Application Note #2442


 Susan Powell
 10 months ago
 Views:
Transcription
1 Application Note #2442 Tuning with PL and PID Most closedloop servo systems are able to achieve satisfactory tuning with the basic Proportional, Integral, and Derivative (PID) tuning parameters. However, for systems with resonance, this may not be enough, as the D term results in high gain at high frequencies. To manage these resonances, the Control Engineer can use the Pole filter, PL. The following discussion explains the subject in depth. The gain of the compensation filter can be presented by a frequency response graph, shown in Figure 1. Although the filter includes several components such as P, I, and D, it turns out that at any specific frequency, one component has a dominant effect. Therefore, the filter gain can be approximated by the dominant component. Regardless of system frequency, the Proportional gain (KP) is fixed. At low frequency, the role of KI is large in the overall system gain. As the frequency increases, the role of KI decreases. The role of the Derivative filter (KD) is to provide the system with damping. However, KD produces increasing gain at higher frequencies which tends to excite resonances and noise. Axis Gain db KI Gain KP Gain KD Gain Response Frequency ω (log) (rad/sec) Figure 1 System Gain vs. Response Frequency based on PID To overcome this problem, a low pass filter can be introduced that will attenuate the filter gain at higher frequencies. Figure 2 shows the limit imposed on the KD gain term by the addition of PL. 1
2 KD Gain Limit due to PL KI Gain KD Gain Axis Gain db KP Gain Response Frequency ω (log) (rad/sec) Figure 2 KD Gain limit due to PL The remaining question is how to select PL so that it attenuates the noise without degrading the loop stability. The frequency response of the filter (ignore KI for now) is: KD Gain Limit due to PL KD Gain Axis Gain db KP Gain ω d Response Frequency ω ω p (log) (rad/sec) ω d Break frequency between KD and KP ω p Break frequency between KD and PL Figure 3 Break Frequency due to KD/PL 2
3 The break frequencies are the frequencies at which the effect of two terms is equal. For example, at ω d the effect of KD is equal to the effect of KP. At frequencies below ω d, KP is dominant, and above ω d, KD is dominant. The break frequency ω p, the effect of PL equals the effect of KD. For Optimaseries controllers, the formulas to determine the break frequencies are: ω d = KP KD T ω p 1 1 = ln T PL In order for PL not to cancel the benefits of KD, we must maintain ω p > 2.5 ω d Then, to find the largest PL, select ω p = 2.5 ω d 2.5 KP 1 1 = ln KDT T PL 2.5 KP 1 = ln KD PL P L = e max 2.5 KP KD Note: This is an absolute maximum for PL. It does not assure that this is the best value. Example: T = KP = 10 KD = ω d = = 100 rad/s The maximum PL for this system is: PL = e =
4 resulting in: Example: ω p = 250 rad/s. A machine has been designed to rotate a mass at high rpm. Any imbalance in the load is likely to cause periodic fluctuations in the velocity. These fluctuations will be mitigated with the use of PL. First, PID parameters were determined using Windows Servo Design Kit (WSDK). Figure 4 shows a basic step response at low speed. Figure 4 Basic PID tuning To simulate motion that displays the highfrequency speed variances, the motor was commanded to Jog at 200,000 counts/sec. The error is plotted in Figure 5. 4
5 Figure 5 Highspeed Jog with no Pole filter A fairly regular oscillatory error has developed at this frequency. The idea is to use the PL filter to smooth it out. Figure 6 shows a WSDK screenshot of this error after a PL of 0.6 was used. Figure 6 Added Pole filter to highspeed jog 5
6 Note that Figures 5 and 6 have different vertical scales. Figure 7 shows the data exported to a spreadsheet. Some oscillation is still present in the filtered data, but the amplitude has been drastically reduced. Effect of PL on HighVelocity Move Error, counts PL0 PL Time, msec Figure 7 Effect of Pole filter on highvelocity move Summary The Pole filter is a useful tool to help tune out any highspeed oscillations or disturbances in a closedloop system. By using a combination of the mathematical equations in this application note and the experimental method, a control engineer can greatly improve the performance of their machine. If more information is needed, contact the Applications Department at Galil Motion Control at or 6
7 PL (Binary 87) FUNCTION: Pole DESCRIPTION: The PL command adds a lowpass filter in series with the PID compensation. The digital transfer function of the filter is (1  P) / (Z  P) and the equivalent continuous filter is A/(S+A) where A is the filter cutoff frequency: A=(1/T) ln (1/p) rad/sec and T is the sample time. ARGUMENTS: PL n,n,n,n,n,n,n,n or PLA=n where USAGE: n is a positive number in the range 0 to n =? Returns the value of the pole filter for the specified axis. DEFAULTS: While Moving Yes Default Value 0.0 In a Program Yes Default Format 3.0 Not in a Program Yes Controller Usage ALL CONTROLLERS OPERAND USAGE: _PLn contains the value of the pole filter for the specified axis. RELATED COMMANDS: KD Derivative KP KI Proportional Integral Gain EXAMPLES: PL.95,.9,.8,.822 PL?,?,?,? ,0.8997,0.7994, PL? PL,? Set Aaxis Pole to 0.95, Baxis to 0.9, Caxis to 0.8, Daxis pole to Return all Poles Return A Pole only Return B Pole only 7
Introduction. Example. Table of Contents
May17 Application Note #5532 Positioning a Stepper Motor Using Encoder Feedback on an Axis With NonLinear Mechanics Table of Contents Introduction...1 Example...1 Openloop operation as baseline...2
More informationLoad Observer and Tuning Basics
Load Observer and Tuning Basics Feature Use & Benefits Mark Zessin Motion Solution Architect Rockwell Automation PUBLIC INFORMATION Rev 5058CO900E Questions Addressed Why is Motion System Tuning Necessary?
More informationElmo HARmonica Handson Tuning Guide
Elmo HARmonica Handson Tuning Guide September 2003 Important Notice This document is delivered subject to the following conditions and restrictions: This guide contains proprietary information belonging
More informationTable of Contents. Tuning Ultrasonic Ceramic Motors with AcceleraSeries Motion Controller. Sept17. Application Note # 5426
Sept17 Application Note # 5426 Tuning Ultrasonic Ceramic Motors with AcceleraSeries Motion Controller This application note gives some tips for tuning ultrasonic ceramic motors using Galil s ceramic
More informationFundamentals of Servo Motion Control
Fundamentals of Servo Motion Control The fundamental concepts of servo motion control have not changed significantly in the last 50 years. The basic reasons for using servo systems in contrast to open
More informationANNA UNIVERSITY :: CHENNAI MODEL QUESTION PAPER(VSEMESTER) B.E. ELECTRONICS AND COMMUNICATION ENGINEERING EC334  CONTROL SYSTEMS
ANNA UNIVERSITY :: CHENNAI  600 025 MODEL QUESTION PAPER(VSEMESTER) B.E. ELECTRONICS AND COMMUNICATION ENGINEERING EC334  CONTROL SYSTEMS Time: 3hrs Max Marks: 100 Answer all Questions PART  A (10
More informationThe Discussion of this exercise covers the following points: Angular position control block diagram and fundamentals. Power amplifier 0.
Exercise 6 Motor Shaft Angular Position Control EXERCISE OBJECTIVE When you have completed this exercise, you will be able to associate the pulses generated by a position sensing incremental encoder with
More informationMTE 360 Automatic Control Systems University of Waterloo, Department of Mechanical & Mechatronics Engineering
MTE 36 Automatic Control Systems University of Waterloo, Department of Mechanical & Mechatronics Engineering Laboratory #1: Introduction to Control Engineering In this laboratory, you will become familiar
More informationA Case Study of Rotating Sonar Sensor Application in Unmanned Automated Guided Vehicle
A Case Study of Rotating Sonar Sensor Application in Unmanned Automated Guided Vehicle Pravin Chandak, Ming Cao and Ernest L. Hall University of Cincinnati Center for Robotics University of Cincinnati
More informationDEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY EEE 402 : CONTROL SYSTEMS SESSIONAL
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY EEE 402 : CONTROL SYSTEMS SESSIONAL Experiment No. 1(a) : Modeling of physical systems and study of
More informationIntroduction to Servo Control & PID Tuning
Introduction to Servo Control & PID Tuning Presented to: Agenda Introduction to Servo Control Theory PID Algorithm Overview Tuning & General System Characterization Oscillation Characterization Feedforward
More informationSERVOSTAR Position Feedback Resolution and Noise
APPLICATION NOTE ASU010H Issue 1 SERVOSTAR Position Resolution and Noise Position feedback resolution has two effects on servo system applications. The first effect deals with the positioning accuracy
More informationStudy of Inductive and Capacitive Reactance and RLC Resonance
Objective Study of Inductive and Capacitive Reactance and RLC Resonance To understand how the reactance of inductors and capacitors change with frequency, and how the two can cancel each other to leave
More informationA Machine Tool Controller using Cascaded Servo Loops and Multiple Feedback Sensors per Axis
A Machine Tool Controller using Cascaded Servo Loops and Multiple Sensors per Axis David J. Hopkins, Timm A. Wulff, George F. Weinert Lawrence Livermore National Laboratory 7000 East Ave, L792, Livermore,
More informationServo Tuning. Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa. Thanks to Dr.
Servo Tuning Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa Thanks to Dr. Jacob Tal Overview Closed Loop Motion Control System Brain Brain Muscle
More informationInternational Journal of Research in Advent Technology Available Online at:
OVERVIEW OF DIFFERENT APPROACHES OF PID CONTROLLER TUNING Manju Kurien 1, Alka Prayagkar 2, Vaishali Rajeshirke 3 1 IS Department 2 IE Department 3 EV DEpartment VES Polytechnic, Chembur,Mumbai 1 manjulibu@gmail.com
More informationSmooth rotation. An adaptive algorithm kills jerky motions in motors.
Page 1 of 4 Copyright 2004 Penton Media, Inc., All rights reserved. Printing of this document is for personal use only. For reprints of this or other articles, click here Smooth rotation An adaptive algorithm
More informationMotomatic Servo Control
Exercise 2 Motomatic Servo Control This exercise will take two weeks. You will work in teams of two. 2.0 Prelab Read through this exercise in the lab manual. Using Appendix B as a reference, create a block
More informationModule 7 : Design of Machine Foundations. Lecture 31 : Basics of soil dynamics [ Section 31.1: Introduction ]
Lecture 31 : Basics of soil dynamics [ Section 31.1: Introduction ] Objectives In this section you will learn the following Dynamic loads Degrees of freedom Lecture 31 : Basics of soil dynamics [ Section
More informationDigital Control of MS150 Modular Position Servo System
IEEE NECEC Nov. 8, 2007 St. John's NL 1 Digital Control of MS150 Modular Position Servo System Farid Arvani, Syeda N. Ferdaus, M. Tariq Iqbal Faculty of Engineering, Memorial University of Newfoundland
More informationLaboratory PID Tuning Based On Frequency Response Analysis. 2. be able to evaluate system performance for empirical tuning method;
Laboratory PID Tuning Based On Frequency Response Analysis Objectives: At the end, student should 1. appreciate a systematic way of tuning PID loop by the use of process frequency response analysis; 2.
More informationBasic Guidelines for Tuning With The XPS Motion Controller
1.0 Concept of the DC Servo The XPS positions the stage by optimizing error response, accuracy, and stability by scaling measured position error by the correctors Proportional, Integral, and Derivative
More informationUpgrading from Stepper to Servo
Upgrading from Stepper to Servo Switching to Servos Provides Benefits, Here s How to Reduce the Cost and Challenges Byline: Scott Carlberg, Motion Product Marketing Manager, Yaskawa America, Inc. The customers
More informationBasic Tuning for the SERVOSTAR 400/600
Basic Tuning for the SERVOSTAR 400/600 Welcome to Kollmorgen s interactive tuning chart. The first three sheets of this document provide a flow chart to describe tuning the servo gains of a SERVOSTAR 400/600.
More informationTCS3 SERVO SYSTEM: Proposed Design
UNIVERSITY OF HAWAII INSTITUTE FOR ASTRONOMY 2680 Woodlawn Dr. Honolulu, HI 96822 NASA Infrared Telescope Facility TCS3 SERVO SYSTEM: Proposed Design.......... Fred Keske June 7, 2004 Version 1.2 1 INTRODUCTION...
More informationEngineering Reference
Engineering Reference Linear & Rotary Positioning Stages Table of Contents 1. Linear Positioning Stages...269 1.1 Precision Linear Angular Dynamic 1.2 Loading Accuracy Repeatability Resolution Straightness
More informationDC Motor Speed Control using PID Controllers
"EE 616 Electronic System Design Course Project, EE Dept, IIT Bombay, November 2009" DC Motor Speed Control using PID Controllers Nikunj A. Bhagat (08307908) nbhagat@ee.iitb.ac.in, Mahesh Bhaganagare (CEP)
More informationPID Controller tuning and implementation aspects for building thermal control
PID Controller tuning and implementation aspects for building thermal control Kafetzis G. (Technical University of Crete) Patelis P. (Technical University of Crete) Tripolitakis E.I. (Technical University
More informationResponse spectrum Time history Power Spectral Density, PSD
A description is given of one way to implement an earthquake test where the test severities are specified by time histories. The test is done by using a biaxial computer aided servohydraulic test rig.
More informationCHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION
CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION Broadly speaking, system identification is the art and science of using measurements obtained from a system to characterize the system. The characterization
More informationIntroduction to PID Control
Introduction to PID Control Introduction This introduction will show you the characteristics of the each of proportional (P), the integral (I), and the derivative (D) controls, and how to use them to obtain
More informationHighBandwidth Force Control
HighBandwidth Force Control How to use Aerotech linear motors to servo on a force input/output signal from a force gage. By Matt Davis, Traditionally linear stages are used with encoders to position to
More informationSxWEB PID algorithm experimental tuning
SxWEB PID algorithm experimental tuning rev. 0.3, 13 July 2017 Index 1. PID ALGORITHM SX2WEB24 SYSTEM... 2 2. PID EXPERIMENTAL TUNING IN THE SX2WEB24... 3 2.1 OPEN LOOP TUNING PROCEDURE... 3 2.1.1 How
More informationADJUSTING SERVO DRIVE COMPENSATION George W. Younkin, P.E. Life Fellow IEEE Industrial Controls Research, Inc. Fond du Lac, Wisconsin
ADJUSTING SERVO DRIVE COMPENSATION George W. Younkin, P.E. Life Fello IEEE Industrial Controls Research, Inc. Fond du Lac, Wisconsin All industrial servo drives require some form of compensation often
More information1.What is frequency response? A frequency responses the steady state response of a system when the input to the system is a sinusoidal signal.
Control Systems (EC 334) 1.What is frequency response? A frequency responses the steady state response of a system when the input to the system is a sinusoidal signal. 2.List out the different frequency
More informationSensors and Sensing Motors, Encoders and Motor Control
Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 13.11.2014
More informationPHYS225 Lecture 15. Electronic Circuits
PHYS225 Lecture 15 Electronic Circuits Last lecture Difference amplifier Differential input; single output Good CMRR, accurate gain, moderate input impedance Instrumentation amplifier Differential input;
More informationImplementation and Simulation of Digital Control Compensators from Continuous Compensators Using MATLAB Software
Implementation and Simulation of Digital Control Compensators from Continuous Compensators Using MATLAB Software MAHMOUD M. EL FANDI Electrical and Electronic Dept. University of Tripoli/Libya m_elfandi@hotmail.com
More informationA study of Vibration Analysis for Gearbox Casing Using Finite Element Analysis
A study of Vibration Analysis for Gearbox Casing Using Finite Element Analysis M. Sofian D. Hazry K. Saifullah M. Tasyrif K.Salleh I.Ishak Autonomous System and Machine Vision Laboratory, School of Mechatronic,
More informationEVALUATION ALGORITHM BASED ON PID CONTROLLER DESIGN FOR THE UNSTABLE SYSTEMS
EVALUATION ALGORITHM BASED ON PID CONTROLLER DESIGN FOR THE UNSTABLE SYSTEMS Erliza Binti Serri 1, Wan Ismail Ibrahim 1 and Mohd Riduwan Ghazali 2 1 Sustanable Energy & Power Electronics Research, FKEE
More informationUsing CME 2 with AccelNet
Using CME 2 with AccelNet Software Installation Quick Copy (with Amplifier file) Quick Setup (with motor data) Offline Virtual Amplifier (with no amplifier connected) Screen Guide Page 1 Table of Contents
More informationDRC016. Tracking Controls of a Laser Positioning System
DRC6 The 9th Conference of Mechanical Engineering Network of Thailand 9 October 5, Phuket, Thailand Tracking Controls of a Laser Positioning System Supavut Chantranuwathana * Ratchatin Chanchareon Jaruboot
More informationHighspeed and Highprecision Motion Controller
Highspeed and Highprecision Motion Controller  KSMC  Definition HighSpeed Axes move fast Execute the controller ( position/velocity loop, current loop ) at high frequency HighPrecision High positioning
More informationControlling an AC Motor
Controlling an AC Motor Elias Badillo Ibarra James Smith December 7, 2010 EE 554 Embedded Control Systems Abstract The goal of this project was to implement a PID motor controller to control velocity in
More informationSystem Inputs, Physical Modeling, and Time & Frequency Domains
System Inputs, Physical Modeling, and Time & Frequency Domains There are three topics that require more discussion at this point of our study. They are: Classification of System Inputs, Physical Modeling,
More informationA Comparative Study on Speed Control of D.C. Motor using Intelligence Techniques
International Journal of Electronic and Electrical Engineering. ISSN 09742174, Volume 7, Number 4 (2014), pp. 431436 International Research Publication House http://www.irphouse.com A Comparative Study
More informationClass #16: Experiment Matlab and Data Analysis
Class #16: Experiment Matlab and Data Analysis Purpose: The objective of this experiment is to add to our Matlab skill set so that data can be easily plotted and analyzed with simple tools. Background:
More informationA Comparison And Evaluation of common Pid Tuning Methods
University of Central Florida Electronic Theses and Dissertations Masters Thesis (Open Access) A Comparison And Evaluation of common Pid Tuning Methods 2007 Justin Youney University of Central Florida
More informationAC : A STUDENTORIENTED CONTROL LABORATORY US ING PROGRAM CC
AC 2011490: A STUDENTORIENTED CONTROL LABORATORY US ING PROGRAM CC Ziqian Liu, SUNY Maritime College Ziqian Liu received the Ph.D. degree from the Southern Illinois University Carbondale in 2005. He
More informationPOSITION TRACKING PERFORMANCE OF AC SERVOMOTOR BASED ON NEW MODIFIED REPETITIVE CONTROL STRATEGY
www.arpapress.com/volumes/vol10issue1/ijrras_10_1_16.pdf POSITION TRACKING PERFORMANCE OF AC SERVOMOTOR BASED ON NEW MODIFIED REPETITIVE CONTROL STRATEGY M. Vijayakarthick 1 & P.K. Bhaba 2 1 Department
More informationUser Guide IRMCS3041 System Overview/Guide. Aengus Murray. Table of Contents. Introduction
User Guide 0607 IRMCS3041 System Overview/Guide By Aengus Murray Table of Contents Introduction... 1 IRMCF341 Application Circuit... 2 Sensorless Control Algorithm... 4 Velocity and Current Control...
More informationLab 9 AC FILTERS AND RESONANCE
091 Name Date Partners ab 9 A FITES AND ESONANE OBJETIES OEIEW To understand the design of capacitive and inductive filters To understand resonance in circuits driven by A signals In a previous lab, you
More informationChapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.
Chapter 14 Oscillations 147 Damped Harmonic Motion Damped harmonic motion is harmonic motion with a frictional or drag force. If the damping is small, we can treat it as an envelope that modifies the
More informationBode Plots. Hamid Roozbahani
Bode Plots Hamid Roozbahani A Bode plot is a graph of the transfer function of a linear, timeinvariant system versus frequency, plotted with a logfrequency axis, to show the system's frequency response.
More informationIntegrators, differentiators, and simple filters
BEE 233 Laboratory4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.
More informationMEM 01 DC MOTORBASED SERVOMECHANISM WITH TACHOMETER FEEDBACK
MEM 01 DC MOTORBASED SERVOMECHANISM WITH TACHOMETER FEEDBACK Motivation Closing a feedback loop around a DC motor to obtain motor shaft position that is proportional to a varying electrical signal is
More informationEEL2216 Control Theory CT2: Frequency Response Analysis
EEL2216 Control Theory CT2: Frequency Response Analysis 1. Objectives (i) To analyse the frequency response of a system using Bode plot. (ii) To design a suitable controller to meet frequency domain and
More informationMETHODS TO IMPROVE DYNAMIC RESPONSE OF POWER FACTOR PREREGULATORS: AN OVERVIEW
METHODS TO IMPROE DYNAMIC RESPONSE OF POWER FACTOR PREREGULATORS: AN OERIEW G. Spiazzi*, P. Mattavelli**, L. Rossetto** *Dept. of Electronics and Informatics, **Dept. of Electrical Engineering University
More informationPole, zero and Bode plot
Pole, zero and Bode plot EC04 305 Lecture notes YESAREKEY December 12, 2007 Authored by: Ramesh.K Pole, zero and Bode plot EC04 305 Lecture notes A rational transfer function H (S) can be expressed as
More informationLab 9 AC FILTERS AND RESONANCE
151 Name Date Partners ab 9 A FITES AND ESONANE OBJETIES OEIEW To understand the design of capacitive and inductive filters To understand resonance in circuits driven by A signals In a previous lab, you
More informationLCR Parallel Circuits
Module 10 AC Theory Introduction to What you'll learn in Module 10. The LCR Parallel Circuit. Module 10.1 Ideal Parallel Circuits. Recognise ideal LCR parallel circuits and describe the effects of internal
More informationBrett Browning and. Spring 2011
Brett Browning and M. Bernardine Dias Spring 2011 Lab #1 feedback Final project overview Final project teams Lab #2 overview Slide 2 Cluttered racing task Probably want to be able to accelerate fast, brake
More informationEngine Control Workstation Using Simulink / DSP. Platform. Mark Bright, Mike Donaldson. Advisor: Dr. Dempsey
Engine Control Workstation Using Simulink / DSP Platform By Mark Bright, Mike Donaldson Advisor: Dr. Dempsey An Engine Control Workstation was designed to simulate the thermal environments found in liquidbased
More informationMEM01: DCMotor Servomechanism
MEM01: DCMotor Servomechanism Interdisciplinary Automatic Controls Laboratory  ME/ECE/CHE 389 February 5, 2016 Contents 1 Introduction and Goals 1 2 Description 2 3 Modeling 2 4 Lab Objective 5 5 Model
More informationDesign of PID Control System Assisted using LabVIEW in Biomedical Application
Design of PID Control System Assisted using LabVIEW in Biomedical Application N. H. Ariffin *,a and N. Arsad b Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built
More informationMTY (81)
This manual describes the option "d" of the SMTBD1 amplifier: Master/slave electronic gearing. The general information about the digital amplifier commissioning are described in the standard SMTBD1 manual.
More informationDesigning PID controllers with Matlab using frequency response methodology
Designing PID controllers with Matlab using frequency response methodology by Frank Owen, PhD, PE polyxengineering, Inc. San Luis Obispo, California 16 March 2017 (www.polyxengineering.com) This paper
More informationExperiment VI: The LRC Circuit and Resonance
Experiment VI: The ircuit and esonance I. eferences Halliday, esnick and Krane, Physics, Vol., 4th Ed., hapters 38,39 Purcell, Electricity and Magnetism, hapter 7,8 II. Equipment Digital Oscilloscope Digital
More informationSystem on a Chip. Prof. Dr. Michael Kraft
System on a Chip Prof. Dr. Michael Kraft Lecture 4: Filters Filters General Theory Continuous Time Filters Background Filters are used to separate signals in the frequency domain, e.g. remove noise, tune
More informationRotary Motion Servo Plant: SRV02. Rotary Experiment #02: Position Control. SRV02 Position Control using QuaRC. Student Manual
Rotary Motion Servo Plant: SRV02 Rotary Experiment #02: Position Control SRV02 Position Control using QuaRC Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1 3. OVERVIEW OF FILES...2
More informationOperational Amplifiers
Operational Amplifiers Continuing the discussion of Op Amps, the next step is filters. There are many different types of filters, including low pass, high pass and band pass. We will discuss each of the
More informationLECTURE FOUR Time Domain Analysis Transient and SteadyState Response Analysis
LECTURE FOUR Time Domain Analysis Transient and SteadyState Response Analysis 4.1 Transient Response and SteadyState Response The time response of a control system consists of two parts: the transient
More informationApplication Note # 5448
Application Note # 5448 Shunt Regulator Operation What is a shunt regulator? A shunt regulator is an electrical device used in motion control systems to regulate the voltage level of the DC bus supply
More informationbinary sensors and actuators (such as an on/off controller) are generally more reliable and less expensive
Process controls are necessary for designing safe and productive plants. A variety of process controls are used to manipulate processes, however the most simple and often most effective is the PID controller.
More informationLab 4 An FPGA Based Digital System Design ReadMeFirst
Lab 4 An FPGA Based Digital System Design ReadMeFirst Lab Summary This Lab introduces a number of Matlab functions used to design and test a lowpass IIR filter. As you have seen in the previous lab, Simulink
More informationand using the step routine on the closed loop system shows the step response to be less than the maximum allowed 20%.
Phase (deg); Magnitude (db) 385 Bode Diagrams 8 Gm = Inf, Pm=59.479 deg. (at 62.445 rad/sec) 6 4 22 46 81 1214 1618 11 1 1 1 1 2 1 3 and using the step routine on the closed loop system shows
More information9LEUDWLRQ 0HDVXUHPHQW DQG $QDO\VLV
9LEUDWLRQ 0HDVXUHPHQW DQG $QDO\VLV l l l l l l l l Why Analysis Spectrum or Overall Level Filters Linear vs. Log Scaling Amplitude Scales Parameters The Detector/Averager Signal vs. System analysis BA
More informationMinimizing Input Filter Requirements In Military Power Supply Designs
Keywords Venable, frequency response analyzer, MILSTD461, input filter design, open loop gain, voltage feedback loop, ACDC, transfer function, feedback control loop, maximize attenuation output, impedance,
More informationAlternating Current. Slide 2 / 69. Slide 1 / 69. Slide 3 / 69. Slide 4 / 69. Slide 6 / 69. Slide 5 / 69. Topics to be covered
Slide 1 / 69 lternating urrent Sources of alternating EMF ircuits and Impedance Slide 2 / 69 Topics to be covered LR Series ircuits Resonance in ircuit Oscillations Slide 3 / 69 Sources of lternating EMF
More informationProcidia Control Solutions Dead Time Compensation
APPLICATION DATA Procidia Control Solutions Dead Time Compensation AD353127 Rev 2 April 2012 This application data sheet describes dead time compensation methods. A configuration can be developed within
More informationChapter 4 SOFT SWITCHED PUSHPULL CONVERTER WITH OUTPUT VOLTAGE DOUBLER
61 Chapter 4 SOFT SWITCHED PUSHPULL CONVERTER WITH OUTPUT VOLTAGE DOUBLER S.No. Name of the SubTitle Page No. 4.1 Introduction 62 4.2 Single output primary ZVS pushpull Converter 62 4.3 MultiOutput
More informationFREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY
FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY In this experiment we will analytically determine and measure the frequency response of networks containing resistors, AC source/sources, and energy storage
More informationDMC41x3 USER MANUAL. Manual Rev. Beta_1.0a. By Galil Motion Control, Inc.
USER MANUAL DMC41x3 Manual Rev. Beta_1.0a By Galil Motion Control, Inc. Galil Motion Control, Inc. 270 Technology Way Rocklin, California 95765 Phone: (916) 6260101 Fax: (916) 6260102 Email Address:
More informationPROCESS DYNAMICS AND CONTROL
PROCESS DYNAMICS AND CONTROL CHBE306, Fall 2017 Professor Dae Ryook Yang Dept. of Chemical & Biological Engineering Korea University Korea University 11 Objectives of the Class What is process control?
More informationInput Filter Design for Switching Power Supplies: Written by Michele Sclocchi Application Engineer, National Semiconductor
Input Filter Design for Switching Power Supplies: Written by Michele Sclocchi Michele.Sclocchi@nsc.com Application Engineer, National Semiconductor The design of a switching power supply has always been
More informationIntroduction to Signals and Systems Lecture #9  Frequency Response. Guillaume Drion Academic year
Introduction to Signals and Systems Lecture #9  Frequency Response Guillaume Drion Academic year 20172018 1 Transmission of complex exponentials through LTI systems Continuous case: LTI system where
More informationAutomatic Controller Dynamic Specification (Summary of Version 1.0, 11/93)
The contents of this document are copyright EnTech Control Engineering Inc., and may not be reproduced or retransmitted in any form without the express consent of EnTech Control Engineering Inc. Automatic
More informationLab 12 Microwave Optics.
b Lab 12 Microwave Optics. CAUTION: The output power of the microwave transmitter is well below standard safety levels. Nevertheless, do not look directly into the microwave horn at close range when the
More informationBUCK Converter Control Cookbook
BUCK Converter Control Cookbook Zach Zhang, Alpha & Omega Semiconductor, Inc. A Buck converter consists of the power stage and feedback control circuit. The power stage includes power switch and output
More informationPoles and Zeros of H(s), Analog Computers and Active Filters
Poles and Zeros of H(s), Analog Computers and Active Filters Physics116A, Draft10/28/09 D. Pellett LRC Filter Poles and Zeros Pole structure same for all three functions (two poles) HR has two poles and
More informationSHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 4. Random Vibration Characteristics. By Tom Irvine
SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 4. Random Vibration Characteristics By Tom Irvine Introduction Random Forcing Function and Response Consider a turbulent airflow passing over an aircraft
More informationAC Theory and Electronics
AC Theory and Electronics An Alternating Current (AC) or Voltage is one whose amplitude is not constant, but varies with time about some mean position (value). Some examples of AC variation are shown below:
More informationAnalog Vs. Digital Weighing Systems
Analog Vs. Digital Weighing Systems When sizing up a weighing application there are many options to choose from. With modern technology and the advancements in A/D converter technology the performance
More informationThe Effect of Fuzzy Logic Controller on Power System Stability; a Comparison between Fuzzy Logic Gain Scheduling PID and Conventional PID Controller
The Effect of Fuzzy Logic Controller on Power System Stability; a Comparison between Fuzzy Logic Gain Scheduling PID and Conventional PID Controller M. Ahmadzadeh, and S. Mohammadzadeh AbstractThis
More informationREVERBERATION CHAMBER FOR EMI TESTING
1 REVERBERATION CHAMBER FOR EMI TESTING INTRODUCTION EMI Testing 1. Whether a product is intended for military, industrial, commercial or residential use, while it must perform its intended function in
More informationExperiment 3 Topic: Dynamic System Response Week A Procedure
Experiment 3 Topic: Dynamic System Response Week A Procedure Laboratory Assistant: Email: Office Hours: LEX3 Website: Brock Hedlund bhedlund@nd.edu 11/05 11/08 5 pm to 6 pm in B14 http://www.nd.edu/~jott/measurements/measurements_lab/e3
More informationModule 08 Controller Designs: Compensators and PIDs
Module 08 Controller Designs: Compensators and PIDs Ahmad F. Taha EE 3413: Analysis and Desgin of Control Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha March 31, 2016 Ahmad
More informationComparative Study of PID and FOPID Controller Response for Automatic Voltage Regulation
IOSR Journal of Engineering (IOSRJEN) ISSN (e): 22503021, ISSN (p): 22788719 Vol. 04, Issue 09 (September. 2014), V5 PP 4148 www.iosrjen.org Comparative Study of PID and FOPID Controller Response for
More informationSpacecraft Pitch PID Controller Tunning using Ziegler Nichols Method
IOR Journal of Electrical and Electronics Engineering (IORJEEE) ein: 22781676,pIN: 23203331, Volume 9, Issue 6 Ver. I (Nov Dec. 2014), PP 6267 pacecraft Pitch PID Controller Tunning using Ziegler
More information