ANNA UNIVERSITY :: CHENNAI MODEL QUESTION PAPER(V-SEMESTER) B.E. ELECTRONICS AND COMMUNICATION ENGINEERING EC334 - CONTROL SYSTEMS

Size: px
Start display at page:

Download "ANNA UNIVERSITY :: CHENNAI MODEL QUESTION PAPER(V-SEMESTER) B.E. ELECTRONICS AND COMMUNICATION ENGINEERING EC334 - CONTROL SYSTEMS"

Transcription

1 ANNA UNIVERSITY :: CHENNAI MODEL QUESTION PAPER(V-SEMESTER) B.E. ELECTRONICS AND COMMUNICATION ENGINEERING EC334 - CONTROL SYSTEMS Time: 3hrs Max Marks: 100 Answer all Questions PART - A (10 x 2 = 20 Marks) 1. Derive the transfer function of the network shown in fig Write the differential equations of the mechanical system shown in fig Calculate the time response of the following system if the input r(t) is an unit impulse 4. Plot the time response of the first order system to a unit step and unit ramp input. 5. Write the transfer function of a PID controller. 6. Write the Hurwitz determinant for the system given by the characteristic equation 4s 3 + 2s 2 + 5s + 7 = 0 7. State the magnitude criterion with reference to a root locus plot.

2 8. Draw the frequency magnitude plot for an under damped and over damped second order system. 9. Mention any two functions of a compensator in a control system. 10. Draw the circuit of a lead compensator. PART - B (5 x 16 = 80 Marks) 11. The polarized solenoids shown in fig 3 produces a force proportional to the current in the coil. The coil has resistance R and inductance L. Write the differential equations of the system 12.a)i) Derive an expression for the peak over shoot of a second order system for an unit step input. ii) A mechanical vibratory system and its response when 2kg of force(step input) applied to the system is shown in fig 4. Determine the M, B and K of the system. (OR) 12.b) For the control system shown in fig 5, find the steady state error without the proportional and derivative (PD) controller for a unit ramp input. Show that with the PD controller this error can be made to zero for a specific

3 value of K. 13.a) For a feedback control system G(s) = K / (s+1) (s+3) (s+4) Calculate the value of K at which the system would become oscillatory in the closed loop [H(s) = 1], and obtain the frequency of such oscillations. Also, find the value of K so that the real parts of all the roots will be less than - 1. (OR) 13.b) Sketch the root locus plot of a unity feedback system with an open loop transfer function G(s) = K / s (s+2) (s+4) Determine the value of K so that the dominant pair of complex poles of the system has a damping ratio of a)i) Show that the constant M locus in G- plane is a circle for all values of M except M=1 ii) The open loop transfer function of a unity feedback control system is G(s) = K / s (1+0.1s) (1+s) Draw the Bode diagram and analyze the stability of the system for K =10. (OR) 14.b) The open loop transfer function of a feedback system is given by G(s) = K / s (T1s+1) (T2s+1) Draw the Nyquist plot. Derive an expression for gain K in terms of T1, T2 and specific gain margin G m. 15.a) A Unity feedback system has an open loop transfer function of G(s) = K / s (s+1) (s+5) Draw the root locus plot and determine the value of K to give a damping ratio of 0.3 A network having a transfer function of 10(1 +10s) /(1 +100s) is now introduced in tandem. Find the new value of K, which gives the same damping ratio for the closed -loop response. Compare the velocity error constant and settling time of the original and the compensated systems 15.b) A servomechanism has an open loop transfer function of G(s) = 10 / s (1+0.5s) (1+0.1s) Draw the Bode plot and determine the phase and gain margin. A networks having the transfer function (1+0.23s)/( s) is now introduced in tandem. Determine the new gain and phase margins. Comment upon the improvement in system response caused by the network

4 EC 227 Control Systems Time: 3 Hours Max. Marks: Answer Question No. 1 ( Part A) and any four of the remaining seven (Part B) 2. All parts of a Question must be answered in one place, otherwise they will not be valued. 3. Figures in the right hand margin indicate marks allotted. PART A 1. Answer the following. 10x2=20 a) What are the advantages of a closed-loop system? b) Compare the terms stability & sensitivity. c) The impulse response of a system is e-0.2t. Determine the transfer function of the system. d) How does the performance of an automatic control system is effected by a positive feedback signal. e) State Mason s gain formula. f) Define rise time and settling time. g) What are the effects of adding poles and zeros to the transfer function? h) State the advantages of frequency domain analysis. i) What will happen if a zero is added in the forward path of a second-order system? j) Define a series-parallel compensation. PART B Answer any four of the following. If you attempt more than four questions, only the first four in order will be valued. 2. Obtain the overall transfer function C/R from the signal flow graph shown: (10) 3. a) Determine the mathematical model for the system shown in the figure. (5) b) Derive the transfer function of field controlled dc servomotor. (5) 4. Measurements conducted on a servomechanism show the system response to be C(t)= e-60t 1.2 e-10t when subjected to a unit-step input. a) Obtain the expression for the closed-loop transfer function.

5 b) Determine the undamped natural frequency and damping ratio of the system. (10) 5. Sketch the root locus diagram for the feedback control system having the following open-loop transfer function. Assume that K will take all positive values from 0 to. G(s) = (10) 6. Draw the Bode plot of a closed-loop system which has the open-loop transfer function. G(s)H(s) = Determine the maximum value of T for system to be stable. (10) 7. Write short notes on the following: a) Effect of derivative control on transient and steady state performance of f.b.control system. (5) b) Discuss lead compensator. Sketch the Bode plot of a lead compensator and give the design steps of a lead compensator. (5) 8. a) Explain Routh-Hurwitz criterion. (4) b) Investigate the stability of the system with characteristic equation. s5+2s4+24s3+48s2 25s 50 = 0 Also find all the roots of this equation. (6)

6 DEGREE EXAMINATION, Fifth Semester Electronics and Communication Engineering EC CONTROL SYSTEMS (Regulation 2004) Time: Three hours (Provide Polar graph, Answer ALL questions. PART A- (10 x2=20 marks) Maximum: 100 marks 1. Differentiate between positional servomechanism and rate servomechanism. 2. What is an error detector in a control system? 3. Write the force equation for the system shown: 4. Find the output for the block diagram given below:

7 How the transient response of a system with feedback differ to that without. feedback? 6. Why are differentiators generally not used in systems? 7. State the effect of addition of poles in a Root Locus. 8. Nichols chart can be used to determine response. 9. Draw the polar plot of a lag lead compensator. 10. A tachometer has a gain of 0.05 Determine the output voltage when the shaft speed is 20 PART B-(5x 16= 80 marks) 11. (a) Obtain the analogous electrical network for the system given below:

8 Explain the rules for block diagram reduction and hence find the transfer function for the following block diagram. 12. (a) Determine the time response specifications and expression for output for, unit step input to a system having the system equation as A dt 2 Assume zero initial conditions. Sketch the root locus for the system and comment on stability. 13. (a) Explain mapping theorem and principle of argument and hence draw the Nyquist plot for the system whose open loop transfer function is Or A unity feedback control system has = K Bode plot and find the value of K when gain is 10 db. \ 14. (a) Draw the circuit of a lag lead compensator and derive its transfer function. What are the effects? and circuit to demonstrate the action of the transfer function.

9 15. (a) Derive the steady state error for a rate servomechanism. Draw and explain the block diagram of the servo. Or Explain the application of control system in system based on feedback. of antenna

10

11

12

13

14

15

16

EC CONTROL SYSTEMS ENGINEERING

EC CONTROL SYSTEMS ENGINEERING 1 YEAR / SEM: II / IV EC 1256. CONTROL SYSTEMS ENGINEERING UNIT I CONTROL SYSTEM MODELING PART-A 1. Define open loop and closed loop systems. 2. Define signal flow graph. 3. List the force-voltage analogous

More information

JNTUWORLD. 6 The unity feedback system whose open loop transfer function is given by G(s)=K/s(s 2 +6s+10) Determine: (i) Angles of asymptotes *****

JNTUWORLD. 6 The unity feedback system whose open loop transfer function is given by G(s)=K/s(s 2 +6s+10) Determine: (i) Angles of asymptotes ***** Code: 9A050 III B. Tech I Semester (R09) Regular Eaminations, November 0 Time: hours Ma Marks: 70 (a) What is a mathematical model of a physical system? Eplain briefly. (b) Write the differential equations

More information

EC6405 - CONTROL SYSTEM ENGINEERING Questions and Answers Unit - II Time Response Analysis Two marks 1. What is transient response? The transient response is the response of the system when the system

More information

Electrical Engineering. Control Systems. Comprehensive Theory with Solved Examples and Practice Questions. Publications

Electrical Engineering. Control Systems. Comprehensive Theory with Solved Examples and Practice Questions. Publications Electrical Engineering Control Systems Comprehensive Theory with Solved Examples and Practice Questions Publications Publications MADE EASY Publications Corporate Office: 44-A/4, Kalu Sarai (Near Hauz

More information

BSNL TTA Question Paper Control Systems Specialization 2007

BSNL TTA Question Paper Control Systems Specialization 2007 BSNL TTA Question Paper Control Systems Specialization 2007 1. An open loop control system has its (a) control action independent of the output or desired quantity (b) controlling action, depending upon

More information

JUNE 2014 Solved Question Paper

JUNE 2014 Solved Question Paper JUNE 2014 Solved Question Paper 1 a: Explain with examples open loop and closed loop control systems. List merits and demerits of both. Jun. 2014, 10 Marks Open & Closed Loop System - Advantages & Disadvantages

More information

SYLLABUS. osmania university CHAPTER - 1 : CONTROL SYSTEMS CLASSIFICATION

SYLLABUS. osmania university CHAPTER - 1 : CONTROL SYSTEMS CLASSIFICATION i SYLLABUS osmania university UNIT - I CHAPTER - 1 : CONTROL SYSTEMS CLASSIFICATION Open Loop and Closed Loop Systems, Mathematical Models and Transfer Functions from Governing Equations of Mechanical,

More information

1.What is frequency response? A frequency responses the steady state response of a system when the input to the system is a sinusoidal signal.

1.What is frequency response? A frequency responses the steady state response of a system when the input to the system is a sinusoidal signal. Control Systems (EC 334) 1.What is frequency response? A frequency responses the steady state response of a system when the input to the system is a sinusoidal signal. 2.List out the different frequency

More information

ME451: Control Systems. Course roadmap

ME451: Control Systems. Course roadmap ME451: Control Systems Lecture 20 Root locus: Lead compensator design Dr. Jongeun Choi Department of Mechanical Engineering Michigan State University Fall 2008 1 Modeling Course roadmap Analysis Design

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK UNIT - I SYSTEMS AND THEIR REPRESENTATION

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK UNIT - I SYSTEMS AND THEIR REPRESENTATION KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK NAME OF THE SUBJECT: EE 2253 CONTROL SYSTEMS YEAR / SEM: II / IV UNIT I SYSTEMS AND THEIR REPRESENTATION

More information

EE 482 : CONTROL SYSTEMS Lab Manual

EE 482 : CONTROL SYSTEMS Lab Manual University of Bahrain College of Engineering Dept. of Electrical and Electronics Engineering EE 482 : CONTROL SYSTEMS Lab Manual Dr. Ebrahim Al-Gallaf Assistance Professor of Intelligent Control and Robotics

More information

ECE317 : Feedback and Control

ECE317 : Feedback and Control ECE317 : Feedback and Control Lecture : Frequency domain specifications Frequency response shaping (Loop shaping) Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University

More information

Position Control of DC Motor by Compensating Strategies

Position Control of DC Motor by Compensating Strategies Position Control of DC Motor by Compensating Strategies S Prem Kumar 1 J V Pavan Chand 1 B Pangedaiah 1 1. Assistant professor of Laki Reddy Balireddy College Of Engineering, Mylavaram Abstract - As the

More information

ME 375 System Modeling and Analysis

ME 375 System Modeling and Analysis ME 375 System Modeling and Analysis G(s) H(s) Section 9 Block Diagrams and Feedback Control Spring 2009 School of Mechanical Engineering Douglas E. Adams Associate Professor 9.1 Key Points to Remember

More information

1. Consider the closed loop system shown in the figure below. Select the appropriate option to implement the system shown in dotted lines using

1. Consider the closed loop system shown in the figure below. Select the appropriate option to implement the system shown in dotted lines using 1. Consider the closed loop system shown in the figure below. Select the appropriate option to implement the system shown in dotted lines using op-amps a. b. c. d. Solution: b) Explanation: The dotted

More information

Automatic Control Systems 2017 Spring Semester

Automatic Control Systems 2017 Spring Semester Automatic Control Systems 2017 Spring Semester Assignment Set 1 Dr. Kalyana C. Veluvolu Deadline: 11-APR - 16:00 hours @ IT1-815 1) Find the transfer function / for the following system using block diagram

More information

Control Design for Servomechanisms July 2005, Glasgow Detailed Training Course Agenda

Control Design for Servomechanisms July 2005, Glasgow Detailed Training Course Agenda Control Design for Servomechanisms 12 14 July 2005, Glasgow Detailed Training Course Agenda DAY 1 INTRODUCTION TO SYSTEMS AND MODELLING 9.00 Introduction The Need For Control - What Is Control? - Feedback

More information

LECTURE FOUR Time Domain Analysis Transient and Steady-State Response Analysis

LECTURE FOUR Time Domain Analysis Transient and Steady-State Response Analysis LECTURE FOUR Time Domain Analysis Transient and Steady-State Response Analysis 4.1 Transient Response and Steady-State Response The time response of a control system consists of two parts: the transient

More information

Dr Ian R. Manchester

Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

[ á{tå TÄàt. Chapter Four. Time Domain Analysis of control system

[ á{tå TÄàt. Chapter Four. Time Domain Analysis of control system Chapter Four Time Domain Analysis of control system The time response of a control system consists of two parts: the transient response and the steady-state response. By transient response, we mean that

More information

Biomedical Control Systems. Lecture#01

Biomedical Control Systems. Lecture#01 1 Biomedical Control Systems Lecture#01 2 Text Books Modern Control Engineering, 5 th Edition; Ogata. Feedback & Control Systems, 2 nd edition; Schaum s outline, Joseph J, Allen R. Control Systems Engineering,

More information

DEGREE: Biomedical Engineering YEAR: TERM: 1

DEGREE: Biomedical Engineering YEAR: TERM: 1 COURSE: Control Engineering DEGREE: Biomedical Engineering YEAR: TERM: 1 La asignatura tiene 14 sesiones que se distribuyen a lo largo de 7 semanas. Los dos laboratorios puede situarse en cualquiera de

More information

Dr Ian R. Manchester Dr Ian R. Manchester Amme 3500 : Root Locus Design

Dr Ian R. Manchester Dr Ian R. Manchester Amme 3500 : Root Locus Design Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

Lecture 18 Stability of Feedback Control Systems

Lecture 18 Stability of Feedback Control Systems 16.002 Lecture 18 Stability of Feedback Control Systems May 9, 2008 Today s Topics Stabilizing an unstable system Stability evaluation using frequency responses Take Away Feedback systems stability can

More information

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY, DEHRA DUN EA5210: POWER ELECTRONICS

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY, DEHRA DUN EA5210: POWER ELECTRONICS EA5210: POWER ELECTRONICS UNIT-I: Power semiconductor Devices: Power semiconductor devices their symbols and static characteristics; Characteristics and specifications of switches, types of power electronic

More information

CHAPTER 9 FEEDBACK. NTUEE Electronics L.H. Lu 9-1

CHAPTER 9 FEEDBACK. NTUEE Electronics L.H. Lu 9-1 CHAPTER 9 FEEDBACK Chapter Outline 9.1 The General Feedback Structure 9.2 Some Properties of Negative Feedback 9.3 The Four Basic Feedback Topologies 9.4 The Feedback Voltage Amplifier (Series-Shunt) 9.5

More information

Andrea Zanchettin Automatic Control 1 AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Linear control systems design

Andrea Zanchettin Automatic Control 1 AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Linear control systems design Andrea Zanchettin Automatic Control 1 AUTOMATIC CONTROL Andrea M. Zanchettin, PhD Spring Semester, 2018 Linear control systems design Andrea Zanchettin Automatic Control 2 The control problem Let s introduce

More information

Course Outline. Time vs. Freq. Domain Analysis. Frequency Response. Amme 3500 : System Dynamics & Control. Design via Frequency Response

Course Outline. Time vs. Freq. Domain Analysis. Frequency Response. Amme 3500 : System Dynamics & Control. Design via Frequency Response Course Outline Amme 35 : System Dynamics & Control Design via Frequency Response Week Date Content Assignment Notes Mar Introduction 2 8 Mar Frequency Domain Modelling 3 5 Mar Transient Performance and

More information

Reduction of Multiple Subsystems

Reduction of Multiple Subsystems Reduction of Multiple Subsystems Ref: Control System Engineering Norman Nise : Chapter 5 Chapter objectives : How to reduce a block diagram of multiple subsystems to a single block representing the transfer

More information

Readings: FC: p : lead compensation. 9/9/2011 Classical Control 1

Readings: FC: p : lead compensation. 9/9/2011 Classical Control 1 MM0 Frequency Response Design Readings: FC: p389-407: lead compensation 9/9/20 Classical Control What Have We Talked about in MM9? Control design based on Bode plot Stability margins (Gain margin and phase

More information

SECTION 6: ROOT LOCUS DESIGN

SECTION 6: ROOT LOCUS DESIGN SECTION 6: ROOT LOCUS DESIGN MAE 4421 Control of Aerospace & Mechanical Systems 2 Introduction Introduction 3 Consider the following unity feedback system 3 433 Assume A proportional controller Design

More information

Phys Lecture 5. Motors

Phys Lecture 5. Motors Phys 253 Lecture 5 1. Get ready for Design Reviews Next Week!! 2. Comments on Motor Selection 3. Introduction to Control (Lab 5 Servo Motor) Different performance specifications for all 4 DC motors supplied

More information

Module 08 Controller Designs: Compensators and PIDs

Module 08 Controller Designs: Compensators and PIDs Module 08 Controller Designs: Compensators and PIDs Ahmad F. Taha EE 3413: Analysis and Desgin of Control Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha March 31, 2016 Ahmad

More information

Andrea Zanchettin Automatic Control 1 AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Winter Semester, Linear control systems design Part 1

Andrea Zanchettin Automatic Control 1 AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Winter Semester, Linear control systems design Part 1 Andrea Zanchettin Automatic Control 1 AUTOMATIC CONTROL Andrea M. Zanchettin, PhD Winter Semester, 2018 Linear control systems design Part 1 Andrea Zanchettin Automatic Control 2 Step responses Assume

More information

CDS 101/110: Lecture 8.2 PID Control

CDS 101/110: Lecture 8.2 PID Control CDS 11/11: Lecture 8.2 PID Control November 16, 216 Goals: Nyquist Example Introduce and review PID control. Show how to use loop shaping using PID to achieve a performance specification Discuss the use

More information

EES42042 Fundamental of Control Systems Bode Plots

EES42042 Fundamental of Control Systems Bode Plots EES42042 Fundamental of Control Systems Bode Plots DR. Ir. Wahidin Wahab M.Sc. Ir. Aries Subiantoro M.Sc. 2 Bode Plots Plot of db Gain and phase vs frequency It is assumed you know how to construct Bode

More information

A Comparison And Evaluation of common Pid Tuning Methods

A Comparison And Evaluation of common Pid Tuning Methods University of Central Florida Electronic Theses and Dissertations Masters Thesis (Open Access) A Comparison And Evaluation of common Pid Tuning Methods 2007 Justin Youney University of Central Florida

More information

Matlab r and Simulink Use in Response Analysis of Automobile Suspension System in Design

Matlab r and Simulink Use in Response Analysis of Automobile Suspension System in Design International Journal of Traffic and Transportation Engineering 212, 1(2): 19-31 DOI: 1.5923/j.ijtte.21212.3 Matlab r and Simulink Use in Response Analysis of Oluwole O. O Mechanical Engineering Department,

More information

Bode and Log Magnitude Plots

Bode and Log Magnitude Plots Bode and Log Magnitude Plots Bode Magnitude and Phase Plots System Gain and Phase Margins & Bandwidths Polar Plot and Bode Diagrams Transfer Function from Bode Plots Bode Plots of Open Loop and Closed

More information

1. To study the influence of the gain on the transient response of a position servo. 2. To study the effect of velocity feedback.

1. To study the influence of the gain on the transient response of a position servo. 2. To study the effect of velocity feedback. KING FAHD UNIVERSITY OF PETROLEUM & MINERALS Electrical Engineering Department EE 380 - Control Engineering Experiment # 6 Servo Motor Position Control Using a Proportional Controller OBJECTIVES: 1. To

More information

Compensator Design using Bode Plots

Compensator Design using Bode Plots Gain Compensation Compensator Design using Bode Plots Nichols charts are useful since it shows directly what you are trying to do when designing a compensator: you are trying to keep away from -1 to limit

More information

TUTORIAL 9 OPEN AND CLOSED LOOP LINKS. On completion of this tutorial, you should be able to do the following.

TUTORIAL 9 OPEN AND CLOSED LOOP LINKS. On completion of this tutorial, you should be able to do the following. TUTORIAL 9 OPEN AND CLOSED LOOP LINKS This tutorial is of interest to any student studying control systems and in particular the EC module D7 Control System Engineering. On completion of this tutorial,

More information

ME 5281 Fall Homework 8 Due: Wed. Nov. 4th; start of class.

ME 5281 Fall Homework 8 Due: Wed. Nov. 4th; start of class. ME 5281 Fall 215 Homework 8 Due: Wed. Nov. 4th; start of class. Reading: Chapter 1 Part A: Warm Up Problems w/ Solutions (graded 4%): A.1 Non-Minimum Phase Consider the following variations of a system:

More information

Cantonment, Dhaka-1216, BANGLADESH

Cantonment, Dhaka-1216, BANGLADESH International Conference on Mechanical, Industrial and Energy Engineering 2014 26-27 December, 2014, Khulna, BANGLADESH ICMIEE-PI-140153 Electro-Mechanical Modeling of Separately Excited DC Motor & Performance

More information

EE 435. Lecture 16. Compensation Systematic Two-Stage Op Amp Design

EE 435. Lecture 16. Compensation Systematic Two-Stage Op Amp Design EE 435 Lecture 16 Compensation Systematic Two-Stage Op Amp Design Review from last lecture Review of Basic Concepts Pole Locations and Stability Theorem: A system is stable iff all closed-loop poles lie

More information

LECTURE 2: PD, PID, and Feedback Compensation. ( ) = + We consider various settings for Zc when compensating the system with the following RL:

LECTURE 2: PD, PID, and Feedback Compensation. ( ) = + We consider various settings for Zc when compensating the system with the following RL: LECTURE 2: PD, PID, and Feedback Compensation. 2.1 Ideal Derivative Compensation (PD) Generally, we want to speed up the transient response (decrease Ts and Tp). If we are lucky then a system s desired

More information

Lecture 5 Introduction to control

Lecture 5 Introduction to control Lecture 5 Introduction to control Feedback control is a way of automatically adjusting a variable to a desired value despite possible external influence or variations. Eg: Heating your house. No feedback

More information

Magnetic Levitation System

Magnetic Levitation System Magnetic Levitation System Electromagnet Infrared LED Phototransistor Levitated Ball Magnetic Levitation System K. Craig 1 Magnetic Levitation System Electromagnet Emitter Infrared LED i Detector Phototransistor

More information

EE 370/L Feedback and Control Systems Lab Section Post-Lab Report. EE 370L Feedback and Control Systems Lab

EE 370/L Feedback and Control Systems Lab Section Post-Lab Report. EE 370L Feedback and Control Systems Lab EE 370/L Feedback and Control Systems Lab Post-Lab Report EE 370L Feedback and Control Systems Lab LABORATORY 10: LEAD-LAG COMPENSATOR DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA,

More information

Lab 11. Speed Control of a D.C. motor. Motor Characterization

Lab 11. Speed Control of a D.C. motor. Motor Characterization Lab 11. Speed Control of a D.C. motor Motor Characterization Motor Speed Control Project 1. Generate PWM waveform 2. Amplify the waveform to drive the motor 3. Measure motor speed 4. Estimate motor parameters

More information

Linear Algebra, Calculus, Differential Equations and Vector Analysis. Complex Anaysis, Numerical Methods and Probability and Statistics.

Linear Algebra, Calculus, Differential Equations and Vector Analysis. Complex Anaysis, Numerical Methods and Probability and Statistics. Test No Topic code Topic EC-01 GEM (Engineering Mathematics) Topic wise Tests Each test carries 25 marks and 45 minutes duration Test consists of 5 one mark questions and 10 two marks questions Tests will

More information

5 Lab 5: Position Control Systems - Week 2

5 Lab 5: Position Control Systems - Week 2 5 Lab 5: Position Control Systems - Week 2 5.7 Introduction In this lab, you will convert the DC motor to an electromechanical positioning actuator by properly designing and implementing a proportional

More information

(1) Identify individual entries in a Control Loop Diagram. (2) Sketch Bode Plots by hand (when we could have used a computer

(1) Identify individual entries in a Control Loop Diagram. (2) Sketch Bode Plots by hand (when we could have used a computer Last day: (1) Identify individual entries in a Control Loop Diagram (2) Sketch Bode Plots by hand (when we could have used a computer program to generate sketches). How might this be useful? Can more clearly

More information

and using the step routine on the closed loop system shows the step response to be less than the maximum allowed 20%.

and using the step routine on the closed loop system shows the step response to be less than the maximum allowed 20%. Phase (deg); Magnitude (db) 385 Bode Diagrams 8 Gm = Inf, Pm=59.479 deg. (at 62.445 rad/sec) 6 4 2-2 -4-6 -8-1 -12-14 -16-18 1-1 1 1 1 1 2 1 3 and using the step routine on the closed loop system shows

More information

Ver. 4/5/2002, 1:11 PM 1

Ver. 4/5/2002, 1:11 PM 1 Mechatronics II Laboratory Exercise 6 PID Design The purpose of this exercise is to study the effects of a PID controller on a motor-load system. Although not a second-order system, a PID controlled motor-load

More information

Loop Design. Chapter Introduction

Loop Design. Chapter Introduction Chapter 8 Loop Design 8.1 Introduction This is the first Chapter that deals with design and we will therefore start by some general aspects on design of engineering systems. Design is complicated because

More information

Microelectronic Circuits II. Ch 9 : Feedback

Microelectronic Circuits II. Ch 9 : Feedback Microelectronic Circuits II Ch 9 : Feedback 9.9 Determining the Loop Gain 9.0 The Stability problem 9. Effect on Feedback on the Amplifier Poles 9.2 Stability study using Bode plots 9.3 Frequency Compensation

More information

Electrical Materials may be referred to a metal, dielectrics,electrical insulators or conductors,paramagnetic materials and many other.

Electrical Materials may be referred to a metal, dielectrics,electrical insulators or conductors,paramagnetic materials and many other. Electrical Engineering Paper-1 Syllabus : This part is for both objective and conventional types papers : 1) EM Theory- The electromagnetic force is said to be one of the fundamental interactions in nature

More information

SYLLABUS. For B.TECH. PROGRAMME ELECTRONICS & COMMUNICATION ENGINEERING

SYLLABUS. For B.TECH. PROGRAMME ELECTRONICS & COMMUNICATION ENGINEERING SYLLABUS For B.TECH. PROGRAMME In ELECTRONICS & COMMUNICATION ENGINEERING INSTITUTE OF TECHNOLOGY UNIVERSITY OF KASHMIR ZAKURA CAMPUS SRINAGAR, J&K, 190006 Course No. Lect Tut Prac ECE5117B Digital Signal

More information

CONTROLLER DESIGN FOR POWER CONVERSION SYSTEMS

CONTROLLER DESIGN FOR POWER CONVERSION SYSTEMS CONTROLLER DESIGN FOR POWER CONVERSION SYSTEMS Introduction A typical feedback system found in power converters Switched-mode power converters generally use PI, pz, or pz feedback compensators to regulate

More information

T.J.Moir AUT University Auckland. The Ph ase Lock ed Loop.

T.J.Moir AUT University Auckland. The Ph ase Lock ed Loop. T.J.Moir AUT University Auckland The Ph ase Lock ed Loop. 1.Introduction The Phase-Locked Loop (PLL) is one of the most commonly used integrated circuits (ICs) in use in modern communications systems.

More information

Optimal Control System Design

Optimal Control System Design Chapter 6 Optimal Control System Design 6.1 INTRODUCTION The active AFO consists of sensor unit, control system and an actuator. While designing the control system for an AFO, a trade-off between the transient

More information

Classical Control Design Guidelines & Tools (L10.2) Transfer Functions

Classical Control Design Guidelines & Tools (L10.2) Transfer Functions Classical Control Design Guidelines & Tools (L10.2) Douglas G. MacMartin Summarize frequency domain control design guidelines and approach Dec 4, 2013 D. G. MacMartin CDS 110a, 2013 1 Transfer Functions

More information

Frequency Response Analysis and Design Tutorial

Frequency Response Analysis and Design Tutorial 1 of 13 1/11/2011 5:43 PM Frequency Response Analysis and Design Tutorial I. Bode plots [ Gain and phase margin Bandwidth frequency Closed loop response ] II. The Nyquist diagram [ Closed loop stability

More information

Modern Control System Theory and Design. Dr. Huang, Min Chemical Engineering Program Tongji University

Modern Control System Theory and Design. Dr. Huang, Min Chemical Engineering Program Tongji University Modern Control System Theory and Design Dr. Huang, Min Chemical Engineering Program Tongji University Syllabus Instructor: Dr. Huang, Min Time and Place to meet Office Hours: Text Book and References Modern

More information

Pole, zero and Bode plot

Pole, zero and Bode plot Pole, zero and Bode plot EC04 305 Lecture notes YESAREKEY December 12, 2007 Authored by: Ramesh.K Pole, zero and Bode plot EC04 305 Lecture notes A rational transfer function H (S) can be expressed as

More information

ADJUSTING SERVO DRIVE COMPENSATION George W. Younkin, P.E. Life Fellow IEEE Industrial Controls Research, Inc. Fond du Lac, Wisconsin

ADJUSTING SERVO DRIVE COMPENSATION George W. Younkin, P.E. Life Fellow IEEE Industrial Controls Research, Inc. Fond du Lac, Wisconsin ADJUSTING SERVO DRIVE COMPENSATION George W. Younkin, P.E. Life Fello IEEE Industrial Controls Research, Inc. Fond du Lac, Wisconsin All industrial servo drives require some form of compensation often

More information

1. A. AC SERVO MOTOR

1. A. AC SERVO MOTOR TITLE: STUDY OF AC SERVOMOTOR GPREC/DEEE/EXPT-CSAP-1-A 1. A. AC SERVO MOTOR AIM: To study speed-torque characteristics of an AC servo motor APPRATUS: AC Servomotor and Digital Multimeter THEORY: Most of

More information

PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON SCIENCE AND ENGINEERING

PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON SCIENCE AND ENGINEERING POCEEDINGS OF THE SECOND INTENATIONAL CONFEENCE ON SCIENCE AND ENGINEEING Organized by Ministry of Science and Technology DECEMBE -, SEDONA HOTEL, YANGON, MYANMA Design and Analysis of PID Controller for

More information

Chapter 5 Frequency-domain design

Chapter 5 Frequency-domain design Chapter 5 Frequency-domain design Control Automático 3º Curso. Ing. Industrial Escuela Técnica Superior de Ingenieros Universidad de Sevilla Outline of the presentation Introduction. Time response analysis

More information

Feedback (and control) systems

Feedback (and control) systems Feedback (and control) systems Stability and performance Copyright 2007-2008 Stevens Institute of Technology - All rights reserved 22-1/23 Behavior of Under-damped System Y() s s b y 0 M s 2n y0 2 2 2

More information

Test. Class 2 Tuesday, February 3,2015. Efficiency Voltage regulation, O.C.& S.C. Tests

Test. Class 2 Tuesday, February 3,2015. Efficiency Voltage regulation, O.C.& S.C. Tests Jahangirabad Institute of Technology MOHAMMED WARIS SENAN Assistant Professor Semester 4 th, 2016 MASTER SCHEDULE: ELECTRICAL MACHINES & CONTROL SYSTEM (NEE 409) week 1 Class 1 Monday, February 2,2015

More information

Subject-wise Tests Tests will be activated at 06:00 pm on scheduled day

Subject-wise Tests Tests will be activated at 06:00 pm on scheduled day Subject Name EE-01 Control Systems EE-02 Systems and Signal Processing EE-03 Analog and Digital Electronics EE-04 Engineering Mathematics and Numerical Analysis EE-05 Electric Circuits and Fields EE-06

More information

This manuscript was the basis for the article A Refresher Course in Control Theory printed in Machine Design, September 9, 1999.

This manuscript was the basis for the article A Refresher Course in Control Theory printed in Machine Design, September 9, 1999. This manuscript was the basis for the article A Refresher Course in Control Theory printed in Machine Design, September 9, 1999. Use Control Theory to Improve Servo Performance George Ellis Introduction

More information

Another Compensator Design Example

Another Compensator Design Example Another Compensator Design Example + V g i L (t) + L + _ f s = 1 MHz Dead-time control PWM 1/V M duty-cycle command Compensator G c c( (s) C error Point-of-Load Synchronous Buck Regulator + I out R _ +

More information

Application Note #2442

Application Note #2442 Application Note #2442 Tuning with PL and PID Most closed-loop servo systems are able to achieve satisfactory tuning with the basic Proportional, Integral, and Derivative (PID) tuning parameters. However,

More information

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING CONTROL SYSTEM LABORATORY LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL & ELECTRONICS

More information

EEL2216 Control Theory CT2: Frequency Response Analysis

EEL2216 Control Theory CT2: Frequency Response Analysis EEL2216 Control Theory CT2: Frequency Response Analysis 1. Objectives (i) To analyse the frequency response of a system using Bode plot. (ii) To design a suitable controller to meet frequency domain and

More information

CDS 101/110: Lecture 9.1 Frequency DomainLoop Shaping

CDS 101/110: Lecture 9.1 Frequency DomainLoop Shaping CDS /: Lecture 9. Frequency DomainLoop Shaping November 3, 6 Goals: Review Basic Loop Shaping Concepts Work through example(s) Reading: Åström and Murray, Feedback Systems -e, Section.,.-.4,.6 I.e., we

More information

I.E.S-(Conv.)-2007 ELECTRONICS AND TELECOMMUNICATION ENGINEERING PAPER - II Time Allowed: 3 hours Maximum Marks : 200 Candidates should attempt Question No. 1 which is compulsory and FOUR more questions

More information

PID Tuner (ver. 1.0)

PID Tuner (ver. 1.0) PID Tuner (ver. 1.0) Product Help Czech Technical University in Prague Faculty of Mechanical Engineering Department of Instrumentation and Control Engineering This product was developed within the subject

More information

Lecture 7:Examples using compensators

Lecture 7:Examples using compensators Lecture :Examples using compensators Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, This draft: March, 8 Example :Spring Mass Damper with step input Consider

More information

COMPARISON OF TUNING METHODS OF PID CONTROLLER USING VARIOUS TUNING TECHNIQUES WITH GENETIC ALGORITHM

COMPARISON OF TUNING METHODS OF PID CONTROLLER USING VARIOUS TUNING TECHNIQUES WITH GENETIC ALGORITHM JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY Journal of Electrical Engineering & Technology (JEET) (JEET) ISSN 2347-422X (Print), ISSN JEET I A E M E ISSN 2347-422X (Print) ISSN 2347-4238 (Online) Volume

More information

Position Control of AC Servomotor Using Internal Model Control Strategy

Position Control of AC Servomotor Using Internal Model Control Strategy Position Control of AC Servomotor Using Internal Model Control Strategy Ahmed S. Abd El-hamid and Ahmed H. Eissa Corresponding Author email: Ahmednrc64@gmail.com Abstract: This paper focuses on the design

More information

Lecture 8 ECEN 4517/5517

Lecture 8 ECEN 4517/5517 Lecture 8 ECEN 4517/5517 Experiment 4 Lecture 7: Step-up dcdc converter and PWM chip Lecture 8: Design of analog feedback loop Part I Controller IC: Demonstrate operating PWM controller IC (UC 3525) Part

More information

MEM01: DC-Motor Servomechanism

MEM01: DC-Motor Servomechanism MEM01: DC-Motor Servomechanism Interdisciplinary Automatic Controls Laboratory - ME/ECE/CHE 389 February 5, 2016 Contents 1 Introduction and Goals 1 2 Description 2 3 Modeling 2 4 Lab Objective 5 5 Model

More information

Rotary Motion Servo Plant: SRV02. Rotary Experiment #03: Speed Control. SRV02 Speed Control using QuaRC. Student Manual

Rotary Motion Servo Plant: SRV02. Rotary Experiment #03: Speed Control. SRV02 Speed Control using QuaRC. Student Manual Rotary Motion Servo Plant: SRV02 Rotary Experiment #03: Speed Control SRV02 Speed Control using QuaRC Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1 3. OVERVIEW OF FILES...2

More information

Positive Feedback and Oscillators

Positive Feedback and Oscillators Physics 3330 Experiment #5 Fall 2011 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

More information

Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc. Feedback 1 Figure 8.1 General structure of the feedback amplifier. This is a signal-flow diagram, and the quantities x represent either voltage or current signals. 2 Figure E8.1 3 Figure 8.2 Illustrating

More information

INDIAN SPACE RESEARCH ORGANISATION. Recruitment Entrance Test for Scientist/Engineer SC 2017

INDIAN SPACE RESEARCH ORGANISATION. Recruitment Entrance Test for Scientist/Engineer SC 2017 1. n inductance of one H carrying a current of two amperes will store the energy of watts joules 4 watts 4 joules. The square waveform of current has following relation between r.m.s value and average

More information

Lab 1: Simulating Control Systems with Simulink and MATLAB

Lab 1: Simulating Control Systems with Simulink and MATLAB Lab 1: Simulating Control Systems with Simulink and MATLAB EE128: Feedback Control Systems Fall, 2006 1 Simulink Basics Simulink is a graphical tool that allows us to simulate feedback control systems.

More information

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING Accredited by NBA, New Delhi for 3 years:26/7/18 to 30/6/21 2 nd ASSIGNMENT

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING Accredited by NBA, New Delhi for 3 years:26/7/18 to 30/6/21 2 nd ASSIGNMENT DAYANANDA SAGAR ACADEMY OF TECHNOLOGY AND MANAGEMENT (Affiliated to Visvesvaraya Technological University,Belagavi & Approved by AICTE,New Delhi) Udayapura, Kanakapura Road, Opp: Art of Living, BANGALORE

More information

Analysis and Design of Conventional Controller for Speed Control of DC Motor -A MATLAB Approach

Analysis and Design of Conventional Controller for Speed Control of DC Motor -A MATLAB Approach C. S. Linda Int. Journal of Engineering Research and Applications RESEARCH ARTICLE OPEN ACCESS Analysis and Design of Conventional Controller for Speed Control of DC Motor -A MATLAB Approach C. S. Linda,

More information

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING IC 6501 CONTROL SYSTEMS UNIT I - SYSTEMS AND THEIR REPRESETNTATION` TWO MARKS QUESTIONS WITH

More information

Shaft Torque Excitation Control for Drivetrain Bench

Shaft Torque Excitation Control for Drivetrain Bench Power Electronics Technology Shaft Excitation Control for Drivetrain Bench Takao Akiyama, Kazuhiro Ogawa, Yoshimasa Sawada Keywords Drivetrain bench,, Excitation Abstract We developed a technology for

More information

PHASELOCK TECHNIQUES INTERSCIENCE. Third Edition. FLOYD M. GARDNER Consulting Engineer Palo Alto, California A JOHN WILEY & SONS, INC.

PHASELOCK TECHNIQUES INTERSCIENCE. Third Edition. FLOYD M. GARDNER Consulting Engineer Palo Alto, California A JOHN WILEY & SONS, INC. PHASELOCK TECHNIQUES Third Edition FLOYD M. GARDNER Consulting Engineer Palo Alto, California INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS PREFACE NOTATION xvii xix 1 INTRODUCTION 1 1.1

More information

Analog circuit design ( )

Analog circuit design ( ) Silver Oak College of Engineering & Technology Department of Electronics and Communication 4 th Sem Mid semester-1(summer 2019) Syllabus Microprocessor & Interfacing (2141001) 1 Introduction To 8-bit Microprocessor

More information

S.E. Sem. III [ETRX] Control System Engineering SYLLABUS

S.E. Sem. III [ETRX] Control System Engineering SYLLABUS Oral : 25 Marks Control System Engineering 1. Introduction to control system analysis Introduction, examples of control systems, open loop control systems, closed loop control systems, Transfer function.

More information

BUCK Converter Control Cookbook

BUCK Converter Control Cookbook BUCK Converter Control Cookbook Zach Zhang, Alpha & Omega Semiconductor, Inc. A Buck converter consists of the power stage and feedback control circuit. The power stage includes power switch and output

More information

Compensation of a position servo

Compensation of a position servo UPPSALA UNIVERSITY SYSTEMS AND CONTROL GROUP CFL & BC 9610, 9711 HN & PSA 9807, AR 0412, AR 0510, HN 2006-08 Automatic Control Compensation of a position servo Abstract The angular position of the shaft

More information