Digital Control of MS-150 Modular Position Servo System

Size: px
Start display at page:

Download "Digital Control of MS-150 Modular Position Servo System"

Transcription

1 IEEE NECEC Nov. 8, 2007 St. John's NL 1 Digital Control of MS-150 Modular Position Servo System Farid Arvani, Syeda N. Ferdaus, M. Tariq Iqbal Faculty of Engineering, Memorial University of Newfoundland farvani@engr.mun.ca Abstract The MS150 Modular Position Servo System is a popular system used for study of the theory and practice of automatic control systems. It can be controlled using an analog PID type controller or a digital controller. In this paper we describe control of a MS-150 servo system using LabVIEW 8.2 and PC based digital controller. A number of control algorithms are implemented in LabVIEW. It includes PID control, cascade control, optimal state control and a fuzzy logic control. System identification, addition of integral action to the optimal state controller and an estimator are also discussed in the paper. Experimental as well as Matlab/Simulink based simulation results are presented in the paper. The PD type fuzzy logic controller shows the best overall control performance. Index Terms Control systems, Digital control, Fuzzy logic control, Comparison of controllers I. INTRODUCTION Proper implementation of control systems requires the sound understanding of behavior of the underlying system. In this work the procedure to conduct system identification and test control algorithms are discussed. To avoid the problems of the open-loop controller, control theory introduces feedback. A closed-loop controller uses feedback to control states or outputs of a dynamical system. MS150 Modular Position Servo System is used as the test stand, which is a unique medium for study of the theory and practice of automatic control systems. A block diagram of the system is depicted in figure 1. A desired position should be reached in this series of tests under some control design constraints. LabVIEW is employed as rapid prototyping software. LabVIEW is a platform and development environment for a visual programming language G. LabVIEW is commonly used for data acquisition, instrument control, and industrial automation on a variety of platforms [5]. In section II, a brief explanation of system identification is presented. Then in Section III, a number of control algorithms are discussed and their corresponding control diagram is depicted. A brief discussion and conclusion is finally given. A. Initial Identification II. SYSTEM IDENTIFICATION In order to simulate the system in Matlab/Simulink and design controllers, a plant model has to be developed. Step response method is used to determine the system transfer function [1]. In this basic method, second order dynamics are used to estimate the system parameters. In order to obtain the calibration equation, different values of voltage and the corresponding position from the scale on the output potentiometer are used. The following equation is found and employed in controllers. Figure 2. shows the calibration graph. Position = voltage There is no calibration equation for speed and it has been LabVIEW DAQ ±10V Position Feedback ±15V Tacho Feedback 0-10V Fig. 1. Block Diagram of Control System Servo System Fig. 2. Calibration Graph used as such wherever used as a feedback or state and the speed has been measured in volts not in RPM. Simulation of identified system is shown below. This is much similar to the

2 IEEE NECEC Nov. 8, 2007 St. John's NL 2 actual system response and this confirms system identification. system identification toolbox. Several data collections were performed using different excitation signals [3]. LabVIEW VI used to collect the data sets is depicted in figure 3. Various identification algorithms including IDGREY, IDSS, IDARX, IDPROC and IDPOLY are assessed. Using general polynomial method in the frequency domain gave the best results and after appropriate filtering and detrending, system identification was performed. The results were appropriate but were high-order model. The frequency range used was 0 to 60 rad/s. A model with two poles, one integrator and one zero is fitted into the data sets. The initial value for gain of the plant model was taken from the results of the initial test. Model adequacy was tested at all models for variance and noise. Finally IDPOLY model was used for design of the controller. As the identified system is a continuous-time model, it should be converted to a discrete time model. Continuous-time IDPOLY model is B(s) y(t) = u(t) + e(t) F(s) where B(s) = e004 s e004 F(s) = s s s Fig. 2. Comparison of the simulation and actual responses of the identified system B. High-order system Identification In some experiments all of the three states of the system was exploited in the controller design. A black-box state-space representation [2] of the system was identified using Matlab Fig. 4. System Identification: comparison of the identified and the actual system III. CONTROLLER DESIGN AND SIMULATION Fig. 3. Data set collection VI DC Modular Servo system (MS 150) is used to investigate the feedback control systems. MS 150 system has facilitated us to investigate different kind of control techniques and implement simple PID controller to advanced digital fuzzy logic controller with aid of LabVIEW [4] which have been performed by controlling the states of the system, which might be speed and position, current. The objective of this series of experiments is to control the position of the rotor of motor using different kind of controllers. A simple PID controller is so designed and implemented with position feedback that system matches optimum criteria of interest. Design of a cascade controller (PID-PI) is

3 IEEE NECEC Nov. 8, 2007 St. John's NL 3 commenced. Fig. 6. Simulink block and simulation result Fig. 5. LabVIEW VI for PID controller discussed where it uses the Tacho (speed) feedback in the inner loop. This sort of controller is used in order to filter internal disturbances. State space analysis of the system is discussed. An optimum states controller is designed considering all state of the system. Then the transfer function of system is 3rd order and an estimator for the current (one of states in the system) is implemented in LabVIEW. Design of an optimum state controller with an integral action and an estimator is presented. An estimator, for all states is implemented in LabVIEW since none of the states is measured. PD type fuzzy logic controller is designed and implemented. In this experiment, first, the range of error, rate of error and manipulated input to the system are approximated using PID controller. Two input, single output FIS is selected with Sugeno defuzzification methods. The sampling time for whole experiment is 10ms unless otherwise specified. A. PID controller A PID controller for the system (without any Tacho feedback) with the design constraints of 10% overshoot was designed using Z-N closed loop method to determine the critical gain and period. LabVIEW VI is shown in figure 5. While Integral and derivative gains were kept zero, the proportional gain was increased gradually until oscillations Fig. 7. LabVIEW VI for PID-PI controller: first configuration (A) Inner Loop, (B) Outer Loop

4 IEEE NECEC Nov. 8, 2007 St. John's NL 4 In simulation (figure. 6), the identified system was used and the controller was optimized using response optimization. (A) (A) (B) Fig. 10. Simulink Diagram and simulation results for inner loop (left) and outer loop (right) (B) Fig. 8. LabVIEW VI for PID-PI controller: first configuration (A) Inner Loop, (B) Outer Loop The simulated response and the actual response are due to non-modeled non-linearity different from each other. The optimized parameters did not give the expected results in the system and made the system unstable. B. PID-PI cascade controller The inner loop uses the speed feedback to filter internal disturbances. Inner loop was tuned using pole cancellation method however the outer loop was tuned using Z-N methods. In both cases fine-tuning is performed. A PID noise filter is global variables are used to transfer position data and the PID output the inner loop. Also note that the inner loop is running one hundred times faster due to the updating cycles of LabVIEW and is so chosen to compensate for updating the graphs, allocation of resources to other applications, etc. As it can be seen from the diagrams there is no speed calibration equation and it has been used as such in volts. Figure 9 shows the performance of the controller in front panel. Simulation results are depicted below. Response of the Inner loop and outer loop are shown respectively in figure 10. The difference between the responses above and the actual plant is because of the model differences. Fig. 9. Front Panel of LabVIEW VI for PID-PI controller implemented in the inner loop to filter the noise in the speed input. Figure 7 and 8 show corresponding VIs for two different configurations of the control system. It is noteworthy that the latter configuration is more appropriate than the former one. Loops cannot be wired to each other and therefore two Fig. 11. LabVIEW VI for Optimal States controller C. Optimal States Controller In this design all states of the system were considered. Highorder system identification results were used. First, the system

5 IEEE NECEC Nov. 8, 2007 St. John's NL 5 Fig. 12. Front Panel LabVIEW VI for Optimal States controller is simulated using Simulink and the maximum values of states are observed in order to identify weighting matrix Q. With the weighting matrices Q (states) and R (Input), optimum state controller (gain of controller) is designed using DLQR command in Matlab. An estimator for the current (one of states in the system) is implemented in LabVIEW since it is not measured. The interaction between states and the control effort is also considered in the design [7]. Using plant model, the following equation was derived to estimate the current (one of the three states): Ts RaTs Ts I a ( k) = I a ( k 1) + Vin ( k 1) I a ( k 1) K1ω( k) L L L Figure 11 and 12 demonstrate the LabVIEW VI and the performance of the controller. The results of the simulated system is better than the actual controller due to unknown initial values of the states and due to noise that was presented by Matrix K in identification process. This is concluded from the settling times and sustained oscillations in the system. It is clear that the valuable data has been put aside as error and noise. So there is no wonder that the model is not a good presenter of the actual plant. Simulink block diagram and the graphs are shown in figure 13. D. Optimal State Controller with an Integral Action Similar to the procedure discussed in previous section an estimator is designed so that it would be faster than controller [6]. This estimator estimates all the states of the system since none of states (except for position) is measured. The system is simulated with optimum state controller with integral action. The model was tested for different values but the model was not proper system and it seems that it is mainly due to excitation procedure. However the identified system matches the standard state space model and the provided system parameters. The other important issue is the selection of Q and R, where it was relied on the max values of the states to derive the matrices as it guaranties the stability of the designed controller in this case. Fig. 13. Simulink Diagram and simulation Fig. 14. Front Panel LabVIEW VI for Optimal States controller with an Integral Action

6 IEEE NECEC Nov. 8, 2007 St. John's NL 6 E. Fuzzy Logic Controller Design of PD type fuzzy logic controller is presented. First, the range of error, derivative error and manipulated input to the system are approximated using PID controller. Two input, single output FIS is selected with Sugeno defuzzification methods. Three triangular membership functions are used for each input and tested for response. The response was satisfactory and two membership functions were added to enhance the response of the controller and system. The membership function fuzzification system for e& is shown in figure 15 and the rule set is shown in figure 16. LabVIEW diagram and front panel are shown in figure 17. Simulation performed in Simulink verifies the sound performance of the controller. Fig. 15. Sample Membership Functions for e& Fig. 16. Rule set IV. CONCLUSION In this brief, different kind of controllers for the MS 150 servo system has been investigated. The cascade control technique, PID-PI can achieve substantial improvement over the other techniques and shows better performance in both overshoot and settling time. An advantage of the cascade control schemes is that it does not require any estimator and is relatively easy to implement and robust to disturbances in the inner loop, which should be faster than outer loop. This may be a possible drawback of this scheme compared to the conventional PID control. State space design of controllers shows poor performance since it uses estimation of states and initial values and the performance of the system depends entirely upon the estimator. It becomes even worse when the estimator estimates all the system states. When it estimates only one state (current) of the system it shows reasonable performance although it uses more sensors. It is concluded that the design of these controllers are heavily dependent on the Fig. 17. LabVIEW diagram and its front panel proper identified plant model, which is the greatest pitfall compared to fuzzy controllers. The PD type fuzzy logic controller shows the best overall performance. This type of controller does not pose a problem selecting sampling time as it appear in the case of cascade controller (in inner loop) and the state space estimator. Highspeed sampling should occur in later cases. Moreover, FLC is very easy to implement and most of the time it is robust and it is designed base on the input and output of the plant and does not require a mathematical model of the plant. However existence of the model can help better design and the proof of the stability of this nonlinear controller is hard to perform not at least for this system. REFERENCES [1] K. Ogata, Modern Control Engineering, 3rd ed., Prentice Hall 1997 [2] Ljung, L., System Identification: Theory for the User, Prentice Hall, 1986 [3] System Identification Toolbox User's Guide, Mathworks, September 2006 [4] LabVIEW PID Control User Manual, National Instruments, November 2001 [5] LabVIEW User Manual, National Instruments, January 2006 [6] K. Ogata, Designing Linear Control Systems with Matlab, Prentice Hall, 1994 [7] A. Tewari, Modern Control design, John Wily & Sons, 2002

DC motor position control using fuzzy proportional-derivative controllers with different defuzzification methods

DC motor position control using fuzzy proportional-derivative controllers with different defuzzification methods TJFS: Turkish Journal of Fuzzy Systems (eissn: 1309 1190) An Official Journal of Turkish Fuzzy Systems Association Vol.1, No.1, pp. 36-54, 2010. DC motor position control using fuzzy proportional-derivative

More information

Tuning Of Conventional Pid And Fuzzy Logic Controller Using Different Defuzzification Techniques

Tuning Of Conventional Pid And Fuzzy Logic Controller Using Different Defuzzification Techniques Tuning Of Conventional Pid And Fuzzy Logic Controller Using Different Defuzzification Techniques Afshan Ilyas, Shagufta Jahan, Mohammad Ayyub Abstract:- This paper presents a method for tuning of conventional

More information

Development of a Fuzzy Logic Controller for Industrial Conveyor Systems

Development of a Fuzzy Logic Controller for Industrial Conveyor Systems American Journal of Science, Engineering and Technology 217; 2(3): 77-82 http://www.sciencepublishinggroup.com/j/ajset doi: 1.11648/j.ajset.21723.11 Development of a Fuzzy Logic Controller for Industrial

More information

Comparison Effectiveness of PID, Self-Tuning and Fuzzy Logic Controller in Heat Exchanger

Comparison Effectiveness of PID, Self-Tuning and Fuzzy Logic Controller in Heat Exchanger J. Appl. Environ. Biol. Sci., 7(4S)28-33, 2017 2017, TextRoad Publication ISSN: 2090-4274 Journal of Applied Environmental and Biological Sciences www.textroad.com Comparison Effectiveness of PID, Self-Tuning

More information

An Expert System Based PID Controller for Higher Order Process

An Expert System Based PID Controller for Higher Order Process An Expert System Based PID Controller for Higher Order Process K.Ghousiya Begum, D.Mercy, H.Kiren Vedi Abstract The proportional integral derivative (PID) controller is the most widely used control strategy

More information

CHAPTER 4 FUZZY LOGIC CONTROLLER

CHAPTER 4 FUZZY LOGIC CONTROLLER 62 CHAPTER 4 FUZZY LOGIC CONTROLLER 4.1 INTRODUCTION Unlike digital logic, the Fuzzy Logic is a multivalued logic. It deals with approximate perceptive rather than precise. The effective and efficient

More information

Fuzzy Expert Systems Lecture 9 (Fuzzy Systems Applications) (Fuzzy Control)

Fuzzy Expert Systems Lecture 9 (Fuzzy Systems Applications) (Fuzzy Control) Fuzzy Expert Systems Lecture 9 (Fuzzy Systems Applications) (Fuzzy Control) The fuzzy controller design methodology primarily involves distilling human expert knowledge about how to control a system into

More information

Position Control of a Servopneumatic Actuator using Fuzzy Compensation

Position Control of a Servopneumatic Actuator using Fuzzy Compensation Session 1448 Abstract Position Control of a Servopneumatic Actuator using Fuzzy Compensation Saravanan Rajendran 1, Robert W.Bolton 2 1 Department of Industrial Engineering 2 Department of Engineering

More information

1. Governor with dynamics: Gg(s)= 1 2. Turbine with dynamics: Gt(s) = 1 3. Load and machine with dynamics: Gp(s) = 1

1. Governor with dynamics: Gg(s)= 1 2. Turbine with dynamics: Gt(s) = 1 3. Load and machine with dynamics: Gp(s) = 1 Load Frequency Control of Two Area Power System Using PID and Fuzzy Logic 1 Rajendra Murmu, 2 Sohan Lal Hembram and 3 A.K. Singh 1 Assistant Professor, 2 Reseach Scholar, Associate Professor 1,2,3 Electrical

More information

CHAPTER 2 PID CONTROLLER BASED CLOSED LOOP CONTROL OF DC DRIVE

CHAPTER 2 PID CONTROLLER BASED CLOSED LOOP CONTROL OF DC DRIVE 23 CHAPTER 2 PID CONTROLLER BASED CLOSED LOOP CONTROL OF DC DRIVE 2.1 PID CONTROLLER A proportional Integral Derivative controller (PID controller) find its application in industrial control system. It

More information

Control Design Made Easy By Ryan Gordon

Control Design Made Easy By Ryan Gordon Control Design Made Easy By Ryan Gordon 2014 The MathWorks, Inc. 1 Key Themes You can automatically tune PID controllers in MATLAB from acquired data You can automatically tune PID controllers from dynamic

More information

Some Tuning Methods of PID Controller For Different Processes

Some Tuning Methods of PID Controller For Different Processes International Conference on Information Engineering, Management and Security [ICIEMS] 282 International Conference on Information Engineering, Management and Security 2015 [ICIEMS 2015] ISBN 978-81-929742-7-9

More information

Figure 1.1: Quanser Driving Simulator

Figure 1.1: Quanser Driving Simulator 1 INTRODUCTION The Quanser HIL Driving Simulator (QDS) is a modular and expandable LabVIEW model of a car driving on a closed track. The model is intended as a platform for the development, implementation

More information

Performance Analysis of Fuzzy Logic And PID Controller for PM DC Motor Drive Khalid Al-Mutib 1, N. M. Adamali Shah 2, Ebrahim Mattar 3

Performance Analysis of Fuzzy Logic And PID Controller for PM DC Motor Drive Khalid Al-Mutib 1, N. M. Adamali Shah 2, Ebrahim Mattar 3 Performance Analysis of Fuzzy Logic And PID Controller for PM DC Motor Drive Khalid Al-Mutib 1, N. M. Adamali Shah 2, Ebrahim Mattar 3 1 King Saud University, Riyadh, Saudi Arabia, muteb@ksu.edu.sa 2 King

More information

Cohen-coon PID Tuning Method; A Better Option to Ziegler Nichols-PID Tuning Method

Cohen-coon PID Tuning Method; A Better Option to Ziegler Nichols-PID Tuning Method Cohen-coon PID Tuning Method; A Better Option to Ziegler Nichols-PID Tuning Method Engr. Joseph, E. A. 1, Olaiya O. O. 2 1 Electrical Engineering Department, the Federal Polytechnic, Ilaro, Ogun State,

More information

Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller

Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller International Journal of Emerging Trends in Science and Technology Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller Authors Swarup D. Ramteke 1, Bhagsen J. Parvat 2

More information

FUZZY AND NEURO-FUZZY MODELLING AND CONTROL OF NONLINEAR SYSTEMS

FUZZY AND NEURO-FUZZY MODELLING AND CONTROL OF NONLINEAR SYSTEMS FUZZY AND NEURO-FUZZY MODELLING AND CONTROL OF NONLINEAR SYSTEMS Mohanadas K P Department of Electrical and Electronics Engg Cukurova University Adana, Turkey Shaik Karimulla Department of Electrical Engineering

More information

EE 482 : CONTROL SYSTEMS Lab Manual

EE 482 : CONTROL SYSTEMS Lab Manual University of Bahrain College of Engineering Dept. of Electrical and Electronics Engineering EE 482 : CONTROL SYSTEMS Lab Manual Dr. Ebrahim Al-Gallaf Assistance Professor of Intelligent Control and Robotics

More information

CONTROLLER DESIGN ON ARX MODEL OF ELECTRO-HYDRAULIC ACTUATOR

CONTROLLER DESIGN ON ARX MODEL OF ELECTRO-HYDRAULIC ACTUATOR Journal of Fundamental and Applied Sciences ISSN 1112-9867 Research Article Special Issue Available online at http://www.jfas.info MODELING AND CONTROLLER DESIGN ON ARX MODEL OF ELECTRO-HYDRAULIC ACTUATOR

More information

SPEED CONTROL OF BRUSHLESS DC MOTOR USING FUZZY BASED CONTROLLERS

SPEED CONTROL OF BRUSHLESS DC MOTOR USING FUZZY BASED CONTROLLERS SPEED CONTROL OF BRUSHLESS DC MOTOR USING FUZZY BASED CONTROLLERS Kapil Ghuge 1, Prof. Manish Prajapati 2 Prof. Ashok Kumar Jhala 3 1 M.Tech Scholar, 2 Assistant Professor, 3 Head of Department, R.K.D.F.

More information

Fuzzy Logic Controller on DC/DC Boost Converter

Fuzzy Logic Controller on DC/DC Boost Converter 21 IEEE International Conference on Power and Energy (PECon21), Nov 29 - Dec 1, 21, Kuala Lumpur, Malaysia Fuzzy Logic Controller on DC/DC Boost Converter N.F Nik Ismail, Member IEEE,Email: nikfasdi@yahoo.com

More information

EE 4314 Lab 3 Handout Speed Control of the DC Motor System Using a PID Controller Fall Lab Information

EE 4314 Lab 3 Handout Speed Control of the DC Motor System Using a PID Controller Fall Lab Information EE 4314 Lab 3 Handout Speed Control of the DC Motor System Using a PID Controller Fall 2012 IMPORTANT: This handout is common for all workbenches. 1. Lab Information a) Date, Time, Location, and Report

More information

Control of DC-DC Buck Boost Converter Output Voltage Using Fuzzy Logic Controller

Control of DC-DC Buck Boost Converter Output Voltage Using Fuzzy Logic Controller International Journal of Control Theory and Applications ISSN : 0974-5572 International Science Press Volume 10 Number 25 2017 Control of DC-DC Buck Boost Converter Output Voltage Using Fuzzy Logic Controller

More information

International Journal of Advance Engineering and Research Development. Aircraft Pitch Control System Using LQR and Fuzzy Logic Controller

International Journal of Advance Engineering and Research Development. Aircraft Pitch Control System Using LQR and Fuzzy Logic Controller Scientific Journal of Impact Factor (SJIF): 4.14 International Journal of Advance Engineering and Research Development Volume 3,Issue 5,May -216 e-issn : 2348-447 p-issn : 2348-646 Aircraft Pitch Control

More information

Further Control Systems Engineering

Further Control Systems Engineering Unit 54: Unit code Further Control Systems Engineering Y/615/1522 Unit level 5 Credit value 15 Introduction Control engineering is usually found at the top level of large projects in determining the engineering

More information

Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller

Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller 1 Deepa S. Bhandare, 2 N. R.Kulkarni 1,2 Department of Electrical Engineering, Modern College of Engineering,

More information

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL 47 CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL 4.1 INTRODUCTION Passive filters are used to minimize the harmonic components present in the stator voltage and current of the BLDC motor. Based on the design,

More information

A Comparative Study on Speed Control of D.C. Motor using Intelligence Techniques

A Comparative Study on Speed Control of D.C. Motor using Intelligence Techniques International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 4 (2014), pp. 431-436 International Research Publication House http://www.irphouse.com A Comparative Study

More information

DC Motor Speed Control: A Case between PID Controller and Fuzzy Logic Controller

DC Motor Speed Control: A Case between PID Controller and Fuzzy Logic Controller DC Motor Speed Control: A Case between PID Controller and Fuzzy Logic Controller Philip A. Adewuyi Mechatronics Engineering Option, Department of Mechanical and Biomedical Engineering, Bells University

More information

Relay Feedback based PID Controller for Nonlinear Process

Relay Feedback based PID Controller for Nonlinear Process Relay Feedback based PID Controller for Nonlinear Process I.Thirunavukkarasu, Dr.V.I.George, * and R.Satheeshbabu Abstract This work is about designing a relay feedback based PID controller for a conical

More information

Improving a pipeline hybrid dynamic model using 2DOF PID

Improving a pipeline hybrid dynamic model using 2DOF PID Improving a pipeline hybrid dynamic model using 2DOF PID Yongxiang Wang 1, A. H. El-Sinawi 2, Sami Ainane 3 The Petroleum Institute, Abu Dhabi, United Arab Emirates 2 Corresponding author E-mail: 1 yowang@pi.ac.ae,

More information

Hydraulic Actuator Control Using an Multi-Purpose Electronic Interface Card

Hydraulic Actuator Control Using an Multi-Purpose Electronic Interface Card Hydraulic Actuator Control Using an Multi-Purpose Electronic Interface Card N. KORONEOS, G. DIKEAKOS, D. PAPACHRISTOS Department of Automation Technological Educational Institution of Halkida Psaxna 34400,

More information

DC Motor Position Control Using Fuzzy Proportional-Derivative Controllers With Different Defuzzification Methods

DC Motor Position Control Using Fuzzy Proportional-Derivative Controllers With Different Defuzzification Methods IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 1 Ver. III (Jan Feb. 2015), PP 37-47 www.iosrjournals.org DC Motor Position Control

More information

Speed Control of BLDC Motor-A Fuzzy Logic Approach

Speed Control of BLDC Motor-A Fuzzy Logic Approach National conference on Engineering Innovations and Solutions (NCEIS 2018) International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2018 IJSRCSEIT Volume

More information

Implementation of Proportional and Derivative Controller in a Ball and Beam System

Implementation of Proportional and Derivative Controller in a Ball and Beam System Implementation of Proportional and Derivative Controller in a Ball and Beam System Alexander F. Paggi and Tooran Emami United States Coast Guard Academy Abstract This paper presents a design of two cascade

More information

Speed control of a DC motor using Controllers

Speed control of a DC motor using Controllers Automation, Control and Intelligent Systems 2014; 2(6-1): 1-9 Published online November 20, 2014 (http://www.sciencepublishinggroup.com/j/acis) doi: 10.11648/j.acis.s.2014020601.11 ISSN: 2328-5583 (Print);

More information

CHAPTER 4 LOAD FREQUENCY CONTROL OF INTERCONNECTED HYDRO-THERMAL SYSTEM

CHAPTER 4 LOAD FREQUENCY CONTROL OF INTERCONNECTED HYDRO-THERMAL SYSTEM 53 CHAPTER 4 LOAD FREQUENCY CONTROL OF INTERCONNECTED HYDRO-THERMAL SYSTEM 4.1 INTRODUCTION Reliable power delivery can be achieved through interconnection of hydro and thermal system. In recent years,

More information

CHAPTER 4 AN EFFICIENT ANFIS BASED SELF TUNING OF PI CONTROLLER FOR CURRENT HARMONIC MITIGATION

CHAPTER 4 AN EFFICIENT ANFIS BASED SELF TUNING OF PI CONTROLLER FOR CURRENT HARMONIC MITIGATION 92 CHAPTER 4 AN EFFICIENT ANFIS BASED SELF TUNING OF PI CONTROLLER FOR CURRENT HARMONIC MITIGATION 4.1 OVERVIEW OF PI CONTROLLER Proportional Integral (PI) controllers have been developed due to the unique

More information

Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor

Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor Osama Omer Adam Mohammed 1, Dr. Awadalla Taifor Ali 2 P.G. Student, Department of Control Engineering, Faculty of Engineering,

More information

IJITKM Special Issue (ICFTEM-2014) May 2014 pp (ISSN )

IJITKM Special Issue (ICFTEM-2014) May 2014 pp (ISSN ) IJITKM Special Issue (ICFTEM-214) May 214 pp. 148-12 (ISSN 973-4414) Analysis Fuzzy Self Tuning of PID Controller for DC Motor Drive Neeraj kumar 1, Himanshu Gupta 2, Rajesh Choudhary 3 1 M.Tech, 2,3 Astt.Prof.,

More information

Optimal Control System Design

Optimal Control System Design Chapter 6 Optimal Control System Design 6.1 INTRODUCTION The active AFO consists of sensor unit, control system and an actuator. While designing the control system for an AFO, a trade-off between the transient

More information

PERFORMANCE ANALYSIS OF PERMANENT MAGNET SYNCHRONOUS MOTOR WITH PI & FUZZY CONTROLLERS

PERFORMANCE ANALYSIS OF PERMANENT MAGNET SYNCHRONOUS MOTOR WITH PI & FUZZY CONTROLLERS International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST) Vol. 2, Special Issue 16, May 2016 PERFORMANCE ANALYSIS OF PERMANENT MAGNET SYNCHRONOUS MOTOR WITH PI

More information

Figure 1: Unity Feedback System. The transfer function of the PID controller looks like the following:

Figure 1: Unity Feedback System. The transfer function of the PID controller looks like the following: Islamic University of Gaza Faculty of Engineering Electrical Engineering department Control Systems Design Lab Eng. Mohammed S. Jouda Eng. Ola M. Skeik Experiment 3 PID Controller Overview This experiment

More information

Simulation and Analysis of Cascaded PID Controller Design for Boiler Pressure Control System

Simulation and Analysis of Cascaded PID Controller Design for Boiler Pressure Control System PAPER ID: IJIFR / V1 / E10 / 031 www.ijifr.com ijifr.journal@gmail.com ISSN (Online): 2347-1697 An Enlightening Online Open Access, Refereed & Indexed Journal of Multidisciplinary Research Simulation and

More information

Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter

Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter To cite this article: M. H. Jafri et al 2017 IOP Conf.

More information

ANALYSIS OF V/f CONTROL OF INDUCTION MOTOR USING CONVENTIONAL CONTROLLERS AND FUZZY LOGIC CONTROLLER

ANALYSIS OF V/f CONTROL OF INDUCTION MOTOR USING CONVENTIONAL CONTROLLERS AND FUZZY LOGIC CONTROLLER ANALYSIS OF V/f CONTROL OF INDUCTION MOTOR USING CONVENTIONAL CONTROLLERS AND FUZZY LOGIC CONTROLLER Archana G C 1 and Reema N 2 1 PG Student [Electrical Machines], Department of EEE, Sree Buddha College

More information

VECTOR CONTROL SCHEME FOR INDUCTION MOTOR WITH DIFFERENT CONTROLLERS FOR NEGLECTING THE END EFFECTS IN HEV APPLICATIONS

VECTOR CONTROL SCHEME FOR INDUCTION MOTOR WITH DIFFERENT CONTROLLERS FOR NEGLECTING THE END EFFECTS IN HEV APPLICATIONS VECTOR CONTROL SCHEME FOR INDUCTION MOTOR WITH DIFFERENT CONTROLLERS FOR NEGLECTING THE END EFFECTS IN HEV APPLICATIONS M.LAKSHMISWARUPA 1, G.TULASIRAMDAS 2 & P.V.RAJGOPAL 3 1 Malla Reddy Engineering College,

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 Special 11(5): pages 129-137 Open Access Journal Comparison of

More information

CHASSIS DYNAMOMETER TORQUE CONTROL SYSTEM DESIGN BY DIRECT INVERSE COMPENSATION. C.Matthews, P.Dickinson, A.T.Shenton

CHASSIS DYNAMOMETER TORQUE CONTROL SYSTEM DESIGN BY DIRECT INVERSE COMPENSATION. C.Matthews, P.Dickinson, A.T.Shenton CHASSIS DYNAMOMETER TORQUE CONTROL SYSTEM DESIGN BY DIRECT INVERSE COMPENSATION C.Matthews, P.Dickinson, A.T.Shenton Department of Engineering, The University of Liverpool, Liverpool L69 3GH, UK Abstract:

More information

A PID Controller Design for an Air Blower System

A PID Controller Design for an Air Blower System 1 st International Conference of Recent Trends in Information and Communication Technologies A PID Controller Design for an Air Blower System Ibrahim Mohd Alsofyani *, Mohd Fuaad Rahmat, and Sajjad A.

More information

A Brushless DC Motor Speed Control By Fuzzy PID Controller

A Brushless DC Motor Speed Control By Fuzzy PID Controller A Brushless DC Motor Speed Control By Fuzzy PID Controller M D Bhutto, Prof. Ashis Patra Abstract Brushless DC (BLDC) motors are widely used for many industrial applications because of their low volume,

More information

Control Of Three Phase BLDC Motor Using Fuzzy Logic Controller Anjali. A. R M-Tech in Powerelectronics & Drives,Calicut University

Control Of Three Phase BLDC Motor Using Fuzzy Logic Controller Anjali. A. R M-Tech in Powerelectronics & Drives,Calicut University Control Of Three Phase BLDC Motor Using Fuzzy Logic Controller Anjali. A. R M-Tech in Powerelectronics & Drives,Calicut University Abstract Brushless DC (BLDC) motor drives are becoming widely used in

More information

CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System

CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System Introduction CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System The purpose of this lab is to introduce you to digital control systems. The most basic function of a control system is to

More information

TWO AREA CONTROL OF AGC USING PI & PID CONTROL BY FUZZY LOGIC

TWO AREA CONTROL OF AGC USING PI & PID CONTROL BY FUZZY LOGIC TWO AREA CONTROL OF AGC USING PI & PID CONTROL BY FUZZY LOGIC Puran Lal 1, Mainak Roy 2 1 M-Tech (EL) Student, 2 Assistant Professor, Department of EEE, Lingaya s University, Faridabad, (India) ABSTRACT

More information

CHAPTER 6. CALCULATION OF TUNING PARAMETERS FOR VIBRATION CONTROL USING LabVIEW

CHAPTER 6. CALCULATION OF TUNING PARAMETERS FOR VIBRATION CONTROL USING LabVIEW 130 CHAPTER 6 CALCULATION OF TUNING PARAMETERS FOR VIBRATION CONTROL USING LabVIEW 6.1 INTRODUCTION Vibration control of rotating machinery is tougher and a challenging challengerical technical problem.

More information

Investigations of Fuzzy Logic Controller for Sensorless Switched Reluctance Motor Drive

Investigations of Fuzzy Logic Controller for Sensorless Switched Reluctance Motor Drive IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 1 Ver. I (Jan Feb. 2016), PP 30-35 www.iosrjournals.org Investigations of Fuzzy

More information

Design of Compensator for Dynamical System

Design of Compensator for Dynamical System Design of Compensator for Dynamical System Ms.Saroja S. Chavan PimpriChinchwad College of Engineering, Pune Prof. A. B. Patil PimpriChinchwad College of Engineering, Pune ABSTRACT New applications of dynamical

More information

Robust Control Design for Rotary Inverted Pendulum Balance

Robust Control Design for Rotary Inverted Pendulum Balance Indian Journal of Science and Technology, Vol 9(28), DOI: 1.17485/ijst/216/v9i28/9387, July 216 ISSN (Print) : 974-6846 ISSN (Online) : 974-5645 Robust Control Design for Rotary Inverted Pendulum Balance

More information

Comparative Analysis of P, PI, PD, PID Controller for Mass Spring Damper System using Matlab Simulink.

Comparative Analysis of P, PI, PD, PID Controller for Mass Spring Damper System using Matlab Simulink. Comparative Analysis of P, PI, PD, PID Controller for Mass Spring Damper System using Matlab Simulink. 1 Kankariya Ravindra, 2 Kulkarni Yogesh, 3 Gujrathi Ankit 1,2,3 Assistant Professor Department of

More information

SIMULATION AND IMPLEMENTATION OF PID-ANN CONTROLLER FOR CHOPPER FED EMBEDDED PMDC MOTOR

SIMULATION AND IMPLEMENTATION OF PID-ANN CONTROLLER FOR CHOPPER FED EMBEDDED PMDC MOTOR ISSN: 2229-6956(ONLINE) DOI: 10.21917/ijsc.2012.0049 ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2012, VOLUME: 02, ISSUE: 03 SIMULATION AND IMPLEMENTATION OF PID-ANN CONTROLLER FOR CHOPPER FED EMBEDDED PMDC

More information

AVR221: Discrete PID Controller on tinyavr and megaavr devices. Introduction. AVR 8-bit Microcontrollers APPLICATION NOTE

AVR221: Discrete PID Controller on tinyavr and megaavr devices. Introduction. AVR 8-bit Microcontrollers APPLICATION NOTE AVR 8-bit Microcontrollers AVR221: Discrete PID Controller on tinyavr and megaavr devices APPLICATION NOTE Introduction This application note describes a simple implementation of a discrete Proportional-

More information

Review Paper on Comparison of various PID Controllers Tuning Methodologies for Heat Exchanger Model

Review Paper on Comparison of various PID Controllers Tuning Methodologies for Heat Exchanger Model Review Paper on Comparison of various PID Controllers Tuning Methodologies for Heat Exchanger Model Sumit 1, Ms. Kajal 2 1 Student, Department of Electrical Engineering, R.N College of Engineering, Rohtak,

More information

Glossary of terms. Short explanation

Glossary of terms. Short explanation Glossary Concept Module. Video Short explanation Abstraction 2.4 Capturing the essence of the behavior of interest (getting a model or representation) Action in the control Derivative 4.2 The control signal

More information

Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller

Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2492-2497 ISSN: 2249-6645 Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller Praveen Kumar 1, Anurag Singh Tomer 2 1 (ME Scholar, Department of Electrical

More information

Fuzzy Logic Based Speed Control System Comparative Study

Fuzzy Logic Based Speed Control System Comparative Study Fuzzy Logic Based Speed Control System Comparative Study A.D. Ghorapade Post graduate student Department of Electronics SCOE Pune, India abhijit_ghorapade@rediffmail.com Dr. A.D. Jadhav Professor Department

More information

1. Introduction 1.1 Motivation and Objectives

1. Introduction 1.1 Motivation and Objectives 1. Introduction 1.1 Motivation and Objectives Today, the analysis and design of complex power electronic systems such as motor drives is usually done using a modern simulation software which can provide

More information

An Introduction to Proportional- Integral-Derivative (PID) Controllers

An Introduction to Proportional- Integral-Derivative (PID) Controllers An Introduction to Proportional- Integral-Derivative (PID) Controllers Stan Żak School of Electrical and Computer Engineering ECE 680 Fall 2017 1 Motivation Growing gap between real world control problems

More information

Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control of DC Motor

Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control of DC Motor International ournal for Modern Trends in Science and Technology Volume: 02, Issue No: 11, November 2016 http://www.ijmtst.com ISSN: 2455-3778 Comparative Analysis of PID, SMC, SMC with PID Controller

More information

BINARY DISTILLATION COLUMN CONTROL TECHNIQUES: A COMPARATIVE STUDY

BINARY DISTILLATION COLUMN CONTROL TECHNIQUES: A COMPARATIVE STUDY BINARY DISTILLATION COLUMN CONTROL TECHNIQUES: A COMPARATIVE STUDY 1 NASSER MOHAMED RAMLI, 2 MOHAMMED ABOBAKR BASAAR 1,2 Chemical Engineering Department, Faculty of Engineering, Universiti Teknologi PETRONAS,

More information

MODEL BASED DESIGN OF PID CONTROLLER FOR BLDC MOTOR WITH IMPLEMENTATION OF EMBEDDED ARDUINO MEGA CONTROLLER

MODEL BASED DESIGN OF PID CONTROLLER FOR BLDC MOTOR WITH IMPLEMENTATION OF EMBEDDED ARDUINO MEGA CONTROLLER www.arpnjournals.com MODEL BASED DESIGN OF PID CONTROLLER FOR BLDC MOTOR WITH IMPLEMENTATION OF EMBEDDED ARDUINO MEGA CONTROLLER M.K.Hat 1, B.S.K.K. Ibrahim 1, T.A.T. Mohd 2 and M.K. Hassan 2 1 Department

More information

Simulation of Synchronous Machine in Stability Study for Power System: Garri Station as a Case Study

Simulation of Synchronous Machine in Stability Study for Power System: Garri Station as a Case Study Simulation of Synchronous Machine in Stability Study for Power System: Garri Station as a Case Study Bahar A. Elmahi. Industrial Research & Consultancy Center, baharelmahi@yahoo.com Abstract- This paper

More information

INTEGRATED PID BASED INTELLIGENT CONTROL FOR THREE TANK SYSTEM

INTEGRATED PID BASED INTELLIGENT CONTROL FOR THREE TANK SYSTEM INTEGRATED PID BASED INTELLIGENT CONTROL FOR THREE TANK SYSTEM J. Arulvadivu, N. Divya and S. Manoharan Electronics and Instrumentation Engineering, Karpagam College of Engineering, Coimbatore, Tamilnadu,

More information

Development of a MATLAB Data Acquisition and Control Toolbox for BASIC Stamp Microcontrollers

Development of a MATLAB Data Acquisition and Control Toolbox for BASIC Stamp Microcontrollers Chapter 4 Development of a MATLAB Data Acquisition and Control Toolbox for BASIC Stamp Microcontrollers 4.1. Introduction Data acquisition and control boards, also known as DAC boards, are used in virtually

More information

VARIABLE STRUCTURE CONTROL DESIGN OF PROCESS PLANT BASED ON SLIDING MODE APPROACH

VARIABLE STRUCTURE CONTROL DESIGN OF PROCESS PLANT BASED ON SLIDING MODE APPROACH VARIABLE STRUCTURE CONTROL DESIGN OF PROCESS PLANT BASED ON SLIDING MODE APPROACH H. H. TAHIR, A. A. A. AL-RAWI MECHATRONICS DEPARTMENT, CONTROL AND MECHATRONICS RESEARCH CENTRE, ELECTRONICS SYSTEMS AND

More information

Control Applications Using Computational Intelligence Methodologies

Control Applications Using Computational Intelligence Methodologies Control Applications Using Computational Intelligence Methodologies P. Burbano, Member, IEEE, O. Cerón, Member, IEEE, A. Prado, Member, IEEE Dept. of Automation and Industrial Electronics, Escuela Politécnica

More information

ISSN: (Online) Volume 2, Issue 1, January 2014 International Journal of Advance Research in Computer Science and Management Studies

ISSN: (Online) Volume 2, Issue 1, January 2014 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 2, Issue 1, January 2014 International Journal of Advance Research in Computer Science and Management Studies Research Paper Available online at: www.ijarcsms.com Fuzzy

More information

II. PROPOSED CLOSED LOOP SPEED CONTROL OF PMSM BLOCK DIAGRAM

II. PROPOSED CLOSED LOOP SPEED CONTROL OF PMSM BLOCK DIAGRAM Closed Loop Speed Control of Permanent Magnet Synchronous Motor fed by SVPWM Inverter Malti Garje 1, D.R.Patil 2 1,2 Electrical Engineering Department, WCE Sangli Abstract This paper presents very basic

More information

Fuzzy Controllers for Boost DC-DC Converters

Fuzzy Controllers for Boost DC-DC Converters IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735 PP 12-19 www.iosrjournals.org Fuzzy Controllers for Boost DC-DC Converters Neethu Raj.R 1, Dr.

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Design of Self-tuning PID controller using Fuzzy Logic for Level Process P D Aditya Karthik *1, J Supriyanka 2 *1, 2 Department

More information

Governor with dynamics: Gg(s)= 1 Turbine with dynamics: Gt(s) = 1 Load and machine with dynamics: Gp(s) = 1

Governor with dynamics: Gg(s)= 1 Turbine with dynamics: Gt(s) = 1 Load and machine with dynamics: Gp(s) = 1 Load Frequency Control of Two Area Power System Using Conventional Controller 1 Rajendra Murmu, 2 Sohan Lal Hembram and 3 Ajay Oraon, 1 Assistant Professor, Electrical Engineering Department, BIT Sindri,

More information

Design and Development of an Optimized Fuzzy Proportional-Integral-Derivative Controller using Genetic Algorithm

Design and Development of an Optimized Fuzzy Proportional-Integral-Derivative Controller using Genetic Algorithm INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, COMMUNICATION AND ENERGY CONSERVATION 2009, KEC/INCACEC/708 Design and Development of an Optimized Fuzzy Proportional-Integral-Derivative Controller using

More information

CHAPTER 3 WAVELET TRANSFORM BASED CONTROLLER FOR INDUCTION MOTOR DRIVES

CHAPTER 3 WAVELET TRANSFORM BASED CONTROLLER FOR INDUCTION MOTOR DRIVES 49 CHAPTER 3 WAVELET TRANSFORM BASED CONTROLLER FOR INDUCTION MOTOR DRIVES 3.1 INTRODUCTION The wavelet transform is a very popular tool for signal processing and analysis. It is widely used for the analysis

More information

GE 320: Introduction to Control Systems

GE 320: Introduction to Control Systems GE 320: Introduction to Control Systems Laboratory Section Manual 1 Welcome to GE 320.. 1 www.softbankrobotics.com 1 1 Introduction This section summarizes the course content and outlines the general procedure

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 ISSN 258 Intelligent Closed Loop Power Control For Reverse Link CDMA System Using Fuzzy Logic System. K.Sanmugapriyaa II year, M.E-Communication System Department of ECE Paavai Engineering College Namakkal,India

More information

Cantonment, Dhaka-1216, BANGLADESH

Cantonment, Dhaka-1216, BANGLADESH International Conference on Mechanical, Industrial and Energy Engineering 2014 26-27 December, 2014, Khulna, BANGLADESH ICMIEE-PI-140153 Electro-Mechanical Modeling of Separately Excited DC Motor & Performance

More information

Design of Self-Tuning Fuzzy PI controller in LABVIEW for Control of a Real Time Process

Design of Self-Tuning Fuzzy PI controller in LABVIEW for Control of a Real Time Process International Journal of Electronics and Computer Science Engineering 538 Available Online at www.ijecse.org ISSN- 2277-1956 Design of Self-Tuning Fuzzy PI controller in LABVIEW for Control of a Real Time

More information

Fuzzy PID Controllers for Industrial Applications

Fuzzy PID Controllers for Industrial Applications Fuzzy PID Controllers for Industrial Applications G. Ron Chen Lecture for EE 6452 City University of Hong Kong Summary Proportional-Integral-Derivative (PID) controllers are the most widely used controllers

More information

EVALUATION ALGORITHM- BASED ON PID CONTROLLER DESIGN FOR THE UNSTABLE SYSTEMS

EVALUATION ALGORITHM- BASED ON PID CONTROLLER DESIGN FOR THE UNSTABLE SYSTEMS EVALUATION ALGORITHM- BASED ON PID CONTROLLER DESIGN FOR THE UNSTABLE SYSTEMS Erliza Binti Serri 1, Wan Ismail Ibrahim 1 and Mohd Riduwan Ghazali 2 1 Sustanable Energy & Power Electronics Research, FKEE

More information

Fuzzy auto-tuning for a PID controller

Fuzzy auto-tuning for a PID controller Fuzzy auto-tuning for a PID controller Alain Segundo Potts 1, Basilio Thomé de Freitas Jr 2. and José Carlos Amaro 2 1 Department of Telecommunication and Control. University of São Paulo. Brazil. e-mail:

More information

Report on Dynamic Temperature control of a Peltier device using bidirectional current source

Report on Dynamic Temperature control of a Peltier device using bidirectional current source 19 May 2017 Report on Dynamic Temperature control of a Peltier device using bidirectional current source Physics Lab, SSE LUMS M Shehroz Malik 17100068@lums.edu.pk A bidirectional current source is needed

More information

A Real-Time Platform for Teaching Power System Control Design

A Real-Time Platform for Teaching Power System Control Design A Real-Time Platform for Teaching Power System Control Design G. Jackson, U.D. Annakkage, A. M. Gole, D. Lowe, and M.P. McShane Abstract This paper describes the development of a real-time digital simulation

More information

Motor Modeling and Position Control Lab 3 MAE 334

Motor Modeling and Position Control Lab 3 MAE 334 Motor ing and Position Control Lab 3 MAE 334 Evan Coleman April, 23 Spring 23 Section L9 Executive Summary The purpose of this experiment was to observe and analyze the open loop response of a DC servo

More information

Chapter 5. Tracking system with MEMS mirror

Chapter 5. Tracking system with MEMS mirror Chapter 5 Tracking system with MEMS mirror Up to now, this project has dealt with the theoretical optimization of the tracking servo with MEMS mirror through the use of simulation models. For these models

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY EEE 402 : CONTROL SYSTEMS SESSIONAL

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY EEE 402 : CONTROL SYSTEMS SESSIONAL DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY EEE 402 : CONTROL SYSTEMS SESSIONAL Experiment No. 1(a) : Modeling of physical systems and study of

More information

DC motor speed and position control using discrete-time fixed-order H controllers Darwish, M.A.H.; Abbas, H.M.S.

DC motor speed and position control using discrete-time fixed-order H controllers Darwish, M.A.H.; Abbas, H.M.S. DC motor speed and position control using discrete-time fixed-order H controllers Darwish, M.A.H.; Abbas, H.M.S. Published in: International Journal on Information Management Published: 1/1/1 Document

More information

Position Control of a Hydraulic Servo System using PID Control

Position Control of a Hydraulic Servo System using PID Control Position Control of a Hydraulic Servo System using PID Control ABSTRACT Dechrit Maneetham Mechatronics Engineering Program Rajamangala University of Technology Thanyaburi Pathumthani, THAIAND. (E-mail:Dechrit_m@hotmail.com)

More information

TigreSAT 2010 &2011 June Monthly Report

TigreSAT 2010 &2011 June Monthly Report 2010-2011 TigreSAT Monthly Progress Report EQUIS ADS 2010 PAYLOAD No changes have been done to the payload since it had passed all the tests, requirements and integration that are necessary for LSU HASP

More information

Design of Model Based PID Controller Tuning for Pressure Process

Design of Model Based PID Controller Tuning for Pressure Process ISSN (Print) : 3 3765 Design of Model Based PID Controller Tuning for Pressure Process A.Kanchana 1, G.Lavanya, R.Nivethidha 3, S.Subasree 4, P.Aravind 5 UG student, Dept. of ICE, Saranathan College Engineering,

More information

Modeling and simulation of feed system design of CNC machine tool based on. Matlab/simulink

Modeling and simulation of feed system design of CNC machine tool based on. Matlab/simulink Modeling and simulation of feed system design of CNC machine tool based on Matlab/simulink Su-Bom Yun 1, On-Joeng Sim 2 1 2, Facaulty of machine engineering, Huichon industry university, Huichon, Democratic

More information

Experiment Of Speed Control for an Electric Trishaw Based on PID Control Algorithm

Experiment Of Speed Control for an Electric Trishaw Based on PID Control Algorithm International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:17 No:02 38 Experiment Of Speed Control for an Electric Trishaw Based on PID Control Algorithm Shahrizal Saat 1 *, Mohd Nabil

More information