Synchronisation Keeping in an Aeronautical Satellite Communications Environment

Size: px
Start display at page:

Download "Synchronisation Keeping in an Aeronautical Satellite Communications Environment"

Transcription

1 Synchronisation Keeping in an Aeronautical Satellite Communications Environment J. M. Cebrian, E. Monroy, J. Batlle and M. Admella Indra Espacio Avda. Diagonal 188, 818 Barcelona, Spain ABSTRACT The main goal of this paper is to analyse the method to keep synchronisation of an Aeronautical Satellite Communication System, based on geostationary satellites and CDMA access technique, to meet the world wide civil aviation safety communication expectations for the 215. The system must provide secure and reliable communications to the aeronautical community, and at the same time achieve a high degree of efficiency in the use of the satellite resources. For this purpose, a system based on synchronous CDMA has been analysed focussed on the definition of the synchronisation process strategy. This synchronisation strategy must provide the maximization of the number of users and must cope with the particularities of a mobile aeronautical propagation channel. The processes involved in the synchronisation strategy will be evaluated. In particular, the reference and traffic carriers synchronisation loops will be analysed by studying the behaviour of the carrier frequency/phase and code phase/frequency loops in a very low SNR ratio scenario. In addition, a proper Doppler compensation mechanism is defined to cope with the mobile channel. I. INTRODUCTION The Satellite Data Link System (SDLS) for air traffic management is an ESA/Industry initiative to promote aeronautical SATCOM systems for safety communications of civil aviation. The SDLS system was conceived thinking Aeronautical Mobile Communications Infrastructure for ATS in Europe, currently working in VHF band ( MHz), will become critical around the 215 year even also after the introduction of 8.33 khz spacing and data links. In this sense, a Satellite communications network could be used in a transparent way for the end user either to carry some of traffic in VHF band, helping to alleviate congestion in European areas, or to offer communications backup capabilities in areas where it is non-existent or cannot be achieved economically with terrestrially based systems. SDLS is based on Geostationary "transparent" satellites, requiring signals at L-band for the mobile link and a transparent switching of the signals into C, or Ku bands for the feeder link. In the SDLS communications sub-network, the main constituents are the space segment, with the satellites and their respective control centres the ground segment, working at both C-Ku/L bands, with ground earth stations (GES) providing voice and data services interface with terrestrial Air Traffic Network (ATN). the user segment, working at L band, with air earth station (AES) terminals mounted on aircraft for providing A/G connectivity with ATC and AOC. In the past [2], an SDLS Demonstrator was built for operational demonstration to civil aviation community of the satellite technology readiness. Data and voice communications expected between aircraft, on one hand, and air trafficcontrol centres (ATC) as well as airline operations centres (AOC), on the other, were exchanged using ITALSAT F2- EMS spot and ARTEMIS satellites with recognized good results on feasibility, including cost factors, and achieved performances. From this point, a complementary study was carried-out to further investigate all topics necessaries to get a preliminary definition of an SDLS operational system. For this purpose, an European consortium was created in the 23 with participation of Alcatel Space, Indra, Atos Origin (old Slumberger-Sema), Skysoft and Airtel under the ESA contract (ESA 174/2/NL/US). Meanwhile, with the aim at coordinating the new interest of aviation community for Satellite communications, ESA reached an agreement of technical cooperation with the Eurocontrol initiating NexSAT activity. From that cooperation, a definition of the new generation satellite system mission requirements [1] was ready and a matching was prepared with the SDLS system services and functional requirements. In that definition, Indra was responsible of the physical level analyses. From the trade-offs performed, the synchronisation outcomes are going to be summarized.

2 The outline of the paper is as follows. In section II, the synchronisation mechanisms for the aircraft environment are presented putting special emphasis on the mobile link conditions, subject of the paper, and the different traffic services scenarios to be taken into account in the study (MAI vs efficiency, WH vs Gold, low channel speed with minimum Es/No). Synchronisation strategy followed to reach full channel synchronisation is presented in section III. In section IV, simulation schemes proposed are introduced for the different scenarios analyzed and results obtained are given. Finally, in section V, the conclusions of the study are summarized. II. SYNCHRONISATION MECHANISM DEFINITION From the point of view of the physical channel, the synchronisation mechanism must compensate the effect of mobility due to the aircrafts movement, mutual interferences among other users, and the consequence of multipath originated in the aircraft itself and in the ground or sea. The AES movement with respect the satellite considered in the analysis carried-out corresponds to an AES speed of 42 m/s and acceleration of.2 m/s2, and the signal to noise plus interference ratio was established in 2 3 db.the multipath propagation model has been approximated to a Rice channel model, being the direct/reflected link power difference of K= 9 db mainly due to the reflections in the aircraft. The traffic characteristics to be supported in the SDLS system for data applications and voice services are the following: Application Short data Service CPDLC high ACL CPDLC medium CAN, DLL, DCL, DSL CPDLC low DFIS AOC/FANS ACARS ADS-C FLIPCY,FLIPINT, DYNAV,COTRAC ADAP QoS QoS 1 QoS 2 QoS 3 QoS 4 QoS 5 QoS 6 Transit Delay 5s 5s 1s 3s 3s 5s RER Priority Symmetry SDLS Bearer Service Unidirectional Bidirectional Bidirectional Bidirectional Bidirectional Unidirectional Air to Ground Air to Ground Data 5 Data 1 Data 2 Data 3&6 Data 3 Data 4 Table 1: SDLS Data services[3] ATS/Safety Voice AOC/Telephony Party-Line Vocoding rate (kbps) 4.8/ / /2.4 Communication establishment <2s <2s N/A (Permanent) time (s) Voice latency 4ms 4ms 4ms Communication configuration Point to Point Point to Point Point to multipoint Residual Error Rate (RER) Priority SDLS Bearer Service Voice 2 Voice 1 Voice 3 Table 2: SDLS Voice services[3] From the above traffic characteristics, the synchronisation mechanisms to be defined must cope with: Circuit oriented communications, mainly devoted to voice services, and, Packet oriented communications, with different constraints in the transit delay for supporting data applications. The circuit oriented connections require the establishment of dedicated links that involve the capacity to setup a synchronous CDMA channel in a short period of time. In addition, the packet oriented connections call for a mechanism not penalised by a channel establishment time, but at the same time with a high probability of detection and collision avoidance. In addition, a low transit delay requires means from the access scheme to allow an almost immediate availability of resources. This implies the maintaining of permanent synchronized CDMA channels and the definition of a TDM structure on top according to transit delay needs.

3 Several mechanism are considered to transmit efficiently the different traffic types: A connection by connection synchronisation scheme, for voice and for not critical data packets services transmission in strength mode. This scheme is appropriate for long connections in which the fact of requiring a connection setup with a resource assignation and a fine synchronisation process is tolerated by the service. An asynchronous burst synchronisation scheme, for data packet service transmission in a Random access channel over Spread ALOHA. It will be used for the log on of the AES to the system, because it provides a fast transmission mechanism although can be experienced collisions and a high level of mutual interference from another traffic carriers. A permanently synchronised scheme, for any type of services avoiding the use of asynchronous carriers and reducing the connection setup to a resource assignation in the worst case. In addition, a CDMA carrier can be shared among several AES following a TDM over CDMA approach. This scheme makes the system more complex because it requires a synchronisation maintenance process for all the AES in the system, but the system becomes more efficient when data traffic rate is low. III. SYNCHRONISATION STRATEGY One of the goals of the mobile link synchronisation consists in counteracting the AES movement effect, either in the carrier and in the code tracking loops. To compensate AES mobility effect a Doppler estimation process has been analysed based on the information obtained from the reception of a reference carrier. The synchronisation processes to be considered will be those used in: Log on phase, to synchronise the AES transmissions with the system reference. Synchronisation maintenance phase, carried out to keep all AES synchronised in the system. The synchronisation process during the Log-on phase consists in the next main stages. The AES synchronises the forward reference carrier from the GES. The synchronisation consists in locking the carrier frequency and code phase/frequency of the AES receiver to the GES reference carrier by performing local carrier frequency and the code phase/frequency tracking synchronisation loops. The Doppler shift and rate is estimated from the reference tracking loops and pre-compensated in the AES transmitter. The AES sends an asynchronous burst to the GES, through an specific random access channel, to allow a coarse estimation of the timing error in the transmission. The GES detects and process the asynchronous burst and sends back to the AES the coarse correction. The fine synchronisation process is then carried out, which consists in performing a long remote loop of AES transmissions once compensated the Doppler rate effect and GES accurate measurements of the synchronisation errors, being finally transmitted to the AES the corresponding corrections. When the errors are below a threshold, synchronisation is declared by the GES and the log on process is finished. At this moment, the AES is ready to transmit traffic. The synchronisation process during the synchronisation maintenance phase consists in a periodic transmission from each AES of a predefined sequence and a remote measurement in the GES of the synchronisation errors. In addition, the AES is continuously estimating the Doppler dynamics and pre compensating the transmitter frequency and timing. The main synchronisation steps simulated and results presented in the following chapters correspond to: Reference carrier frequency and code phase / frequency synchronisation local loops. Asynchronous bursts detection in presence of traffic carriers that causes a high level interference. Traffic carrier frequency and code phase synchronisation remote loops to keep the AES transmitter fine synchronisation. IV. SYNCHRONISATION SCHEMES SIMULATION Reference Carrier Synchronisation Local Loops The reference carrier process together with the Doppler pre-compensation mechanism to be simulated is depicted in Figure 5. The main objectives for the reference carrier synchronisation loops are to cope with the tracking of worse ramps conditions expected in the system: Maximum carrier frequency Doppler rate of 1.6 Hz/s, Maximum code frequency shift of 1.5 chip/s and Maximum code frequency rate of.46 Hz/s. The reference carrier synchronisation local loops include two phases: acquisition and tracking. The acquisition process compensates for the initial carrier frequency error and synchronises the receiver code phase or time to the received

4 reference one. Once the acquisition is completed, the tracking process is performed, comprising the carrier frequency and code phase and frequency tracking loops. The work carried out is focussed on the tracking loops which are the ones more affected by the dynamic Doppler. The carrier frequency tracking loop consists in an Automatic Control Loop that governs the receiver carrier frequency oscillator. The transient behaviour of the loop with the specified dynamic Doppler rate is shown in Figure 3. As the reference frequency is continually received and tracked, the transient duration has not stringent requirements. In consequence, the loop bandwidth has been optimised to reduced the steady state jitter (shown below), at the price of a longer transient time. When the system is fully loaded, the frequency error detector is degraded, causing spikes in the measured error, as shown in the figure below for an initial error of 9 Hz. To solve that, the coherent integration time has been increased, avoiding the problem as it can be seen in Figure 1. Figure 1: carrier frequency error (left) degraded and (right) improved with a coherent integration time The code phase and frequency tracking loop, with transient behaviour depicted in Figure 4, is based on an standard Delay Locked Loop. One of the main difficulties of the loop rises when the system is fully loaded. In that case, the phase detector curve is degraded, decreasing its slope dramatically and producing a very high jitter that makes the loop very unstable. The phase error curve (S-curve) was simulated in presence of mutual interference from other users carrier. The Figure 2 shows the S curve degradation when the number of users is increased. In order to solve this problem, the reference carrier includes known symbols to allow to increase the coherent integration time and reducing the effect. The output of the reference carrier loops feed to the Doppler estimator process, that estimates the Doppler dynamics to pre-compensate the transmitter. SFpilot = 32 SFuser = 32 Code phase error estimation NO-COHERENT 2 Adv2-Del2/Ont user 16 users 3 users Chips 1 Adv2-Del2/Adv2+Ont2+Del user 16 users 3 users Chips (a) MAI effect with different users NON-COHERENT (b) MAI at maximum load with symbols accumulation COHERENT Figure 2: Code phase error estimator curve, with mutual interference.

5 2.5 Carrier frequency estimator output. WH+EG codes. EsNo:3dB. Freq.ramp:1.62Hz/s.8 Code phase error. WH+EG codes. EsNo:3dB. Freq.ramp:.463Hz/s Carrier frequency error detected (Hz) Code phase error (chips) Symbols x Symbols x 1 4 Figure 3: Transient of reference carrier frequency estimation loop Figure 4: Transient of the reference code phase estimation loop The Table 3 presents the results for the reference carrier frequency loop and the Doppler estimator output for different estimator bandwidths. The loop bandwidth was selected to minimise the thermal and mutual interference noise at the loop input. The input signal was affected by a Doppler dynamic effect of 1.62 Hz/s, which is followed by the loop very accurately. The residual effect of the Doppler estimator is the slightly increment of the output jitter. E s /N = 3 db E s /N = 2 db mean (Hz) jitter (Hz) mean (Hz) jitter (Hz) frequency error Doppler estimator BW (Hz) mean (Hz) jitter (Hz) mean (Hz) jitter (Hz) Table 3: Reference carrier frequency loop results, for different Doppler estimator bandwidths The Table 4 presents the results for the code phase loop and the code frequency Doppler estimator. The input signal was perturbed by a code frequency Doppler of.46 Hz/s. It can be seen that a wide Doppler estimator BW produce a high code frequency jitter. phase error (chips) Doppler estimator BW (Hz) E s /N = 3 db E s /N = 2 db mean Jitter mean jitter mean (Hz) jitter (Hz) mean (Hz) jitter (Hz) Table 4: Reference code phase loop results, for different Doppler estimator bandwidths 1 By integrating N remote error corrections of code phase, this jitter can be further reduced.

6 Asynchronous Burst Synchronisation Loops The main goal of the asynchronous burst synchronisation loop consists in minimising the length of the preamble required to detect it and analyse the resulted jitters in the carrier frequency and code phase loops, as its output is sent back to the AES as coarse transmitter correction. This process must work in a worst case scenario due to all other traffic carriers are asynchronous to the one to be received. In order to reduce the required preamble length and minimise the final jitter, the loop starts with a high loop bandwidth to cope with the initial carrier frequency and code phase errors (178Hz and.5chips/.4 2 Hz in the worse case), and then the loop bandwidth is narrowed once the initial frequency errors are reduced sufficiently (up to 1-15 Hz of carrier frequency correction and.1-.2chips of code phase correction). The goal of the transient of the carrier frequency loop is to achieve a maximum error of 1 to 15 Hz. The behaviour of the loop is summarized in the table below, with the peak error at the end of the transient and the steady state jitter. Es/(No+Io) (db) Transient duration (symbols) Carrier frequency correction jitter after transient (peak: 3σ) Carrier frequency error jitter in Steady State(Std:σ) Carrier frequency correction jitter in Steady State(Std:σ) 3dB 3 symbols 11 Hz 3.3 Hz.4 Hz 2dB 325 symbols 12 Hz 3.7 Hz.5 Hz Table 5: Asynchronous carrier frequency loop errors The code phase loop is critical due to the asynchronous nature of the carrier. The loop is also implemented with different loop bandwidths for the transient and the steady state. In the table below, it can be observed that the maximum code phase error at the final stage of the transient reaches a high value, due to the initial code frequency error. But even in this worse case scenario, the loop accomplish to reduce the final jitter in the steady state. Es/(No+Io) (db) Transient duration (symbols) Code phase correction jitter after transient (peak: 3σ) Code phase error jitter (Std:σ) in steady state Code frequency correction jitter (Std:σ) in Steady state 3dB 4 symbols.11 Hz.11 chips 2 Hz 2dB 4 symbols.13 Hz.12 chips 2.3 Hz Table 6:Asynchronous code phase loop errors Traffic Carrier Synchronisation Remote Loops The traffic carrier long loop synchronisation process is intended to remotely synchronize and keep synchronised the AES transmitter from the GES. Basically, the GES measures the synchronisation error of the AES transmission with respect to the reference carrier, compute the corrections and sends them to the AES. The loop is designed to minimise the time required to reach the synchronisation state during the log-on phase, and at the same time reduce the jitter to maximize the period between transmission required to keep the synchronisation. The traffic carrier loop block diagram is depicted in Figure 6. The requirements of the carrier frequency and code phase remote loops are: a maximum initial carrier frequency error of 2 Hz, a maximum initial code frequency error of.4 2 Hz, and a maximum initial code phase error of.5 chips. The results of the Figure 7 and Figure 8 show that after 3 to 4 corrections the AES remote transmitter has reached the steady state, considering as the maximum error at the end of transient the carrier frequency value of 5Hz (3σ) and,125(3σ) of code phase. In Table 7, it can be observed that incrementing the error measurement time, the steady state jitter is reduced at the cost of a small reduction in efficiency, but improving the capacity to track the system instabilities. 2 Value due to GES/AES clocks and Satellite Doppler residual errors.

7 Es/(No+Io) Nº of known symbols to compute the error Code phase error jitter (at σ) Carrier frequency error jitter (at σ) 3 db 2 symbols.5 chips 1.1 Hz 3 db 1 symbols.6 chips 2. Hz 2 db 2 symbols.5 chips 1.3 Hz 2 db 1 symbols.7 chips 2.3 Hz Table 7: Traffic carrier long loop behavior with time to compute error. RX Carrier Carrier Pilot Acquisition Pilot Carrier Tracking (AFC) AES Remote Transmitter GES receiver A/D X T De-spreaded samples T X D/A Channel Rx Code Code Phase Correction Code Pilot Code Phase Tracking (DLL) Code Osicllator Carrier Remote Carrier Tracking Remote Code Tracking Carrier Carrier TX Doppler Precompensation process Round Trip Delay + Mobility Carrier Code Phase/frequency D/A X T Code Code Figure 5: Local carrier frequency/code phase block diagram with Doppler pre-compensation Figure 6: Remote carrier frequency/code phase block diagram 26 Carrier frequency correction. Gold codes. EsNo:3dB. Freq.step:2Hz. 2symbols.1 Code phase error. WH+EG codes. EsNo:3dB. Freq.step:.4Hz. Code phase step:.5chips Carrier frequency correction (Hz) Code phase error (chips) Figure 7: Remote transient of carrier frequency corrections Figure 8: Remote transient of code phase errors

8 V. CONCLUSIONS AND FUTURE LINES OF WORK As summary of the synchronisation work performed the following conclusions are taken. Three different type of CDMA carriers will be needed. Firstly, the return and forward reference carriers will be used to allow locking in the system respectively the GES and AES receivers. Secondly, a limited set of Asynchronous carriers will be needed to carry the initial AES signalling requested to perform log-on in the SDLS system in spread-aloha mode. Finally, the User synchronous carriers will carry voice and data traffic in both continuous mode for AES single use and TDMA mode for several AES sharing one CDMA carrier. With the reception of Reference carriers, the AES computes the reference carrier synchronisation local loops with the purpose of tracking worse case dynamic Doppler effect provoked by AES mobility. This objective is accomplished with the continuous use of a Doppler pre-compensation mechanism and increasing the coherent integration symbol time. By receiving Asynchronous carriers, the GES is able to detect the Asynchronous burst sent by AES trying to log on the system performing the asynchronous burst synchronisation process in a reduced preamble length by implementing different loop bandwidth from the transient and steady stages. This allows maximizing the number of AES log-on per unit of time because the spread-aloha time window is reduced. Finally, the GES is able to keep the synchronisation of all AES transmitters logged in the system by implementing the traffic carrier synchronisation remote loops when receiving periodic known symbols from each AES through the User synchronous carriers. Finally, and as a matter of improvement of results obtained in the code frequency in the Doppler estimator process, the AES could integrate N remote code phase corrections received from the GES when performing the traffic carrier synchronisation remote loops and provide this value directly to the TX code frequency oscillator instead of using the corresponding output from the Doppler pre-compensation module, see Figure 5 and Figure 6. Moreover, to reduce the residual 2 code frequency error of the traffic carrier synchronisation remote loops a possible broadcast of the reference carrier synchronization local loop corrections could be done by the GES reference station. REFERENCES [1] EUROCONTROL, New Generation Satellite Communication System(s) Mission Requirements, Edition E, October 23. [2] Mathieu Dabin, Erick Flores, Jean-Marc Gaubert, Satellite Data Link System (Sdls) Demonstrator. Towards a Future Generation Aeronautical SATCOM for ATM, IAF conference. [3] Alcatel Space, SDLS Slide 3 - Executive Summary, ESA contract 174/2/NL/US, 23. [4] Indra Espacio, SDLS Slide 3 - Access Mode Analysis Report, ESA contract 174/2/NL/US, 23. [5] Indra Espacio, SDLS Slide 3 - Waveform Analysis Report, ESA contract 174/2/NL/US, 23. [6] ICAO, Annex 1 - AMSS SARPs, Volume III + Amendment 75, July 1995 and November 2. [7] Claude Loisy, Satellite Data Link System (SDLS). A dedicated mobile satellite communication system responding to the highly demanding requirements of civil aviation, proceeding of the AIAA Conference 21.

Novel Satellite Random Access E-SSA Receiver with SIC Simulation and Prototyping

Novel Satellite Random Access E-SSA Receiver with SIC Simulation and Prototyping Novel Satellite Random Access E-SSA Receiver with SIC Simulation and Prototyping Josep Vilà Head of the Digital Signal Processing Group Satellite Communications Unit Indra Sistemas 30 th May 2018 Novel

More information

Phoenix Communication System Architecture and Protocols Consolidated Design

Phoenix Communication System Architecture and Protocols Consolidated Design ESA Artes-10 Iris Phoenix Communication System Architecture and Protocols Consolidated Design Robert Schweikert (AUDENS ACT) Markus Werner (TriaGnoSys) ESTEC, Noordwijk 06.02.2009 Presentation Outline

More information

SPREAD SPECTRUM CHANNEL MEASUREMENT INSTRUMENT

SPREAD SPECTRUM CHANNEL MEASUREMENT INSTRUMENT SPACE SPREAD SPECTRUM CHANNEL MEASUREMENT INSTRUMENT Satellite communications, earth observation, navigation and positioning and control stations indracompany.com SSCMI SPREAD SPECTRUM CHANNEL MEASUREMENT

More information

ANTARES System Design Iris Public Event, 4-5 February 2013 University of Salzburg Unipark, Salzsburg

ANTARES System Design Iris Public Event, 4-5 February 2013 University of Salzburg Unipark, Salzsburg ANTARES System Design Iris Public Event, 4-5 February 2013 University of Salzburg Unipark, Salzsburg 83230917-DOC-TAS-EN-002 Contents 2 SRD requirements and system design Performance requirements and main

More information

CH 4. Air Interface of the IS-95A CDMA System

CH 4. Air Interface of the IS-95A CDMA System CH 4. Air Interface of the IS-95A CDMA System 1 Contents Summary of IS-95A Physical Layer Parameters Forward Link Structure Pilot, Sync, Paging, and Traffic Channels Channel Coding, Interleaving, Data

More information

CH 5. Air Interface of the IS-95A CDMA System

CH 5. Air Interface of the IS-95A CDMA System CH 5. Air Interface of the IS-95A CDMA System 1 Contents Summary of IS-95A Physical Layer Parameters Forward Link Structure Pilot, Sync, Paging, and Traffic Channels Channel Coding, Interleaving, Data

More information

Frequency Synchronization in Global Satellite Communications Systems

Frequency Synchronization in Global Satellite Communications Systems IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 51, NO. 3, MARCH 2003 359 Frequency Synchronization in Global Satellite Communications Systems Qingchong Liu, Member, IEEE Abstract A frequency synchronization

More information

SwiftBroadband Safety Frequency Management

SwiftBroadband Safety Frequency Management SwiftBroadband Safety Frequency Management Presentation to ICAO ACP Working Group F 17-24 September 2012 Contents 1. Overview of SwiftBroadband Safety Service Performance and Benefits 2. How the SwiftBroadband

More information

SC - Single carrier systems One carrier carries data stream

SC - Single carrier systems One carrier carries data stream Digital modulation SC - Single carrier systems One carrier carries data stream MC - Multi-carrier systems Many carriers are used for data transmission. Data stream is divided into sub-streams and each

More information

ETSI SMG#24 TDoc SMG 903 / 97. December 15-19, 1997 Source: SMG2. Concept Group Alpha - Wideband Direct-Sequence CDMA: System Description Summary

ETSI SMG#24 TDoc SMG 903 / 97. December 15-19, 1997 Source: SMG2. Concept Group Alpha - Wideband Direct-Sequence CDMA: System Description Summary ETSI SMG#24 TDoc SMG 903 / 97 Madrid, Spain Agenda item 4.1: UTRA December 15-19, 1997 Source: SMG2 Concept Group Alpha - Wideband Direct-Sequence CDMA: System Description Summary Concept Group Alpha -

More information

RECOMMENDATION ITU-R SA Protection criteria for deep-space research

RECOMMENDATION ITU-R SA Protection criteria for deep-space research Rec. ITU-R SA.1157-1 1 RECOMMENDATION ITU-R SA.1157-1 Protection criteria for deep-space research (1995-2006) Scope This Recommendation specifies the protection criteria needed to success fully control,

More information

SAMARA Satellite communication system for Atm service

SAMARA Satellite communication system for Atm service SAMARA Satellite communication system for Atm service System & Payload Solutions for Small GEO Platforms ESTEC Noordwijk, 6th February 2009 Thales Alenia Space Italia Thales Alenia Space Espana Thales

More information

Feb 7, 2018 A potential new Aeronautical Mobile Satellite Route Service system in the 5 GHz band for the RPAS C2 link ICAO WRC19 Workshop, Mexico

Feb 7, 2018 A potential new Aeronautical Mobile Satellite Route Service system in the 5 GHz band for the RPAS C2 link ICAO WRC19 Workshop, Mexico Feb 7, 2018 A potential new Aeronautical Mobile Satellite Route Service system in the 5 GHz band for the RPAS C2 link ICAO WRC19 Workshop, Mexico City, Mexico Command and Control (C2) link 2 RPA Command

More information

Spread Spectrum Techniques

Spread Spectrum Techniques 0 Spread Spectrum Techniques Contents 1 1. Overview 2. Pseudonoise Sequences 3. Direct Sequence Spread Spectrum Systems 4. Frequency Hopping Systems 5. Synchronization 6. Applications 2 1. Overview Basic

More information

Multiple Access. Difference between Multiplexing and Multiple Access

Multiple Access. Difference between Multiplexing and Multiple Access Multiple Access (MA) Satellite transponders are wide bandwidth devices with bandwidths standard bandwidth of around 35 MHz to 7 MHz. A satellite transponder is rarely used fully by a single user (for example

More information

SYSTEM MODEL. Transmitter Preamble Configuration

SYSTEM MODEL. Transmitter Preamble Configuration ACQUISITION FOR SATELLITE UMTS WITH LARGE FREQUENCY OFFSETS M. C. Reed Applicable Research and Technology Ascom Systec AG, Switzerland Ph: +41 62 889 5293 Fx: +41 62 889 529 mark.reed@ascom.ch Abstract-

More information

Multiple Access System

Multiple Access System Multiple Access System TDMA and FDMA require a degree of coordination among users: FDMA users cannot transmit on the same frequency and TDMA users can transmit on the same frequency but not at the same

More information

Concept of Self-synchronized Automatic Dependent Surveillance using Satellite

Concept of Self-synchronized Automatic Dependent Surveillance using Satellite ACP WGC7/WP AERONAUTICAL COMMUNICATIONS PANEL (ACP) Working Group-C - 7 th meeting Montreal, Canada 19-23 April 2004 Agenda item : Concept of Self-synchronized Automatic Dependent Surveillance using Satellite

More information

UNMANNED AIRCRAFT SYSTEMS STUDY GROUP (UASSG)

UNMANNED AIRCRAFT SYSTEMS STUDY GROUP (UASSG) 04/09/12 UNMANNED AIRCRAFT SYSTEMS STUDY GROUP (UASSG) TENTH MEETING Rio de Janeiro, 24 to 28 September 2012 Agenda Item 3d: C3 SARPs Command and Control (C2) link provision, link certification and requirement

More information

Digital Audio Broadcasting Eureka-147. Minimum Requirements for Terrestrial DAB Transmitters

Digital Audio Broadcasting Eureka-147. Minimum Requirements for Terrestrial DAB Transmitters Digital Audio Broadcasting Eureka-147 Minimum Requirements for Terrestrial DAB Transmitters Prepared by WorldDAB September 2001 - 2 - TABLE OF CONTENTS 1 Scope...3 2 Minimum Functionality...3 2.1 Digital

More information

CROSS-LAYER DESIGN FOR QoS WIRELESS COMMUNICATIONS

CROSS-LAYER DESIGN FOR QoS WIRELESS COMMUNICATIONS CROSS-LAYER DESIGN FOR QoS WIRELESS COMMUNICATIONS Jie Chen, Tiejun Lv and Haitao Zheng Prepared by Cenker Demir The purpose of the authors To propose a Joint cross-layer design between MAC layer and Physical

More information

Final draft ETSI EN V1.1.1 ( )

Final draft ETSI EN V1.1.1 ( ) Final draft EN 301 460-3 V1.1.1 (2000-08) European Standard (Telecommunications series) Fixed Radio Systems; Point-to-multipoint equipment; Part 3: Point-to-multipoint digital radio systems below 1 GHz

More information

Future Concepts for Galileo SAR & Ground Segment. Executive summary

Future Concepts for Galileo SAR & Ground Segment. Executive summary Future Concepts for Galileo SAR & Ground Segment TABLE OF CONTENT GALILEO CONTRIBUTION TO THE COSPAS/SARSAT MEOSAR SYSTEM... 3 OBJECTIVES OF THE STUDY... 3 ADDED VALUE OF SAR PROCESSING ON-BOARD G2G SATELLITES...

More information

CDMA - QUESTIONS & ANSWERS

CDMA - QUESTIONS & ANSWERS CDMA - QUESTIONS & ANSWERS http://www.tutorialspoint.com/cdma/questions_and_answers.htm Copyright tutorialspoint.com 1. What is CDMA? CDMA stands for Code Division Multiple Access. It is a wireless technology

More information

OFDM system: Discrete model Spectral efficiency Characteristics. OFDM based multiple access schemes. OFDM sensitivity to synchronization errors

OFDM system: Discrete model Spectral efficiency Characteristics. OFDM based multiple access schemes. OFDM sensitivity to synchronization errors Introduction - Motivation OFDM system: Discrete model Spectral efficiency Characteristics OFDM based multiple access schemes OFDM sensitivity to synchronization errors 4 OFDM system Main idea: to divide

More information

LDACS1 Overview and Current Status

LDACS1 Overview and Current Status LDACS1 Overview and Current Status Datenlink-Technologien für bemannte und unbemannte Missionen DGLR Symposium München, 21.03.2013 FREQUENTIS 2013 # DGLR Symposium # LDACS1 Overview and Current Status

More information

A feasibility study of CDMA technology for ATC. Summary

A feasibility study of CDMA technology for ATC. Summary International Civil Aviation Organization Tenth Meeting of Working Group C of the Aeronautical Communications Panel Montréal, Canada, 13 17 March 2006 Agenda Item 4: New technologies selection criteria

More information

Course 2: Channels 1 1

Course 2: Channels 1 1 Course 2: Channels 1 1 "You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New York and his head is meowing in Los Angeles. Do you understand this? And radio operates exactly

More information

Proposal for ACP requirements

Proposal for ACP requirements AMCP WG D9-WP/13 Proposal for requirements Presented by the IATA member Prepared by F.J. Studenberg Rockwell-Collins SUMMARY The aim of this paper is to consider what level of is achievable by a VDL radio

More information

Reti di Telecomunicazione. Channels and Multiplexing

Reti di Telecomunicazione. Channels and Multiplexing Reti di Telecomunicazione Channels and Multiplexing Point-to-point Channels They are permanent connections between a sender and a receiver The receiver can be designed and optimized based on the (only)

More information

ECS455: Chapter 4 Multiple Access

ECS455: Chapter 4 Multiple Access ECS455: Chapter 4 Multiple Access 4.9 Async. CDMA: Gold codes and GPS 1 Dr.Prapun Suksompong prapun.com/ecs455 Office Hours: BKD 3601-7 Tuesday 9:30-10:30 Tuesday 13:30-14:30 Thursday 13:30-14:30 Asynchronous

More information

SECTION 2 BROADBAND RF CHARACTERISTICS. 2.1 Frequency bands

SECTION 2 BROADBAND RF CHARACTERISTICS. 2.1 Frequency bands SECTION 2 BROADBAND RF CHARACTERISTICS 2.1 Frequency bands 2.1.1 Use of AMS(R)S bands Note.- Categories of messages, and their relative priorities within the aeronautical mobile (R) service, are given

More information

Wireless Medium Access Control and CDMA-based Communication Lesson 14 CDMA2000

Wireless Medium Access Control and CDMA-based Communication Lesson 14 CDMA2000 Wireless Medium Access Control and CDMA-based Communication Lesson 14 CDMA2000 1 CDMA2000 400 MHz, 800 MHz, 900 MHz, 1700 MHz, 1800 MHz, 1900 MHz, and 2100 MHz Compatible with the cdmaone standard A set

More information

DYNAMIC BANDWIDTH ALLOCATION IN SCPC-BASED SATELLITE NETWORKS

DYNAMIC BANDWIDTH ALLOCATION IN SCPC-BASED SATELLITE NETWORKS DYNAMIC BANDWIDTH ALLOCATION IN SCPC-BASED SATELLITE NETWORKS Mark Dale Comtech EF Data Tempe, AZ Abstract Dynamic Bandwidth Allocation is used in many current VSAT networks as a means of efficiently allocating

More information

CDMA Key Technology. ZTE Corporation CDMA Division

CDMA Key Technology. ZTE Corporation CDMA Division CDMA Key Technology ZTE Corporation CDMA Division CDMA Key Technology Spread Spectrum Communication Code Division Multiple Access Power Control Diversity Soft Handoff Rake Receiver Variable Rate Vocoder

More information

Multiple Access Schemes

Multiple Access Schemes Multiple Access Schemes Dr Yousef Dama Faculty of Engineering and Information Technology An-Najah National University 2016-2017 Why Multiple access schemes Multiple access schemes are used to allow many

More information

Microwave Transponders and Links ACES MWL and beyond

Microwave Transponders and Links ACES MWL and beyond Workshop on Optical Clocks Düsseldorf, 08 / 09 Mar 2007 Microwave Transponders and Links ACES MWL and beyond W. SCHÄFER 1, M.P. HESS 2, 1 TimeTech GmbH, Stuttgart, Germany Wolfgang.Schaefer@timetech.de

More information

Design of Simulcast Paging Systems using the Infostream Cypher. Document Number Revsion B 2005 Infostream Pty Ltd. All rights reserved

Design of Simulcast Paging Systems using the Infostream Cypher. Document Number Revsion B 2005 Infostream Pty Ltd. All rights reserved Design of Simulcast Paging Systems using the Infostream Cypher Document Number 95-1003. Revsion B 2005 Infostream Pty Ltd. All rights reserved 1 INTRODUCTION 2 2 TRANSMITTER FREQUENCY CONTROL 3 2.1 Introduction

More information

Access Methods and Spectral Efficiency

Access Methods and Spectral Efficiency Access Methods and Spectral Efficiency Yousef Dama An-Najah National University Mobile Communications Access methods SDMA/FDMA/TDMA SDMA (Space Division Multiple Access) segment space into sectors, use

More information

RECOMMENDATION ITU-R F.756 * TDMA point-to-multipoint systems used as radio concentrators

RECOMMENDATION ITU-R F.756 * TDMA point-to-multipoint systems used as radio concentrators Rec. ITU-R F.756 1 RECOMMENDATION ITU-R F.756 * TDMA point-to-multipoint systems used as radio concentrators (Question ITU-R 125/9) (1992) The ITU Radiocommunication Assembly, considering a) that analogue

More information

CDMA Principle and Measurement

CDMA Principle and Measurement CDMA Principle and Measurement Concepts of CDMA CDMA Key Technologies CDMA Air Interface CDMA Measurement Basic Agilent Restricted Page 1 Cellular Access Methods Power Time Power Time FDMA Frequency Power

More information

3-2 Configuration for Mobile Communication Satellite System and Broadcasting Satellite Systems

3-2 Configuration for Mobile Communication Satellite System and Broadcasting Satellite Systems 3-2 Configuration for Mobile Communication Satellite System and Broadcasting Satellite Systems KOZONO Shin-ichi To realize S-band mobile satellite communications and broadcasting systems, onboard mission

More information

RECOMMENDATION ITU-R BS

RECOMMENDATION ITU-R BS Rec. ITU-R BS.1350-1 1 RECOMMENDATION ITU-R BS.1350-1 SYSTEMS REQUIREMENTS FOR MULTIPLEXING (FM) SOUND BROADCASTING WITH A SUB-CARRIER DATA CHANNEL HAVING A RELATIVELY LARGE TRANSMISSION CAPACITY FOR STATIONARY

More information

V. Digital Implementation of Satellite Carrier Acquisition and Tracking

V. Digital Implementation of Satellite Carrier Acquisition and Tracking V. Digital Implementation of Satellite Carrier Acquisition and Tracking Most satellite systems utilize TDMA, where multiple users share the same channel by using the bandwidth for discrete intervals of

More information

Characteristics and protection criteria for non-geostationary mobile-satellite service systems operating in the band

Characteristics and protection criteria for non-geostationary mobile-satellite service systems operating in the band Recommendation ITU-R M.2046 (12/2013) Characteristics and protection criteria for non-geostationary mobile-satellite service systems operating in the band 399.9-400.05 MHz M Series Mobile, radiodetermination,

More information

Design and Implementation of a STANAG 5066 Data Rate Change Algorithm for High Data Rate Autobaud Waveforms

Design and Implementation of a STANAG 5066 Data Rate Change Algorithm for High Data Rate Autobaud Waveforms Design and Implementation of a STANAG 5066 Data Rate Change Algorithm for High Data Rate Autobaud Waveforms STEPHAN SCHULZE AND GERHARD P HANCKE Department of Electrical, Electronic and Computer Engineering

More information

ETSI SMG#24 TDoc SMG2 898 / 97 Madrid, Spain December 15-19, 1997 Source: SMG2. Concept Group Delta WB-TDMA/CDMA: Evaluation Summary

ETSI SMG#24 TDoc SMG2 898 / 97 Madrid, Spain December 15-19, 1997 Source: SMG2. Concept Group Delta WB-TDMA/CDMA: Evaluation Summary ETSI SMG#24 TDoc SMG2 898 / 97 Madrid, Spain December 15-19, 1997 Source: SMG2 Concept Group Delta WB-TDMA/CDMA: Evaluation Summary Introduction In the procedure to define the UMTS Terrestrial Radio Access

More information

Rec. ITU-R S RECOMMENDATION ITU-R S.1424

Rec. ITU-R S RECOMMENDATION ITU-R S.1424 Rec. ITU-R S.1424 1 RECOMMENDATION ITU-R S.1424 AVAILABILITY OBJECTIVES FOR A HYPOTHETICAL REFERENCE DIGITAL PATH WHEN USED FOR THE TRANSMISSION OF B-ISDN ASYNCHRONOUS TRANSFER MODE IN THE FSS BY GEOSTATIONARY

More information

Cellular systems 02/10/06

Cellular systems 02/10/06 Cellular systems 02/10/06 Cellular systems Implements space division multiplex: base station covers a certain transmission area (cell) Mobile stations communicate only via the base station Cell sizes from

More information

Satcom for Railway Communications - Benefits in a Bearer Flexible Scenario

Satcom for Railway Communications - Benefits in a Bearer Flexible Scenario Satcom for Railway Communications - Benefits in a Bearer Flexible Scenario ETSI Workshop "Developing the Future Radio for Rail Transport 4-5 July 2018, Sophia Antipolis - France 1 Table of Contents Brief

More information

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1% We are IntechOpen, the first native scientific publisher of Open Access books 3,350 108,000 1.7 M Open access books available International authors and editors Downloads Our authors are among the 151 Countries

More information

UTILIZATION OF AN IEEE 1588 TIMING REFERENCE SOURCE IN THE inet RF TRANSCEIVER

UTILIZATION OF AN IEEE 1588 TIMING REFERENCE SOURCE IN THE inet RF TRANSCEIVER UTILIZATION OF AN IEEE 1588 TIMING REFERENCE SOURCE IN THE inet RF TRANSCEIVER Dr. Cheng Lu, Chief Communications System Engineer John Roach, Vice President, Network Products Division Dr. George Sasvari,

More information

FREQUENCY DECLARATION FOR THE ARGOS-4 SYSTEM. NOAA-WP-40 presents a summary of frequency declarations for the Argos-4 system.

FREQUENCY DECLARATION FOR THE ARGOS-4 SYSTEM. NOAA-WP-40 presents a summary of frequency declarations for the Argos-4 system. Prepared by CNES Agenda Item: I/1 Discussed in WG1 FREQUENCY DECLARATION FOR THE ARGOS-4 SYSTEM NOAA-WP-40 presents a summary of frequency declarations for the Argos-4 system. FREQUENCY DECLARATION FOR

More information

Final Project Report. Abstract. Document information

Final Project Report. Abstract. Document information Final Project Report Document information Project Title Future Satellite Communication System Project Number 15.02.06 Project Manager THALES (TAS-I) Deliverable Name Final Project Report Deliverable ID

More information

MODULATION AND MULTIPLE ACCESS TECHNIQUES

MODULATION AND MULTIPLE ACCESS TECHNIQUES 1 MODULATION AND MULTIPLE ACCESS TECHNIQUES Networks and Communication Department Dr. Marwah Ahmed Outlines 2 Introduction Digital Transmission Digital Modulation Digital Transmission of Analog Signal

More information

From Analogue Broadcast Radio Towards End-to-End Communication

From Analogue Broadcast Radio Towards End-to-End Communication From Analogue Broadcast Radio Towards End-to-End Communication Horst Hering *, Konrad Hofbauer *+ * EUROCONTROL Experimental Centre, Brétigny, France + Graz University of Technology, Austria The capacity

More information

RECOMMENDATION ITU-R M.1654 *

RECOMMENDATION ITU-R M.1654 * Rec. ITU-R M.1654 1 Summary RECOMMENDATION ITU-R M.1654 * A methodology to assess interference from broadcasting-satellite service (sound) into terrestrial IMT-2000 systems intending to use the band 2

More information

RADIO LINK ASPECT OF GSM

RADIO LINK ASPECT OF GSM RADIO LINK ASPECT OF GSM The GSM spectral allocation is 25 MHz for base transmission (935 960 MHz) and 25 MHz for mobile transmission With each 200 KHz bandwidth, total number of channel provided is 125

More information

EE Chapter 14 Communication and Navigation Systems

EE Chapter 14 Communication and Navigation Systems EE 2145230 Chapter 14 Communication and Navigation Systems Two way radio communication with air traffic controllers and tower operators is necessary. Aviation electronics or avionics: Avionic systems cover

More information

Accurate Phase Noise Measurements Made Cost Effective

Accurate Phase Noise Measurements Made Cost Effective MTTS 2008 MicroApps Accurate Phase Noise Measurements Made Cost Effective author : Jason Breitbarth, PhD. Boulder, Colorado, USA Presentation Outline Phase Noise Intro Additive and Absolute Oscillator

More information

An Introduction to Airline Communication Types

An Introduction to Airline Communication Types AN INTEL COMPANY An Introduction to Airline Communication Types By Chip Downing, Senior Director, Aerospace & Defense WHEN IT MATTERS, IT RUNS ON WIND RIVER EXECUTIVE SUMMARY Today s global airliners use

More information

Namaste Link Analysis

Namaste Link Analysis Namaste Link Analysis version 3.3 22 June 2008 by W5NYV, KA9Q, KB5MU k 1.3806503 10 23 := Boltzmann's constant. Tsys 0, 1.. 290 := System noise temperature. N0dB( Tsys) 10 log( k Tsys) := Noise power spectral

More information

An Adaptive Multimode Modulation Modem for Point to Multipoint Broadband Radio

An Adaptive Multimode Modulation Modem for Point to Multipoint Broadband Radio An Adaptive Multimode Modulation Modem for Point to Multipoint Broadband Radio Hardy Halbauer, Marco Tomsu Alcatel Research and Innovation, Holderaeckerstrasse 35, D 7499 Stuttgart,Germany Phone.: +49

More information

OFDMA PHY for EPoC: a Baseline Proposal. Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1

OFDMA PHY for EPoC: a Baseline Proposal. Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1 OFDMA PHY for EPoC: a Baseline Proposal Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1 Supported by Jorge Salinger (Comcast) Rick Li (Cortina) Lup Ng (Cortina) PAGE 2 Outline OFDM: motivation

More information

Coherent detection of weak Mode-S signals from Low Earth Orbit

Coherent detection of weak Mode-S signals from Low Earth Orbit ADS-B over Satellite Coherent detection of weak Mode-S signals from Low Earth Orbit 4S Symposium, June 1 st 2016 in Valletta, Malta Toni Delovski, German Aerospace Center (DLR) Institute of Space Systems

More information

RECOMMENDATION ITU-R BS

RECOMMENDATION ITU-R BS Rec. ITU-R BS.1194-1 1 RECOMMENDATION ITU-R BS.1194-1 SYSTEM FOR MULTIPLEXING FREQUENCY MODULATION (FM) SOUND BROADCASTS WITH A SUB-CARRIER DATA CHANNEL HAVING A RELATIVELY LARGE TRANSMISSION CAPACITY

More information

Medium Access Control. Wireless Networks: Guevara Noubir. Slides adapted from Mobile Communications by J. Schiller

Medium Access Control. Wireless Networks: Guevara Noubir. Slides adapted from Mobile Communications by J. Schiller Wireless Networks: Medium Access Control Guevara Noubir Slides adapted from Mobile Communications by J. Schiller S200, COM3525 Wireless Networks Lecture 4, Motivation Can we apply media access methods

More information

Future Aeronautical Communication System - FCI

Future Aeronautical Communication System - FCI Future Aeronautical Communication System - FCI Nikos Fistas, EUROCONTROL/CND TAKE OFF Conference Salzburg, April 21 st 2009 Content Context-History Current ECTL activities SESAR dimension What s next What

More information

COMPARISON OF SURVEILLANCE TECHNOLOGIES ICAO

COMPARISON OF SURVEILLANCE TECHNOLOGIES ICAO COMPARISON OF SURVEILLANCE TECHNOLOGIES By: M. Paydar ICAO ICAO Seminar on the Implementation of Aeronautical Surveillance and Automation Systems in the SAM Region (San Carlos de Bariloche, Argentina,

More information

Mobile Communications TCS 455

Mobile Communications TCS 455 Mobile Communications TCS 455 Dr. Prapun Suksompong prapun@siit.tu.ac.th Lecture 21 1 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30 Announcements Read Chapter 9: 9.1 9.5 HW5 is posted.

More information

ASSEMBLY 39TH SESSION

ASSEMBLY 39TH SESSION International Civil Aviation Organization WORKING PAPER 1 26/8/16 ASSEMBLY 39TH SESSION TECHNICAL COMMISSION Agenda Item 33: Aviation safety and air navigation monitoring and analysis SURVEILLANCE OF REMOTELY

More information

ECS455: Chapter 4 Multiple Access

ECS455: Chapter 4 Multiple Access ECS455: Chapter 4 Multiple Access Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 1 Office Hours: BKD 3601-7 Tuesday 9:30-10:30 Tuesday 13:30-14:30 Thursday 13:30-14:30 ECS455: Chapter 4 Multiple

More information

ASSEMBLY 39TH SESSION

ASSEMBLY 39TH SESSION International Civil Aviation Organization WORKING PAPER 1 26/8/16 8/9/16 (Information paper) ASSEMBLY 39TH SESSION TECHNICAL COMMISSION Agenda Item 33: Aviation safety and air navigation monitoring and

More information

Performance Analysis and Improvements for the Future Aeronautical Mobile Airport Communications System. Candidate: Paola Pulini Advisor: Marco Chiani

Performance Analysis and Improvements for the Future Aeronautical Mobile Airport Communications System. Candidate: Paola Pulini Advisor: Marco Chiani Performance Analysis and Improvements for the Future Aeronautical Mobile Airport Communications System (AeroMACS) Candidate: Paola Pulini Advisor: Marco Chiani Outline Introduction and Motivations Thesis

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

Radio Transmitters and Receivers Operating in the Land Mobile and Fixed Services in the Frequency Range MHz

Radio Transmitters and Receivers Operating in the Land Mobile and Fixed Services in the Frequency Range MHz Issue 11 June 2011 Spectrum Management and Telecommunications Radio Standards Specification Radio Transmitters and Receivers Operating in the Land Mobile and Fixed Services in the Frequency Range 27.41-960

More information

Opportunistic Vehicular Networks by Satellite Links for Safety Applications

Opportunistic Vehicular Networks by Satellite Links for Safety Applications 1 Opportunistic Vehicular Networks by Satellite Links for Safety Applications A.M. Vegni, C. Vegni, and T.D.C. Little Outline 2 o o o Opportunistic Networking as traditional connectivity in VANETs. Limitation

More information

Transmit Diversity Schemes for CDMA-2000

Transmit Diversity Schemes for CDMA-2000 1 of 5 Transmit Diversity Schemes for CDMA-2000 Dinesh Rajan Rice University 6100 Main St. Houston, TX 77005 dinesh@rice.edu Steven D. Gray Nokia Research Center 6000, Connection Dr. Irving, TX 75240 steven.gray@nokia.com

More information

Multiple Access (3) Required reading: Garcia 6.3, 6.4.1, CSE 3213, Fall 2010 Instructor: N. Vlajic

Multiple Access (3) Required reading: Garcia 6.3, 6.4.1, CSE 3213, Fall 2010 Instructor: N. Vlajic 1 Multiple Access (3) Required reading: Garcia 6.3, 6.4.1, 6.4.2 CSE 3213, Fall 2010 Instructor: N. Vlajic 2 Medium Sharing Techniques Static Channelization FDMA TDMA Attempt to produce an orderly access

More information

Assessment of VDL Mode 4 Frequency, Capacity and Performances

Assessment of VDL Mode 4 Frequency, Capacity and Performances EUROPEAN ORGANISATION FOR THE SAFETY OF AIR NAVIGATION E U R O C O N T R O L Assessment of VDL Mode 4 Frequency, Capacity and Performances TRS041 Deliverable 2.1: Contribution to Frequency Planning Criteria

More information

C Band Telemetry at Airbus Flight Test Centre

C Band Telemetry at Airbus Flight Test Centre C Band Telemetry at Airbus Flight Test Centre Item Type text; Proceedings Authors Fréaud, Gilles Publisher International Foundation for Telemetering Journal International Telemetering Conference Proceedings

More information

Understanding Low Phase Noise Signals. Presented by: Riadh Said Agilent Technologies, Inc.

Understanding Low Phase Noise Signals. Presented by: Riadh Said Agilent Technologies, Inc. Understanding Low Phase Noise Signals Presented by: Riadh Said Agilent Technologies, Inc. Introduction Instabilities in the frequency or phase of a signal are caused by a number of different effects. Each

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY CDMA receiver algorithms 14.2.2006 Tommi Koivisto tommi.koivisto@tkk.fi CDMA receiver algorithms 1 Introduction Outline CDMA signaling Receiver design considerations Synchronization RAKE receiver Multi-user

More information

GNSS Technologies. GNSS Acquisition Dr. Zahidul Bhuiyan Finnish Geospatial Research Institute, National Land Survey

GNSS Technologies. GNSS Acquisition Dr. Zahidul Bhuiyan Finnish Geospatial Research Institute, National Land Survey GNSS Acquisition 25.1.2016 Dr. Zahidul Bhuiyan Finnish Geospatial Research Institute, National Land Survey Content GNSS signal background Binary phase shift keying (BPSK) modulation Binary offset carrier

More information

Ron Turner Technical Lead for Surface Systems. Syracuse, NY. Sensis Air Traffic Systems - 1

Ron Turner Technical Lead for Surface Systems. Syracuse, NY. Sensis Air Traffic Systems - 1 Multilateration Technology Overview Ron Turner Technical Lead for Surface Systems Sensis Corporation Syracuse, NY Sensis Air Traffic Systems - 1 Presentation Agenda Multilateration Overview Transponder

More information

RECOMMENDATION ITU-R M.1639 *

RECOMMENDATION ITU-R M.1639 * Rec. ITU-R M.1639 1 RECOMMENDATION ITU-R M.1639 * Protection criterion for the aeronautical radionavigation service with respect to aggregate emissions from space stations in the radionavigation-satellite

More information

An Overview of the QUALCOMM CDMA Digital Cellular Proposal

An Overview of the QUALCOMM CDMA Digital Cellular Proposal An Overview of the QUALCOMM CDMA Digital Cellular Proposal Zeljko Zilic ELE 543S- Course Project Abstract.0 Introduction This paper describes a proposed Code Division Multiple Access (CDMA) digital cellular

More information

RECOMMENDATION ITU-R M.1181

RECOMMENDATION ITU-R M.1181 Rec. ITU-R M.1181 1 RECOMMENDATION ITU-R M.1181 Rec. ITU-R M.1181 MINIMUM PERFORMANCE OBJECTIVES FOR NARROW-BAND DIGITAL CHANNELS USING GEOSTATIONARY SATELLITES TO SERVE TRANSPORTABLE AND VEHICULAR MOBILE

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 9: Multiple Access, GSM, and IS-95

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 9: Multiple Access, GSM, and IS-95 ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2003 Lecture 9: Multiple Access, GSM, and IS-95 Outline: Two other important issues related to multiple access space division with smart

More information

CARRIER RECOVERY BY RE-MODULATION IN QPSK

CARRIER RECOVERY BY RE-MODULATION IN QPSK CARRIER RECOVERY BY RE-MODULATION IN QPSK PROJECT INDEX : 093 BY: YEGO KIPLETING KENNETH REG. NO. F17/1783/2006 SUPERVISOR: DR. V.K. ODUOL EXAMINER: PROF. ELIJAH MWANGI 24 TH MAY 2011 OBJECTIVES Study

More information

Modern radio techniques

Modern radio techniques Modern radio techniques for probing the ionosphere Receiver, radar, advanced ionospheric sounder, and related techniques Cesidio Bianchi INGV - Roma Italy Ionospheric properties related to radio waves

More information

Satellite Communications. Chapter 9

Satellite Communications. Chapter 9 Satellite Communications Chapter 9 Satellite-Related Terms Earth Stations antenna systems on or near earth Uplink transmission from an earth station to a satellite Downlink transmission from a satellite

More information

Satellite Communications. Chapter 9

Satellite Communications. Chapter 9 Satellite Communications Chapter 9 Satellite-Related Terms Earth Stations antenna systems on or near earth Uplink transmission from an earth station to a satellite Downlink transmission from a satellite

More information

DIGITAL Radio Mondiale (DRM) is a new

DIGITAL Radio Mondiale (DRM) is a new Synchronization Strategy for a PC-based DRM Receiver Volker Fischer and Alexander Kurpiers Institute for Communication Technology Darmstadt University of Technology Germany v.fischer, a.kurpiers @nt.tu-darmstadt.de

More information

0.6 kbits/s, the modulation shall be aviation binary phase shift keying (A-BPSK).

0.6 kbits/s, the modulation shall be aviation binary phase shift keying (A-BPSK). SECTION 3 RF CHANNEL CHARACTERISTICS 3.1 Modulation 3.1.1 Modulation for channel rates 2.4 kbits/s and below. For channel rates of 2.4, 1.2 and 0.6 kbits/s, the modulation shall be aviation binary phase

More information

802.16s SOFTWARE PLATFORM

802.16s SOFTWARE PLATFORM General Software s 802.16s SOFTWARE PLATFORM Architecture Operation system Embedded Linux 1. MAC layer application running on ARM processor 2. PHY layer application running on DSP Application software

More information

DOPPLER VHF OMNIDIRECTIONAL RANGE

DOPPLER VHF OMNIDIRECTIONAL RANGE Supplying ATM systems around the world for more than 30 years Characteristics MONITOR Single/dual Monitor voting And/or Alarm thresholds User configurable Carrier power 3 db (digitally adjustable) Bearing

More information

Average Delay in Asynchronous Visual Light ALOHA Network

Average Delay in Asynchronous Visual Light ALOHA Network Average Delay in Asynchronous Visual Light ALOHA Network Xin Wang, Jean-Paul M.G. Linnartz, Signal Processing Systems, Dept. of Electrical Engineering Eindhoven University of Technology The Netherlands

More information

Robust Synchronization for DVB-S2 and OFDM Systems

Robust Synchronization for DVB-S2 and OFDM Systems Robust Synchronization for DVB-S2 and OFDM Systems PhD Viva Presentation Adegbenga B. Awoseyila Supervisors: Prof. Barry G. Evans Dr. Christos Kasparis Contents Introduction Single Frequency Estimation

More information

ETSI EN V1.4.1 ( )

ETSI EN V1.4.1 ( ) EN 301 213-3 V1.4.1 (2002-02) European Standard (Telecommunications series) Fixed Radio Systems; Point-to-multipoint equipment; Point-to-multipoint digital radio systems in frequency bands in the range

More information