TB3121. Conducted and Radiated Emissions on 8-Bit Mid-Range Microcontrollers INTRODUCTION ELECTROMAGNETIC COMPATIBILITY CONDUCTED EMISSIONS

Size: px
Start display at page:

Download "TB3121. Conducted and Radiated Emissions on 8-Bit Mid-Range Microcontrollers INTRODUCTION ELECTROMAGNETIC COMPATIBILITY CONDUCTED EMISSIONS"

Transcription

1 Conducted and Radiated Emissions on 8-Bit Mid-Range Microcontrollers TB3121 Author: Enrique Aleman Microchip Technology Inc. INTRODUCTION This technical brief is intended to describe the emissions testing and performance of Microchip s 8-bit PIC microcontroller products. It describes the methods used for both radiated and conducted emissions and the standards referenced for such testing, followed by an overview of PIC mid-range microcontroller performance and behavior. The series of mid-range PIC microcontrollers has integrated a set of features designed for conducted and radiated emissions compliance. These microcontrollers have been developed as true mixedsignal process with emissions robustness enhancement incorporated as part of the design. FIGURE 1: IC RADIATED vs. CONDUCTED EMISSIONS ELECTROMAGNETIC COMPATIBILITY Electromagnetic compatibility (EMC) is the capability of an electronic system to function with other electronic systems and not produce or be affected by interference. That is, a compatible device must not cause electromagnetic interference (EMI) to other systems and is not susceptible to emissions from other systems or from its own. EMI is the conducted or radiated electrical noise generated by a particular system. Knowing that all electronics generate an electromagnetic field (EMF), the ability of these products to minimize their own EMI becomes all that more important. EMI can damage an embedded application with results ranging from simple nuisances in a product s operation to failures causing a cease in product functionality. Embedded system designers understand the importance of selecting devices that will perform and will not cause interference to other components in their designs. As system frequencies and the need for lower supply voltages increase and silicon geometries decrease, the end application becomes more and more vulnerable to the negative effects of EMI. These electrical influences can be generated by either radiated or conductive EMI sources (see Figure 1 and Figure 2). Radiated sources within the microcontroller core include the oscillator, voltage regulator, power lines, PWM modules and other modules within the microcontroller. Conductive EMI primarily shows itself as electrical noise on the power supply lines of an application and can be caused by induced voltage spikes from other devices within a system. FIGURE 2: EMI PATHS 2014 Microchip Technology Inc. DS A-page 1

2 EMISSIONS TESTING Radiated Emissions Microchip s PIC microcontrollers are tested for radiated emissions in accordance to the specifications of the IEC and SAE J1752/3 standards (measurement of radiated emissions from ICs TEM cell method 150 khz to 1 GHz). Radiated noise measurements are performed with the device running code in a loop. Typically, the device is programmed to increment a PORT output in a 100 µs loop. All other pins are configured as output driven low. PIC microcontrollers are tested for radiated emissions in two axes, with the device under test (DUT) mounted on an EMC test board installed in a port cut in the top of the TEM cell (see Figure 3 and Figure 4). FIGURE 3: TRANSVERSAL ELECTROMAGNETIC (TEM) CELL SETUP FIGURE 4: TYPICAL RADIATED EMISSIONS TEST BOARD DS A-page Microchip Technology Inc.

3 TYPICAL RADIATED EMISSION RESULTS Measurements were taken using a spectrum analyzer and an RF TEM cell to detect noise that could potentially be injected into the surrounding electrical system from the PIC microcontroller. With a 5V power supply and 16 MHz internal oscillator, the PIC microcontroller does not generate any noise greater than the noise floor throughout the frequency sweep (see Figure 5 and Figure 6). FIGURE 5: TYPICAL RADIATED NOISE EMISSIONS: X-AXIS PIC16F1503 INTRC, 16 MHz FIGURE 6: TYPICAL RADIATED NOISE EMISSIONS: Y-AXIS PIC16F1503 INTRC, 16 MHz 2014 Microchip Technology Inc. DS A-page 3

4 Conducted Emissions Microchip s PIC microcontrollers are tested for conducted emissions in accordance to the specifications of the IEC (conducted emissions 1Ω/150Ω direct coupling). Conducted noise measurements are performed with the device running code in a loop. Typically, the device is programmed to increment a PORT output in a 100 µs loop. All other pins are configured as output driven low (see Figure 7). Each microcontroller pin is then measured for conducted emissions (see Figure 8). The device is mounted on an IC EMC test board. FIGURE 7: TYPICAL TEST CIRCUIT VDD IC 120 6,8 nf (1) to spectrum analyzer 49 C1 1 VSS Signal pin 51 to spectrum analyzer Note 1: Capacitor value may vary according to maximum capacitive load specified for the pin. FIGURE 8: TYPICAL CONDUCTED EMISSION RESULTS (VDD PIN) PIC16F1503 INTRC, 16 MHz DS A-page Microchip Technology Inc.

5 TESTED PRODUCTS A majority of 8-bit mid-range microcontroller products have been tested in accordance to radiated and conducted emissions standards. All of these products are currently available with the latest EMC silicon methodologies. For the latest list of products please go to Note: The conductive/radiated noise data shown is a typical representation of 8-bit Flash mid-range PIC microcontrollers. Please note that this data will vary based upon process technology, product architecture, packaging and other factors. Contact your local Microchip representative for specific Microchip product data. REFERENCES AND RESOURCES IEC , Integrated Circuits Measurement of Electromagnetic Emissions, 150 khz to 1 GHz, Part 2: Measurement of radiated emissions TEM Cell and Wideband TEM cell method, International Electrotechnical Commission, Geneva, Switzerland 3. IEC , Integrated Circuits Measurement of Electromagnetic Emissions, 150 khz to 1 GHz, Part 4: Measurement of conducted emissions 1 /150 Direct Coupling Method, International Electrotechnical Commission, Geneva, Switzerland Ultimately, prevention of EMI/EMC within a particular application remains the responsibility of the embedded designer. This begins with the implementation of good board design practices including proper PCB layout and grounding, limiting trace lengths, placement of electrical components, as well as selection of the most EMI-resilient silicon products Microchip Technology Inc. DS A-page 5

6 Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification contained in their particular Microchip Data Sheet. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. Microchip is willing to work with the customer who is concerned about the integrity of their code. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as unbreakable. Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS == Trademarks The Microchip name and logo, the Microchip logo, dspic, FlashFlex, flexpwr, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC 32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. The Embedded Control Solutions Company and mtouch are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, BodyCom, chipkit, chipkit logo, CodeGuard, dspicdem, dspicdem.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. 2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. ISBN: Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company s quality system processes and procedures are for its PIC MCUs and dspic DSCs, KEELOQ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. DS A-page Microchip Technology Inc.

7 Worldwide Sales and Service AMERICAS Corporate Office 2355 West Chandler Blvd. Chandler, AZ Tel: Fax: Technical Support: support Web Address: Atlanta Duluth, GA Tel: Fax: Austin, TX Tel: Boston Westborough, MA Tel: Fax: Chicago Itasca, IL Tel: Fax: Cleveland Independence, OH Tel: Fax: Dallas Addison, TX Tel: Fax: Detroit Novi, MI Tel: Houston, TX Tel: Indianapolis Noblesville, IN Tel: Fax: Los Angeles Mission Viejo, CA Tel: Fax: New York, NY Tel: San Jose, CA Tel: Canada - Toronto Tel: Fax: ASIA/PACIFIC Asia Pacific Office Suites , 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: Fax: Australia - Sydney Tel: Fax: China - Beijing Tel: Fax: China - Chengdu Tel: Fax: China - Chongqing Tel: Fax: China - Hangzhou Tel: Fax: China - Hong Kong SAR Tel: Fax: China - Nanjing Tel: Fax: China - Qingdao Tel: Fax: China - Shanghai Tel: Fax: China - Shenyang Tel: Fax: China - Shenzhen Tel: Fax: China - Wuhan Tel: Fax: China - Xian Tel: Fax: China - Xiamen Tel: Fax: China - Zhuhai Tel: Fax: ASIA/PACIFIC India - Bangalore Tel: Fax: India - New Delhi Tel: Fax: India - Pune Tel: Japan - Osaka Tel: Fax: Japan - Tokyo Tel: Fax: Korea - Daegu Tel: Fax: Korea - Seoul Tel: Fax: or Malaysia - Kuala Lumpur Tel: Fax: Malaysia - Penang Tel: Fax: Philippines - Manila Tel: Fax: Singapore Tel: Fax: Taiwan - Hsin Chu Tel: Fax: Taiwan - Kaohsiung Tel: Taiwan - Taipei Tel: Fax: Thailand - Bangkok Tel: Fax: EUROPE Austria - Wels Tel: Fax: Denmark - Copenhagen Tel: Fax: France - Paris Tel: Fax: Germany - Dusseldorf Tel: Germany - Munich Tel: Fax: Germany - Pforzheim Tel: Italy - Milan Tel: Fax: Italy - Venice Tel: Netherlands - Drunen Tel: Fax: Poland - Warsaw Tel: Spain - Madrid Tel: Fax: Sweden - Stockholm Tel: UK - Wokingham Tel: Fax: /25/ Microchip Technology Inc. DS A-page 7

2, 5 and 8-Channel Proximity/Touch Controller Product Brief

2, 5 and 8-Channel Proximity/Touch Controller Product Brief MTCH0/0/0, and -Channel Proximity/Touch Controller Product Brief The Microchip mtouch MTCH0/0/0 Proximity/Touch Controller with simple digital output provides an easy way to add proximity and/or touch

More information

Programmable Gain Amplifier (PGA)

Programmable Gain Amplifier (PGA) Programmable Gain Amplifier (PGA) HIGHLIGHTS This section of the manual contains the following major topics: 1.0 Introduction... 2 2.0 Control Registers... 3 3.0 Module Application... 6 4.0 Register Maps...

More information

MTCH112. Dual Channel Proximity Touch Controller Product Brief FEATURES PACKAGE TYPE SOIC, DFN GENERAL DESCRIPTION 8-PIN SOIC, DFN DIAGRAM FOR MTCH112

MTCH112. Dual Channel Proximity Touch Controller Product Brief FEATURES PACKAGE TYPE SOIC, DFN GENERAL DESCRIPTION 8-PIN SOIC, DFN DIAGRAM FOR MTCH112 Dual Channel Proximity Touch Controller Product Brief FEATURES Capacitative Proximity Detection System: - High Signal to Noise Ratio (SNR) - Adjustable sensitivity - Noise Rejection Filters - Scanning

More information

TC1121. Obsolete Device. 100mA Charge Pump Voltage Converter with Shutdown. Features: Package Type. Applications: General Description:

TC1121. Obsolete Device. 100mA Charge Pump Voltage Converter with Shutdown. Features: Package Type. Applications: General Description: Obsolete Device TC111 100mA Charge Pump Voltage Converter with Shutdown Features: Optional High-Frequency Operation Allows Use of Small Capacitors Low Operating Current (FC = Open): - 50 A High Output

More information

DN2470. N-Channel, Depletion-Mode, Vertical DMOS FET. Features. Description. Applications

DN2470. N-Channel, Depletion-Mode, Vertical DMOS FET. Features. Description. Applications N-Channel, Depletion-Mode, Vertical DMOS FET Features High-input impedance Low-input capacitance Fast switching speeds Low on-resistance Free from secondary breakdown Low input and output leakage Applications

More information

AN1476. Combining the CLC and NCO to Implement a High Resolution PWM BACKGROUND INTRODUCTION EQUATION 2: EQUATION 1: EQUATION 3:

AN1476. Combining the CLC and NCO to Implement a High Resolution PWM BACKGROUND INTRODUCTION EQUATION 2: EQUATION 1: EQUATION 3: Combining the CLC and NCO to Implement a High Resolution PWM Author: INTRODUCTION Cobus Van Eeden Microchip Technology Inc. Although many applications can function with PWM resolutions of less than 8 bits,

More information

AN1739. Improving Battery Run Time with Microchip s 4 µa Quiescent Current MCP16251/2 Boost Regulator PRIMARY BATTERY CONSIDERATIONS INTRODUCTION

AN1739. Improving Battery Run Time with Microchip s 4 µa Quiescent Current MCP16251/2 Boost Regulator PRIMARY BATTERY CONSIDERATIONS INTRODUCTION Improving Battery Run Time with Microchip s 4 µa Quiescent Current MCP16251/2 Boost Regulator Author: Mihai Tanase - Microchip Technology Inc.; Craig Huddleston - Energizer Holding Inc. INTRODUCTION The

More information

PIC24FJ128GC010 FAMILY

PIC24FJ128GC010 FAMILY PIC24FJ128GC010 Family Silicon Errata and Data Sheet Clarification The PIC24FJ128GC010 family devices that you have received conform functionally to the current Device Data Sheet (DS30009312C), except

More information

MTCH810. Haptics Controller Product Brief. Description: Features: Pin Description: Package Type: DESCRIPTION MTCH810

MTCH810. Haptics Controller Product Brief. Description: Features: Pin Description: Package Type: DESCRIPTION MTCH810 Haptics Controller Product Brief MTCH810 Description: The MTCH810 provides an easy way to add Haptic feedback to any button/slide capacitive touch interface. The device integrates a single-channel Haptic

More information

HV825. High-Voltage EL Lamp Driver IC. General Description. Features. Applications. Typical Application Circuit

HV825. High-Voltage EL Lamp Driver IC. General Description. Features. Applications. Typical Application Circuit High-Voltage EL Lamp Driver IC HV825 Features Processed with HVCMOS Technology 1.0 to 1.6V Operating Supply Voltage DC to AC Conversion Output Load of Typically up to 6.0 nf Adjustable Output Lamp Frequency

More information

DN2450. N-Channel, Depletion-Mode, Vertical DMOS FET. Features. Description. Applications

DN2450. N-Channel, Depletion-Mode, Vertical DMOS FET. Features. Description. Applications N-Channel, Depletion-Mode, Vertical DMOS FET Features High-input impedance Low-input capacitance Fast switching speeds Low on-resistance Free from secondary breakdown Low input and output leakages Applications

More information

TB3126. PIC16(L)F183XX Data Signal Modulator (DSM) Technical Brief INTRODUCTION

TB3126. PIC16(L)F183XX Data Signal Modulator (DSM) Technical Brief INTRODUCTION PIC16(L)F183XX Data Signal Modulator (DSM) Technical Brief Author: INTRODUCTION Christopher Best Microchip Technology Inc. The Data Signal Modulator (DSM) is a peripheral which allows the user to mix a

More information

TABLE 1: REGISTERS ASSOCIATED WITH SLOPE COMPENSATOR MODULE

TABLE 1: REGISTERS ASSOCIATED WITH SLOPE COMPENSATOR MODULE Slope Compensator on PIC Microcontrollers Author: INTRODUCTION Namrata Dalvi Microchip Technology Inc. This technical brief describes the internal Slope Compensator peripheral of the PIC microcontroller.

More information

High-Precision 16-Bit PWM Technical Brief MODE<1:0> PWM Control Unit. Offset Control OFM<1:0> E R U/D PWMxTMR. PHx_match. Comparator.

High-Precision 16-Bit PWM Technical Brief MODE<1:0> PWM Control Unit. Offset Control OFM<1:0> E R U/D PWMxTMR. PHx_match. Comparator. High-Precision 16-Bit PWM Technical Brief Author: INTRODUCTION Willem J. Smit Microchip Technology Inc. The high-precision 16-bit PWM available in various PIC16 devices such as the PIC16F157X product family,

More information

MIC5528. High Performance 500 ma LDO in Thin and Extra Thin DFN Packages. General Description. Features. Applications.

MIC5528. High Performance 500 ma LDO in Thin and Extra Thin DFN Packages. General Description. Features. Applications. High Performance 500 ma LDO in Thin and Extra Thin DFN Packages Features General Description Applications Package Types Typical Application Circuit Functional Block Diagram 1.0 ELECTRICAL CHARACTERISTICS

More information

PIC16(L)F1526/1527 Family Silicon Errata and Data Sheet Clarification DEV<8:0>

PIC16(L)F1526/1527 Family Silicon Errata and Data Sheet Clarification DEV<8:0> Family Silicon Errata and Data Sheet Clarification The family devices that you have received conform functionally to the current Device Data Sheet (DS41458C), except for the anomalies described in this

More information

ISOLATOR UNIT SPECIFICATION Isolator Unit DANGER INTRODUCTION DEVICE SUPPORT HARDWARE SETUP

ISOLATOR UNIT SPECIFICATION Isolator Unit DANGER INTRODUCTION DEVICE SUPPORT HARDWARE SETUP ISOLATOR UNIT SPECIFICATION Isolator Unit INTRODUCTION The Isolator Unit (AC00) for MPLAB REAL ICE In-Circuit Emulator, also known as an opto-isolator, is a useful accessory to the MPLAB REAL ICE in-circuit

More information

AN2092. Using the Temperature Indicator Module INTRODUCTION. Constants. Application Limits. Equations. Variables. Microchip Technology Inc.

AN2092. Using the Temperature Indicator Module INTRODUCTION. Constants. Application Limits. Equations. Variables. Microchip Technology Inc. Using the Temperature Indicator Module AN292 Author: INTRODUCTION Monte Denton Microchip Technology Inc. The Internal Temperature Indicator is a temperature sensing module that is built into most PIC16(L)F1XXX

More information

TC53. Voltage Detector. Not recommended for new designs Please use MCP111/2 TC53. General Description: Features: Typical Applications:

TC53. Voltage Detector. Not recommended for new designs Please use MCP111/2 TC53. General Description: Features: Typical Applications: Not recommended for new designs Please use MCP111/2 Voltage Detector TC53 Features: Highly Accurate: ±2% Low-Power Consumption: 1.0 A, Typ. Detect Voltage Range: 1.6V to 6.0V and 7.7V Operating Voltage:

More information

PIC12(L)F1571/2 Family Silicon Errata and Data Sheet Clarification

PIC12(L)F1571/2 Family Silicon Errata and Data Sheet Clarification PIC12(L)F1571/2 Family Silicon Errata and Data Sheet Clarification The PIC12(L)F1571/2 family devices that you have received conform functionally to the current Device Data Sheet (DS40001723D), except

More information

ATA6570. ATA6570 Silicon Errata and Data Sheet Clarification. 2. Module: CAN Bus Wake-Up Detection System Reinitialization

ATA6570. ATA6570 Silicon Errata and Data Sheet Clarification. 2. Module: CAN Bus Wake-Up Detection System Reinitialization ATA6570 Silicon Errata and Data Sheet Clarification The functionality of the ATA6570 device that you have received (Revision A1) is described in the current Device Data Sheet, except for the anomalies

More information

Low Cost Single Trip Point Temperature Sensor. Part Number Voltage Operation Package Ambient Temperature

Low Cost Single Trip Point Temperature Sensor. Part Number Voltage Operation Package Ambient Temperature Low Cost Single Trip Point Temperature Sensor Features: Temperature Set Point Easily Programs with a Single External Resistor Operates with 2.7V Power Supply (TC624) TO-220 Package for Direct Mounting

More information

Auto-Calibration of Internal Oscillator Using Signal Measurement Timer (SMT)

Auto-Calibration of Internal Oscillator Using Signal Measurement Timer (SMT) Author: INTRODUCTION This application note describes a technique used to auto-calibrate, within ±1%, the internal oscillator of 8-bit PIC microcontrollers using the Signal Measurement Timer (SMT) peripheral.

More information

PIC18F2410/2510/4410/4510

PIC18F2410/2510/4410/4510 PIC18F2410/2510/4410/4510 Rev. B2 Silicon Errata The PIC18F2410/2510/4410/4510 Rev. B2 parts you have received conform functionally to the Device Data Sheet (DS39636D), except for the anomalies described

More information

TC620/TC621. 5V, Dual Trip Point Temperature Sensors. Features: Package Type. Applications: Device Selection Table. General Description:

TC620/TC621. 5V, Dual Trip Point Temperature Sensors. Features: Package Type. Applications: Device Selection Table. General Description: V, Dual Trip Point Temperature Sensors Features: User Programmable Hysteresis and Temperature Set Point Easily Programs with External Resistors Wide Temperature Detection Range: -0 C to 0 C: (CCX) -0 C

More information

Current Bias Generator (CBG)

Current Bias Generator (CBG) Current Bias Generator (CBG) HIGHLIGHTS This section of the manual contains the following major topics: 1.0 Introduction... 2 2.0 CBG Control Registers... 3 3.0 Module Application... 8 4.0 Related Application

More information

PIC16(L)F1768/1769 Family Silicon Errata and Data Sheet Clarification. (1) Revision ID for Silicon Revision (2)

PIC16(L)F1768/1769 Family Silicon Errata and Data Sheet Clarification. (1) Revision ID for Silicon Revision (2) PIC16(L)F1768/1769 Family Silicon Errata and Data Sheet Clarification The PIC16(L)F1768/1769 family devices that you have received conform functionally to the current Device Data Sheet (DS40001775C), except

More information

HV5308 / HV Channel, Serial-to-Parallel Converter with High-Voltage Push-Pull Outputs. Features. Description

HV5308 / HV Channel, Serial-to-Parallel Converter with High-Voltage Push-Pull Outputs. Features. Description 32-Channel, Serial-to-Parallel Converter with High-Voltage Push-Pull Outputs Features Processed with High-Voltage CMOS technology Low power-level shifting Source/sink current minimum 20mA Shift register

More information

AN1312. Deviations Sorting Algorithm for CSM Applications INTRODUCTION DESCRIPTION. The Second Concept Most Pressed Button

AN1312. Deviations Sorting Algorithm for CSM Applications INTRODUCTION DESCRIPTION. The Second Concept Most Pressed Button Deviations Sorting Algorithm for CSM Applications Author: INTRODUCTION The purpose of this algorithm is to create the means of developing capacitive sensing applications in systems affected by conducted

More information

MCP795WXX Family Silicon Errata

MCP795WXX Family Silicon Errata Family Silicon Errata The family devices that you have received conform functionally to the current Device Data Sheet (DS20002280D), except for the anomalies described in this document. The silicon issues

More information

AN1085. Using the Mindi Power Management Simulator Tool INTRODUCTION ACCESSING MINDI ON MICROCHIP S WEB SITE

AN1085. Using the Mindi Power Management Simulator Tool INTRODUCTION ACCESSING MINDI ON MICROCHIP S WEB SITE Using the Mindi Power Management Simulator Tool Author: INTRODUCTION Paul Barna Microchip Technology Inc. Microchip s Mindi Simulator Tool aids in the design and analysis of various analog circuits used

More information

MCUs with High-Precision 16-Bit PWMs Product Brief

MCUs with High-Precision 16-Bit PWMs Product Brief Description PIC12/16(L)F157X MCUs with High-Precision 16-Bit PWMs Product Brief PIC12(L)F1571/2 and PIC16(L)F1574/5/8/9 microcontrollers combine the capabilities of 16-bit PWMs with Analog to suit a variety

More information

PIC18F2525/2620/4525/4620

PIC18F2525/2620/4525/4620 PIC18F2525/2620/4525/4620 Rev. B5 Silicon Errata The PIC18F2525/2620/4525/4620 Rev. B5 parts you have received conform functionally to the Device Data Sheet (DS39626E), except for the anomalies described

More information

dspic33ck256mp508 Motor Control Plug-In Module (PIM) Information Sheet for External Op Amp Configuration

dspic33ck256mp508 Motor Control Plug-In Module (PIM) Information Sheet for External Op Amp Configuration dspic33ck256mp508 Motor Control Plug-In Module (PIM) Information Sheet for External Op Amp Configuration The dspic33ck256mp508 External Op Amp Motor Control PIM (P/N: MA330041-1) is designed to demonstrate

More information

TC1413/TC1413N. 3A High-Speed MOSFET Drivers. General Description. Features. Package Type. Applications. 8-Pin MSOP/PDIP/SOIC

TC1413/TC1413N. 3A High-Speed MOSFET Drivers. General Description. Features. Package Type. Applications. 8-Pin MSOP/PDIP/SOIC 3A High-Speed MOSFET Drivers Features Latch-Up Protected: Withstands 500 ma Reverse Current Input Withstands Negative Inputs Up to 5V Electrostatic Discharge (ESD) Protected: 2.0 kv (HBM) and 400V (MM)

More information

TC mA CMOS LDO TC1108. General Description. Features. Applications. Typical Application. Device Selection Table. Package Type SOT-223

TC mA CMOS LDO TC1108. General Description. Features. Applications. Typical Application. Device Selection Table. Package Type SOT-223 300mA CMOS LDO TC1108 Features Extremely Low Supply Current (50 A, Typ.) Very Low Dropout Voltage 300mA Output Current High Output Voltage Accuracy Standard or Custom Output Voltages Over Current and Over

More information

PIC16(L)F72X Family Silicon Errata and Data Sheet Clarification

PIC16(L)F72X Family Silicon Errata and Data Sheet Clarification PIC1(L)F72X Family Silicon Errata and Data Sheet Clarification The PIC1(L)F72X family devices that you have received conform functionally to the current Device Data Sheet (DS41341E), except for the anomalies

More information

AN763. Latch-Up Protection For MOSFET Drivers INTRODUCTION. CONSTRUCTION OF CMOS ICs PREVENTING SCR TRIGGERING. Grounds. Equivalent SCR Circuit.

AN763. Latch-Up Protection For MOSFET Drivers INTRODUCTION. CONSTRUCTION OF CMOS ICs PREVENTING SCR TRIGGERING. Grounds. Equivalent SCR Circuit. Latch-Up Protection For MOSFET Drivers AN763 Author: Cliff Ellison Microchip Technology Inc. Source P+ INTRODUCTION Most CMOS ICs, given proper conditions, can latch (like an SCR), creating a short circuit

More information

TC4426AM/TC4427AM/TC4428AM

TC4426AM/TC4427AM/TC4428AM 1.5A Dual High-Speed Power MOSFET Drivers Features High Peak Output Current: 1.5A Wide Input Supply Voltage Operating Range: - 4.5V to 18V High Capacitive Load Drive Capability: - 1 pf in 25 ns (typ.)

More information

TC4426A/TC4427A/TC4428A

TC4426A/TC4427A/TC4428A 1.5A Dual High-Speed Power MOSFET Drivers Features: High Peak Output Current: 1.5A Wide Input Supply Voltage Operating Range: - 4.5V to 18V High Capacitive Load Drive Capability: 1000 pf in 25 ns (typical)

More information

TC1272A. 3-Pin Reset Monitor. General Description. Features. Applications. Package Type. Typical Application Circuit TC1272A TC1272A.

TC1272A. 3-Pin Reset Monitor. General Description. Features. Applications. Package Type. Typical Application Circuit TC1272A TC1272A. 3-Pin Reset Monitor Features Precision Monitor 14 msec Minimum RESET, Output Duration Output Valid to = 1.2V Transient Immunity Small 3-Pin SOT-23B Package No External Components Applications Computers

More information

New Peripherals Tips n Tricks

New Peripherals Tips n Tricks The Complementary Waveform Generator (CWG), Configurable Logic Cell (CLC), and the Numerically Controlled Oscillator (NCO) Peripherals TIPS N TRICKS INTRODUCTION Microchip continues to provide innovative

More information

TC59. Low Dropout, Negative Output Voltage Regulator TC59. Features. General Description. Applications. Functional Block Diagram

TC59. Low Dropout, Negative Output Voltage Regulator TC59. Features. General Description. Applications. Functional Block Diagram Low Dropout, Negative Regulator Features Low Dropout Voltage - Typically 12mV @ 5mA; 38mV @ 1mA for -5.V Output Part Tight Tolerance: ±2% Max Low Supply Current: 3.5 A, Typ Small Package: 3-Pin SOT3A Applications

More information

PIC18(L)F25/45K22 Rev. A2/A3/A4/A5 Silicon Errata and Data Sheet Clarification. (1) Revision ID for Silicon Revision (2)

PIC18(L)F25/45K22 Rev. A2/A3/A4/A5 Silicon Errata and Data Sheet Clarification. (1) Revision ID for Silicon Revision (2) PIC18(L)F25/45K22 Rev. A2/A3/A4/A5 Silicon Errata and Data Sheet Clarification The PIC18(L)F25/45K22 family devices that you have received conform functionally to the current Device Data Sheet (DS41412F),

More information

TC1240/TC1240A. Positive Doubling Charge Pumps with Shutdown in a SOT-23 Package. Features. General Description. Applications

TC1240/TC1240A. Positive Doubling Charge Pumps with Shutdown in a SOT-23 Package. Features. General Description. Applications Positive Doubling Charge Pumps with Shutdown in a SOT-23 Package Features Charge Pumps in 6-Pin SOT-23A Package >99% Typical Voltage Conversion Efficiency Voltage Doubling Input Voltage Range, TC124: 2.V

More information

Section 38. High/Low-Voltage Detect (HLVD)

Section 38. High/Low-Voltage Detect (HLVD) Section 38. High/Low-Voltage Detect (HLVD) This section of the manual contains the following major topics: 38.1 Introduction... 38-2 38.2 Control Registers... 38-3 38.3 Operation... 38-6 38.4 Applications...

More information

TC mA Fixed Output CMOS LDO. Features. Package Type. Applications. Device Selection Table. General Description. Typical Application

TC mA Fixed Output CMOS LDO. Features. Package Type. Applications. Device Selection Table. General Description. Typical Application 500mA Fixed Output CMOS LDO TC1262 Features Very Low Dropout Voltage 500mA Output Current High Output Voltage Accuracy Standard or Custom Output Voltages Over Current and Over Temperature Protection Applications

More information

TC7662A. Charge Pump DC-to-DC Converter. Features. Package Type. General Description. Applications. Device Selection Table. 8-Pin PDIP 8-Pin CERDIP

TC7662A. Charge Pump DC-to-DC Converter. Features. Package Type. General Description. Applications. Device Selection Table. 8-Pin PDIP 8-Pin CERDIP Charge Pump DC-to-DC Converter TCA Features Wide Operating Range - V to V Increased Output Current (0mA) Pin Compatible with ICL/SI/TC0/ LTC0 No External Diodes Required Low Output Impedance @ I L = 0mA

More information

MCP1252/3. Low-Noise, Positive-Regulated Charge Pump. Features: Description: Package Types. Applications:

MCP1252/3. Low-Noise, Positive-Regulated Charge Pump. Features: Description: Package Types. Applications: Low-Noise, Positive-Regulated Charge Pump Features: Inductorless, Buck/Boost, DC/DC Converter Low Power: 80 µa (Typical) High Output Voltage Accuracy: - ±2.5% ( Fixed) 120 ma Output Current Wide Operating

More information

Low-Power Techniques for LCD Applications RTH = (2R*R)/(2R+R) RTH = 2R 2 /3R RTH = 2R/3 RSW = 4.7K RCOM = 0.4K

Low-Power Techniques for LCD Applications RTH = (2R*R)/(2R+R) RTH = 2R 2 /3R RTH = 2R/3 RSW = 4.7K RCOM = 0.4K Low-Power Techniques for LCD Applications Author: INTRODUCTION Low power is often a requirement in LCD applications. The low-power features of PIC microcontrollers and the ability to drive an LCD directly

More information

AN1322. PIC MCU KEELOQ /AES Receiver System with Acknowledge TRANSMITTER LEARNING INTRODUCTION SYSTEM OVERVIEW RECEIVER FUNCTIONALITY

AN1322. PIC MCU KEELOQ /AES Receiver System with Acknowledge TRANSMITTER LEARNING INTRODUCTION SYSTEM OVERVIEW RECEIVER FUNCTIONALITY PIC MCU KEELOQ /AES Receiver System with Acknowledge Author: INTRODUCTION Cristian Toma Microchip Technology Inc. A number of remote access applications rely on the user verifying if the access point (gate,

More information

RE46C100. Piezoelectric Horn Driver Circuit HORNS HRNEN HORNB. Package Types. Features: General Description: Functional Block Diagram

RE46C100. Piezoelectric Horn Driver Circuit HORNS HRNEN HORNB. Package Types. Features: General Description: Functional Block Diagram Piezoelectric Horn Driver Circuit RE46C100 Features: Low Quiescent Current (< 100 na) Low Driver R ON 20 typical at 9V Wide Operating Voltage Range Available in 8-pin DFN, PDIP and SOIC packages General

More information

PIC32MM0064GPL036 Motor Control Plug-In Module (PIM) Information Sheet

PIC32MM0064GPL036 Motor Control Plug-In Module (PIM) Information Sheet PIC32MM0064GPL036 Motor Control Plug-In Module (PIM) Information Sheet The PIC32MM0064GPL036 Motor Control PIM is designed to demonstrate the capabilities of the PIC32MM0064GPL036 device, using an external

More information

High-Speed N-Channel Power MOSFET

High-Speed N-Channel Power MOSFET High-Speed N-Channel Power MOSFET Features: Low Drain-to-Source On Resistance (R DS(ON) ) Low Total Gate Charge (Q G ) and Gate-to-Drain Charge (Q GD ) Low Series Gate Resistance (R G ) Fast Switching

More information

PIC16F87/88. PIC16F87/88 Rev. B1 Silicon Errata. 1. Module: Internal RC Oscillator

PIC16F87/88. PIC16F87/88 Rev. B1 Silicon Errata. 1. Module: Internal RC Oscillator PIC16F87/88 Rev. B1 Silicon Errata The PIC16F87/88 Rev. B1 parts you have received conform functionally to the Device Data Sheet (DS30487C), except for the anomalies described below. All of the issues

More information

HV Channel Serial to Parallel Converter with Push-Pull Outputs. Features. Description. Applications. Package Type.

HV Channel Serial to Parallel Converter with Push-Pull Outputs. Features. Description. Applications. Package Type. 96-Channel Serial to Parallel Converter with Push-Pull Outputs Features 96 High-Voltage Channels - Up to 80V Operating Output Voltage - 75 ma Peak Output Sink/Source Current Six Parallel 16-bit Shift Registers

More information

How the Event System Helps to Lower CPU Load and Power Consumption in Cortex -M0+ Microcontrollers

How the Event System Helps to Lower CPU Load and Power Consumption in Cortex -M0+ Microcontrollers How the Event System Helps to Lower CPU Load and Power Consumption in Cortex -M0+ Microcontrollers Introduction to the Event System In Microchip s Cortex -M0+ Microcontrollers (i.e., SAMDx, SAMLx ), the

More information

PIC16F506. PIC16F506 Rev. C0 Silicon Errata and Data Sheet Clarification. Silicon Errata Issues

PIC16F506. PIC16F506 Rev. C0 Silicon Errata and Data Sheet Clarification. Silicon Errata Issues PIC16F506 Rev. C0 Silicon Errata and Data Sheet Clarification The Rev. C0 PIC16F506 devices that you have received conform functionally to the current Device Data Sheet (DS41268D), except for the anomalies

More information

HV Channel Serial to Parallel Converter with Push-Pull Outputs. Features. Description. Applications. Package Type.

HV Channel Serial to Parallel Converter with Push-Pull Outputs. Features. Description. Applications. Package Type. 128-Channel Serial to Parallel Converter with Push-Pull Outputs Features 128 High-Voltage Channels - Up to 80V Operating Output Voltage - 30 ma Peak Output Sink/Source Current - Output Diodes to Ground

More information

High-Speed N-Channel Power MOSFET. PDFN 5 x 6 S

High-Speed N-Channel Power MOSFET. PDFN 5 x 6 S High-Speed N-Channel Power MOSFET Features: Low Drain-to-Source On Resistance (R DS(ON) ) Low Total Gate Charge (Q G ) and Gate-to-Drain Charge (Q GD ) Low Series Gate Resistance (R G ) Fast Switching

More information

Digitally Controlled Oscillator with Clock Switching on 8-Bit PIC Microcontrollers. Oscillator and Divider Selection COSC<2:0> CDIV<3:0> Post Divider

Digitally Controlled Oscillator with Clock Switching on 8-Bit PIC Microcontrollers. Oscillator and Divider Selection COSC<2:0> CDIV<3:0> Post Divider Digitally Controlled Oscillator with Clock Switching on 8-Bit PIC Microcontrollers Author: INTRODUCTION Mary Iva Rosario Salimbao Microchip Technology Inc. The oscillator module handles the clock source

More information

LR8. High-Input Voltage, Adjustable, 3-Terminal, Linear Regulator. General Description. Features. Applications

LR8. High-Input Voltage, Adjustable, 3-Terminal, Linear Regulator. General Description. Features. Applications High-Input Voltage, Adjustable, 3-Terminal, Linear Regulator Features 13.2-450V Input Voltage Range Adjustable 1.20-438V Output Regulation 5% Output Voltage Tolerance Output Current Limiting 10 µa Typical

More information

MCP2515. MCP2515 Silicon Errata. 1. Module: CAN Module. 2. Module: SPI Module

MCP2515. MCP2515 Silicon Errata. 1. Module: CAN Module. 2. Module: SPI Module MCP2515 Silicon Errata MCP2515 The functionality of the MCP2515 device is described in the Device Data Sheet (DS20001801H), except for the anomalies described below. 1. Module: CAN Module Under one specific

More information

AN1291. Low-Cost Shunt Power Meter using MCP3909 and PIC18F25K20 OVERVIEW HARDWARE DESCRIPTION

AN1291. Low-Cost Shunt Power Meter using MCP3909 and PIC18F25K20 OVERVIEW HARDWARE DESCRIPTION Low-Cost Shunt Power Meter using MCP3909 and PIC18F25K20 Author: OVERVIEW Iaroslav-Andrei Hapenciuc Microchip Technology Inc. This application note shows a single-phase energy meter solution using the

More information

TB3103. Buck Converter Using the PIC16F753 Analog Features PERFORMANCE SPECIFICATIONS INTRODUCTION ELECTRICAL SPECIFICATIONS

TB3103. Buck Converter Using the PIC16F753 Analog Features PERFORMANCE SPECIFICATIONS INTRODUCTION ELECTRICAL SPECIFICATIONS Buck Converter Using the PIC16F753 Analog Features Author: INTRODUCTION Mihnea RosuHamzescu Microchip Technology Inc. This technical brief describes a synchronous buck power supply, based on the PIC16F753

More information

PIC32MX450F256L 100-pin to 100-pin TQFP USB Plug-In Module (PIM) Information Sheet

PIC32MX450F256L 100-pin to 100-pin TQFP USB Plug-In Module (PIM) Information Sheet 100-pin to 100-pin TQFP USB Plug-In Module (PIM) Information Sheet OVERVIEW The USB PIM is designed to demonstrate the capabilities of the family of devices using development boards such as the Explorer

More information

TC57. Line Regulator Controller TC57. General Description. Features. Applications. Functional Block Diagram. Device Selection Table.

TC57. Line Regulator Controller TC57. General Description. Features. Applications. Functional Block Diagram. Device Selection Table. Line Regulator Controller TC7 Features Low Dropout Voltage: 1mV @ 6mA with FZT79 PNP Transistor 2.7V to 8V Supply Range Low Operating Current: A Operating,.2 A Shutdown Low True Chip Enable Output Accuracy

More information

PIC16F506. PIC16F506 Rev. B1 Silicon Errata and Data Sheet Clarification. Silicon Errata

PIC16F506. PIC16F506 Rev. B1 Silicon Errata and Data Sheet Clarification. Silicon Errata Rev. B1 Silicon Errata and Data Sheet Clarification The Rev. B1 family devices that you have received conform functionally to the current Device Data Sheet (DS41268D), except for the anomalies described

More information

AN1882. ADC Measurement Correction and Optimization for MCP19114/5 V BGR MCP19114/5 ADC V SIGNAL ASSUMPTIONS INTRODUCTION

AN1882. ADC Measurement Correction and Optimization for MCP19114/5 V BGR MCP19114/5 ADC V SIGNAL ASSUMPTIONS INTRODUCTION ADC Measurement Correction and Optimization for MCP19114/5 Author: INTRODUCTION Yiwei Xiong Microchip Technology Inc. In today's highly competitive and highly technological world, analog signal measurements

More information

MCP2515. MCP2515 Rev. B Silicon Errata. 3. Module: CAN Module. 1. Module: Oscillator Module. 4. Module: CAN Module. 2. Module: RAM Module

MCP2515. MCP2515 Rev. B Silicon Errata. 3. Module: CAN Module. 1. Module: Oscillator Module. 4. Module: CAN Module. 2. Module: RAM Module MCP2515 Rev. B Silicon Errata MCP2515 The MCP2515 parts you have received conform functionally to the Device Data Sheet (DS21801D), except for the anomalies described below. 1. Module: Oscillator Module

More information

High-Speed N-Channel Power MOSFET

High-Speed N-Channel Power MOSFET High-Speed N-Channel Power MOSFET Features: Low Drain-to-Source On Resistance (R DS(ON) ) Low Total Gate Charge (Q G ) and Gate-to-Drain Charge (Q GD ) Low Series Gate Resistance (R G ) Fast Switching

More information

High-Speed N-Channel Power MOSFET

High-Speed N-Channel Power MOSFET High-Speed N-Channel Power MOSFET Features Low Drain-to-Source On Resistance (R DS(ON) ) Low Total Gate Charge (Q G ) and Gate-to-Drain Charge (Q GD ) Low Series Gate Resistance (R G ) Fast Switching Capable

More information

Full-Featured, Low Pin Count Microcontrollers with XLP Product Brief

Full-Featured, Low Pin Count Microcontrollers with XLP Product Brief Full-Featured, Low Pin Count Microcontrollers with XLP Product Brief Description microcontrollers feature Analog, Core Independent Peripherals and communication peripherals, combined with extreme Low Power

More information

AN1213. Powering a UNI/O Bus Device Through SCIO INTRODUCTION CIRCUIT FOR EXTRACTING POWER FROM SCIO

AN1213. Powering a UNI/O Bus Device Through SCIO INTRODUCTION CIRCUIT FOR EXTRACTING POWER FROM SCIO Powering a UNI/O Bus Device Through SCIO Author: INTRODUCTION Chris Parris Microchip Technology Inc. As embedded systems become smaller, a growing need exists to minimize I/O pin usage for communication

More information

TB3154. PTG: Extending Functionality for dspic DSC Peripherals for Integration of PFC and FOC INTRODUCTION. Power Factor Correction (PFC)

TB3154. PTG: Extending Functionality for dspic DSC Peripherals for Integration of PFC and FOC INTRODUCTION. Power Factor Correction (PFC) PTG: Extending Functionality for dspic DSC Peripherals for Integration of PFC and FOC Author: INTRODUCTION Jenny Puthusseri and Sai Kumar Microchip Technology Inc. Consumer s demand for improved power

More information

PIC16F818/819. PIC16F818/819 Rev. B0 Silicon Errata Sheet

PIC16F818/819. PIC16F818/819 Rev. B0 Silicon Errata Sheet Rev. B0 Silicon Errata Sheet The Rev. B0 parts you have received conform functionally to the Device Data Sheet (DS39598E), except for the anomalies described below. All of the issues listed here will be

More information

Voltage Detector. TC54VC only

Voltage Detector. TC54VC only Voltage Detector TC54 Features ±2.0% Detection Thresholds Small Packages: 3-Pin SOT-23A, 3-Pin SOT-89, and TO-92 Low Current Drain: 1 µa (Typical) Wide Detection Range: 1.1V to 6.0V Wide Operating Voltage

More information

1.5A Dual High-Speed Power MOSFET Drivers. Temp. Range

1.5A Dual High-Speed Power MOSFET Drivers. Temp. Range 1.5A Dual High-Speed Power MOSFET Drivers Features: High-Speed Switching (C L = 1000 pf): 30 nsec High Peak Output Current: 1.5A High Output Voltage Swing: - V DD -25 mv - GND +25 mv Low Input Current

More information

TCM828/TCM829. Switched Capacitor Voltage Converters. Features. Description. Applications. Package Type. Typical Application Circuit

TCM828/TCM829. Switched Capacitor Voltage Converters. Features. Description. Applications. Package Type. Typical Application Circuit Switched Capacitor Voltage Converters Features Charge Pump in 5-Pin SOT-23 Package >95% Voltage Conversion Efficiency Voltage Inversion and/or Doubling Low 50 µa (TCM828) Quiescent Current Operates from

More information

Integrated Temperature Sensor & Brushless DC Fan Controller with FanSense Detect & Over-Temperature

Integrated Temperature Sensor & Brushless DC Fan Controller with FanSense Detect & Over-Temperature Integrated Temperature Sensor & Brushless DC Fan Controller with FanSense Detect & Over-Temperature Features Integrated Temperature Sensing and Multi-speed Fan Control FanSense Fan Fault Detect Circuitry

More information

TC mA CMOS LDO with Shutdown ERROR Output and Bypass. Features. General Description. Applications. Typical Application. Device Selection Table

TC mA CMOS LDO with Shutdown ERROR Output and Bypass. Features. General Description. Applications. Typical Application. Device Selection Table 300mA CMOS LDO with Shutdown ERROR Output and Bypass Features Extremely Low Supply Current for Longer Battery Life Very Low Dropout Voltage 300mA Output Current Standard or Custom Output Voltages ERROR

More information

TB3160. Primary Side Power Limiter and Control INTRODUCTION LEGACY SOLUTIONS PROBLEM DESCRIPTION. Fixed Duty Cycle Limit

TB3160. Primary Side Power Limiter and Control INTRODUCTION LEGACY SOLUTIONS PROBLEM DESCRIPTION. Fixed Duty Cycle Limit Primary Side Power Limiter and Control TB3160 Author: INTRODUCTION Gheorghe Turcan Microchip Technology Inc. Offline Switched Mode Power Supplies (SMPS) are ubiquitous in most electronic applications,

More information

PIC16(L)F19195/6/7 Family Silicon Errata and Data Sheet Clarification

PIC16(L)F19195/6/7 Family Silicon Errata and Data Sheet Clarification PIC16(L)F19195/6/7 Family Silicon Errata and Data Sheet Clarification The PIC16(L)F19195/6/7 family devices that you have received conform functionally to the current Device Data Sheet (DS40001873C), except

More information

AN2102. Designing Applications with MCP16331 High-Input Voltage Buck Converter INTRODUCTION MCP16331 OVERVIEW

AN2102. Designing Applications with MCP16331 High-Input Voltage Buck Converter INTRODUCTION MCP16331 OVERVIEW Designing Applications with MCP16331 High-Input Voltage Buck Converter Author: INTRODUCTION Bogdan Anton Microchip Technology Inc. The purpose of this document is to help engineers design different low-power

More information

TC682. Inverting Voltage Doubler. General Description: Features: Applications: Functional Block Diagram. Device Selection Table. Package Type TC682

TC682. Inverting Voltage Doubler. General Description: Features: Applications: Functional Block Diagram. Device Selection Table. Package Type TC682 Inverting Voltage Doubler Features: 99.9% Voltage Conversion Efficiency 92% Power Conversion Efficiency Wide Input Voltage Range: - 2.4V to 5.5V Only 3 External Capacitors Required 185 μa Supply Current

More information

AN1321. KEELOQ Microcontroller-Based Transmitter with Acknowledge DUAL TRANSMITTER OPERATION INTRODUCTION RECEIVER ACKNOWLEDGE SAMPLE BUTTONS/WAKE-UP

AN1321. KEELOQ Microcontroller-Based Transmitter with Acknowledge DUAL TRANSMITTER OPERATION INTRODUCTION RECEIVER ACKNOWLEDGE SAMPLE BUTTONS/WAKE-UP KEELOQ Microcontroller-Based Transmitter with Acknowledge Author: INTRODUCTION This application note describes the design of a microcontroller-based KEELOQ transmitter with receiver acknowledge using the

More information

Product Change Notification - SYST-18QGAB730 (Printer Friendly)

Product Change Notification - SYST-18QGAB730 (Printer Friendly) Product Change Notification - SYST-18QGAB730-19 Jul 2016 - Data Sheet -... http://www.microchip.com/mymicrochip/notificationdetails.aspx?pcn=syst-18qgab730 Page 1 of 2 7/20/2016 English Search... PRODUCTS

More information

AN2041. Battery-Powered Constant Current LED Drivers INTRODUCTION BOOST CONVERTER ESSENTIALS - LED DRIVERS OPERATION FUNDAMENTALS

AN2041. Battery-Powered Constant Current LED Drivers INTRODUCTION BOOST CONVERTER ESSENTIALS - LED DRIVERS OPERATION FUNDAMENTALS BatteryPowered Constant Current LED Drivers Author: INTRODUCTION Razvan Costache Microchip Technology Inc. This document aims to help engineers design different lowpower applications, and to provide insight

More information

TC1232. Microprocessor Monitor. General Description: Features: Block Diagram. Package Types. Device Features

TC1232. Microprocessor Monitor. General Description: Features: Block Diagram. Package Types. Device Features Microprocessor Monitor TC1232 Features: Precision Voltage Monitor: - Adjustable +4.5V or +4.75V Reset Pulse Width 250 ms minimum No External Components Adjustable Watchdog Timer: - 150 ms, 600 ms or 1.2s

More information

PIC18F24J10/25J10/44J10/45J10

PIC18F24J10/25J10/44J10/45J10 PIC18F24J10/25J10/44J10/45J10 Rev. A2 Silicon Errata The PIC18F24J10/25J10/44J10/45J10 Rev. A2 parts you have received conform functionally to the Device Data Sheet (DS39682A), except for the anomalies

More information

LND01. Lateral N-Channel Depletion-Mode MOSFET. General Description. Features. Applications. Package Type

LND01. Lateral N-Channel Depletion-Mode MOSFET. General Description. Features. Applications. Package Type Lateral N-Channel Depletion-Mode MOSFET Features Bi-directional Low On-resistance Low Input Capacitance Fast Switching Speeds High Input Impedance and High Gain Low Power Drive Requirement Ease of Paralleling

More information

Digital Signal Processing Performance of the 8-bit AVR Core

Digital Signal Processing Performance of the 8-bit AVR Core Digital Signal Processing Performance of the 8-bit AVR Core Introduction Author: Lloyd D. Clark, Ph.D., Microchip Technology Inc. The 8-bit AVR microcontroller core can execute more than 100 distinct instructions,

More information

9A High-Speed MOSFET Drivers. 8-Pin 6x5 DFN-S (2) INPUT EP 9

9A High-Speed MOSFET Drivers. 8-Pin 6x5 DFN-S (2) INPUT EP 9 9A High-Speed MOSFET Drivers Features: High Peak Output Current: 9A Wide Input Supply Voltage Operating Range: - 4.5V to 18V High Continuous Output Current: 2A Maximum Fast Rise and Fall Times: - 30 ns

More information

TC1047/TC1047A. Precision Temperature-to-Voltage Converter. General Description. Applications. Block Diagram. Features.

TC1047/TC1047A. Precision Temperature-to-Voltage Converter. General Description. Applications. Block Diagram. Features. Precision Temperature-to-Voltage Converter Features Supply Voltage Range: - TC147: 2.7V to 4.4V - TC147A: 2.V to.v Wide Temperature Measurement Range: - -4 o C to +12 o C High Temperature Converter Accuracy:

More information

AN1328. KEELOQ with XTEA Microcontroller-Based Transmitter with Acknowledge INTRODUCTION DUAL TRANSMITTER OPERATION BACKGROUND RECEIVER ACKNOWLEDGE

AN1328. KEELOQ with XTEA Microcontroller-Based Transmitter with Acknowledge INTRODUCTION DUAL TRANSMITTER OPERATION BACKGROUND RECEIVER ACKNOWLEDGE KEELOQ with XTEA Microcontroller-Based Transmitter with Acknowledge Author: INTRODUCTION This application note describes the design of a microcontroller-based KEELOQ Hopping transmitter with receiver acknowledge

More information

PIC18F2420/2520/4420/4520

PIC18F2420/2520/4420/4520 PIC18F2420/2520/4420/4520 Rev. B3 Silicon Errata The PIC18F2420/2520/4420/4520 Rev. B3 parts you have received conform functionally to the Device Data Sheet (DS39631E), except for the anomalies described

More information

TC7660S. Super Charge Pump DC-to-DC Voltage Converter. Features: Package Types. General Description: Applications:

TC7660S. Super Charge Pump DC-to-DC Voltage Converter. Features: Package Types. General Description: Applications: Super Charge Pump DC-to-DC Voltage Converter Features: Oscillator boost from 0 khz to 45 khz Converts 5V Logic Supply to ±5V System Wide Input Voltage Range:.5V to V Efficient Voltage Conversion (99.9%,

More information

AN1332. Current Sensing Circuit Concepts and Fundamentals CURRENT SENSING RESISTOR INTRODUCTION. Description. Microchip Technology Inc.

AN1332. Current Sensing Circuit Concepts and Fundamentals CURRENT SENSING RESISTOR INTRODUCTION. Description. Microchip Technology Inc. Current Sensing Circuit Concepts and Fundamentals Author: INTRODUCTION Yang Zhen Microchip Technology Inc. Current sensing is a fundamental requirement in a wide range of electronic applications. Typical

More information

HV2802/HV2902. Low Harmonic Distortion, 32-Channel SPST, High-Voltage Analog Switch. Features. General Description. Applications

HV2802/HV2902. Low Harmonic Distortion, 32-Channel SPST, High-Voltage Analog Switch. Features. General Description. Applications Low Harmonic Distortion, 32-Channel SPST, High-Voltage Analog Switch Features 32-Channel SPST (Single-Pole, Single-Throw) High-Voltage Analog Switch 3.3V or 5.0V CMOS Input Logic Level 20 MHz Data Shift

More information

Achieve timing precision of external crystal oscillator with ultra-low power consumption of internal oscillator

Achieve timing precision of external crystal oscillator with ultra-low power consumption of internal oscillator Precise, Ultra-Low-Power Timing using Periodic Enabling of the 32.768 khz External Crystal Oscillator for Recalibration of the ULP Internal Oscillator Features Achieve timing precision of external crystal

More information