Ultra- Wideband: Multimedia Unplugged. Very short lowpower pulses. can move a DVD s worth of bits around the home in seconds

Size: px
Start display at page:

Download "Ultra- Wideband: Multimedia Unplugged. Very short lowpower pulses. can move a DVD s worth of bits around the home in seconds"

Transcription

1 SPECIAL REPORT: WIRELESS NETWORKING Ultra- Wideband: Multimedia Unplugged Very short lowpower pulses can move a DVD s worth of bits around the home in seconds MARTIN SIMON/CORBIS BY STEVE STROH John McCorkle, chief technical officer of XtremeSpectrum, smiles because he no longer needs to use cables like those he s holding. A plasma flat-panel monitor displays a wireless transmission produced using his company s ultrawideband set of chips.

2 SPECIAL REPORT: WIRELESS NETWORKING PART 2 OF THIS SPECIAL REPORT DEALS WITH A NEW MODE OF VERY HIGH-SPEED, LOW- POWER NETWORKING CALLED ULTRAWIDEBAND A FUNNY THING happened to ultrawideband wireless technology on its way from the laboratory to market. It changed from a unique carrierless radio system into something far less exotic. 24 When the technology is finally standardized, it will be a carrier-based system most likely incorporating frequency hopping and orthogonal frequency-division multiplexing (OFDM). Its purpose, however, will remain unchanged: to replace almost every data cable in your home, even the ones going in and out of your television set, a job that requires moving hundreds of megabits of data per second. That s faster than all but the speediest of wired networks. The speed is achieved, however, over distances of only 10 meters or so. But it s the speed that has so many companies excited. Such heavyweights as Hewlett-Packard, Infineon, Intel, Microsoft, Mitsubishi, Panasonic, Philips, Samsung, and Texas Instruments all want a piece of the impending action. They formed the MultiBand OFDM Alliance in June and have come to dominate the IEEE s ultrawideband (UWB) task group that s writing a UWB standard. Ultrawideband s new clothes have two tailors. The first is the growing recognition of the technology s commercial potential. The other involves the surprising limitations placed on it by the U.S. Federal Communications Commission (FCC, Washington, D.C.) in February 2002, which made the carrierless approach less attractive. Now the large companies are vigorously promoting a technical approach different from the ones developed earlier by the smaller companies that started the commercial UWB movement. Despite this change, UWB promises to revolutionize home media networking, taking over such tasks as downloading images from a digital camera to a computer, distributing HDTV signals from a receiver to multiple TV sets around the house, connecting printers to computers, and potentially replacing any electronic signal (not power) cable on the premises [see figure, opposite]. Indeed, UWB could be embedded in almost every device worthy of the use of a microprocessor. Products as disparate as toys, thermometers, and clocks could all benefit. By paying a modest fee, users could upgrade their electronic personality toys to do more interesting things. They could download the upgrade and communicate between the computer and the toy via UWB devices in each. Readings from electronic medical thermometers could automatically be entered into the electronic chart that records vital statistics of a patient being examined. Perhaps UWB technology could even get us all to work on time by continually checking our clocks against a network signal; it might also signal when a clock s battery is low. High, wide, and deep According to the FCC, ultrawideband is any signal that occupies at least 500 MHz of bandwidth in the 7.5-GHz chunk of spectrum between 3.1 GHz and 10.6 GHz. That definition also includes some rather strict limits on radiated power and power density: it s a lot less than the 3 mw allowed for a cellphone. As originally developed by several start-up companies that borrowed the technology from U.S. military research, like XtremeSpectrum Inc. (Vienna, Va.) and Discrete Time Communications (now Staccato Communications Inc., San Diego, Calif.), UWB involves transmitting low-power streams of extremely short pulses on the order of picoseconds. Since such pulses intrinsically occupy a huge amount of bandwidth, their energy is spread thinly over a large swath of the radio frequency spectrum from a few hundred megahertz to several gigahertz. These frequencies are so high that they can be transmitted directly, without first being modulated onto a carrier, as is done with conventional radio systems like AM and FM broadcasts, cellular telephony, and Wi-Fi. The program information, be it a movie, song, or text message, is impressed onto the pulse train by varying the amplitude, spacing, or duration of the individual pulses in the train. This is different from the more conventional modulation techniques used in most digital wireless systems, which typically encode information in the form of changes in the phase of the radio wave. But the concept is the same: changes in some parameter of the transmitted signal be it a pulse s position or a sinusoid s phase carry the transmission s information. The advantages of UWB are several. For one thing, it works well in crowded and noisy radio environments. Before the FCC put limits on the spectrum that a UWB signal could occupy, developers thought in terms of spectra that began somewhere in the vicinity of 100 MHz and stretched up to several gigahertz. Such a broad signal is quite resistant to interference because any interfering signal is likely to affect only a small portion of the desired signal. Also, if some frequency components of the signal have trouble penetrating the walls of a building, the theory goes, the majority will probably get through. As far as causing interference is concerned, the pulses are at such low power levels that any equipment along their path cannot hear them. In fact, their power must be less than the level permitted for the incidental electronic noise generated, for example, by appliances or the switching power supplies in computers. Not only do weak pulses prevent UWB systems from interfering with other wireless systems, they also make UWB inherently short range, a benefit when you want to operate multiple independent links within the same house. Best of all, for indoor applications, a UWB system deals well with multipath interference, which results

3 At Home, Ultrawideband Will Do It All Ultrawideband (UWB) handles anything from high-speed streams carrying real-time HDTV programs to images downloaded from a digital camera to low-speed timing signals for keeping clocks accurate. Most demanding of all is maintaining an uninterrupted high-speed link to an HDTV display from a source like a DVD player. Vast spectral resources enable a DVD player to feed separate signals to, say, an ordinary TV and an HDTV over channels in different parts of the spectrum, totally eliminating interference. Connected to a DVD player, a TV will show high-definition programs with no jerkiness or stoppages, no matter what else goes on around it. Moving large picture files wirelessly between digital cameras and computers promises to be a major application. UWB is also convenient for synchronizing a clock in a microwave oven to the right time. BRYAN CHRISTIE Will tablet PCs become more popular if they can be readily connected to the Internet over a reliable high-speed link? 25

4 SPECIAL REPORT: WIRELESS NETWORKING 26 UWB Over Cable? Given that the major role envisioned for ultrawideband (UWB) is to replace signal cables with wireless links, it may seem strange that it is also being considered as a way to increase the capacity of cable TV systems. The creator of a technology combining UWB and cable, Pulse-Link Inc. (San Diego, Calif.), is adapting UWB from free space wireless links to the contained spectrum of a cable television network. If UWB-cable works, it could cost-effectively retrofit existing cable networks for higher-capacity data services instead of requiring complete network rebuilds. Pulse-Link proposes to inject UWB signals into existing cable systems. Because such transmissions are very low amplitude, the signals would likely not interfere with (the much higher amplitude) digital or analog signals already in a cable network. The cables, and especially the amplifiers, of a cable television network are highly linear across a wide swath of spectrum, necessary to accommodate the hundreds of TV channels that consumers have come to expect. Thus, a typical 500-MHz UWB signal can easily propagate throughout a cable TV network, including the increasingly common hybrid fiber-coaxial networks. In its UWB-cable experiments, Pulse-Link has achieved speeds of 1.2 Gb/s downstream and 120 Mb/s upstream per node. It would be an ironic twist if UWB-cable lets old analog cable TV networks be inexpensively retrofitted to carry very highspeed Internet communications along with digital and high-definition TV signals this at a time when many upgraded cable television networks won t be upgraded for higher Internet speeds or digital and high-definition television for years if ever. S.S. when a signal bounces off one or more reflective objects on its way from transmitter to receiver. Such a radio signal is received as multiple echoes, which cause distortion and fading. According to Martin V. Clark, a consulting communications engineer at The MathWorks (Natick, Mass.), and Moe Z. Win, the Charles Stark Draper Assistant Professor of Aeronautics and Astronautics at the Massachusetts Institute of Technology (Cambridge), if the delay spread of the echoes is much smaller than the system pulse width, the echoes can combine destructively, which leads to multipath fading. If, on the other hand, the delay spread is comparable to or larger than the pulse width, much of the multipath energy can be captured in the receiver, yielding superior performance. For a transmitter-receiver separation of about 10 meters in an indoor environment, the delay spread is typically several nanoseconds significantly more than a typical UWB signal s pulse width. In this kind of channel, a UWB signal is thus much more resistant to multipath interference than, say, an b (Wi-Fi) signal, with its much smaller bandwidth and much larger pulse width. Interference worries Yet those very benefits were undermined when the FCC, concerned about interference, especially to Global Positioning System (GPS) navigation receivers, set the 3.1-GHz lower frequency limit on the UWB spectrum. This severely reduced the amount of spectrum available and made the system less robust. Other concerns were of possible interference with local-area networks based on IEEE Standard a, which operates in the unlicensed 5-GHz region of the spectrum. In fact, some members of the ultrawideband task group, IEEE a, proposed splitting the UWB spectrum into two parts, effectively avoiding the license-exempt 5-GHz region. But creating the desired two-part spectrum by shaping the pulses is far from trivial. So the task group considered other routes. Actually, at least one company, Mitsubishi Electric Corp. (Tokyo), did develop a means for generating a twopart spectrum while preserving the original pulse-train nature of UWB, according to Andreas Molisch, associate professor at the Institute of Communications and Radio-Frequency Engineering at Vienna University of Technology in Austria. Just about everyone else in the task group, though, favored some sort of carrier-based solution. Three companies (XtremeSpectrum, Motorola, and Partus-Cerva) preferred the direct-sequence code-division multiple access (CDMA) technology used by many cellular and personal communications systems. In fact, XtremeSpectrum has working silicon on the market today that delivers 100 Mb/s while consuming just 200 mw. But at least 20 enterprises supported a proposal by Intel and Texas Instruments that combined frequency hopping jumping around from one part of the allowed spectrum to another at a rate of about three million hops per second with OFDM. The technique uniting these two technologies is called Multi- Band OFDM. Orthogonal frequency-division multiplexing employs pretty much the same technique used in IEEE a and g. It is a carrier-based technique, but instead Comparing Wireless Technologies (Roughly) DATA RATE OUTPUT POWER RANGE FREQUENCY TECHNOLOGY (Mb/s) (mw) (meters) BAND Bluetooth GHz IrDA mw/sr Infrared Ultrawideband GHz IEEE a GHz IEEE b (Wi-Fi) GHz IEEE g GHz 1 Eye safety determines the infrared power density, which is measured in milliwatts per steradian

5 FCC (Finally) Sees Little Noise From UWB On 22 April 2002, the U.S. Federal Communications Commission (FCC) released its First Report and Order on ET Docket , titled Revision of Part 15 of the Commission s Rules Regarding Ultra-Wideband Transmission Systems. Very few of the FCC s Report and Order filings have been so eagerly anticipated, for this document was finally emerging after a number of years of struggle among competing interests. It approved UWB technology and allowed the UWB industry to be born. At least one company, Pulse-Link Inc. (San Diego, Calif.), wondering whether the FCC would ever make up its mind, changed its business plan and is applying its UWB technology to wired, instead of wireless, systems [see UWB Over Cable? opposite]. One of the questions holding up approval was whether UWB transmissions would interfere with Global Positioning System (GPS) receivers. Some manufacturers were designing GPS receivers into wireless telephones to meet the FCC s E911 requirements for the United States. Calling 911 from any wired phone connects the phone to an emergency dispatch center, with the location of that phone automatically transmitted there. The FCC has mandated that an equivalent automatic address capability be added to wireless telephony systems. The idea is for the emergency center to pinpoint anyone who calls 911 from GPS position information sent automatically from the cellphone. UWB vendors and other parties argued that fears of interference with GPS from UWB were overblown, since existing RF noise from devices such as switching power supplies in PCs and electrical appliances is higher than could be expected from UWB devices. This proved to be so. On 22 October 2002, the FCC announced the results of a study of actual measurements of noise in the GPS bands. It found that, indeed, devices such as hair dryers, electric drills, and PC power supplies emitted far more RF noise than the currently allowed transmission power levels of UWB devices. As a result of this study, the FCC may even increase the allowable transmission power levels of UWB devices. S.S. of using a single carrier, it uses multiple carriers, each of which may be controlled separately. Those that fall in noisy parts of the spectrum are modulated at low rates to make it easier to detect the modulation accurately. Those that exhibit a good signalto-noise ratio can exploit their good fortune and carry more data. Individual carriers can also be completely disabled. Between disabling some carriers and controlling the system s overall hopping sequence, adjusting the shape of the occupied spectrum to avoid that forbidden region around 5 GHz is fairly easy. Getting the details right For important aspects of UWB, such as security, automatic user recognition, authentication, and authorization, designers are paying attention to lessons learned in implementing previous generations of wireless. UWB will be able to incorporate a variety of next-generation security mechanisms developed for IEEE Developers of UWB intend to leverage the considerable body of work on Plug and Play for the Universal Serial Bus (USB) and FireWire (IEEE Standard 1394). One issue to which the IEEE a task group is specifically devoting a lot of time is authentication. Imagine two consumer devices such as a video display and a DVD player, both with UWB interfaces. How do you or they determine that it s O.K. for them to talk to each other while they are not to communicate with a similar UWB device a wall thickness away in the next apartment? This is the kind of problem addressed, for example, by Bluetooth. Bluetooth was only recently developed to do much the same short-range, wireless low-power transmission as UWB, only at much lower data rates [see Comparing Wireless Technologies (Roughly), opposite]. Now Bluetooth, with UWB nipping at its heels, could be dead, taking with it millions of dollars of investment and many R&D and standardizationbody man-years. But its authentication solutions will live on. UWB might require something like an authentication button, which the consumer would press at the same time on the two devices, as a way of introducing them to one another. Intel Corp. (Santa Clara, Calif.) is particularly interested in applying UWB to what would in effect be wireless USB connections. That interest has grown ever since company researchers realized that such systems could be built with standard CMOS processes, one of Intel s core competencies. (XtremeSpectrum s chipset includes one silicon-germanium chip.) Intel isn t the only company working on UWB chips with standard CMOS. Staccato Communications has been working on UWB since 1996 and expects to unveil its first product sometime in CMOS is the dominant semiconductor process for very good reasons size, cost, reliability, power consumption, and performance, says G. Roberto Aiello, Staccato s founder, president, and CEO. We feel that those advantages are even more applicable to UWB devices. To Probe Further For an in-depth discussion of UWB technology, see Ultrawideband Planet at For even more light on the subject, see Ultra-Wideband Wireless Systems, by G. Roberto Aiello and Gerald D. Rogerson, IEEE Microwave, June 2003, pp See organizations/pubs/magazines/mm.htm for information on this new magazine. For more about vendors of UWB equipment, check their Web sites: Pulse-Link Inc.: Staccato Communications Inc. (formerly Discrete Time Communications): Time Domain Corp.: XtremeSpectrum Inc.: 27

Reading and working through Learn Networking Basics before this document will help you with some of the concepts used in wireless networks.

Reading and working through Learn Networking Basics before this document will help you with some of the concepts used in wireless networks. Networking Learn Wireless Basics Introduction This document covers the basics of how wireless technology works, and how it is used to create networks. Wireless technology is used in many types of communication.

More information

Engr 1202 ECE. Clean Room Project

Engr 1202 ECE. Clean Room Project Engr 1202 ECE Clean Room Project Dilbert the engineer gets special recognition September 2005 2014 Version does not even have my name! AC vs. DC Circuits DC and AC devices in everyday life DC Devices

More information

Lecture 2. Mobile Evolution Introduction to Spread Spectrum Systems. COMM 907:Spread Spectrum Communications

Lecture 2. Mobile Evolution Introduction to Spread Spectrum Systems. COMM 907:Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 2 Mobile Evolution Introduction to Spread Spectrum Systems Evolution of Mobile Telecommunications Evolution of Mobile Telecommunications Evolution of Mobile

More information

UWB (WPAN) Mohammad Abualreesh.

UWB (WPAN) Mohammad Abualreesh. UWB (WPAN) Mohammad Abualreesh Mohammad.Abualreesh@hut.fi Outline UWB basics UWB for WPAN UWB basics What is UWB? UWB is a radio technology that modulates impulse based waveforms instead of continuous

More information

The Evolution of WiFi

The Evolution of WiFi The Verification Experts Air Expert Series The Evolution of WiFi By Eve Danel Senior Product Manager, WiFi Products August 2016 VeEX Inc. 2827 Lakeview Court, Fremont, CA 94538 USA Tel: +1.510.651.0500

More information

Research in Ultra Wide Band(UWB) Wireless Communications

Research in Ultra Wide Band(UWB) Wireless Communications The IEEE Wireless Communications and Networking Conference (WCNC'2003) Panel session on Ultra-wideband (UWB) Technology Ernest N. Memorial Convention Center, New Orleans, LA USA 11:05 am - 12:30 pm, Wednesday,

More information

COPYRIGHTED MATERIAL INTRODUCTION

COPYRIGHTED MATERIAL INTRODUCTION 1 INTRODUCTION In the near future, indoor communications of any digital data from high-speed signals carrying multiple HDTV programs to low-speed signals used for timing purposes will be shared over a

More information

Direct Link Communication II: Wireless Media. Current Trend

Direct Link Communication II: Wireless Media. Current Trend Direct Link Communication II: Wireless Media Current Trend WLAN explosion (also called WiFi) took most by surprise cellular telephony: 3G/4G cellular providers/telcos/data in the same mix self-organization

More information

COMM 907:Spread Spectrum Communications

COMM 907:Spread Spectrum Communications COMM 907: Spread Spectrum Communications Dr. Ahmed El-Mahdy Professor in Communications Department The German University in Cairo Text Book [1] R. Michael Buehrer, Code Division Multiple Access (CDMA),

More information

Lecture 1 - September Title 26, Ultra Wide Band Communications

Lecture 1 - September Title 26, Ultra Wide Band Communications Lecture 1 - September Title 26, 2011 Ultra Wide Band Communications Course Presentation Maria-Gabriella Di Benedetto Professor Department of Information Engineering, Electronics and Telecommunications

More information

Wireless Technology Wireless devices transmit information via Electromagnetic waves Early wireless devices Radios often called wireless in old WWII movies Broadcast TV TV remote controls Garage door openers

More information

Before the Federal Communications Commission Washington, D.C

Before the Federal Communications Commission Washington, D.C Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) Revision of Part 15 of the Commission s ) Rules Regarding Ultra-Wideband ) ET Docket No. 98-153 Transmission Systems

More information

C th NATIONAL RADIO SCIENCE CONFERENCE (NRSC 2011) April 26 28, 2011, National Telecommunication Institute, Egypt

C th NATIONAL RADIO SCIENCE CONFERENCE (NRSC 2011) April 26 28, 2011, National Telecommunication Institute, Egypt New Trends Towards Speedy IR-UWB Techniques Marwa M.El-Gamal #1, Shawki Shaaban *2, Moustafa H. Aly #3, # College of Engineering and Technology, Arab Academy for Science & Technology & Maritime Transport

More information

Wireless LAN Applications LAN Extension Cross building interconnection Nomadic access Ad hoc networks Single Cell Wireless LAN

Wireless LAN Applications LAN Extension Cross building interconnection Nomadic access Ad hoc networks Single Cell Wireless LAN Wireless LANs Mobility Flexibility Hard to wire areas Reduced cost of wireless systems Improved performance of wireless systems Wireless LAN Applications LAN Extension Cross building interconnection Nomadic

More information

CARRIER-LESS HIGH BIT RATE DATA TRANSMISSION: ULTRA WIDE BAND TECHNOLOGY

CARRIER-LESS HIGH BIT RATE DATA TRANSMISSION: ULTRA WIDE BAND TECHNOLOGY CARRIER-LESS HIGH BIT RATE DATA TRANSMISSION: ULTRA WIDE BAND TECHNOLOGY Manoj Choudhary Gaurav Sharma Samsung India Software Operations Samsung India Software Operations #67, Infantry Road, Bangalore

More information

ULTRA WIDE BANDWIDTH 2006

ULTRA WIDE BANDWIDTH 2006 ULTRA WIDE BANDWIDTH 2006 1 TOPICS FOR DISCUSSION INTRODUCTION ULTRA-WIDEBAND (UWB) DESCRIPTION AND CHARACTERISTICS UWB APPLICATIONS AND USES UWB WAVEFORMS, DEFINITION, AND EFFECTIVENESS UWB TECHNICAL

More information

Ultra Wideband Signals and Systems in Communication Engineering

Ultra Wideband Signals and Systems in Communication Engineering Ultra Wideband Signals and Systems in Communication Engineering Second Edition M. Ghavami King's College London, UK L. B. Michael Japan R. Kohno Yokohama National University, Japan BICENTENNIAL 3 I CE

More information

MODULATION AND MULTIPLE ACCESS TECHNIQUES

MODULATION AND MULTIPLE ACCESS TECHNIQUES 1 MODULATION AND MULTIPLE ACCESS TECHNIQUES Networks and Communication Department Dr. Marwah Ahmed Outlines 2 Introduction Digital Transmission Digital Modulation Digital Transmission of Analog Signal

More information

ECE 457 Communication Systems. Selin Aviyente Assistant Professor Electrical & Computer Engineering

ECE 457 Communication Systems. Selin Aviyente Assistant Professor Electrical & Computer Engineering ECE 457 Communication Systems Selin Aviyente Assistant Professor Electrical & Computer Engineering Announcements Class Web Page: http://www.egr.msu.edu/~aviyente/ece 457.htm M, W, F 10:20-11:10 a.m. Office

More information

Ammar Abu-Hudrouss Islamic University Gaza

Ammar Abu-Hudrouss Islamic University Gaza Wireless Communications n Ammar Abu-Hudrouss Islamic University Gaza ١ Course Syllabus References 1. A. Molisch,, Wiely IEEE, 2nd Edition, 2011. 2. Rappaport, p : Principles and Practice, Prentice Hall

More information

Home & Building Automation. parte 2

Home & Building Automation. parte 2 Home & Building Automation parte 2 Corso di reti per l automazione industriale Prof. Orazio Mirabella Technologies for Home automation Main distribution 230V TP (Twisted Pair) Socket Lighting Sun blinds

More information

SPREAD SPECTRUM COMMUNICATIONS. historical and technical overview. Bryan Bergeron, NUlN 27 Stearns Road, Suite 8 Brookline. Massachusetts

SPREAD SPECTRUM COMMUNICATIONS. historical and technical overview. Bryan Bergeron, NUlN 27 Stearns Road, Suite 8 Brookline. Massachusetts Bryan Bergeron, NUlN 27 Stearns Road, Suite 8 Brookline. Massachusetts 02 146 SPREAD SPECTRUM COMMUNICATIONS historical and technical overview A s we all know, the RF spectrum is a finite and exceedingly

More information

Page 1. Outline : Wireless Networks Lecture 6: Final Physical Layer. Direct Sequence Spread Spectrum (DSSS) Spread Spectrum

Page 1. Outline : Wireless Networks Lecture 6: Final Physical Layer. Direct Sequence Spread Spectrum (DSSS) Spread Spectrum Outline 18-759 : Wireless Networks Lecture 6: Final Physical Layer Peter Steenkiste Dina Papagiannaki Spring Semester 2009 http://www.cs.cmu.edu/~prs/wireless09/ Peter A. Steenkiste 1 RF introduction Modulation

More information

SIGNAL PROCESSING FOR COMMUNICATIONS

SIGNAL PROCESSING FOR COMMUNICATIONS Introduction ME SIGNAL PROCESSING FOR COMMUNICATIONS Alle-Jan van der Veen and Geert Leus Delft University of Technology Dept. EEMCS Delft, The Netherlands 1 Topics Multiple-antenna processing Radio astronomy

More information

Ultra Wideband Amplifier Functional Description and Block Diagram

Ultra Wideband Amplifier Functional Description and Block Diagram Ultra Wideband Amplifier Functional Description and Block Diagram Saif Anwar Sarah Kief Senior Project Fall 2007 November 8, 2007 Advisor: Dr. Prasad Shastry Department of Electrical & Computer Engineering

More information

Ultra Wideband (UWB): Characteristics and Applications

Ultra Wideband (UWB): Characteristics and Applications Ultra Wideband (UWB): Characteristics and Applications Vishwesh J 1, Dr. Raviraj P 2 1 Assistant Professor, Computer Science & Engineering Department, GSSS Institute of Engineering & Technology for Women,

More information

International Journal of Applied Sciences, Engineering and Management ISSN , Vol. 04, No. 06, November 2015, pp

International Journal of Applied Sciences, Engineering and Management ISSN , Vol. 04, No. 06, November 2015, pp Compact UWB Array Antenna for Wireless Personal Area Networks Dudla Sirisha 1, P. Balakrishna 2 1 M. Tech Student, Vikas Group of Institutions, Nunna, Vijayawada, A.P, India. 2 Assistnat Professor, Dept.of

More information

Digi-Wave Technology Williams Sound Digi-Wave White Paper

Digi-Wave Technology Williams Sound Digi-Wave White Paper Digi-Wave Technology Williams Sound Digi-Wave White Paper TECHNICAL DESCRIPTION Operating Frequency: The Digi-Wave System operates on the 2.4 GHz Industrial, Scientific, and Medical (ISM) Band, which is

More information

Dynamic bandwidth direct sequence - a novel cognitive solution for ultra-wideband communications

Dynamic bandwidth direct sequence - a novel cognitive solution for ultra-wideband communications University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2008 Dynamic bandwidth direct sequence - a novel cognitive solution

More information

CS 294-7: Wireless Local Area Networks. Professor Randy H. Katz CS Division University of California, Berkeley Berkeley, CA

CS 294-7: Wireless Local Area Networks. Professor Randy H. Katz CS Division University of California, Berkeley Berkeley, CA CS 294-7: Wireless Local Area Networks Professor Randy H. Katz CS Division University of California, Berkeley Berkeley, CA 94720-1776 1996 1 Desirable Features Ability to operate worldwide Minimize power

More information

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth.

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth. UNIT- 7 Radio wave propagation and propagation models EM waves below 2Mhz tend to travel as ground waves, These wave tend to follow the curvature of the earth and lose strength rapidly as they travel away

More information

Direct Link Communication II: Wireless Media. Motivation

Direct Link Communication II: Wireless Media. Motivation Direct Link Communication II: Wireless Media Motivation WLAN explosion cellular telephony: 3G/4G cellular providers/telcos in the mix self-organization by citizens for local access large-scale hot spots:

More information

Transmission Medium/ Media

Transmission Medium/ Media Transmission Medium/ Media The successful transmission of data depends principally on two factors: the quality of the signal being transmitted and the characteristics of the transmission medium Transmission

More information

PRINCIPLES OF COMMUNICATION SYSTEMS. Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum

PRINCIPLES OF COMMUNICATION SYSTEMS. Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum PRINCIPLES OF COMMUNICATION SYSTEMS Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum Topic covered Introduction to subject Elements of Communication system Modulation General

More information

Lecture 9: Spread Spectrum Modulation Techniques

Lecture 9: Spread Spectrum Modulation Techniques Lecture 9: Spread Spectrum Modulation Techniques Spread spectrum (SS) modulation techniques employ a transmission bandwidth which is several orders of magnitude greater than the minimum required bandwidth

More information

Outline / Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing. Cartoon View 1 A Wave of Energy

Outline / Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing. Cartoon View 1 A Wave of Energy Outline 18-452/18-750 Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing Peter Steenkiste Carnegie Mellon University Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17/

More information

Wireless Networking: Trends and Issues

Wireless Networking: Trends and Issues Wireless Networking: Trends and Issues Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu A talk given in CS 131: Computer Science I Class October 10, 2008 These slides

More information

ETSI Standards and the Measurement of RF Conducted Output Power of Wi-Fi ac Signals

ETSI Standards and the Measurement of RF Conducted Output Power of Wi-Fi ac Signals ETSI Standards and the Measurement of RF Conducted Output Power of Wi-Fi 802.11ac Signals Introduction The European Telecommunications Standards Institute (ETSI) have recently introduced a revised set

More information

technologies'. In this Signals travel from a few centimetres to several meters.

technologies'. In this Signals travel from a few centimetres to several meters. STUDY OF VARIOUS SHORT-RANGE WIRELESS TECHNOLOGIES Pratibha B. Raut N.B. Navale College of Engineering, Solapur, Maharashtra, India Abstract Various short range wireless technologies like Bluetooth, ultra-wideband,

More information

Innovative frequency hopping radio transmission probe provides robust and flexible inspection on large machine tools

Innovative frequency hopping radio transmission probe provides robust and flexible inspection on large machine tools White paper Innovative frequency hopping radio transmission probe provides robust and flexible inspection on large machine tools Abstract Inspection probes have become a vital contributor to manufacturing

More information

IT-24 RigExpert. 2.4 GHz ISM Band Universal Tester. User s manual

IT-24 RigExpert. 2.4 GHz ISM Band Universal Tester. User s manual IT-24 RigExpert 2.4 GHz ISM Band Universal Tester User s manual Table of contents 1. Description 2. Specifications 3. Using the tester 3.1. Before you start 3.2. Turning the tester on and off 3.3. Main

More information

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/9/2017 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue

More information

OFDMA and MIMO Notes

OFDMA and MIMO Notes OFDMA and MIMO Notes EE 442 Spring Semester Lecture 14 Orthogonal Frequency Division Multiplexing (OFDM) is a digital multi-carrier modulation technique extending the concept of single subcarrier modulation

More information

Physical Layer: Outline

Physical Layer: Outline 18-345: Introduction to Telecommunication Networks Lectures 3: Physical Layer Peter Steenkiste Spring 2015 www.cs.cmu.edu/~prs/nets-ece Physical Layer: Outline Digital networking Modulation Characterization

More information

A White Paper from Laird Technologies

A White Paper from Laird Technologies Originally Published: November 2011 Updated: October 2012 A White Paper from Laird Technologies Bluetooth and Wi-Fi transmit in different ways using differing protocols. When Wi-Fi operates in the 2.4

More information

Overview. Measurement of Ultra-Wideband Wireless Channels

Overview. Measurement of Ultra-Wideband Wireless Channels Measurement of Ultra-Wideband Wireless Channels Wasim Malik, Ben Allen, David Edwards, UK Introduction History of UWB Modern UWB Antenna Measurements Candidate UWB elements Radiation patterns Propagation

More information

Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM)

Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM) Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM) 1 4G File transfer at 10 Mbps High resolution 1024 1920 pixel hi-vision picture

More information

Analyzing Pulse Position Modulation Time Hopping UWB in IEEE UWB Channel

Analyzing Pulse Position Modulation Time Hopping UWB in IEEE UWB Channel Analyzing Pulse Position Modulation Time Hopping UWB in IEEE UWB Channel Vikas Goyal 1, B.S. Dhaliwal 2 1 Dept. of Electronics & Communication Engineering, Guru Kashi University, Talwandi Sabo, Bathinda,

More information

Difference Between. 1. Old connection is broken before a new connection is activated.

Difference Between. 1. Old connection is broken before a new connection is activated. Difference Between Hard handoff Soft handoff 1. Old connection is broken before a new connection is activated. 1. New connection is activated before the old is broken. 2. "break before make" connection

More information

Cognitive Ultra Wideband Radio

Cognitive Ultra Wideband Radio Cognitive Ultra Wideband Radio Soodeh Amiri M.S student of the communication engineering The Electrical & Computer Department of Isfahan University of Technology, IUT E-Mail : s.amiridoomari@ec.iut.ac.ir

More information

CS441 Mobile & Wireless Computing Communication Basics

CS441 Mobile & Wireless Computing Communication Basics Department of Computer Science Southern Illinois University Carbondale CS441 Mobile & Wireless Computing Communication Basics Dr. Kemal Akkaya E-mail: kemal@cs.siu.edu Kemal Akkaya Mobile & Wireless Computing

More information

Breaking Through RF Clutter

Breaking Through RF Clutter Breaking Through RF Clutter A Guide to Reliable Data Communications in Saturated 900 MHz Environments Your M2M Expert Introduction Today, there are many mission-critical applications in industries such

More information

Computer Networks Lecture -4- Transmission Media. Dr. Methaq Talib

Computer Networks Lecture -4- Transmission Media. Dr. Methaq Talib Computer Networks Lecture -4- Transmission Media Dr. Methaq Talib Transmission Media A transmission medium can be broadly defined as anything that can carry information from a source to a destination.

More information

Ultra-Wideband Tutorial

Ultra-Wideband Tutorial Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs) Title: [Ultra-Wideband Tutorial] Date Submitted: [March 11, 2002] Source: [Matt Welborn] Company [XtremeSpectrum] Address

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: [Ultra-Wideband Tutorial] Date Submitted: [March 11, 2002] Source: [Matt Welborn] Company [XtremeSpectrum] Address

More information

How Radio Works by Marshall Brain

How Radio Works by Marshall Brain How Radio Works by Marshall Brain "Radio waves" transmit music, conversations, pictures and data invisibly through the air, often over millions of miles -- it happens every day in thousands of different

More information

Overcoming Interference is Critical to Success in a Wireless IoT World

Overcoming Interference is Critical to Success in a Wireless IoT World Overcoming Interference is Critical to Success in a Wireless IoT World Ensuring reliable wireless network performance in the presence of many smart devices, and on potentially overcrowded radio bands requires

More information

Data and Computer Communications Chapter 4 Transmission Media

Data and Computer Communications Chapter 4 Transmission Media Data and Computer Communications Chapter 4 Transmission Media Ninth Edition by William Stallings Data and Computer Communications, Ninth Edition by William Stallings, (c) Pearson Education - Prentice Hall,

More information

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2)

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2) 192620010 Mobile & Wireless Networking Lecture 2: Wireless Transmission (2/2) [Schiller, Section 2.6 & 2.7] [Reader Part 1: OFDM: An architecture for the fourth generation] Geert Heijenk Outline of Lecture

More information

3C5 Telecommunications. what do radios look like? mobile phones. Linda Doyle CTVR The Telecommunications Research Centre

3C5 Telecommunications. what do radios look like? mobile phones. Linda Doyle CTVR The Telecommunications Research Centre 3C5 Telecommunications what do radios look like? Linda Doyle CTVR The Telecommunications Research Centre ledoyle@tcd.ie Oriel/Dunlop House 2009 mobile phones talk is cheap.. bluetooth 3G WLAN/802.11 GSM

More information

DESIGN AND ANALYSIS OF MULTIBAND OFDM SYSTEM OVER ULTRA WIDE BAND CHANNELS

DESIGN AND ANALYSIS OF MULTIBAND OFDM SYSTEM OVER ULTRA WIDE BAND CHANNELS DESIGN AND ANALYSIS OF MULTIBAND OFDM SYSTEM OVER ULTRA WIDE BAND CHANNELS G.Joselin Retna Kumar Research Scholar, Sathyabama University, Chennai, Tamil Nadu, India joselin_su@yahoo.com K.S.Shaji Principal,

More information

Mobile Communication Systems. Part 7- Multiplexing

Mobile Communication Systems. Part 7- Multiplexing Mobile Communication Systems Part 7- Multiplexing Professor Z Ghassemlooy Faculty of Engineering and Environment University of Northumbria U.K. http://soe.ac.uk/ocr Contents Multiple Access Multiplexing

More information

Digital Communication Systems. Asymmetric Digital Subscriber Line (ADSL) Gavin Cameron

Digital Communication Systems. Asymmetric Digital Subscriber Line (ADSL) Gavin Cameron Digital Communication Systems Asymmetric Digital Subscriber Line (ADSL) Gavin Cameron MSc/PGD Electronics and Communication Engineering May 17, 2000 TABLE OF CONTENTS TABLE OF CONTENTS..........................................................

More information

Designing Reliable Wi-Fi for HD Delivery throughout the Home

Designing Reliable Wi-Fi for HD Delivery throughout the Home WHITE PAPER Designing Reliable Wi-Fi for HD Delivery throughout the Home Significant Improvements in Wireless Performance and Reliability Gained with Combination of 4x4 MIMO, Dynamic Digital Beamforming

More information

2.4GHz & 900MHz UNLICENSED SPECTRUM COMPARISON A WHITE PAPER BY INGENU

2.4GHz & 900MHz UNLICENSED SPECTRUM COMPARISON A WHITE PAPER BY INGENU 2.4GHz & 900MHz UNLICENSED SPECTRUM COMPARISON A WHITE PAPER BY INGENU 2.4 GHZ AND 900 MHZ UNLICENSED SPECTRUM COMPARISON Wireless connectivity providers have to make many choices when designing their

More information

ULTRA WIDE BAND(UWB) Embedded Systems Programming

ULTRA WIDE BAND(UWB) Embedded Systems Programming ULTRA WIDE BAND(UWB) Embedded Systems Programming N.Rushi (200601083) Bhargav U.L.N (200601240) OUTLINE : What is UWB? Why UWB? Definition of UWB. Architecture and Spectrum Distribution. UWB vstraditional

More information

Wireless Networks. Why Wireless Networks? Wireless Local Area Network. Wireless Personal Area Network (WPAN)

Wireless Networks. Why Wireless Networks? Wireless Local Area Network. Wireless Personal Area Network (WPAN) Wireless Networks Why Wireless Networks? rate MBit/s 100.0 10.0 1.0 0.1 0.01 wired terminals WMAN WLAN CORDLESS (CT, DECT) Office Building stationary walking drive Indoor HIPERLAN UMTS CELLULAR (GSM) Outdoor

More information

Building an Efficient, Low-Cost Test System for Bluetooth Devices

Building an Efficient, Low-Cost Test System for Bluetooth Devices Application Note 190 Building an Efficient, Low-Cost Test System for Bluetooth Devices Introduction Bluetooth is a low-cost, point-to-point wireless technology intended to eliminate the many cables used

More information

Point-to-Point Communications

Point-to-Point Communications Point-to-Point Communications Key Aspects of Communication Voice Mail Tones Alphabet Signals Air Paper Media Language English/Hindi English/Hindi Outline of Point-to-Point Communication 1. Signals basic

More information

How Radio Works By Marshall Brain

How Radio Works By Marshall Brain How Radio Works By Marshall Brain Excerpted from the excellent resource http://electronics.howstuffworks.com/radio.htm Radio waves transmit music, conversations, pictures and data invisibly through the

More information

UWB Applications and Technologies

UWB Applications and Technologies UWB Applications and Technologies Presentation for PersonalTelco Project Nathaniel August VTVT (Virginia Tech VLSI for Telecommunications) Group Department of Electrical and Computer Engineering Virginia

More information

Japanese Scene & UWB in future

Japanese Scene & UWB in future Japanese Scene & UWB in future < UWB : Issues and Opportunities > Shusaku Shimada 2006/4/12 Yokogawa Corporation Page1 Japanese scene toward UWB Rule Rule Making efforts since late 2002 Government council

More information

Chapter 1 Introduction

Chapter 1 Introduction Wireless Information Transmission System Lab. Chapter 1 Introduction National Sun Yat-sen University Table of Contents Elements of a Digital Communication System Communication Channels and Their Wire-line

More information

Ultra Wide Band Communications

Ultra Wide Band Communications Lecture #1 Title October 6, 2017 Ultra Wide Band Communications Dr. Giuseppe Caso Prof. Maria-Gabriella Di Benedetto Course Presentation Giuseppe Caso Postdoctoral Fellow DIET Dept caso@diet.uniroma1.it

More information

DFS (Dynamic Frequency Selection) Introduction and Test Solution

DFS (Dynamic Frequency Selection) Introduction and Test Solution DFS (Dynamic Frequency Selection) Introduction Sept. 2015 Present by Brian Chi Brian-tn_chi@keysight.com Keysight Technologies Agenda Introduction to DFS DFS Radar Profiles Definition DFS test procedure

More information

UNIT-1. Basic signal processing operations in digital communication

UNIT-1. Basic signal processing operations in digital communication UNIT-1 Lecture-1 Basic signal processing operations in digital communication The three basic elements of every communication systems are Transmitter, Receiver and Channel. The Overall purpose of this system

More information

Wi-Fi. Wireless Fidelity. Spread Spectrum CSMA. Ad-hoc Networks. Engr. Mian Shahzad Iqbal Lecturer Department of Telecommunication Engineering

Wi-Fi. Wireless Fidelity. Spread Spectrum CSMA. Ad-hoc Networks. Engr. Mian Shahzad Iqbal Lecturer Department of Telecommunication Engineering Wi-Fi Wireless Fidelity Spread Spectrum CSMA Ad-hoc Networks Engr. Mian Shahzad Iqbal Lecturer Department of Telecommunication Engineering Outline for Today We learned how to setup a WiFi network. This

More information

Multiple Access Techniques

Multiple Access Techniques Multiple Access Techniques EE 442 Spring Semester Lecture 13 Multiple Access is the use of multiplexing techniques to provide communication service to multiple users over a single channel. It allows for

More information

EIE324 Communication & Telecommunication Lab. Date of the experiment Topics: Objectives : Introduction Equipment Operating Frequencies

EIE324 Communication & Telecommunication Lab. Date of the experiment Topics: Objectives : Introduction Equipment Operating Frequencies 1 EIE324 Communication & Telecommunication Lab. Date of the experiment Topics: WiFi survey 2/61 Chanin wongngamkam Objectives : To study the methods of wireless services measurement To establish the guidelines

More information

Required Background (You must satisfy All of the following requirements ) BSEE GPA>3 for technical Courses

Required Background (You must satisfy All of the following requirements ) BSEE GPA>3 for technical Courses Syllabus of EL6033 Grading Policy Midterm Exam: 35% Final Exam: 35% Homework and Class Participation (email discussions): 30% Required Background (You must satisfy All of the following requirements ) BSEE

More information

Impact of UWB interference on IEEE a WLAN System

Impact of UWB interference on IEEE a WLAN System Impact of UWB interference on IEEE 802.11a WLAN System Santosh Reddy Mallipeddy and Rakhesh Singh Kshetrimayum Dept. of Electronics and Communication Engineering, Indian Institute of Technology, Guwahati,

More information

Transmitting Multiple HD Video Streams over UWB Links

Transmitting Multiple HD Video Streams over UWB Links MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Transmitting Multiple HD Video Streams over UWB Links C. Duan, G. Pekhteryev, J. Fang, Y-P Nakache, J. Zhang, K. Tajima, Y. Nishioka, H. Hirai

More information

Making Connections Efficient: Multiplexing and Compression

Making Connections Efficient: Multiplexing and Compression Fundamentals of Networking and Data Communications, Sixth Edition 5-1 Making Connections Efficient: Multiplexing and Compression Chapter 5 Learning Objectives After reading this chapter, students should

More information

Announcements : Wireless Networks Lecture 3: Physical Layer. Bird s Eye View. Outline. Page 1

Announcements : Wireless Networks Lecture 3: Physical Layer. Bird s Eye View. Outline. Page 1 Announcements 18-759: Wireless Networks Lecture 3: Physical Layer Please start to form project teams» Updated project handout is available on the web site Also start to form teams for surveys» Send mail

More information

SEN366 (SEN374) (Introduction to) Computer Networks

SEN366 (SEN374) (Introduction to) Computer Networks SEN366 (SEN374) (Introduction to) Computer Networks Prof. Dr. Hasan Hüseyin BALIK (8 th Week) Cellular Wireless Network 8.Outline Principles of Cellular Networks Cellular Network Generations LTE-Advanced

More information

EITF25 Internet Techniques and Applications L2: Physical layer. Stefan Höst

EITF25 Internet Techniques and Applications L2: Physical layer. Stefan Höst EITF25 Internet Techniques and Applications L2: Physical layer Stefan Höst Data vs signal Data: Static representation of information For storage Signal: Dynamic representation of information For transmission

More information

Bluetooth BlueTooth - Allows users to make wireless connections between various communication devices such as mobile phones, desktop and notebook comp

Bluetooth BlueTooth - Allows users to make wireless connections between various communication devices such as mobile phones, desktop and notebook comp ECE 271 Week 8 Bluetooth BlueTooth - Allows users to make wireless connections between various communication devices such as mobile phones, desktop and notebook computers - Uses radio transmission - Point-to-multipoint

More information

Data and Computer Communications. Tenth Edition by William Stallings

Data and Computer Communications. Tenth Edition by William Stallings Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education - 2013 CHAPTER 10 Cellular Wireless Network

More information

Nanoelectronics for Communication - A wider perspective -Use of Impulse based systems. Based on input from Lars Ohlsson och Mats Ärlelid

Nanoelectronics for Communication - A wider perspective -Use of Impulse based systems. Based on input from Lars Ohlsson och Mats Ärlelid Nanoelectronics for Communication - A wider perspective -Use of Impulse based systems Based on input from Lars Ohlsson och Mats Ärlelid Motivation HDMI Up to 10.2 Gbps Wifi 802.11n Up to 600 Mbps USB 3.0

More information

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 10 - LTE (4G) -Technologies used in 4G and 5G The Need for LTE Long Term Evolution (LTE) With the growth of mobile data and mobile users, it becomes essential

More information

print close Related Low-Cost UWB Source Low-Cost Mixers Build On LTCC Reliability LTCC Launches Miniature, Wideband, Low-Cost Mixers

print close Related Low-Cost UWB Source Low-Cost Mixers Build On LTCC Reliability LTCC Launches Miniature, Wideband, Low-Cost Mixers print close Design A Simple, Low-Cost UWB Source Microwaves and RF Yeap Yean Wei Fri, 2006-12-15 (All day) Using an inexpensive commercial step recovery diode (SRD) and a handful of passive circuit elements,

More information

Short-Range Ultra- Wideband Systems

Short-Range Ultra- Wideband Systems Short-Range Ultra- Wideband Systems R. A. Scholtz Principal Investigator A MURI Team Effort between University of Southern California University of California, Berkeley University of Massachusetts, Amherst

More information

MARCH/APRIL /09/$ IEEE

MARCH/APRIL /09/$ IEEE An introduction to UWB communication systems RAKHESH SINGH KSHETRIMAYUM PHOTODISC Ultra-wideband (UWB) wireless communication is a revolutionary technology for transmitting large amounts of digital data

More information

The LoRa Protocol. Overview. Interference Immunity. Technical Brief AN205 Rev A0

The LoRa Protocol. Overview. Interference Immunity. Technical Brief AN205 Rev A0 Technical Brief AN205 Rev A0 The LoRa Protocol By John Sonnenberg Raveon Technologies Corp Overview The LoRa (short for Long Range) modulation scheme is a modulation technique combined with a data encoding

More information

Boosting Microwave Capacity Using Line-of-Sight MIMO

Boosting Microwave Capacity Using Line-of-Sight MIMO Boosting Microwave Capacity Using Line-of-Sight MIMO Introduction Demand for network capacity continues to escalate as mobile subscribers get accustomed to using more data-rich and video-oriented services

More information

Lecture Fundamentals of Data and signals

Lecture Fundamentals of Data and signals IT-5301-3 Data Communications and Computer Networks Lecture 05-07 Fundamentals of Data and signals Lecture 05 - Roadmap Analog and Digital Data Analog Signals, Digital Signals Periodic and Aperiodic Signals

More information

APECE-302: Radio & Television Engineering

APECE-302: Radio & Television Engineering APECE-302: Radio & Television Engineering Applied Physics, Electronics & Communication Engineering LEC PPT # 01 University of Dhaka APECE DU Course Teacher: S.M. Riazul Islam, PhD Date: 2013 Year, 04 Month,

More information

Urban WiMAX response to Ofcom s Spectrum Commons Classes for licence exemption consultation

Urban WiMAX response to Ofcom s Spectrum Commons Classes for licence exemption consultation Urban WiMAX response to Ofcom s Spectrum Commons Classes for licence exemption consultation July 2008 Urban WiMAX welcomes the opportunity to respond to this consultation on Spectrum Commons Classes for

More information

Chapter-1: Introduction

Chapter-1: Introduction Chapter-1: Introduction The purpose of a Communication System is to transport an information bearing signal from a source to a user destination via a communication channel. MODEL OF A COMMUNICATION SYSTEM

More information

WiFi ranging and real time location Room IE504 in building I

WiFi ranging and real time location Room IE504 in building I WiFi ranging and real time location Room IE504 in building I Basic principles of Wireless LANs Nonstop Internet connectivity has become a substantial need nowadays. Most of the users prefer wireless connectivity

More information