation and Interaction in the Distribution Network Dr. Malabika Basu Today s agenda Challenges and Opportunities with inevitable harmonic presence in the

More information

Impact Assessment Generator Form

Impact Assessment Generator Form Impact Assessment Generator Form This connection impact assessment form provides information for the Connection Assessment and Connection Cost Estimate. Date: (dd/mm/yyyy) Consultant/Developer Name: Project

More information

An Accurate Power Sharing Method for Control of a Multi-DG Microgrid

An Accurate Power Sharing Method for Control of a Multi-DG Microgrid An Accurate Power Sharing Method for Control of a Multi-DG Microgrid M. Hamzeh, H. Karimi, H. Mokhtari and M. Popov Abstract-This paper presents an accurate control scheme for active and reactive power

More information

Control of Power Converters for Distributed Generation

Control of Power Converters for Distributed Generation Mechatronics Industrial Advisory Board 2004 Control of Power Converters for Distributed Generation Ph.D. Student: Min Dai Advisor: Prof. Ali Keyhani Department of Electrical and Computer Engineering The

More information

CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS

CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS 84 CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS 4.1 INTRODUCTION Now a days, the growth of digital economy implies a widespread use of electronic equipment not only in the industrial

More information

Published in: Proccedings of the th Annual IEEE Applied Power Electronics Conference and Exposition (APEC)

Published in: Proccedings of the th Annual IEEE Applied Power Electronics Conference and Exposition (APEC) Aalborg Universitet Power Flow Analysis Algorithm for Islanded LV Microgrids Including Distributed Generator Units with Droop Control and Virtual Impedance Loop Li, Chendan; Chaudhary, Sanjay K.; Quintero,

More information

Experiences of a microgrid research laboratory and lessons learned for future smart grids

Experiences of a microgrid research laboratory and lessons learned for future smart grids Experiences of a microgrid research laboratory and lessons learned for future smart grids Olimpo Anaya-Lara, Paul Crolla, Andrew J. Roscoe, Alberto Venturi and Graeme. Burt Santiago 2013 Symposium on icrogrids

More information

Voltage-Based Control of a Smart Transformer in a Microgrid

Voltage-Based Control of a Smart Transformer in a Microgrid 1 Voltage-Based Control of a Smart Transformer in a Microgrid T. L. Vandoorn, J. D. M. De Kooning, B. Meersman, J. M. Guerrero and L. Vandevelde Abstract For the islanded operation of a microgrid, several

More information

LARGE-SCALE WIND POWER INTEGRATION, VOLTAGE STABILITY LIMITS AND MODAL ANALYSIS

LARGE-SCALE WIND POWER INTEGRATION, VOLTAGE STABILITY LIMITS AND MODAL ANALYSIS LARGE-SCALE WIND POWER INTEGRATION, VOLTAGE STABILITY LIMITS AND MODAL ANALYSIS Giuseppe Di Marzio NTNU giuseppe.di.marzio@elkraft.ntnu.no Olav B. Fosso NTNU olav.fosso@elkraft.ntnu.no Kjetil Uhlen SINTEF

More information

A Hierarchical Control Scheme for Compensating Voltage Distortions in an Inverter Based Microgrid

A Hierarchical Control Scheme for Compensating Voltage Distortions in an Inverter Based Microgrid Research Article Journal of Energy Management and Technology (JEMT) Vol. 1, Issue 3 52 A Hierarchical Control Scheme for Compensating Voltage Distortions in an Inverter Based Microgrid MORTEZA AFRASIABI

More information

Embedded Generation Connection Application Form

Embedded Generation Connection Application Form Embedded Generation Connection Application Form This Application Form provides information required for an initial assessment of the Embedded Generation project. All applicable sections must be completed

More information

Impacts of P-f & Q-V Droop Control on MicroGrids Transient Stability

Impacts of P-f & Q-V Droop Control on MicroGrids Transient Stability Available online at www.sciencedirect.com Physics Procedia 24 (212) 276 282 212 International Conference on Applied Physics and Industrial Engineering Impacts of P-f & Q-V Droop Control on MicroGrids Transient

More information

Cork Institute of Technology. Autumn 2008 Electrical Energy Systems (Time: 3 Hours)

Cork Institute of Technology. Autumn 2008 Electrical Energy Systems (Time: 3 Hours) Cork Institute of Technology Bachelor of Science (Honours) in Electrical Power Systems - Award Instructions Answer FIVE questions. (EELPS_8_Y4) Autumn 2008 Electrical Energy Systems (Time: 3 Hours) Examiners:

More information

A New Family of Matrix Converters

A New Family of Matrix Converters A New Family of Matrix Converters R. W. Erickson and O. A. Al-Naseem Colorado Power Electronics Center University of Colorado Boulder, CO 80309-0425, USA rwe@colorado.edu Abstract A new family of matrix

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17323 14115 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full marks. (4) Assume

More information

A Control Topology to Enhance Performance of Weak Grid under Different Power Levels

A Control Topology to Enhance Performance of Weak Grid under Different Power Levels A Control Topology to Enhance Performance of Weak Grid under Different Power Levels R. Kavitha 1, N. Priya 2 1 M.E- Power Systems Engineering, Valliammai Engineering College, Chennai, India 2 Assistant

More information

Table of Contents. Introduction... 1

Table of Contents. Introduction... 1 Table of Contents Introduction... 1 1 Connection Impact Assessment Initial Review... 2 1.1 Facility Design Overview... 2 1.1.1 Single Line Diagram ( SLD )... 2 1.1.2 Point of Disconnection - Safety...

More information

Transients of a Micro-Grid System with Multiple Distributed Energy Resources

Transients of a Micro-Grid System with Multiple Distributed Energy Resources Transients of a Micro- System with Multiple Distributed Energy Resources F. Katiraei, Student Member, IEEE, M.R. Iravani, Fellow, IEEE Abstract This paper investigates dynamic behavior and transients of

More information

Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application

Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application Vol.3, Issue.1, Jan-Feb. 2013 pp-530-537 ISSN: 2249-6645 Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application B.D.S Prasad, 1 Dr. M Siva Kumar 2 1 EEE, Gudlavalleru Engineering

More information

Question Paper Profile

Question Paper Profile I Scheme Question Paper Profile Program Name : Electrical Engineering Program Group Program Code : EE/EP/EU Semester : Third Course Title : Electrical Circuits Max. Marks : 70 Time: 3 Hrs. Instructions:

More information

CHAPTER 3 IMPROVEMENT OF LOAD POWER FACTOR USING FACTS CONTROLLERS

CHAPTER 3 IMPROVEMENT OF LOAD POWER FACTOR USING FACTS CONTROLLERS 40 CHAPTER 3 IMPROVEMENT OF LOAD POWER FACTOR USING FACTS CONTROLLERS 3.1 INTRODUCTION The low power factor effects on transmission line, switchgear, transformers etc. It is observed that if the power

More information

Published in: Proceedings of the 37th Annual Conference of IEEE Industrial Electronics Society, IECON 2011

Published in: Proceedings of the 37th Annual Conference of IEEE Industrial Electronics Society, IECON 2011 Aalborg Universitet A centralized control architecture for harmonic voltage suppression in islanded microgrids Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe; Guerrero, Josep M. Published in: Proceedings

More information

Grid Converters for Photovoltaic

Grid Converters for Photovoltaic Grid Converters for Photovoltaic and Wind Power Systems by R. Teodorescu, M. Liserre and P. Rodriguez ISBN: 978 0 470 05751 3 Copyright Wiley 2011 Chapter 3 Grid Requirements for PV Grid connection requirements

More information

A Novel Approach to Control the Frequency and Voltage of Microgrids in Islanding Operation

A Novel Approach to Control the Frequency and Voltage of Microgrids in Islanding Operation ACST nternational Journal of Engineering and Technology, ol. 4, No. 5, October 2012 A Novel Approach to Control the Frequency and oltage of Microgrids in slanding Operation Mohammad Reza Ebrahimi, Mohammad

More information

GENERATOR INTERCONNECTION APPLICATION Category 3 For All Projects with Aggregate Generator Output of More Than 150 kw but Less Than or Equal to 550 kw

GENERATOR INTERCONNECTION APPLICATION Category 3 For All Projects with Aggregate Generator Output of More Than 150 kw but Less Than or Equal to 550 kw GENERATOR INTERCONNECTION APPLICATION Category 3 For All Projects with Aggregate Generator Output of More Than 150 kw but Less Than or Equal to 550 kw ELECTRIC UTILITY CONTACT INFORMATION Consumers Energy

More information

Grid Code Violation during Fault Triggered Islanding of Hybrid Micro-grid

Grid Code Violation during Fault Triggered Islanding of Hybrid Micro-grid Grid Code Violation during Fault Triggered Islanding of Hybrid Micro-grid Mazheruddin H. Syed, Student Member, IEEE, H.H. Zeineldin and M.S. El Moursi, Member, IEEE Department of Electrical Power Engineering

More information

Improved droop regulation for minimum power losses operation in islanded microgrids

Improved droop regulation for minimum power losses operation in islanded microgrids European Research Infrastructure supporting Smart Grid Systems Technology Development, Validation and Roll Out Technical Report TA User Project Improved droop regulation for minimum power losses operation

More information

Harmonic control devices

Harmonic control devices ECE 528 Understanding Power Quality http://www.ece.uidaho.edu/ee/power/ece528/ Paul Ortmann portmann@uidaho.edu 208-733-7972 (voice) Lecture 24 1 Today Harmonic control devices In-line reactors (chokes)

More information

HARMONICS ANALYSIS USING SEQUENTIAL-TIME SIMULATION FOR ADDRESSING SMART GRID CHALLENGES

HARMONICS ANALYSIS USING SEQUENTIAL-TIME SIMULATION FOR ADDRESSING SMART GRID CHALLENGES HARMONICS ANALYSIS USING SEQUENTIAL-TIME SIMULATION FOR ADDRESSING SMART GRID CHALLENGES Davis MONTENEGRO Roger DUGAN Gustavo RAMOS Universidad de los Andes Colombia EPRI U.S.A. Universidad de los Andes

More information

ELG 4125: ELECTRICAL POWER TRANSMISSION AND DISTRIBUTION: TUTORIAL 1: - BY:

ELG 4125: ELECTRICAL POWER TRANSMISSION AND DISTRIBUTION: TUTORIAL 1: - BY: ELG 4125: ELECTRICAL POWER TRANSMISSION AND DISTRIBUTION: TUTORIAL 1: - BY: Faizhussain Arsiwala POWER FACTOR: The cosine of angle between voltage and current in an a.c. circuit is known as power factor.

More information

Improving Power Quality in Low Voltage Networks Containing Distributed Energy Resources

Improving Power Quality in Low Voltage Networks Containing Distributed Energy Resources Improving Power Quality in Low Voltage Networks Containing Distributed Energy Resources Sumit Mazumder, Arindam Ghosh, Firuz Zare and Gerard Ledwich ABSTRACT: Severe power quality problem can arise when

More information

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg.

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg. Aligarh College of Engineering & Technology (College Code: 19) Electrical Engg. (EE-11/21) Unit-I DC Network Theory 1. Distinguish the following terms: (a) Active and passive elements (b) Linearity and

More information

Design of SVPWM Based Inverter for Mitigation of Harmonics in Power System

Design of SVPWM Based Inverter for Mitigation of Harmonics in Power System Design of SVPWM Based Inverter for Mitigation of Harmonics in Power System 1 Leena N C, 2 B. Rajesh Kamath, 3 Shri Harsha 1,2,3 Department of EEE, Sri Siddhartha Institute of Technology, Tumkur-572105,

More information

High Gain Step Up DC-DC Converter For DC Micro-Grid Application

High Gain Step Up DC-DC Converter For DC Micro-Grid Application High Gain Step Up DC-DC Converter For DC Micro-Grid Application Manoranjan Sahoo Department of Electrical Engineering Indian Institute of Technology Hyderabad, India Email: mailmrsahoo@gmail.com Siva Kumar

More information

Microgrid Islanding with a Battery Energy Storage System (BESS) Gabriel Haines

Microgrid Islanding with a Battery Energy Storage System (BESS) Gabriel Haines Microgrid Islanding with a Battery Energy Storage System (BESS) Gabriel Haines 27/03/2018 1 INTRODUCTION A microgrid is a small group of generation sources and loads that operate together as one system.

More information

Connection Impact Assessment Application

Connection Impact Assessment Application Connection Impact Assessment Application This form is for generators applying for Connection Impact Assessment (CIA) and for generators with a project size >10 kw. Please return the completed form by email,

More information

IEEE sion/1547revision_index.html

IEEE sion/1547revision_index.html IEEE 1547 IEEE 1547: Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces http://grouper.ieee.org/groups/scc21/1547_revi sion/1547revision_index.html

More information

Distributed Active Filter Systems (DAFS): A new approach to power system harmonics

Distributed Active Filter Systems (DAFS): A new approach to power system harmonics Distributed Active Filter Systems (DAFS): A new approach to power system harmonics Po-Tai Cheng Zhung-Lin Lee CENTER FOR ADVANCED POWER TECHNOLOGIES (CAPT) Department of Electrical Engineering National

More information

AN EXPERIMENTAL STUDY OF FREQUENCY DROOP CONTROL IN A LOW- INERTIA MICROGRID ANDREW MARK BOLLMAN THESIS

AN EXPERIMENTAL STUDY OF FREQUENCY DROOP CONTROL IN A LOW- INERTIA MICROGRID ANDREW MARK BOLLMAN THESIS AN EXPERIMENTAL STUDY OF FREQUENCY DROOP CONTROL IN A LOW- INERTIA MICROGRID BY ANDREW MARK BOLLMAN THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical

More information

Class XII Chapter 7 Alternating Current Physics

Class XII Chapter 7 Alternating Current Physics Question 7.1: A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply. (a) What is the rms value of current in the circuit? (b) What is the net power consumed over a full cycle? Resistance of the resistor,

More information

Islanding for Distributed Generation

Islanding for Distributed Generation Islanding for Distributed Generation Erik S. Hoff Lars E. Norum Norwegian University of Science and Technology Norwegian University of Science and Technology O.S. Bragstads pl. O.S. Bragstads pl. 7049

More information

ECET Modern Power

ECET Modern Power ECET 273000 Modern Power Course Instructors Course Philosophy This course is an introduction to a wide range of electrical energy systems technologies. Topics include fundamentals of energy conversion,

More information

AC Power Instructor Notes

AC Power Instructor Notes Chapter 7: AC Power Instructor Notes Chapter 7 surveys important aspects of electric power. Coverage of Chapter 7 can take place immediately following Chapter 4, or as part of a later course on energy

More information

Modeling and simulation for PV, Fuel cell Based MICROGRID under Unbalanced Loading Conditions

Modeling and simulation for PV, Fuel cell Based MICROGRID under Unbalanced Loading Conditions International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Modeling and simulation for PV, Fuel cell Based MICROGRID under Unbalanced Loading Conditions T. Venugopal 1, B. Bhavsingh 2, D.

More information

Vandoorn, T. L. ; De Kooning, J. D. M. ; Meersman, B. ; Zapata, Josep Maria Guerrero; Vandevelde, L.

Vandoorn, T. L. ; De Kooning, J. D. M. ; Meersman, B. ; Zapata, Josep Maria Guerrero; Vandevelde, L. Downloaded from vbn.aau.dk on: januar 16, 2019 Aalborg Universitet Voltage-Based Control of a Smart Transformer in a Microgrid Vandoorn, T. L. ; De Kooning, J. D. M. ; Meersman, B. ; Zapata, Josep Maria

More information

GENERATOR INTERCONNECTION APPLICATION Category 5 For All Projects with Aggregate Generator Output of More Than 2 MW

GENERATOR INTERCONNECTION APPLICATION Category 5 For All Projects with Aggregate Generator Output of More Than 2 MW GENERATOR INTERCONNECTION APPLICATION Category 5 For All Projects with Aggregate Generator Output of More Than 2 MW ELECTRIC UTILITY CONTACT INFORMATION Consumers Energy Interconnection Coordinator 1945

More information

Q.1: Power factor of a linear circuit is defined as the:

Q.1: Power factor of a linear circuit is defined as the: Q.1: Power factor of a linear circuit is defined as the: a. Ratio of real power to reactive power b. Ratio of real power to apparent power c. Ratio of reactive power to apparent power d. Ratio of resistance

More information

Risk of unintentional islanding in the presence of multiple inverters or mixed generation types

Risk of unintentional islanding in the presence of multiple inverters or mixed generation types Risk of unintentional islanding in the presence of multiple inverters or mixed generation types presented by: Chris Mouw Northern Plains Power Technologies Brookings, SD USA Brief introduction to NPPT

More information

motor that is connected to an inverter as a load (Fig. 2). The motor s winding can be thought of as an R-L load consisting of a resistance and inducta

motor that is connected to an inverter as a load (Fig. 2). The motor s winding can be thought of as an R-L load consisting of a resistance and inducta Effectiveness of Phase Correction When Evaluating the Efficiency of High-efficiency Motor Drives By Hideharu Kondo, Chiaki Yamaura, Yukiya Saito, Hiroki Kobayashi 1. Introduction Against the backdrop of

More information

A Power Quality Survey on a 22 kv Electrical Distribution System of a Technical Institution as per Standards

A Power Quality Survey on a 22 kv Electrical Distribution System of a Technical Institution as per Standards Indian Journal of Science and Technology, Vol 9(30), DOI: 10.17485/ijst/2016/v9i30/99034, August 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 A Power Quality Survey on a 22 kv Electrical Distribution

More information

Power Frequency Droop Controller For Stability Analysis In Micro Grids

Power Frequency Droop Controller For Stability Analysis In Micro Grids Power Frequency Droop Controller For Stability Analysis In Micro Grids AKULA GURU KRISHNA PG Student [PS], Dept. of EEE, GCET, Kadapa, Andhra Pradesh, India. M. L. DWARAKANAD Associate Professor, Dept.

More information

Lab 1. Objectives. Single Line Diagram. Methodology. Observations. Jon Jawnsy Yu 26 October 2009

Lab 1. Objectives. Single Line Diagram. Methodology. Observations. Jon Jawnsy Yu 26 October 2009 Lab 1 Objectives In this lab, our objective is to simulate a simple single machine infinite bus configuration using the PowerWorld Simulator software. We design a local generator system (a synchronous

More information

Simulation of Inverter Dominated Minigrids

Simulation of Inverter Dominated Minigrids Simulation of Inverter Dominated Minigrids Dr.-Ing. Alfred Engler, M.Sc. Oleg Osika Institut für Solare Energieversorgungstechnik (ISET) e.v. Königstor 59, D-34119 Kassel, Phone: +49 561 7294-145, Fax:

More information

Power Quality Improvement of Grid-Connected Dual Voltage Source Inverter system

Power Quality Improvement of Grid-Connected Dual Voltage Source Inverter system Power Quality Improvement of Grid-Connected Dual Voltage Source Inverter system Siva Reddy Mudiyala Department of Electrical and Electronics Engineering, Newton s Institute of Engineering, Macherla,(India)

More information

Embedded Generation Connection Application Form

Embedded Generation Connection Application Form Embedded Generation Connection Application Form This Application Form provides information required for an initial assessment of the Embedded Generation project. All applicable sections must be completed

More information

Optimal sizing of battery energy storage system in microgrid system considering load shedding scheme

Optimal sizing of battery energy storage system in microgrid system considering load shedding scheme International Journal of Smart Grid and Clean Energy Optimal sizing of battery energy storage system in microgrid system considering load shedding scheme Thongchart Kerdphol*, Yaser Qudaih, Yasunori Mitani,

More information

Harmonic Filtering in Variable Speed Drives

Harmonic Filtering in Variable Speed Drives Harmonic Filtering in Variable Speed Drives Luca Dalessandro, Xiaoya Tan, Andrzej Pietkiewicz, Martin Wüthrich, Norbert Häberle Schaffner EMV AG, Nordstrasse 11, 4542 Luterbach, Switzerland luca.dalessandro@schaffner.com

More information

Exercises on overhead power lines (and underground cables)

Exercises on overhead power lines (and underground cables) Exercises on overhead power lines (and underground cables) 1 From the laws of Electromagnetism it can be shown that l c = 1 v 2 where v is the speed of propagation of electromagnetic waves in the environment

More information

PQ for Industrial Benchmarking with various methods to improve. Tushar Mogre.

PQ for Industrial Benchmarking with various methods to improve. Tushar Mogre. General PQ: Power Quality has multiple issues involved. Thus, need to have some benchmarking standards. Very little is spoken about the LT supply installation within an industry. There is need to understand

More information

Embedded Generation Connection Application Form

Embedded Generation Connection Application Form Embedded Generation Connection Application Form This Application Form provides information required for an initial assessment of the Embedded Generation project. All applicable sections must be completed

More information

Connection Impact Assessment Application Form

Connection Impact Assessment Application Form Connection Impact Assessment Application Form This Application Form is for Generators applying for a Connection Impact Assessment (CIA). In certain circumstances, London Hydro may require additional information

More information

Remotes Case 2&3 Form REINDEER Cases 2&3 -Connection Impact Assessment (CIA) Application

Remotes Case 2&3 Form REINDEER Cases 2&3 -Connection Impact Assessment (CIA) Application General Application Information Remotes Case 2&3 Form REINDEER Cases 2&3 -Connection Impact Assessment (CIA) Application Hydro One Remote Communities Inc. Lori.Rice@hydroone.com 1-807-474-2828 This Application

More information

Power Plant and Transmission System Protection Coordination of-field (40) and Out-of. of-step Protection (78)

Power Plant and Transmission System Protection Coordination of-field (40) and Out-of. of-step Protection (78) Power Plant and Transmission System Protection Coordination Loss-of of-field (40) and Out-of of-step Protection (78) System Protection and Control Subcommittee Protection Coordination Workshop Phoenix,

More information

PFC Lite. How it works OMNIVERTER. OMNIVERTER November 14, 2015 Slide 1

PFC Lite. How it works OMNIVERTER. OMNIVERTER November 14, 2015 Slide 1 How it works OMNVERTER November 14, 2015 Slide 1 OMNVERTER How it works PFC Utility Displacement Power Factor correction -By injecting reactive current at the fundamental frequency either leading or lagging

More information

Interactive Distributed Generation Interface for Flexible Micro-Grid Operation in Smart Distribution Systems

Interactive Distributed Generation Interface for Flexible Micro-Grid Operation in Smart Distribution Systems IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 3, NO. 2, APRIL 2012 295 Interactive Distributed Generation Interface for Flexible Micro-Grid Operation in Smart Distribution Systems Alireza Kahrobaeian and

More information