Detecting Next to Nothing: Spectroscopy in Optical Cavities

Size: px
Start display at page:

Download "Detecting Next to Nothing: Spectroscopy in Optical Cavities"

Transcription

1 Detecting Next to Nothing: Spectroscopy in Optical Cavities Kevin Lehmann Departments of Chemistry & Physics University of Virginia

2 Collaborators Daniele Romanini Joan Gambogi John Dudek Greg Engel Wilton Virgo Peter Tarsa Iris Scheele Haifeng Huang (UVa) Paul Johnston (UVa) Paul Rabinowitz Wen-Bin Yan, Calvin Kruzen, Bob Augustine, Chris Wu, Yu Chen, Lisa Bergson

3 Generic Absorption Spectroscopy Instrument L Lock-In DAS Source Filter Sample Chopper Detector

4 Beer s Law I out (ν) = I in (ν) exp ( - σ(ν) N L) σ(ν): Absorption cross section N: Number density of absorber (Concentration) L: Optical pathlength through sample Minimum Detectable Concentration: N min = ( I/I) min / (σ(ν) L)

5 Review of Optical Cavities (aka etalons)

6 Simple Linear Optical Cavity detector Radii of Curvature: R 1, R 2 Length of Cavity: L Mirror Transmission: T Mirror Reflectivity: R Mirror Loss: A = 1 - R - T

7 The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. Stable Optical Cavities For R = 1, modes exist which exactly reproduce themselves upon round trip. 0 < L < R 1 or R 2 < L < R 1 +R 2 (R 1 < R 2 ) If R 2 - R 1, << L, then R 1 < L < R 2 only weakly unstable Optic axis defined by line through centers of curvature of mirrors Light rays will oscillate around optic axis. Spot size of mirror

8 The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. Cavity Transmission as function of Mirror Reflectivity Ring-down Time

9 The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. Peak Transmission of Cavity Peak Intracavity Gain Mirrors with T,A ~ 5 ppm are available in near IR and red Intracavity power gain of ~10 5 can be realized

10 The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. Transverse resonance modes of Cavities If δ g = M/N, then we have rational cavity with periodic transmission spectrum. Arbitrary pulse inside Cavity will exactly reshape after N round trips -- such cavities are used for Herriott Cells.

11 Some Uses for Optical Cavities in Spectroscopy Control frequency and linewidth of lasers Monitor laser scan for calibration Laser linewidth is reduced by locking on to the transmission peak of a cavity Cavities are used to build up intensity External c.w. second harmonic generators Pump extremely weak transitions Used to enhance optical absorption

12 Cavity Ring-Down Absorption Spectroscopy R>99.99% Absorption R>99.99% Intensity I(t) = I 0 exp[ t( c ln R + c σ(λ) N)] L Time L eff =L/(1-R) Where: c : speed of light L : length of cavity R : mirror reflectivity σ : absorption cross section N : number density (concentration) L eff : effective pathlength

13 Ring Down Cavity Technique First Developed by O Keefe and Deacon Rev. Sci. Instr. 59, 2544 (1988) Theory: Romanini and Lehmann J. Chem. Phys. 99, 6287 (1993) Use a passive optical cavity formed from two high reflective mirrors (T~1-100 ppm) Excite cavity with a pulsed laser to fill with photons Detect exponential decay of light intensity inside resonator Decay rate reflects: Loss due to mirrors (slowly changing with wavelengths) Absorption of gas between mirrors

14 Advantages of CRDS Method Allows much longer pathlengths than traditional multipass cells Only sensitive to absorption and scattering between mirrors Beer s Law holds for all pathlengths; pathlengths determined by time if resolution exceeds width of absorption lines Calibration samples are not needed Cell is very compact; light contained in narrow spot of ~ 1 mm 2 Cell insensitive to vibration since it is a stable optical cavity Amplitude noise of laser not important Can use low power optical sources

15 Continue growth- publications per year Based upon searches of Web of Science data base for CRDS, Cavity CRLAS, Ring CEAS, Down ICOS, Spectroscopy NICE-OHMS

16 Early CRDS Princeton Used to detect high overtone transitions of HCN and other molecules Provided way to determine absolute absorption strength of extremely weak transitions. Could be done with very simple experimental set-up compared to intracavity photoaccoustic spectroscopy.

17 D. Romanini and KKL, J. Chem. Phys. 99, (1993)

18 HCN (106) overtone band L(eff) = 24 km This spectrum is now on the cover of a Spectroscopy text by Hollis

19 Diode Laser Advantages Low cost, compact, all solid state Low power requirements Wide electronic frequency tuning Single mode diodes in the near-ir are becoming available for sensing apps. H 2 O, C 2 H 2, CH 4, CO 2, NO 2, NH 3, etc.

20 Experimental Setup Mirror Faraday Isolator Acousto-Optical Modulator Mode Matching Optics Diode Laser HR Mirror Cavity Ring-Down Absorption Cell HR Mirror 3 PZTs Mirror Photodiode Trigger Computer Cavity J. B. Ring Dudek Down et al., Spectroscopy Analytical Chemistry 75, (2003).

21 Cavity Ring-Down Decay 0.5 Signal (Volts) τ = µsec 0.2 data points fit Time (µsec)

22 Water Scan with Lorentz fit cm -1 S= ~70 ppb Wavenumber

23 How stable is the ring down time? Laser power upon entering the cavity: µm ~ 3-5 mw Ensemble Standard Deviation: 10 pts: ±0.139 µs 0.069% 100 pts: ±0.165 µs 0.082% 1000 pts: ±0.146 µs 0.073%

24 The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. Allan variance and the detection limit in CRDS Applied Physics B 57, (1993) In CRDS the accurate measurement of decay time constant can be limited by slow drift of setup. Allan variance can be used to analyze the stability of instrument. For a N time-series data x i the Allan variance is given by: k is the subgroup size and m+1 is the number of subgroups. The integration time T equals to k/f, where f is sample rate. When white noise is dominant in the system (uncorrelated decays), Allan variance is proportional to 1/T and averaging data can improve the signal to noise ratio. When the drift appears Allan variance will become larger. The longest T during which the instrument can be regarded stable is determined by the drift of the system. The minimum of Allan variance gives the smallest detectable change during the longest integration time period.

25 What does this mean for water detection? Noise equivalent to 68 pptv divided by the square root of the number of ring down events averaged to get signal, i.e. ~2 pptv for averaging 1000 decays.

26 CRDS in Practice Size (14 x 19 x 26 ) Weight (45 kg) MTO-1000-H 2 O

27 MTO Response to Moisture Addition 2.5 Data used with permission from Air Products and Chemicals Inc., Allentown, PA Reading (ppb) /15/02 3:36 6/15/02 6:00 6/15/02 8:24 6/15/02 10:48 6/15/02 13:12 6/15/02 15:36 6/15/02 18:00 Time

28 Variations on CRDS Method CRDS (a.k.a. CRLAS, RDCS, cavity leak-out spectroscopy) pulsed CRDS cw CRDS phase shift CRDS Fourier Transform CRDS broad band CRDS evanescent wave CRDS fiber optic CRDS, fiber loop CRDS Cavity Ring-down polarimetry Optical feedback CRDS

29 Cavity Enhanced Absorption Spectroscopy (CEAS)-Engleln, Meijer, et al. a.k.a Integrated cavity output spectroscopy (ICOS) - O Keefe Frequency chirped CEAS Noise Immune Intracavity optical heterodyne method (NICE-OHMS) Intracavity laser absorption spectroscopy (ICLAS) Intracavity photoaccoustic spectroscopy attractive with optical locking! Excellent Review: C. Vallance, New J. of Chem. 29, 869 (2005)

30 SUPERCONTINUUM BASED BROADBAND CAVITY ENHANCED ABSORPTION SPECTROSCOPY Paul S. Johnston Kevin K. Lehmann Department of Chemistry University of Virginia

31 Broad Bandwidth Light sources: broad bandwidth dye lasers, Free electron lasers, fs-lasers, LEDs, arc-source Engeln & Meier, Fourier transform CRDS, 1996 Thorpe & Ye, 2007 Mode lock sources with cavities a multiple of the laser repetition rate allows much improved transmission Cavity dispersion a challenge

32 Source for Broad Bandwidth Coherent Radiation: Supercontinuum Photonic Crystal Fibers Material: Pure Silica Core diameter: µm Cladding diameter: µm Zero dispersion wavelength: nm Nonlinear Coefficient at 1060 nm: 11 (W Km) -1 Cavity Ring Down Spectroscopy

33 Supercontinuum parameters Input Average power: 1.0 W Rep rate: 30 KHz Pulse energy: 34 µj, 10 ns Peak power: 3400 W Output Average output power: 0.29 W Wadsworth, W. J. et al. Opt. Express 2004, 12, 299.

34 Supercontinuum Output

35 White light sources

36 Output Prism Ring-down Resonator Input θ b P- polarization θ b 6 meter radius of curvature G. Engel et al., in Laser Spectroscopy XIV International Conference, Eds. Cavity R. Blatt Ring et al. Down pgs Spectroscopy (World Scientific, 1999).

37 Advantages of Prism Cavity Wide spectral coverage - Simultaneous detection of multiple species Compact ring geometry (optical isolation) No dielectric coatings (harsh environments) Coupling can be optimized for broadband

38 Broadband system using white light from photonic crystal fiber PC Fiber Fiber Output Collimating mirror 20x objective P max =10 W Rep Rate: KHz Pulse Width: ~10ns Nd:Vanadate laser Gas inlet Mode Matching Mirrors 1 m monochromator ~0.06 cm -1 /pixel λ Cavity Length: 46 cm Sample Cell Time CCD array

39 The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. Loss Due to Dispersion changing Brewster s Angle in Fused Silica R ( n 1) 2 ( n, δθ ) = 6 δθ 4 n 4 2 R (1.46,0.1 ) R (1.46,1.0 ) = 1 ppm = 98.7 ppm **Only Brewster s angle loss**

40 The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. Modeling Cavity Loss Model: Loss = scattering + Brewster's angle loss

41 Ring-down Test for Fused Silica Prism Near-IR Prism Cavity Loss Measurements (Tiger Optics) High Equivalent Fused Silica Prisms (built in 43cm Reflectivity cavity) ring down tau/ppm loss vs. wavelength Tau Trend measure Tau ppm loss Trend Measure PPM Loss Ringdown(tau-microsecond) ppm loss Wavelength(nm) Tau measurenment at 1310, 1368, 1377,1392,1522,1531, 1578,1635,1671nm. Every Diode laser Temp scan from (40 or ) 35~0 Celsisus degree.

42 The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. Cavity enhanced spectroscopy Measure time integrated intensity The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. Advantages Relatively high sensitivity Simpler set up Sensitivity limitations Residual mode structure Laser noise Berden, G.; Peeters, R.; Meijer, G. Int. Rev. Phys. Chem. 2000, 19, 565.

43 Atmospheric Oxygen

44 Current Status Collaborating with Tiger Optics to commercialize a detector of multiple chemical species. Will try near-ir spectroscopy with InGaAs array detector Will use FT-IR for dispersion Have begun building mode-locked (80 MHz) super-continuum source that we expect > 10 W average power. Frequency comb of source can be matched to frequency comb of cavity transmission to greatly improve transmission Potentially can use Vernier principle to improve Cavity Ring upon Down resolution Spectroscopy of spectrograph

45 Applications of Broad band CRDS Combustion and Plasma diagnostics parallel detection improves S/N ratio if we have unstable sample single shot determination of temperature Breath Analysis Applications both species and isotopic composition studies Could be combined with optical comb technology for high accuracy metrology.

46 Other Cavity Spectroscopy related projects Methane Isotope Ratio Instrument 13 C/ 12 C and D/H ratios CH 4 in oceans, air, and emitted from permafrost. Possible mission to Mars Detect NO and other molecules in human breath Fabricate and test Prisms from CaF 2 (UV) and BaF 2 (IR) Collaboration with group looking for WIMPS with liquid Ar detector Need to detect H 2 O, O 2, and N 2 impurities < 1 ppb Plan to try to detect N 2 via 3 Σ state produced in discharge.

47 Contact Information Phone Office: Rm. 124 in Chemistry Building

High resolution cavity-enhanced absorption spectroscopy with a mode comb.

High resolution cavity-enhanced absorption spectroscopy with a mode comb. CRDS User meeting Cork University, sept-2006 High resolution cavity-enhanced absorption spectroscopy with a mode comb. T. Gherman, S. Kassi, J. C. Vial, N. Sadeghi, D. Romanini Laboratoire de Spectrométrie

More information

B. Cavity-Enhanced Absorption Spectroscopy (CEAS)

B. Cavity-Enhanced Absorption Spectroscopy (CEAS) B. Cavity-Enhanced Absorption Spectroscopy (CEAS) CEAS is also known as ICOS (integrated cavity output spectroscopy). Developed in 1998 (Engeln et al.; O Keefe et al.) In cavity ringdown spectroscopy,

More information

Introduction to CEAS techniques. D. Romanini Laboratoire Interdisciplinaire de Physique Université Grenoble 1/CNRS

Introduction to CEAS techniques. D. Romanini Laboratoire Interdisciplinaire de Physique Université Grenoble 1/CNRS Introduction to CEAS techniques D. Romanini Laboratoire Interdisciplinaire de Physique Université Grenoble 1/CNRS Outline : Interest of optical cavities in spectroscopy and related applications (through

More information

Optical phase-coherent link between an optical atomic clock. and 1550 nm mode-locked lasers

Optical phase-coherent link between an optical atomic clock. and 1550 nm mode-locked lasers Optical phase-coherent link between an optical atomic clock and 1550 nm mode-locked lasers Kevin W. Holman, David J. Jones, Steven T. Cundiff, and Jun Ye* JILA, National Institute of Standards and Technology

More information

taccor Optional features Overview Turn-key GHz femtosecond laser

taccor Optional features Overview Turn-key GHz femtosecond laser taccor Turn-key GHz femtosecond laser Self-locking and maintaining Stable and robust True hands off turn-key system Wavelength tunable Integrated pump laser Overview The taccor is a unique turn-key femtosecond

More information

Pound-Drever-Hall Locking of a Chip External Cavity Laser to a High-Finesse Cavity Using Vescent Photonics Lasers & Locking Electronics

Pound-Drever-Hall Locking of a Chip External Cavity Laser to a High-Finesse Cavity Using Vescent Photonics Lasers & Locking Electronics of a Chip External Cavity Laser to a High-Finesse Cavity Using Vescent Photonics Lasers & Locking Electronics 1. Introduction A Pound-Drever-Hall (PDH) lock 1 of a laser was performed as a precursor to

More information

A continuous-wave optical parametric oscillator for mid infrared photoacoustic trace gas detection

A continuous-wave optical parametric oscillator for mid infrared photoacoustic trace gas detection A continuous-wave optical parametric oscillator for mid infrared photoacoustic trace gas detection Frank Müller, Alexander Popp, Frank Kühnemann Institute of Applied Physics, University of Bonn, Wegelerstr.8,

More information

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband Continuum White Light Generation WhiteLase: High Power Ultrabroadband Light Sources Technology Ultrafast Pulses + Fiber Laser + Non-linear PCF = Spectral broadening from 400nm to 2500nm Ultrafast Fiber

More information

Lecture 08. Fundamentals of Lidar Remote Sensing (6)

Lecture 08. Fundamentals of Lidar Remote Sensing (6) Lecture 08. Fundamentals of Lidar Remote Sensing (6) Basic Lidar Architecture q Basic Lidar Architecture q Configurations vs. Arrangements q Transceiver with HOE q A real example: STAR Na Doppler Lidar

More information

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Keisuke Kasai a), Jumpei Hongo, Masato Yoshida, and Masataka Nakazawa Research Institute of

More information

THE TUNABLE LASER LIGHT SOURCE C-WAVE. HÜBNER Photonics Coherence Matters.

THE TUNABLE LASER LIGHT SOURCE C-WAVE. HÜBNER Photonics Coherence Matters. THE TUNABLE LASER LIGHT SOURCE HÜBNER Photonics Coherence Matters. FLEXIBILITY WITH PRECISION is the tunable laser light source for continuous-wave (cw) emission in the visible and near-infrared wavelength

More information

Fast Widely-Tunable CW Single Frequency 2-micron Laser

Fast Widely-Tunable CW Single Frequency 2-micron Laser Fast Widely-Tunable CW Single Frequency 2-micron Laser Charley P. Hale and Sammy W. Henderson Beyond Photonics LLC 1650 Coal Creek Avenue, Ste. B Lafayette, CO 80026 Presented at: 18 th Coherent Laser

More information

Fast Raman Spectral Imaging Using Chirped Femtosecond Lasers

Fast Raman Spectral Imaging Using Chirped Femtosecond Lasers Fast Raman Spectral Imaging Using Chirped Femtosecond Lasers Dan Fu 1, Gary Holtom 1, Christian Freudiger 1, Xu Zhang 2, Xiaoliang Sunney Xie 1 1. Department of Chemistry and Chemical Biology, Harvard

More information

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017 R. J. Jones College of Optical Sciences OPTI 511L Fall 2017 Active Modelocking of a Helium-Neon Laser The generation of short optical pulses is important for a wide variety of applications, from time-resolved

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Vibrational Coherence in the Excited State Dynamics of Cr(acac) 3 : Identifying the Reaction Coordinate for Ultrafast Intersystem Crossing Joel N. Schrauben, Kevin L. Dillman,

More information

Nd: YAG Laser Energy Levels 4 level laser Optical transitions from Ground to many upper levels Strong absorber in the yellow range None radiative to

Nd: YAG Laser Energy Levels 4 level laser Optical transitions from Ground to many upper levels Strong absorber in the yellow range None radiative to Nd: YAG Lasers Dope Neodynmium (Nd) into material (~1%) Most common Yttrium Aluminum Garnet - YAG: Y 3 Al 5 O 12 Hard brittle but good heat flow for cooling Next common is Yttrium Lithium Fluoride: YLF

More information

Vertical External Cavity Surface Emitting Laser

Vertical External Cavity Surface Emitting Laser Chapter 4 Optical-pumped Vertical External Cavity Surface Emitting Laser The booming laser techniques named VECSEL combine the flexibility of semiconductor band structure and advantages of solid-state

More information

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT In this chapter, the experimental results for fine-tuning of the laser wavelength with an intracavity liquid crystal element

More information

High Power and Energy Femtosecond Lasers

High Power and Energy Femtosecond Lasers High Power and Energy Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average powers. PHAROS features a mechanical and optical

More information

Analytical Spectroscopy Chemistry 620: Midterm Exam Key Date Assigned: April 15, Due April 22, 2010

Analytical Spectroscopy Chemistry 620: Midterm Exam Key Date Assigned: April 15, Due April 22, 2010 Analytical Spectroscopy Chemistry 620: Key Date Assigned: April 15, Due April 22, 2010 You have 1 week to complete this exam. You can earn up to 100 points on this exam, which consists of 4 questions.

More information

Introduction

Introduction Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source Paul S. Johnston and Kevin K. Lehmann * 1 Department of Chemistry University of Virginia McCormick Rd

More information

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models PGx1 PGx3 PGx11 PT2 Transform Limited Broadly Tunable Picosecond OPA optical parametric devices employ advanced design concepts in order to produce broadly tunable picosecond pulses with nearly Fourier-transform

More information

High Power Thin Disk Lasers. Dr. Adolf Giesen. German Aerospace Center. Institute of Technical Physics. Folie 1. Institute of Technical Physics

High Power Thin Disk Lasers. Dr. Adolf Giesen. German Aerospace Center. Institute of Technical Physics. Folie 1. Institute of Technical Physics High Power Thin Disk Lasers Dr. Adolf Giesen German Aerospace Center Folie 1 Research Topics - Laser sources and nonlinear optics Speiser Beam control and optical diagnostics Riede Atm. propagation and

More information

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers Integrated disruptive components for 2µm fibre Lasers ISLA 2 µm Sub-Picosecond Fiber Lasers Advantages: 2 - microns wavelength offers eye-safety potentially higher pulse energy and average power in single

More information

UNMATCHED OUTPUT POWER AND TUNING RANGE

UNMATCHED OUTPUT POWER AND TUNING RANGE ARGOS MODEL 2400 SF SERIES TUNABLE SINGLE-FREQUENCY MID-INFRARED SPECTROSCOPIC SOURCE UNMATCHED OUTPUT POWER AND TUNING RANGE One of Lockheed Martin s innovative laser solutions, Argos TM Model 2400 is

More information

Quantum-Well Semiconductor Saturable Absorber Mirror

Quantum-Well Semiconductor Saturable Absorber Mirror Chapter 3 Quantum-Well Semiconductor Saturable Absorber Mirror The shallow modulation depth of quantum-dot saturable absorber is unfavorable to increasing pulse energy and peak power of Q-switched laser.

More information

R. J. Jones Optical Sciences OPTI 511L Fall 2017

R. J. Jones Optical Sciences OPTI 511L Fall 2017 R. J. Jones Optical Sciences OPTI 511L Fall 2017 Semiconductor Lasers (2 weeks) Semiconductor (diode) lasers are by far the most widely used lasers today. Their small size and properties of the light output

More information

COMPONENTS OF OPTICAL INSTRUMENTS. Chapter 7 UV, Visible and IR Instruments

COMPONENTS OF OPTICAL INSTRUMENTS. Chapter 7 UV, Visible and IR Instruments COMPONENTS OF OPTICAL INSTRUMENTS Chapter 7 UV, Visible and IR Instruments 1 Topics A. GENERAL DESIGNS B. SOURCES C. WAVELENGTH SELECTORS D. SAMPLE CONTAINERS E. RADIATION TRANSDUCERS F. SIGNAL PROCESSORS

More information

COMPONENTS OF OPTICAL INSTRUMENTS. Topics

COMPONENTS OF OPTICAL INSTRUMENTS. Topics COMPONENTS OF OPTICAL INSTRUMENTS Chapter 7 UV, Visible and IR Instruments Topics A. GENERAL DESIGNS B. SOURCES C. WAVELENGTH SELECTORS D. SAMPLE CONTAINERS E. RADIATION TRANSDUCERS F. SIGNAL PROCESSORS

More information

High power VCSEL array pumped Q-switched Nd:YAG lasers

High power VCSEL array pumped Q-switched Nd:YAG lasers High power array pumped Q-switched Nd:YAG lasers Yihan Xiong, Robert Van Leeuwen, Laurence S. Watkins, Jean-Francois Seurin, Guoyang Xu, Alexander Miglo, Qing Wang, and Chuni Ghosh Princeton Optronics,

More information

Spectroscopy of Ruby Fluorescence Physics Advanced Physics Lab - Summer 2018 Don Heiman, Northeastern University, 1/12/2018

Spectroscopy of Ruby Fluorescence Physics Advanced Physics Lab - Summer 2018 Don Heiman, Northeastern University, 1/12/2018 1 Spectroscopy of Ruby Fluorescence Physics 3600 - Advanced Physics Lab - Summer 2018 Don Heiman, Northeastern University, 1/12/2018 I. INTRODUCTION The laser was invented in May 1960 by Theodor Maiman.

More information

Infrared wire grid polarizers: metrology, modeling, and laser damage threshold

Infrared wire grid polarizers: metrology, modeling, and laser damage threshold Infrared wire grid polarizers: metrology, modeling, and laser damage threshold Matthew George, Bin Wang, Jonathon Bergquist, Rumyana Petrova, Eric Gardner Moxtek Inc. Calcon 2013 Wire Grid Polarizer (WGP)

More information

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers T. Day and R. A. Marsland New Focus Inc. 340 Pioneer Way Mountain View CA 94041 (415) 961-2108 R. L. Byer

More information

Markus Leuenberger1, Tesfaye Berhanu1, Peter Nyfeler1, David Kim-Hak2, John Hoffnagle2 and Minghua Sun2. Bern, Switzerland

Markus Leuenberger1, Tesfaye Berhanu1, Peter Nyfeler1, David Kim-Hak2, John Hoffnagle2 and Minghua Sun2. Bern, Switzerland GGMT-2017, Dübendorf, Switzerland August 30, 2017 Measurements of atmospheric oxygen using a newly built CRDS analyzer and comparison with a paramagnetic and an IRMS. Markus Leuenberger1, Tesfaye Berhanu1,

More information

Measurements of Mode Converted ICRF Waves with Phase Contrast Imaging in Alcator C-Mod

Measurements of Mode Converted ICRF Waves with Phase Contrast Imaging in Alcator C-Mod Measurements of Mode Converted ICRF Waves with Phase Contrast Imaging in Alcator C-Mod N. Tsujii, M. Porkolab, E.M. Edlund, L. Lin, Y. Lin, J.C. Wright, S.J. Wukitch MIT Plasma Science and Fusion Center

More information

PITZ Laser Systems. Light Amplification by Stimulated Emission of Radiation. Cavity. What is a Laser? General introduction: systems, layouts

PITZ Laser Systems. Light Amplification by Stimulated Emission of Radiation. Cavity. What is a Laser? General introduction: systems, layouts PITZ Laser Systems General introduction: systems, layouts Matthias Groß PITZ Laser Systems Technisches Seminar Zeuthen, 14.11.2017 What is a Laser? > General setup Light Amplification by Stimulated Emission

More information

레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 )

레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 ) 레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 ) Contents Frequency references Frequency locking methods Basic principle of loop filter Example of lock box circuits Quantifying frequency stability Applications

More information

High-Power, Passively Q-switched Microlaser - Power Amplifier System

High-Power, Passively Q-switched Microlaser - Power Amplifier System High-Power, Passively Q-switched Microlaser - Power Amplifier System Yelena Isyanova Q-Peak, Inc.,135 South Road, Bedford, MA 01730 isyanova@qpeak.com Jeff G. Manni JGM Associates, 6 New England Executive

More information

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Ring cavity tunable fiber laser with external transversely chirped Bragg grating Ring cavity tunable fiber laser with external transversely chirped Bragg grating A. Ryasnyanskiy, V. Smirnov, L. Glebova, O. Mokhun, E. Rotari, A. Glebov and L. Glebov 2 OptiGrate, 562 South Econ Circle,

More information

Wavelength Control and Locking with Sub-MHz Precision

Wavelength Control and Locking with Sub-MHz Precision Wavelength Control and Locking with Sub-MHz Precision A PZT actuator on one of the resonator mirrors enables the Verdi output wavelength to be rapidly tuned over a range of several GHz or tightly locked

More information

A Narrow-Band Tunable Diode Laser System with Grating Feedback

A Narrow-Band Tunable Diode Laser System with Grating Feedback A Narrow-Band Tunable Diode Laser System with Grating Feedback S.P. Spirydovich Draft Abstract The description of diode laser was presented. The tuning laser system was built and aligned. The free run

More information

picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS

picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS 1 picoemerald Two Colors in One Box Microscopy and Spectroscopy with a Tunable Two-Color Source CARS and SRS microscopy

More information

SCCH 4: 211: 2015 SCCH

SCCH 4: 211: 2015 SCCH SCCH 211: Analytical Chemistry I Analytical Techniques Based on Optical Spectroscopy Atitaya Siripinyanond Office Room: C218B Email: atitaya.sir@mahidol.ac.th Course Details October 19 November 30 Topic

More information

Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane

Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane Swapnajit Chakravarty 1, Wei-Cheng Lai 2, Xiaolong (Alan) Wang 1, Che-Yun Lin 2, Ray T. Chen 1,2 1 Omega Optics, 10306 Sausalito Drive,

More information

Eye safe solid state lasers for remote sensing and coherent laser radar

Eye safe solid state lasers for remote sensing and coherent laser radar Eye safe solid state lasers for remote sensing and coherent laser radar Jesper Munch, Matthew Heintze, Murray Hamilton, Sean Manning, Y. Mao, Damien Mudge and Peter Veitch Department of Physics The University

More information

combustion diagnostics

combustion diagnostics 3. Instrumentation t ti for optical combustion diagnostics Equipment for combustion laser diagnostics 1) Laser/Laser system 2) Optics Lenses Polarizer Filters Mirrors Etc. 3) Detector CCD-camera Spectrometer

More information

Trace-gas detection based on the temperature-tuning periodically poled MgO: LiNbO 3 optical parametric oscillator

Trace-gas detection based on the temperature-tuning periodically poled MgO: LiNbO 3 optical parametric oscillator JOUNAL OF OPTOELECTONICS AND ADVANCED MATEIALS Vol. 8, No. 4, August 2006, p. 1438-14 42 Trace-gas detection based on the temperature-tuning periodically poled MgO: LiNbO 3 optical parametric oscillator

More information

visibility values: 1) V1=0.5 2) V2=0.9 3) V3=0.99 b) In the three cases considered, what are the values of FSR (Free Spectral Range) and

visibility values: 1) V1=0.5 2) V2=0.9 3) V3=0.99 b) In the three cases considered, what are the values of FSR (Free Spectral Range) and EXERCISES OF OPTICAL MEASUREMENTS BY ENRICO RANDONE AND CESARE SVELTO EXERCISE 1 A CW laser radiation (λ=2.1 µm) is delivered to a Fabry-Pérot interferometer made of 2 identical plane and parallel mirrors

More information

A new picosecond Laser pulse generation method.

A new picosecond Laser pulse generation method. PULSE GATING : A new picosecond Laser pulse generation method. Picosecond lasers can be found in many fields of applications from research to industry. These lasers are very common in bio-photonics, non-linear

More information

Improved Radiometry for LED Arrays

Improved Radiometry for LED Arrays RadTech Europe 2017 Prague, Czech Republic Oct. 18, 2017 Improved Radiometry for LED Arrays Dr. Robin E. Wright 3M Corporate Research Process Laboratory, retired 3M 2017 All Rights Reserved. 1 Personal

More information

CHAPTER 7. Components of Optical Instruments

CHAPTER 7. Components of Optical Instruments CHAPTER 7 Components of Optical Instruments From: Principles of Instrumental Analysis, 6 th Edition, Holler, Skoog and Crouch. CMY 383 Dr Tim Laurens NB Optical in this case refers not only to the visible

More information

Femtosecond Synchronization of Laser Systems for the LCLS

Femtosecond Synchronization of Laser Systems for the LCLS Femtosecond Synchronization of Laser Systems for the LCLS, Lawrence Doolittle, Gang Huang, John W. Staples, Russell Wilcox (LBNL) John Arthur, Josef Frisch, William White (SLAC) 26 Aug 2010 FEL2010 1 Berkeley

More information

Working in Visible NHMFL

Working in Visible NHMFL Working in Visible Optics @ NHMFL NHMFL Summer School 05-19-2016 Stephen McGill Optical Energy Range Energy of Optical Spectroscopy Range SCM3 Optics Facility Energy Range of Optical Spectroscopy SCM3

More information

Author's personal copy

Author's personal copy Chemical Physics Letters 463 (2008) 246 250 Contents lists available at ScienceDirect Chemical Physics Letters journal homepage: www.elsevier.com/locate/cplett CW cavity ring-down spectroscopy (CRDS) with

More information

Continuous-Wave (CW) Single-Frequency IR Laser. NPRO 125/126 Series

Continuous-Wave (CW) Single-Frequency IR Laser. NPRO 125/126 Series Continuous-Wave (CW) Single-Frequency IR Laser NPRO 125/126 Series www.lumentum.com Data Sheet The Lumentum NPRO 125/126 diode-pumped lasers produce continuous-wave (CW), singlefrequency output at either

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/2/e1700324/dc1 Supplementary Materials for Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures Long Yuan, Ting-Fung

More information

Chemistry 524--"Hour Exam"--Keiderling Mar. 19, pm SES

Chemistry 524--Hour Exam--Keiderling Mar. 19, pm SES Chemistry 524--"Hour Exam"--Keiderling Mar. 19, 2013 -- 2-4 pm -- 170 SES Please answer all questions in the answer book provided. Calculators, rulers, pens and pencils permitted. No open books allowed.

More information

Supplementary Figures

Supplementary Figures 1 Supplementary Figures a) f rep,1 Δf f rep,2 = f rep,1 +Δf RF Domain Optical Domain b) Aliasing region Supplementary Figure 1. Multi-heterdoyne beat note of two slightly shifted frequency combs. a Case

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/4/e1501489/dc1 Supplementary Materials for A broadband chip-scale optical frequency synthesizer at 2.7 10 16 relative uncertainty Shu-Wei Huang, Jinghui Yang,

More information

High Average Power, High Repetition Rate Side-Pumped Nd:YVO 4 Slab Laser

High Average Power, High Repetition Rate Side-Pumped Nd:YVO 4 Slab Laser High Average Power, High Repetition Rate Side-Pumped Nd:YVO Slab Laser Kevin J. Snell and Dicky Lee Q-Peak Incorporated 135 South Rd., Bedford, MA 173 (71) 75-9535 FAX (71) 75-97 e-mail: ksnell@qpeak.com,

More information

High-Power Femtosecond Lasers

High-Power Femtosecond Lasers High-Power Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average power. PHAROS features a mechanical and optical design optimized

More information

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser V.I.Baraulya, S.M.Kobtsev, S.V.Kukarin, V.B.Sorokin Novosibirsk State University Pirogova 2, Novosibirsk, 630090, Russia ABSTRACT

More information

High power and single frequency quantum. cascade lasers for gas sensing. Stéphane Blaser

High power and single frequency quantum. cascade lasers for gas sensing. Stéphane Blaser High power and single frequency quantum cascade lasers for gas sensing Stéphane Blaser Alpes Lasers: Yargo Bonetti Lubos Hvozdara Antoine Muller University of Neuchâtel: Marcella Giovannini Nicolas Hoyler

More information

Femtosecond optical parametric oscillator frequency combs for high-resolution spectroscopy in the mid-infrared

Femtosecond optical parametric oscillator frequency combs for high-resolution spectroscopy in the mid-infrared Femtosecond optical parametric oscillator frequency combs for high-resolution spectroscopy in the mid-infrared Zhaowei Zhang, Karolis Balskus, Richard A. McCracken, Derryck T. Reid Institute of Photonics

More information

CO 2 Remote Detection Using a 2-µm DIAL Instrument

CO 2 Remote Detection Using a 2-µm DIAL Instrument CO 2 Remote Detection Using a 2-µm DIAL Instrument Erwan Cadiou 1,2, Dominique Mammez 1,2, Jean-Baptiste Dherbecourt 1,, Guillaume Gorju 1, Myriam Raybaut 1, Jean-Michel Melkonian 1, Antoine Godard 1,

More information

Fundamental Optics ULTRAFAST THEORY ( ) = ( ) ( q) FUNDAMENTAL OPTICS. q q = ( A150 Ultrafast Theory

Fundamental Optics ULTRAFAST THEORY ( ) = ( ) ( q) FUNDAMENTAL OPTICS. q q = ( A150 Ultrafast Theory ULTRAFAST THEORY The distinguishing aspect of femtosecond laser optics design is the need to control the phase characteristic of the optical system over the requisite wide pulse bandwidth. CVI Laser Optics

More information

DIFFERENTIAL ABSORPTION LIDAR FOR GREENHOUSE GAS MEASUREMENTS

DIFFERENTIAL ABSORPTION LIDAR FOR GREENHOUSE GAS MEASUREMENTS DIFFERENTIAL ABSORPTION LIDAR FOR GREENHOUSE GAS MEASUREMENTS Stephen E. Maxwell, Sensor Science Division, PML Kevin O. Douglass, David F. Plusquellic, Radiation and Biomolecular Physics Division, PML

More information

Designing for Femtosecond Pulses

Designing for Femtosecond Pulses Designing for Femtosecond Pulses White Paper PN 200-1100-00 Revision 1.1 July 2013 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Qiyuan Song (M2) and Aoi Nakamura (B4) Abstracts: We theoretically and experimentally

More information

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS Diode Laser Characteristics I. BACKGROUND Beginning in the mid 1960 s, before the development of semiconductor diode lasers, physicists mostly

More information

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

SUPPLEMENTARY INFORMATION DOI: /NPHOTON Supplementary Methods and Data 1. Apparatus Design The time-of-flight measurement apparatus built in this study is shown in Supplementary Figure 1. An erbium-doped femtosecond fibre oscillator (C-Fiber,

More information

Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-ir telecommunication diode laser

Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-ir telecommunication diode laser Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-ir telecommunication diode laser Anatoliy A. Kosterev and Frank K. Tittel A gas sensor based on quartz-enhanced photoacoustic

More information

Lecture 5: Introduction to Lasers

Lecture 5: Introduction to Lasers Lecture 5: Introduction to Lasers http://en.wikipedia.org/wiki/laser History of the Laser v Invented in 1958 by Charles Townes (Nobel prize in Physics 1964) and Arthur Schawlow of Bell Laboratories v Was

More information

A transportable optical frequency comb based on a mode-locked fibre laser

A transportable optical frequency comb based on a mode-locked fibre laser A transportable optical frequency comb based on a mode-locked fibre laser B. R. Walton, H. S. Margolis, V. Tsatourian and P. Gill National Physical Laboratory Joint meeting for Time and Frequency Club

More information

Lecture 08. Fundamentals of Lidar Remote Sensing (6)

Lecture 08. Fundamentals of Lidar Remote Sensing (6) Lecture 08. Fundamentals of Lidar Remote Sensing (6) Basic Lidar Architecture Basic Lidar Architecture Configurations vs. Arrangements Transceiver with HOE A real example: STAR Na Doppler Lidar Another

More information

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1 Spectral phase shaping for high resolution CARS spectroscopy around 3 cm A.C.W. van Rhijn, S. Postma, J.P. Korterik, J.L. Herek, and H.L. Offerhaus Mesa + Research Institute for Nanotechnology, University

More information

Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region

Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region Feature Article JY Division I nformation Optical Spectroscopy Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region Raymond Pini, Salvatore Atzeni Abstract Multichannel

More information

A Novel Multipass Optical System Oleg Matveev University of Florida, Department of Chemistry, Gainesville, Fl

A Novel Multipass Optical System Oleg Matveev University of Florida, Department of Chemistry, Gainesville, Fl A Novel Multipass Optical System Oleg Matveev University of Florida, Department of Chemistry, Gainesville, Fl BACKGROUND Multipass optical systems (MOS) are broadly used in absorption, Raman, fluorescence,

More information

Wavelength Meter Sensitive and compact wavemeter with a large spectral range for high speed measurements of pulsed and continuous lasers.

Wavelength Meter Sensitive and compact wavemeter with a large spectral range for high speed measurements of pulsed and continuous lasers. Wavelength Meter Sensitive and compact wavemeter with a large spectral range for high speed measurements of pulsed and continuous lasers. Unrivaled precision Fizeau based interferometers The sturdiness

More information

Cavity QED with quantum dots in semiconductor microcavities

Cavity QED with quantum dots in semiconductor microcavities Cavity QED with quantum dots in semiconductor microcavities M. T. Rakher*, S. Strauf, Y. Choi, N.G. Stolz, K.J. Hennessey, H. Kim, A. Badolato, L.A. Coldren, E.L. Hu, P.M. Petroff, D. Bouwmeester University

More information

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc.

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc. Optodevice Data Book ODE-408-001I Rev.9 Mar. 2003 Opnext Japan, Inc. Section 1 Operating Principles 1.1 Operating Principles of Laser Diodes (LDs) and Infrared Emitting Diodes (IREDs) 1.1.1 Emitting Principles

More information

771 Series LASER SPECTRUM ANALYZER. The Power of Precision in Spectral Analysis. It's Our Business to be Exact! bristol-inst.com

771 Series LASER SPECTRUM ANALYZER. The Power of Precision in Spectral Analysis. It's Our Business to be Exact! bristol-inst.com 771 Series LASER SPECTRUM ANALYZER The Power of Precision in Spectral Analysis It's Our Business to be Exact! bristol-inst.com The 771 Series Laser Spectrum Analyzer combines proven Michelson interferometer

More information

DEVELOPMENT OF CW AND Q-SWITCHED DIODE PUMPED ND: YVO 4 LASER

DEVELOPMENT OF CW AND Q-SWITCHED DIODE PUMPED ND: YVO 4 LASER DEVELOPMENT OF CW AND Q-SWITCHED DIODE PUMPED ND: YVO 4 LASER Gagan Thakkar 1, Vatsal Rustagi 2 1 Applied Physics, 2 Production and Industrial Engineering, Delhi Technological University, New Delhi (India)

More information

Optical Fiber Technology. Photonic Network By Dr. M H Zaidi

Optical Fiber Technology. Photonic Network By Dr. M H Zaidi Optical Fiber Technology Numerical Aperture (NA) What is numerical aperture (NA)? Numerical aperture is the measure of the light gathering ability of optical fiber The higher the NA, the larger the core

More information

A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator

A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator Utah State University DigitalCommons@USU Space Dynamics Lab Publications Space Dynamics Lab 1-1-2011 A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator Robert J. Foltynowicz

More information

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual 2012 858 West Park Street, Eugene, OR 97401 www.mtinstruments.com Table of Contents Specifications and Overview... 1 General Layout...

More information

Optical design of shining light through wall experiments

Optical design of shining light through wall experiments Optical design of shining light through wall experiments Benno Willke Leibniz Universität Hannover (member of the ALPS collaboration) Vistas in Axion Physics: A Roadmap for Theoretical and Experimental

More information

Lecture 3. Mass sensors Optical sensors. SPR Sensors.

Lecture 3. Mass sensors Optical sensors. SPR Sensors. Lecture 3 Mass sensors Optical sensors. SPR Sensors. Lecture plan mass sensors (QCM, SAW, u-cantilevers) thermal sensors optical sensors: adsorption diffractive index change SPR history concept performance

More information

How to build an Er:fiber femtosecond laser

How to build an Er:fiber femtosecond laser How to build an Er:fiber femtosecond laser Daniele Brida 17.02.2016 Konstanz Ultrafast laser Time domain : pulse train Frequency domain: comb 3 26.03.2016 Frequency comb laser Time domain : pulse train

More information

arxiv: v1 [physics.optics] 31 Mar 2008

arxiv: v1 [physics.optics] 31 Mar 2008 Cavity-enhanced direct frequency comb spectroscopy Michael J. Thorpe and Jun Ye JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309-0440, USA arxiv:0803.4509v1

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs. Josef Frisch Pohang, March 14, 2011

Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs. Josef Frisch Pohang, March 14, 2011 Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs Josef Frisch Pohang, March 14, 2011 Room Temperature / Superconducting Very different pulse structures RT: single bunch or short bursts

More information

Fiber Lasers for EUV Lithography

Fiber Lasers for EUV Lithography Fiber Lasers for EUV Lithography A. Galvanauskas, Kai Chung Hou*, Cheng Zhu CUOS, EECS Department, University of Michigan P. Amaya Arbor Photonics, Inc. * Currently with Cymer, Inc 2009 International Workshop

More information

SA210-Series Scanning Fabry Perot Interferometer

SA210-Series Scanning Fabry Perot Interferometer 435 Route 206 P.O. Box 366 PH. 973-579-7227 Newton, NJ 07860-0366 FAX 973-300-3600 www.thorlabs.com technicalsupport@thorlabs.com SA210-Series Scanning Fabry Perot Interferometer DESCRIPTION: The SA210

More information

Ultra-sensitive, room-temperature THz detector using nonlinear parametric upconversion

Ultra-sensitive, room-temperature THz detector using nonlinear parametric upconversion 15 th Coherent Laser Radar Conference Ultra-sensitive, room-temperature THz detector using nonlinear parametric upconversion M. Jalal Khan Jerry C. Chen Z-L Liau Sumanth Kaushik Ph: 781-981-4169 Ph: 781-981-3728

More information

DIODE LASER SPECTROSCOPY (160309)

DIODE LASER SPECTROSCOPY (160309) DIODE LASER SPECTROSCOPY (160309) Introduction The purpose of this laboratory exercise is to illustrate how we may investigate tiny energy splittings in an atomic system using laser spectroscopy. As an

More information

Spectrum Analyzer Compact and robust spectrometers with fully customizable range and resolution parameters, able to measure pulsed and continous

Spectrum Analyzer Compact and robust spectrometers with fully customizable range and resolution parameters, able to measure pulsed and continous Spectrum Analyzer Compact and robust spectrometers with fully customizable range and resolution parameters, able to measure pulsed and continous lasers. Uatched resolving power Echelle spectrometers One

More information

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems Lasers à fibres ns et ps de forte puissance Francois SALIN EOLITE systems Solid-State Laser Concepts rod temperature [K] 347 -- 352 342 -- 347 337 -- 342 333 -- 337 328 -- 333 324 -- 328 319 -- 324 315

More information

NIST EUVL Metrology Programs

NIST EUVL Metrology Programs NIST EUVL Metrology Programs S.Grantham, C. Tarrio, R.E. Vest, Y. Barad, S. Kulin, K. Liu and T.B. Lucatorto National Institute of Standards and Technology (NIST) Gaithersburg, MD USA L. Klebanoff and

More information

DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE

DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE 1 DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE PRESENTED BY- ARPIT RAWANKAR THE GRADUATE UNIVERSITY FOR ADVANCED STUDIES, HAYAMA 2 INDEX 1. Concept

More information