Signal Propagation Measurements with Wireless Sensor Nodes

Size: px
Start display at page:

Download "Signal Propagation Measurements with Wireless Sensor Nodes"

Transcription

1 F E D E R Signal Propagation Measurements with Wireless Sensor Nodes Joaquim A. R. Azevedo, Filipe Edgar Santos University of Madeira Campus da Penteada Funchal Portugal July Introduction Several experimental measurements have been done to evaluate the RF signal propagation inside a laboratory and outdoors. The measurements were realized with a portable spectrum analyser with different antennas. It was used the Tmote Sky Sensor Mote in the measurements and Micaz. Most of the measurements were made to verify the performance of the sensor nodes in several environments. As it will be presented, the existence of obstacles and indoor reflections affect severally the link quality. This can influence the topology used for the wireless sensor network. Although both the Tomote sensor node and the Micaz have the same radio chip, the measurements demonstrated that the performances of both systems are different. 2. Radiation pattern of the sensor nodes The Tmote sensor node incorporates an internal inverted-f antenna, which is a wire monopole where the top section is folded down to be parallel with the ground plane [1]. The antenna gain is 3.1 dbi [2] and the radio operates at 2.4 GHz (12,5 cm of wavelength) In datasheet it is referred that the antenna may attain 50 meter indoor and 125 meter outdoor. The sensor node uses a Chipcon CC2420 radio for wireless communications and the maximum output power was set to 0 dbm [3]. The first graph of figure 2.1 depicts the antenna pattern, while the Tmote is mounted horizontally with antennas parallel section aligned to the 0 degree direction. The main null is 24 db below the maximum of the pattern. The second graph depicts the antenna pattern, while the Tmote is mounted vertically with antennas parallel section aligned to the 0 degree direction. The polarization is horizontal. As we can observe, the radiation pattern is not omnidirectional in any plane. Therefore, the received signal of a sensor node depends on the antenna orientation of the receiver. 1

2 Fig. 2.1 Radiation pattern of the Tmote for horizontal and vertical mounting. The Micaz sensor node incorporates an external monopole antenna of λ/4 and operates at 2.4 GHz [4]. The theoretic radiation pattern of a monopole is equal to the dipole of half a wavelength. However, when it is introduced in the sensor node the radiation pattern is changed. Figure 2.2 presents the measured radiation pattern of the Micaz in an anechoic chamber with the antenna in the vertical [5]. As we can observe, the pattern is far from circular. The main null is 9 db below the maximum of the pattern (dbm) Fig. 2.2 Radiation Pattern of Micaz Mote. 2

3 3. Measurements of the patterns inside a laboratory The Tmote and Micaz sensor nodes were used to evaluate its performance in indoor and outdoor environments. Considering the theory, it was compared the measured results of signal propagation. The measurement of the received signal strength was realised using the portable spectrum analyser R&S FSH 3. Another way to measure the received signal is the RSSI (Received Signal Strength Indicator) parameter of the Tmote and Micaz sensor nodes Tmote sensor node In order to compare the results obtained with different antennas and to verify the contribution of reflections inside the laboratory, the Tmote sensor node was placed 5.4 meters apart from the measurement equipment (figure 3.1). A spectrum analyser was used to make the measurements. The sensor node and the spectrum analyser antennas were at positions in distance of 40 cm above the floor. In figure 3.1 it is represented the relative positions of the transmitter sensor node and reception antenna in the laboratory, with the antennas parallel section aligned to the 0 degree direction. Figure 3.2 shows the laboratory used for the experiments. receptor transmitter Figure 3.1 Position of the sensor node and of the spectrum analyser. Figure 3.2 Used laboratory. 3

4 Three antennas were constructed for the frequency of interest to deal with the spectrum analyser: a dipole of half wavelengh dipole, with maximum gain 2.15 dbi and SWR=1.55 (figure 3.3a), a bi-quad antenna with 8.5 of gain and SWR=2.4 (figure 3.3b), and a Yagi antenna with 11.5 dbi of gain and SWR=1.35 (figure 3.3c). Due to the antenna SWR, the dipole antenna has less about 0.2 db in the received power, the bi-quad less 0.8 db and the Yagi less 0.09 db. In reference to the dipole, the Bi-quad has a gain of 6.35 dbd and the Yagi of 9.35 dbd. In order to confirm the antenna gains, it was made some measurements in the exterior to minimize the reflections. The received signal strength varies about ±1 db due to the outside reflections. The difference between the received signal obtained by the Bi-quad and the dipole was of 5.8 dbd and for the Yagi was of 9.3 dbd. The expected value for Bi-quad is ( )-( )=5.75 dbd and for the Yagi is ( )- ( )=9.46 dbd. As we can notice the results coincide with the measured values very well. a) Dipole b) Bi-quad c) Yagi Figure 3.3 Used antennas. To the different orientations of the sensor node, figure 3.4 presents the results measured with the three antennas. The sensor node is in the horizontal mounting and, therefore, the received antennas were place horizontally to the ground. Comparing with the radiation pattern of figure 2.1 we can observe the influence of the reflections inside the laboratory. In fact, the nulls of the pattern are less pronounced in this picture. Moving the sensor node in a small distance (about half wavelength) towards two different directions, figure 3.5a) and 3.5b) show the corresponding measured values. In the radiation pattern of figure 2.1 (horizontal polarization) exits a maximum around 225 and another one (2 db below) around 135. The measures suggest a maximum of radiation around

5 ,0-40,0-45,0,0 45 Dipole Bi-quad Yagi,0,0 270, Figure 3.4 Measured received signal strength for different directions of the sensor node ,0-40,0-45,0,0,0,0, Dipole Bi-quad Yagi ,0-40,0-45,0,0,0,0, Figure 3.5 Dependence of the measured received signal strength with the position. The fluctuation of the received RF signal strength for each antenna is better perceived in figure 3.6 for three positions half a wavelength apart. The minimum values are more affected by laboratory reflections. In small distances the signal have varied several db. Considering the average of the measured values, the difference between the mean received power of the Bi-quad antenna values and the dipole antenna values is of 3.6 db (standard deviation of 0.8 db) and the difference between the mean received power of the Yagi antenna values and the dipole antenna is of 6.7 db (standard deviation of 2.3 db). Since the theoretical expected difference is 5.75 db and 9.46 db, respectively, the means are 2.15 db and 2.76 below these values. To understand these results, we must take into account that the dipole antenna is omnidirectional, whilst the bi-quad and the Yagi are directional. Therefore, the dipole can receive more energy from behind reflections than the other antennas. 5

6 a) Dipole -35,0-40, ,0 (dbm),0,0,0,0 b) Bi-quad -35,0-40, (dbm) -45,0,0,0,0,0 c) Yagi -35,0-40, ,0 (dbm),0,0,0,0 Figure 3.6 Variation of the received signal in small in nearby distances. Let us see when the received antennas are in the vertical instead of on horizontal and maintaining the sensor node in the horizontal polarization. Figure 3.7 presents the results for a rotation of the sensor node. The received signal strength gives, on average, a value of 10.5 db lower using the dipole (standard deviation of 3.8 db) and of 9.4 using the Yagi antenna (standard deviation of 4.9 db). Due to the reflections, the receiver signal strength varies reasonably. 6

7 Dipole - vertical Dipole - horizontal Yagi - vertical Yagi - horizontal Figure 3.7 Comparison of the received signal strength for vertical and horizontal polarizations Micaz sensor node Some measurements were also made with the Micaz sensor node, in order to evaluate the radiation pattern inside the laboratory. The distance to the reception equipment and the distance to the ground is similar to the Tmote sensor node measurements. The dipole antenna and Yagi antennas were used in the measurements with the spectrum analyser. Figure 3.8 shows the results for the antennas in the vertical position, taking into account the vertical polarization of the monopole antenna of Micaz. The zero degrees corresponds to the sensor side where is the monopole. Considering the average of the measured values, the difference between the mean received power of the Yagi antenna and the dipole antenna is of 9.5 db (standard deviation of 1.2 db). The theoretical expected value is of 9.46 dbd, which coincides with the measured values very well. Comparing the radiation pattern with figure 2.2, we can observe that with the reflections the pattern is more circular dbm 45 Dipole Yagi Figure 3.8 Measured received signal strength for different orientations of the sensor node. 7

8 To make a comparison, the received signal strength indicator (RSSI) of the Micaz was also considered. The Micaz used to receive the signal and connected to the computer was placed in the same position of the dipole connected to the spectrum analyser. The results are represented in figure dbm 45 Stectrum Analyser RSSI Figure 3.9 Comparison between the received signal strength obtained from the spectrum analyser and RSSI. 3.3 RSSI and received signal Most of the measurements considered in this work for the signal strength in the reception were obtained using the spectrum analyser. Another way to measure the received signal could be the RSSI (Received Signal Strength Indicator) parameter of the Tmote and Micaz sensor nodes. However, taking into account the datasheet of the radio component CC2420 used in these sensor nodes [3], there exists an accuracy error of ±6 db in the RSSI readings. Therefore, we expect that the readings from the spectrum analyser should be more accurate for reading the real signal on the received antenna position. Furthermore, the RSSI readings have a difference of ±3 db in linearity. Some comparisons were made inside the laboratory to evaluate the differences between the RSSI and direct measurements and between sensor nodes. Considering Tmote sensor nodes, it was showed that the transmitted power is almost the same for the various sensor nodes. To get this conclusion, several sensor nodes were considered as transmitters and the signal at reception was obtained using the spectrum analyser. When the RSSI parameter of the sensor nodes was used, it was found out variations between RSSI readings in the same position. For three Tmote sensor nodes were made measurements in four different locations. The three sensor nodes presented different RSSI readings for the same position. The values have deferred in ±4 db. For the previous positions, the measurements made with the spectrum analyser gave values that can be of 9 db lower then with RSSI readings. The spectrum analyser readings have, on average, a value of 4 db compared with the RSSI readings with a standard deviation of about 4 db. Comparing the measurements obtained by Tmote sensor nodes with Micaz sensor nodes it gave a mean difference between the RSSI Micaz readings of 14 db below the RSSI readings of Tmote. Using the spectrum analyser the difference in the received signal is about 11 db below for Micaz comparing with Tmote. 8

9 Other works have reported that the RSSI obtained from Micaz sensor node did not report the actual signal strength [6]. 3.4 Influence of the distance Another set of measurements was done to obtain the variation of the received signal strength with the distance to the Tmote sensor node. The maximum radiation direction of the node antenna was considered. The sensor node and the spectrum analyser antenna were at positions in distance of 80 cm above the floor. Figure 3.10 presents the measured signal using the dipole antenna for several distances from the sensor node, defined by the continuous line. The distance between measured points is 3 cm. The signal has a decaying behaviour in the distance to the sensor and a great variation due to the influence of the reflections in the walls, floor and ceiling. In distances of 3 cm the signal can change around 8 db. For greater distances, the signal can change 15 db in small distances. A function for the decaying of the signal can be obtained from the model of the path loss [7], d PL ( d) = PL ( d + n + X σ d 0 ) 10 log 10 (3.1) 0 where n is the path loss exponent and indicates the rate at which the signal attenuates with the distance (n=2 for free space). P L (d 0 ) is the path loss at a known reference distance d 0 which is in the far field of the transmitting antenna (typically 1 km for large urban mobile systems, 100 m for microcell systems, and 1 m for indoor systems) and X σ denotes a zero mean Gaussian random variable (in db) with standard deviation σ, and reflects the variation in average received power. From the measurements made we can obtain an estimative for the n parameter, using the average of results calculated from the formula, P n = ( d) P ( d L 10log 10 L d d 0 0 ) (3.2) where d 0 =1 m. The result is n=2.8 for the path loss exponent. This result is in consonance with those presented in literature. Using this value in (3.1) the result for the path loss is the represented by the dashed line of figure The standard deviation for the difference between the measured results and this curve is 4.6 db. Based on equation (3.1) when the receiver measure a value P L (d), the estimated distance to the transmitter is PL ( d0 ) PL ( d ) d d n = (3.3) Since the sensivity of the sensor nodes is of 94 dbm, it will be reached at about 120 meters. This can be understood if there continues to exist a line of sight between the two antennas. However, even in this case, considering that the signal can fluctuates around ±10 db, the reception sensor node can lose the signal in about 50 meters. 9

10 Distance (m) Figure 3.10 Variation of the received signal with the distance to the sensor node. For a comparison, figure 3.11 presents some positions of the sensor node and measurements realized with dipole and bi-quad antennas. Once again, the mean received power difference between results of the bi-quad antenna and of the dipole is of 3.6 db ,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25 2,5 2,75 3 3,25 3,5 3,75 4 4,25 4,5 4, Dipole Bi-quad Distance (m) Figure 3.11 Comparison of the variation of the received signal with the distance to the sensor node Influence of the height to the ground The variation of the received signal strength with the height of the transmitter antenna was analysed, considering the receptor dipole antenna at 93 cm above the floor and 5.4 m from the transmitter. Then the Tmote sensor node was varied from 2 cm till 236 cm and the results were registered, and represented in figure Once again, it is clear the effect of the reflections. We can also observe a great fluctuation of the signal. This is due to the radiation pattern variation with the distance to the ground for small heights and also the influence of the ceiling for higher distance to the ground. In fact, at the antenna positions of the experiment, the theoretical nulls in the pattern are about 0.37 cm apart in the height variable for a perfect conducting ground. To confirm the ground influence, for a reflection in a perfect ground we have, βh1h F = 2 sin d 2 (3.4) 10

11 where β=2π/λ, λ is the wavelength, h 1 is the height of the transmitter antenna, h 1 is the height of the reception antenna, and d is the distance between antennas. For comparison, the factor defined by the previous expression is depicted in figure 3.12 by the dashed line, where the maximums were moved to 45 db to permit the comparison Height (m) Figure 3.12 Variation of the received signal with the height of the sensor node. Another set of measurements was made with the receptor antenna at 100 cm above the floor and also at a position 5.4 m from the transmitter. The Tmote sensor node was varied from 10 cm to 170 cm in height. Figure 3.13 depicts the results. From the theory, the null in the pattern obtained by varying the height is about 0.35 cm apart, which can be verified by the figure Height (cm) Figure 3.13 Variation of the received signal with the height of the sensor node for a different position of the received antenna. Varying both antennas (reception and emission) related to the floor from 2 cm till 26.5 cm, the result is the one represented in figure The dashed line corresponds to the tendency line of the measures. At 25 cm the average of the received signal is about 10 db higher than 2 cm. 11

12 -40, ,0,0,0,0,0,0 Height (cm) Figure 3.14 Variation of the received signal with the height of the sensor node and received antenna. 4. Measurements on the distance in a corridor For greater indoor distances, a set of measurements was made in a corridor with 2.4 m width and about 40 m long. Figure 4.1 shows the measured received signal using the dipole antenna for several distances from the Tmote sensor node (continuous line). The distance between measured points is 30 cm. The sensor node is located m from the beginning of the corridor. The sensor node and the measurement antenna were 40 cm above the floor. The conclusions for indoor propagation presented previously can be verified for the signal fluctuation but the signal has a lower decaying compared with the obtained inside the laboratory. Considering the reference at 1.5 m, the application of the path loss model gives a value for the path loss exponent of n=1.9. This value is near the free space propagation. We should taking into account that the corridor may have some waveguide characteristics. Substituting this parameter in (3.1), the result is represented by the dashed line of figure 4.1. The standard deviation for the difference between the measured results and this curve is 4.7 db Distance (m) Figure 4.1 Variation of the received signal with the distance to the sensor node. 12

13 Figure 4.2 depicts another set of measurements in the same place but with antennas one meter above the floor. The mean difference between the two results is not significantly Distance (m) 40 cm 100 cm Figure 4.2 Comparison of the variation of the received signal with the distance to the sensor node for receiving antennas at 40 cm and 1 m. In this test it is intended to compare the performance between of Tmote and Micaz sensor nodes. Considering the Micaz at positions 1 meter above the ground, in the referred corridor and for the same positions in distance, figure 4.3 shows the results by the continuous line. The mean of results obtained from Micaz sensor node is 13 db lower than the mean of results determined from Tmote sensor node. The dashed lines correspond to the curves obtained using (3.1) with the path loss calculated before (n=1.9). The difference between the two curves is 14 db below for the Micaz. Once again, the results demonstrated a difference of about 13 db between the signals of the two types of sensor nodes Distance (m) Tmote Micaz Figure 4.3 Comparison of the variation of the received signal with the distance to the sensor node for Micaz and Tmote. 13

14 5. Existence of obstacles in the propagation path All the tests made till know evolved line of sight between the transmitter and receptor. However, in a sensor network it is expected communication between two sensor nodes even when they cannot see each other. The existence of obstacles in the propagation path affects drastically the communication link. As a simple example, for the positions of figure 3.1 it was used a Tmote as transmitter and the spectrum analyser was placed 5.4 m apart to measure the received signal. The antennas were at 40 m above the ground. For several positions between the two antennas it was placed a metal plate with mm in the transversal section. Without the obstacle, the received signal is 49 dbm. With the obstacles, figure 5.1 shows the results for several distances of the plate to the receptor antenna. In central positions of the plate the received signal is less affected than for positions around the antennas. Although without line of sight, a lot of signal reaches the receptor antenna due to the reflections. When the plate approximates to the transmitter or receptor, more reflections are cancelled. The lowest peak is around 16 db below the unobstructed propagation value. 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5, Distance (m) Figure 5.1 Variation of the received signal due to a metal plate between the sensor node and the receptor. Another set of measurements was made to evaluate the effect of walls between the transmitter and receptor. Figure 5.2 shows the test bed. The used laboratories have 8.8 m by 5.7 m and contain office equipment, which will cause fading in the reception. The referred situations 1, 2 and 3 correspond to different reception positions for a Tmote sensor node placed near the wall on the horizontal plane, as it is illustrated in the figure. The sensor node is 1.2 m above the ground and the receiver is 0.75 m from the ground. The situation 1.1 corresponds to the position of the sensor node referred in situation 1 but with measurements made in another laboratory. Figure 5.3 depicts the results. The higher curves correspond to the measurements inside the laboratory were it is the sensor node. The mean difference between the results of situation 1.1 and situation 1 is 21 db (standard deviation of 7 db). For situation 1, the mean difference related to the free space propagation is 10 db (standard deviation of 4.5 db). For situation 1.1, where a wall exits between the transmitter and the receptor, the mean difference related to the free space propagation is 23 db (standard deviation of 2.5 db). Therefore, the difference of results is 13 db. 14

15 Situation 1 Situation 2 Situation Situation Figure 5.2 Positions of the receptor and sensor node Situation 1 Situation 2 Situation 3 Situation Figure 5.3 Results for the positions of figure 5.2. Let us consider a different orientation of the Tmote antenna. In situation 4 (figure 5.4) the sensor node is placed vertically on the wall but with the antenna in the horizontal. Situation 5 has the sensor node placed on the wall with the antenna in the vertical. Situations 1.4 and 1.5 are similar to these ones but the measurements are made in another laboratory. The results are represented in figure 5.5. The mean difference between the results of situation 1.4 and situation 4 is 17 db (standard deviation of 6 db) and the mean difference between the results of situation 1.5 and situation 5 is 20 db (standard deviation of 4 db). For situation 4, the mean difference related to the free space propagation is 7 db (standard deviation of 5 db) and for situation 5 the mean difference is 2.5 db (standard deviation of 5 db). For situation 1.4 the mean difference related to the free space propagation is 16.5 db 15

16 (standard deviation of 3.5 db) and for situation 1.5 the mean difference is 15.5 db (standard deviation of 1.5 db). Therefore, the difference of results is 9.5 db for the first case and 13 db for the second one. Situation 4 Situation Figure 5.4 Point positions for the receptor and sensor node Situation Situation 5 Situation 1.4 Situation Figure 5.5 Received signal with and without a wall between sensor node and measurement equipment. The previous results suggest attenuations introduced by the walls around 12 db. However, the received signal strength depends not only of the signal across the wall but also the signal diffracted around the windows and doors. 6. Outdoors experiments One of the objectives of the Foresmac project is to work in the forest environment. In this sense, after the work realised indoors let us make some measurements outdoors to get more parameters for the sensors deployment. The idea is to obtain an environment with characteristics near the free space propagation. For these experiments it was necessary to create measurement facilities appropriated for the objectives of the work. The flat roof of the University was used in order to minimise the reflections. The transmitter and the receptor antennas were placed 5 m above the ground and the distance between antennas was varied from 1 m to 8 m (figure 6.1). 16

17 Fig 6.1 Outdoors measurement facilities. The sensor nodes were placed in a hood connecting rod of 5 m long. To control the direction of the antenna a small motor controlled by radio was used (figure 6.2). To connect the reception antenna to the spectrum analyser it was necessary to get a coaxial cable with reduced attenuation loss. The cable length has 10 m long. The usual employed cable of 50 Ω, the RG58, has attenuation of 1.06 db/m for 2.4 GHz. With less attenuation it was utilised the coaxial cable RG213/U with 0.5 db/m for 2.4 GHz (5 db in 10 m). Tests realized with a signal generator have showed that the attenuation introduced by this cable was 4.7 db, a value that was considered in the measurements. Fig. 6.2 System to control the sensor node antenna orientation Tmote sensor node The signal of a Tmote sensor node was measured in the exterior using the dipole and Yagi antennas for several distances. Both systems were placed at 5 m above the ground. The sensor node has horizontal polarization and the maximum radiation was used. In reference to the 17

18 radiation pattern of the Tmote it was measured a difference of 15 db between the minimum and the maximum radiation. The continuous lines of figure 6.3 represent the received signal strength. Applying the path loss model, from (3.1) we obtain a value for the path loss exponent about n=2.1 for both antennas. The path loss parameter of the Yagi antenna was calculated using the distance from the sensor node until the end of the antenna and not to the excited element (difference of 25 cm). If the distance is considered till the excitation element of the Yagi, the path loss exponent would be n=2.4, which is not an expected result for the free space conditions and did not fit the measurements. As it was verified, the obtained results suggest a propagation factor near the free space conditions. Using the measurements, and taking into account that the dipole gain is around 1,9 dbi, The measured mean of the Tmote gain is 1,4 dbi (standard deviation of 0.6 db). If the free space propagation loss is represented including the dipole gain and Tmote gain the result is the one represented by the dashed lines of figure 6.3. The standard deviation for the difference between the measured results and these curves is 0.6 db with a maximum difference around ±1 db for the given distances. For comparison, the indoor measurements gave a standard deviation of 4.6 db and a maximum difference around ±10 db. The mean difference between the Yagi and dipole results is of 8.8 dbd with standard deviation of 0.8 db (excited element in the same position). The theoretical result is of 9.46 dbd. The importance of the Yagi antenna is to extend the limit of the spectrum analyser measurements in 9 db when compared with the dipole antenna. From figure 6.3 we can also observe that the fluctuation around the tendency curve increases for higher distances from the sensor, reflecting the influence of the ground Measured w ith dipole Free space+gains Measured w ith Yagi Distance (m) Figure 6.3 Variation of the received signal with the distance with horizontal polarization for the Tmote. The Tmote sensor node was positioned with the antenna in the vertical. From the measurements, the antenna gain for this polarization is around -6.4 dbi. Figure 6.4 shows the received signal strength for several distances between from the transmitter and the free space propagation including the antenna gains. Once again, the signal follows the free space 18

19 propagation curve and the influence of the ground is more obvious for higher distances. Comparing with the results of figure 6.3, the received signal has a mean difference of 7.5 db with 0.8 db of standard deviation. Thus, the sensor node has a better reception signal for the horizontal position in an environment with minimal reflections Measured w ith dipole Free space+gains Distance (m) Figure 6.4 Variation of the received signal with the distance with vertical polarization for the Tmote Micaz sensor node As realized for the Tmote, the received signal strength from a Micaz sensor node was measured outside using the dipole and Yagi antennas for several distances from the transmitter. Figure 6.4 presents the results through the continuous lines. Applying the path loss model to the measurements of the dipole antenna, the path loss exponent is n=2.0. The standard deviation for the difference between the measurements and these curves is 0.8 db with a maximum difference around ±1.5 db for the considered distances. The mean difference between the Yagi and dipole results is of 9.1 dbd with standard deviation of 1.4 db (the theoretical value is 9.46 dbd). Comparing with the Tmote sensor node, Micaz has a mean received signal that is 13 db below the signal received of Tmote. This result was also obtained in previous tests. From the measurements, the suggested gain of Micaz is dbi (standard deviation of 0.8 db). The gain difference between Tmote and Micaz is 13.1 db. Other tests to minimize the reflection on the ground gave similar conclusions for the Tmote antenna gain. 19

20 Measured w ith dipole Free space+gains Measured w ith Yagi Distance (m) Figure 6.5 Variation of the received signal with the distance with horizontal polarization for the Micaz. If the Micaz sensor node is positioned with the antenna in the vertical, the received signal strength obtained is the one of figure 6.6. Comparing with the horizontal polarization, the received signal has almost the same amplitude Vertical polarization Horizontal polarization -75 Distance (m) Figure 6.6 Received signal of Micaz for vertical and horizontal polarizations Mica2 sensor node The Tmote and Micaz sensor nodes operate at 2.4 GHz whilst the Mica2 operate at 900 MHz band. This mote has a monopole antenna and Micaz. To have an approximation for the gain some measurements was realized in outdoor. To use the spectrum analyser, a half wavelength dipole was constructed. For a SWR of 1.35 and antenna gain is about 2.1 db. The figure

21 shows the received signal for vertical and horizontal polarizations. From the measurements the Mica2 gain is -8 dbi for vertical polarization. The horizontal polarization suffered more the environment influence. Received Signal Strenght (dbm) Vertical polarization Free space+gains Horizontal polarization Distance (m) Figure 6.7 Received signal of Mica2 for vertical and horizontal polarizations Influence of the height to the ground The variation of the received signal strength with the height to the ground was analysed, considering the Tmote at 5.4 m from the dipole. The values were obtained moving both antennas from 0.2 cm to 4.75 m, in steps of 5 cm. The results are presented in figure 6.8. As we can observe, the received signal has a great variation due to the ground reflection. For higher distances from the ground, the signal can varies around the average of ±2 db. 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4 3,6 3,8 4,0 4,2 4,4 4, Eight (m) Figure 6.8 Variation of the received signal with the height of the sensor node. 21

22 Considering a typical permeability (ε r =5) and conductivity (σ= material to calculate the coefficient of reflection on the ground, F = 1+ cos( ψ ) Γ e h 2βh1h2 j d S/m) of the brick sen( ψ ) ε r j Γ h = sen( ψ ) + ε r j 2π β = λ h1 + h2 ψ = arctan d σ ωε σ ωε 0 0 cos cos 2 2 ( ψ ) ( ψ ) (3.5) with λ the wavelength, and h 1 and h 2 the height of emitter and receiver antennas, respectively, the theoretical curve for the received signal strength is shown in figure 6.9 (continuous line). The cos(ψ) term in F represents the radiation pattern of the reception antenna. For this calculation it was taken into account the radiation pattern of the dipole antenna and the previous results. From the curve, we can observe other influences in the received signal, such as the influence of the measure system Height (m) Figure 6.9 Comparison between the theoretical variation and the received signal with the height Different polarizations for the Tmote It was analysed the radiation of the Tmote sensor node for different polarizations and orientations. Figure 6.10 shows the three main orientations of the sensor node. 22

23 0 0 0 Horizontal mounting and horizontal pola rization Vertical mounting and horizontal pola rization Vertical mounting and vertical pola rization Figure 6.10 Different positions of the sensor node. The measures were made with the Tmote at 5 m above the ground. The dipole antenna used with the spectrum analyser was 4 m of distance and at the same height of the sensor node. Figure 6.11 presents the results. It was noticed some influence of the reflections in the lower values of the pattern. As we can see, the best results are obtained with the sensor node in horizontal mounting and horizontal polarization. As it was observed indoor, the maximum radiation is around 135. An approximation for the outdoor radiation pattern is presented in figure 6.11, for the horizontal mounting and horizontal polarization. The antennas were placed 5.4 m apart and 5 m above the ground. We can compare this graph with the one of figure 2.1. The surrounding environment is noticed in the results Vertical mounting and horizontal polarization Vertical polarization Horizontal mounting and polarization Figure 6.11 Results for the different orientations of the Tmote sensor node. 23

24 References [1] Moteiv Corporation, Moteiv. "Tmote Sky: Ultra Low Power IEEE Compliant Wireless Sensor Module." Available from [2] Raman, B., Chebrolu, K., Madabhushi, N., Go, D. Y., Valiveti, P. K.k and Jain, D., Implications of link range and (In)stability on sensor network architecture, Proceedings of the 12th annual international conference on Mobile computing and networking, Los Angeles, CA, USA, pp , [3] CC2420 Datasheet, Chipcon. Available from [4] Crossbow Technology Inc. "MICAz Wireless Measurement System." Available from [5] Tan, E. B., Lim, J. G., Seah, W. K., and Rao, S. V., On the Practical Issues in Hop Localization of Sensors in a Multihop Network, Vehicular Technology Conference, VTC 2006-Spring. IEEE63rd, pp , [6] Scott, T., Wu, K, and Hoffman, D., Radio propagation patterns in wireless sensor networks: new experimental results, Proceeding of the 2006 International Conference on Communications and Mobile Computing, Vancouver, Canada, pp , July [7] Andersen, J. B., Rappaport, T. S., Yoshida, S., Propagation Measurements and Models for Wireless Communications Channels, IEEE Communications Magazine, vol. 33, pp ,

Sistemas de Última Generación para la Observación, Predicción y Vigilancia Activa de Espacios Naturales Forestales en la Macaronesia FORESMAC

Sistemas de Última Generación para la Observación, Predicción y Vigilancia Activa de Espacios Naturales Forestales en la Macaronesia FORESMAC F E D E R Sistemas de Última Generación para la Observación, Predicción y Vigilancia Activa de Espacios Naturales Forestales en la Macaronesia FORESMAC (INTERREG III B, 05/MAC/2.3/C16) Madeira Programa

More information

6 Radio and RF. 6.1 Introduction. Wavelength (m) Frequency (Hz) Unit 6: RF and Antennas 1. Radio waves. X-rays. Microwaves. Light

6 Radio and RF. 6.1 Introduction. Wavelength (m) Frequency (Hz) Unit 6: RF and Antennas 1. Radio waves. X-rays. Microwaves. Light 6 Radio and RF Ref: http://www.asecuritysite.com/wireless/wireless06 6.1 Introduction The electromagnetic (EM) spectrum contains a wide range of electromagnetic waves, from radio waves up to X-rays (as

More information

7. Experiment K: Wave Propagation

7. Experiment K: Wave Propagation 7. Experiment K: Wave Propagation This laboratory will be based upon observing standing waves in three different ways, through coaxial cables, in free space and in a waveguide. You will also observe some

More information

Range Considerations for RF Networks

Range Considerations for RF Networks TI Technology Days 2010 Range Considerations for RF Networks Richard Wallace Abstract The antenna can be one of the most daunting components of wireless designs. Most information available relates to large

More information

Propagation Mechanism

Propagation Mechanism Propagation Mechanism ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Propagation Mechanism Simplest propagation channel is the free space: Tx free space Rx In a more realistic scenario, there may be

More information

4/29/2012. General Class Element 3 Course Presentation. Ant Antennas as. Subelement G9. 4 Exam Questions, 4 Groups

4/29/2012. General Class Element 3 Course Presentation. Ant Antennas as. Subelement G9. 4 Exam Questions, 4 Groups General Class Element 3 Course Presentation ti ELEMENT 3 SUB ELEMENTS General Licensing Class Subelement G9 Antennas and Feedlines 4 Exam Questions, 4 Groups G1 Commission s Rules G2 Operating Procedures

More information

STATISTICAL DISTRIBUTION OF INCIDENT WAVES TO MOBILE ANTENNA IN MICROCELLULAR ENVIRONMENT AT 2.15 GHz

STATISTICAL DISTRIBUTION OF INCIDENT WAVES TO MOBILE ANTENNA IN MICROCELLULAR ENVIRONMENT AT 2.15 GHz EUROPEAN COOPERATION IN COST259 TD(99) 45 THE FIELD OF SCIENTIFIC AND Wien, April 22 23, 1999 TECHNICAL RESEARCH EURO-COST STATISTICAL DISTRIBUTION OF INCIDENT WAVES TO MOBILE ANTENNA IN MICROCELLULAR

More information

Antenna Performance. Antenna Performance... 3 Gain... 4 Radio Power and the FCC... 6 Link Margin Calculations... 7 The Banner Way... 8 Glossary...

Antenna Performance. Antenna Performance... 3 Gain... 4 Radio Power and the FCC... 6 Link Margin Calculations... 7 The Banner Way... 8 Glossary... Antenna Performance Antenna Performance... 3 Gain... 4 Radio Power and the FCC... 6 Link Margin Calculations... 7 The Banner Way... 8 Glossary... 9 06/15/07 135765 Introduction In this new age of wireless

More information

DECT ARCHITECTURE PROPOSAL FOR A CONSTRUCTION SITE

DECT ARCHITECTURE PROPOSAL FOR A CONSTRUCTION SITE ECT ARCHITECTURE PROPOSAL FOR A CONSTRUCTION SITE Silvia Ruiz, Ramón Agustí epartment of Signal Theory and Communications (UPC) C/Gran Capitán s/n, módul 4 08034 Barcelona (SPAIN) Email: ramon, silvia@xaloc.upc.es

More information

RADIO WAVE PROPAGATION IN THE AMAZON JUNGLE. Mauro S. Assis MAY 2011

RADIO WAVE PROPAGATION IN THE AMAZON JUNGLE. Mauro S. Assis MAY 2011 RADIO WAVE PROPAGATION IN THE AMAZON JUNGLE Mauro S. Assis MAY 2011 INTRODUCTION Amazon Region DENSE RAIN FOREST Annual precipitation of the order or higher than 2000 mm HOT AND HUMID CLIMATE Median temperature

More information

Effectiveness of a Fading Emulator in Evaluating the Performance of MIMO Systems by Comparison with a Propagation Test

Effectiveness of a Fading Emulator in Evaluating the Performance of MIMO Systems by Comparison with a Propagation Test Effectiveness of a Fading in Evaluating the Performance of MIMO Systems by Comparison with a Propagation Test A. Yamamoto *, T. Sakata *, T. Hayashi *, K. Ogawa *, J. Ø. Nielsen #, G. F. Pedersen #, J.

More information

Project = An Adventure : Wireless Networks. Lecture 4: More Physical Layer. What is an Antenna? Outline. Page 1

Project = An Adventure : Wireless Networks. Lecture 4: More Physical Layer. What is an Antenna? Outline. Page 1 Project = An Adventure 18-759: Wireless Networks Checkpoint 2 Checkpoint 1 Lecture 4: More Physical Layer You are here Done! Peter Steenkiste Departments of Computer Science and Electrical and Computer

More information

Colubris Networks. Antenna Guide

Colubris Networks. Antenna Guide Colubris Networks Antenna Guide Creation Date: February 10, 2006 Revision: 1.0 Table of Contents 1. INTRODUCTION... 3 2. ANTENNA TYPES... 3 2.1. OMNI-DIRECTIONAL ANTENNA... 3 2.2. DIRECTIONAL ANTENNA...

More information

Multipath fading effects on short range indoor RF links. White paper

Multipath fading effects on short range indoor RF links. White paper ALCIOM 5, Parvis Robert Schuman 92370 CHAVILLE - FRANCE Tel/Fax : 01 47 09 30 51 contact@alciom.com www.alciom.com Project : Multipath fading effects on short range indoor RF links DOCUMENT : REFERENCE

More information

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman Antennas & Propagation CSG 250 Fall 2007 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

Amateur Radio License. Propagation and Antennas

Amateur Radio License. Propagation and Antennas Amateur Radio License Propagation and Antennas Todays Topics Propagation Antennas Propagation Modes Ground wave Low HF and below, ground acts as waveguide Line-of-Sight (LOS) VHF and above, radio waves

More information

The Basics of Signal Attenuation

The Basics of Signal Attenuation The Basics of Signal Attenuation Maximize Signal Range and Wireless Monitoring Capability CHESTERLAND OH July 12, 2012 Attenuation is a reduction of signal strength during transmission, such as when sending

More information

Chapter 6 Antenna Basics. Dipoles, Ground-planes, and Wires Directional Antennas Feed Lines

Chapter 6 Antenna Basics. Dipoles, Ground-planes, and Wires Directional Antennas Feed Lines Chapter 6 Antenna Basics Dipoles, Ground-planes, and Wires Directional Antennas Feed Lines Some General Rules Bigger is better. (Most of the time) Higher is better. (Most of the time) Lower SWR is better.

More information

CS263: Wireless Communications and Sensor Networks

CS263: Wireless Communications and Sensor Networks CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 3: Antennas, Propagation, and Spread Spectrum September 30, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Antennas and

More information

On the problem of energy efficiency of multi-hop vs one-hop routing in Wireless Sensor Networks

On the problem of energy efficiency of multi-hop vs one-hop routing in Wireless Sensor Networks On the problem of energy efficiency of multi-hop vs one-hop routing in Wireless Sensor Networks Symon Fedor and Martin Collier Research Institute for Networks and Communications Engineering (RINCE), Dublin

More information

This Antenna Basics reference guide includes basic information about antenna types, how antennas work, gain, and some installation examples.

This Antenna Basics reference guide includes basic information about antenna types, how antennas work, gain, and some installation examples. Antenna Basics This Antenna Basics reference guide includes basic information about antenna types, how antennas work, gain, and some installation examples. What Do Antennas Do? Antennas transmit radio

More information

[db] Path loss free space Valid only in Far Field. Far Field Region d>df. df=2d 2 /λ

[db] Path loss free space Valid only in Far Field. Far Field Region d>df. df=2d 2 /λ Fundamentals of Propagation and Basic Equations. Outdoor Propagation Indoor Propagation Models to compute PL and Preceived in Outdoor and Indoor Communications. Examples of real situations. Gustavo Fano

More information

Propagation mechanisms

Propagation mechanisms RADIO SYSTEMS ETIN15 Lecture no: 2 Propagation mechanisms Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se Contents Short on db calculations Basics about antennas Propagation

More information

Methodology for Analysis of LMR Antenna Systems

Methodology for Analysis of LMR Antenna Systems Methodology for Analysis of LMR Antenna Systems Steve Ellingson June 30, 2010 Contents 1 Introduction 2 2 System Model 2 2.1 Receive System Model................................... 2 2.2 Calculation of

More information

Presentation Title Subhead Date

Presentation Title Subhead Date Getting The Most Out Of Your Wireless Mics Presentation Title Subhead Date Best Practices: Antennas, RF Coordination & Hardware Dave Mendez Senior Market Development Specialist The Wisdom of Dilbert Antennas:

More information

Site-Specific Validation of ITU Indoor Path Loss Model at 2.4 GHz

Site-Specific Validation of ITU Indoor Path Loss Model at 2.4 GHz Site-Specific Validation of ITU Indoor Path Loss Model at 2.4 GHz Theofilos Chrysikos (1), Giannis Georgopoulos (1) and Stavros Kotsopoulos (1) (1) Wireless Telecommunications Laboratory Department of

More information

NTT DOCOMO Technical Journal. Method for Measuring Base Station Antenna Radiation Characteristics in Anechoic Chamber. 1.

NTT DOCOMO Technical Journal. Method for Measuring Base Station Antenna Radiation Characteristics in Anechoic Chamber. 1. Base Station Antenna Directivity Gain Method for Measuring Base Station Antenna Radiation Characteristics in Anechoic Chamber Base station antennas tend to be long compared to the wavelengths at which

More information

ECC Recommendation (16)04

ECC Recommendation (16)04 ECC Recommendation (16)04 Determination of the radiated power from FM sound broadcasting stations through field strength measurements in the frequency band 87.5 to 108 MHz Approved 17 October 2016 Edition

More information

A Mode Based Model for Radio Wave Propagation in Storm Drain Pipes

A Mode Based Model for Radio Wave Propagation in Storm Drain Pipes PIERS ONLINE, VOL. 4, NO. 6, 008 635 A Mode Based Model for Radio Wave Propagation in Storm Drain Pipes Ivan Howitt, Safeer Khan, and Jumanah Khan Department of Electrical and Computer Engineering The

More information

The Principle V(SWR) The Result. Mirror, Mirror, Darkly, Darkly

The Principle V(SWR) The Result. Mirror, Mirror, Darkly, Darkly The Principle V(SWR) The Result Mirror, Mirror, Darkly, Darkly 1 Question time!! What do you think VSWR (SWR) mean to you? What does one mean by a transmission line? Coaxial line Waveguide Water pipe Tunnel

More information

Channel Propagation Measurement and Simulation of MICAz mote

Channel Propagation Measurement and Simulation of MICAz mote Channel Propagation Measurement and Simulation of MICAz mote Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, CA 93943 USA {weilian, malzagha}@nps.edu http://web.nps.navy.mil/

More information

Antenna Basics. Antennas. A guide to effective antenna use

Antenna Basics. Antennas. A guide to effective antenna use A guide to effective antenna use Antennas Antennas transmit radio signals by converting radio frequency electrical currents into electromagnetic waves. Antennas receive the signals by converting the electromagnetic

More information

Chapter 15: Radio-Wave Propagation

Chapter 15: Radio-Wave Propagation Chapter 15: Radio-Wave Propagation MULTIPLE CHOICE 1. Radio waves were first predicted mathematically by: a. Armstrong c. Maxwell b. Hertz d. Marconi 2. Radio waves were first demonstrated experimentally

More information

Channel Modelling ETIM10. Propagation mechanisms

Channel Modelling ETIM10. Propagation mechanisms Channel Modelling ETIM10 Lecture no: 2 Propagation mechanisms Ghassan Dahman \ Fredrik Tufvesson Department of Electrical and Information Technology Lund University, Sweden 2012-01-20 Fredrik Tufvesson

More information

Indoor Path Loss Modeling and Measurements at 2.44 GHz

Indoor Path Loss Modeling and Measurements at 2.44 GHz Indoor Path Loss Modeling and Measurements at 2.44 GHz Alaleh Mashkouri Najafi Master Thesis Stockholm, Sweden 2012 XR-EE-ETK 2012:002 KTH Royal Institute of Technology M. Sc. in Wireless Systems Indoor

More information

Path Loss Model at 300 GHz for Indoor Mobile Service Applications

Path Loss Model at 300 GHz for Indoor Mobile Service Applications This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Communications Express, Vol.1, 1 6 Path Loss Model at 300 GHz for Indoor Mobile Service

More information

UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS UNIVERSITI MALAYSIA PERLIS SCHOOL OF COMPUTER & COMMUNICATIONS ENGINEERING EKT 341 LABORATORY MODULE LAB 2 Antenna Characteristic 1 Measurement of Radiation Pattern, Gain, VSWR, input impedance and reflection

More information

Planning Your Wireless Transportation Infrastructure. Presented By: Jeremy Hiebert

Planning Your Wireless Transportation Infrastructure. Presented By: Jeremy Hiebert Planning Your Wireless Transportation Infrastructure Presented By: Jeremy Hiebert Agenda Agenda o Basic RF Theory o Wireless Technology Options o Antennas 101 o Designing a Wireless Network o Questions

More information

White paper. Long range metering systems : VHF or UHF?

White paper. Long range metering systems : VHF or UHF? ALCIOM 5, Parvis Robert Schuman 92370 CHAVILLE - FRANCE Tel/Fax : 01 47 09 30 51 contact@alciom.com www.alciom.com Project : White paper DOCUMENT : Long range metering systems : VHF or UHF? REFERENCE :

More information

EEG 816: Radiowave Propagation 2009

EEG 816: Radiowave Propagation 2009 Student Matriculation No: Name: EEG 816: Radiowave Propagation 2009 Dr A Ogunsola This exam consists of 5 problems. The total number of pages is 5, including the cover page. You have 2.5 hours to solve

More information

RECOMMENDATION ITU-R P Prediction of sky-wave field strength at frequencies between about 150 and khz

RECOMMENDATION ITU-R P Prediction of sky-wave field strength at frequencies between about 150 and khz Rec. ITU-R P.1147-2 1 RECOMMENDATION ITU-R P.1147-2 Prediction of sky-wave field strength at frequencies between about 150 and 1 700 khz (Question ITU-R 225/3) (1995-1999-2003) The ITU Radiocommunication

More information

Ave output power ANT 1(dBm) Ave output power ANT 2 (dbm)

Ave output power ANT 1(dBm) Ave output power ANT 2 (dbm) Page 41 of 103 9.6. Test Result The test was performed with 802.11b Channel Frequency (MHz) power ANT 1(dBm) power ANT 2 (dbm) power ANT 1(mW) power ANT 2 (mw) Limits dbm / W Low 2412 7.20 7.37 5.248 5.458

More information

Influence of Antenna Characteristics on Elevation Dependence of Building Penetration Loss for High Elevation Links

Influence of Antenna Characteristics on Elevation Dependence of Building Penetration Loss for High Elevation Links RADIOENGINEERING VOL. 21 NO. 4 DECEMBER 2012 1031 Influence of Antenna Characteristics on Elevation Dependence of Building Penetration Loss for High Elevation Links Milan KVICERA Pavel PECHAC Faculty of

More information

Antennas and Propagation Chapters T4, G7, G8 Antenna Fundamentals, More Antenna Types, Feed lines and Measurements, Propagation

Antennas and Propagation Chapters T4, G7, G8 Antenna Fundamentals, More Antenna Types, Feed lines and Measurements, Propagation Antennas and Propagation Chapters T4, G7, G8 Antenna Fundamentals, More Antenna Types, Feed lines and Measurements, Propagation =============================================================== Antenna Fundamentals

More information

Simulation of Outdoor Radio Channel

Simulation of Outdoor Radio Channel Simulation of Outdoor Radio Channel Peter Brída, Ján Dúha Department of Telecommunication, University of Žilina Univerzitná 815/1, 010 6 Žilina Email: brida@fel.utc.sk, duha@fel.utc.sk Abstract Wireless

More information

A simple and efficient model for indoor path-loss prediction

A simple and efficient model for indoor path-loss prediction Meas. Sci. Technol. 8 (1997) 1166 1173. Printed in the UK PII: S0957-0233(97)81245-3 A simple and efficient model for indoor path-loss prediction Constantino Perez-Vega, Jose Luis García G and José Miguel

More information

Half-Wave Dipole. Radiation Resistance. Antenna Efficiency

Half-Wave Dipole. Radiation Resistance. Antenna Efficiency Antennas Simple Antennas Isotropic radiator is the simplest antenna mathematically Radiates all the power supplied to it, equally in all directions Theoretical only, can t be built Useful as a reference:

More information

EEM.Ant. Antennas and Propagation

EEM.Ant. Antennas and Propagation EEM.ant/0304/08pg/Req: None 1/8 UNIVERSITY OF SURREY Department of Electronic Engineering MSc EXAMINATION EEM.Ant Antennas and Propagation Duration: 2 Hours Spring 2003/04 READ THESE INSTRUCTIONS Answer

More information

Rec. ITU-R P RECOMMENDATION ITU-R P *

Rec. ITU-R P RECOMMENDATION ITU-R P * Rec. ITU-R P.682-1 1 RECOMMENDATION ITU-R P.682-1 * PROPAGATION DATA REQUIRED FOR THE DESIGN OF EARTH-SPACE AERONAUTICAL MOBILE TELECOMMUNICATION SYSTEMS (Question ITU-R 207/3) Rec. 682-1 (1990-1992) The

More information

Radiated Spurious Emission Testing. Jari Vikstedt

Radiated Spurious Emission Testing. Jari Vikstedt Radiated Spurious Emission Testing Jari Vikstedt jari.vikstedt@ets-lindgren.com What is RSE? RSE = radiated spurious emission Radiated chamber Emission EMI Spurious intentional radiator 2 Spurious Spurious,

More information

Development of a Wireless Communications Planning Tool for Optimizing Indoor Coverage Areas

Development of a Wireless Communications Planning Tool for Optimizing Indoor Coverage Areas Development of a Wireless Communications Planning Tool for Optimizing Indoor Coverage Areas A. Dimitriou, T. Vasiliadis, G. Sergiadis Aristotle University of Thessaloniki, School of Engineering, Dept.

More information

BHARATHIDASAN ENGINEERING COLLEGE NATTARAMPALLI Frequently Asked Questions (FAQ) Unit 1

BHARATHIDASAN ENGINEERING COLLEGE NATTARAMPALLI Frequently Asked Questions (FAQ) Unit 1 BHARATHIDASAN ENGINEERING COLLEGE NATTARAMPALLI 635854 Frequently Asked Questions (FAQ) Unit 1 Degree / Branch : B.E / ECE Sem / Year : 3 rd / 6 th Sub Name : Antennas & Wave Propagation Sub Code : EC6602

More information

Radio ETI031 Laboratory Experiments 2: VECTOR NETWORK ANALYSER, ANTENNA and RECEIVER MEASUREMENTS

Radio ETI031 Laboratory Experiments 2: VECTOR NETWORK ANALYSER, ANTENNA and RECEIVER MEASUREMENTS Lund University Electrical and Information Technology GJ 2007-09-30 Radio ETI031 Laboratory Experiments 2: VECTOR NETWORK ANALYSER, ANTENNA and RECEIVER MEASUREMENTS Göran Jönsson 2007 Objectives: Part

More information

Multipath Fading in Wireless Sensor Networks: Measurements and Interpretation

Multipath Fading in Wireless Sensor Networks: Measurements and Interpretation Multipath Fading in Wireless Sensor Networks: Measurements and Interpretation Daniele Puccinelli and Martin Haenggi Network Communication and Information Processing Laboratory University of Notre Dame

More information

Module contents. Antenna systems. RF propagation. RF prop. 1

Module contents. Antenna systems. RF propagation. RF prop. 1 Module contents Antenna systems RF propagation RF prop. 1 Basic antenna operation Dipole Antennas are specific to Frequency based on dimensions of elements 1/4 λ Dipole (Wire 1/4 of a Wavelength) creates

More information

CHAPTER 8 ANTENNAS 1

CHAPTER 8 ANTENNAS 1 CHAPTER 8 ANTENNAS 1 2 Antennas A good antenna works A bad antenna is a waste of time & money Antenna systems can be very inexpensive and simple They can also be very expensive 3 Antenna Considerations

More information

Fourth Year Antenna Lab

Fourth Year Antenna Lab Fourth Year Antenna Lab Name : Student ID#: Contents 1 Wire Antennas 1 1.1 Objectives................................................. 1 1.2 Equipments................................................ 1

More information

The Measurement and Characterisation of Ultra Wide-Band (UWB) Intentionally Radiated Signals

The Measurement and Characterisation of Ultra Wide-Band (UWB) Intentionally Radiated Signals The Measurement and Characterisation of Ultra Wide-Band (UWB) Intentionally Radiated Signals Rafael Cepeda Toshiba Research Europe Ltd University of Bristol November 2007 Rafael.cepeda@toshiba-trel.com

More information

Rec. ITU-R P RECOMMENDATION ITU-R P PROPAGATION BY DIFFRACTION. (Question ITU-R 202/3)

Rec. ITU-R P RECOMMENDATION ITU-R P PROPAGATION BY DIFFRACTION. (Question ITU-R 202/3) Rec. ITU-R P.- 1 RECOMMENDATION ITU-R P.- PROPAGATION BY DIFFRACTION (Question ITU-R 0/) Rec. ITU-R P.- (1-1-1-1-1-1-1) The ITU Radiocommunication Assembly, considering a) that there is a need to provide

More information

Study of Factors which affect the Calculation of Co- Channel Interference in a Radio Link

Study of Factors which affect the Calculation of Co- Channel Interference in a Radio Link International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 8, Number 2 (2015), pp. 103-111 International Research Publication House http://www.irphouse.com Study of Factors which

More information

SCHWARZBECK MESS - ELEKTRONIK An der Klinge 29 D Schönau Tel.: 06228/1001 Fax.: (49)6228/1003

SCHWARZBECK MESS - ELEKTRONIK An der Klinge 29 D Schönau Tel.: 06228/1001 Fax.: (49)6228/1003 Calibration of Vertical Monopole Antennas (9kHz - 30MHz) 11112gs VAMPINFO 1. Introduction Vertical Monopole Antennas are used for the measurement of the electric component of EM fields, especially in the

More information

Path Loss Modelization in VHF and UHF Systems

Path Loss Modelization in VHF and UHF Systems 1 Path Loss Modelization in VHF and UHF Systems Tiago A. A. Rodrigues, António J. C. B. Rodrigues Abstract The main purpose of this paper is to assess the recommendation ITU-R P.46-3 proposed by the International

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

MULTIPATH EFFECT MITIGATION IN SIGNAL PROPAGATION THROUGH AN INDOOR ENVIRONMENT

MULTIPATH EFFECT MITIGATION IN SIGNAL PROPAGATION THROUGH AN INDOOR ENVIRONMENT JOURNAL OF APPLIED ENGINEERING SCIENCES VOL. 2(15), issue 2_2012 ISSN 2247-3769 ISSN-L 2247-3769 (Print) / e-issn:2284-7197 MULTIPATH EFFECT MITIGATION IN SIGNAL PROPAGATION THROUGH AN INDOOR ENVIRONMENT

More information

FREQUENCY SHIELDING EFFECTIVENESS TEST REPORT TEST REPORT NUMBER TR-TRU-PROTECT-M

FREQUENCY SHIELDING EFFECTIVENESS TEST REPORT TEST REPORT NUMBER TR-TRU-PROTECT-M SRG Shielding Resources Group, Inc. RADIO FREQUENCY SHIELDING EFFECTIVENESS TEST REPORT TEST REPORT NUMBER TR-TRU-PROTECT-M Submitted To: Tru-Protect 7012 Cedar Avenue Lubbock, Texas 79404 Prepared For:

More information

stacking broadside collinear

stacking broadside collinear stacking broadside collinear There are three primary types of arrays, collinear, broadside, and endfire. Collinear is pronounced co-linear, and we may think it is spelled colinear, but the correct spelling

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Radiation characteristics of a dipole antenna in free space

Radiation characteristics of a dipole antenna in free space Department of Electrical and Electronic Engineering (EEE), Bangladesh University of Engineering and Technology (BUET). EEE 434: Microwave Engineering Laboratory Experiment No.: A1 Radiation characteristics

More information

Application of classical two-ray and other models for coverage predictions of rural mobile communications over various zones of India

Application of classical two-ray and other models for coverage predictions of rural mobile communications over various zones of India Indian Journal of Radio & Space Physics Vol. 36, October 2007, pp. 423-429 Application of classical two-ray and other models for coverage predictions of rural mobile communications over various zones of

More information

Differential and Single Ended Elliptical Antennas for GHz Ultra Wideband Communication

Differential and Single Ended Elliptical Antennas for GHz Ultra Wideband Communication Differential and Single Ended Elliptical Antennas for 3.1-1.6 GHz Ultra Wideband Communication Johnna Powell Anantha Chandrakasan Massachusetts Institute of Technology Microsystems Technology Laboratory

More information

ANTENNAS. I will mostly be talking about transmission. Keep in mind though, whatever is said about transmission is true of reception.

ANTENNAS. I will mostly be talking about transmission. Keep in mind though, whatever is said about transmission is true of reception. Reading 37 Ron Bertrand VK2DQ http://www.radioelectronicschool.com ANTENNAS The purpose of an antenna is to receive and/or transmit electromagnetic radiation. When the antenna is not connected directly

More information

Antenna Trainer EAN. Technical Teaching Equipment INTRODUCTION

Antenna Trainer EAN.  Technical Teaching Equipment INTRODUCTION Antenna Trainer EAN Technical Teaching Equipment Products Products range Units 3.-Communications INTRODUCTION Antennas are the main element of aerial communications. They are the transition between a transmission

More information

The Benefits of BEC s Antenna Design

The Benefits of BEC s Antenna Design The Benefits of BEC s Antenna Design Overview The explosive growth of wireless data communications is fast emerging with high peak data rates, which require superior antenna performance and design to support

More information

Radio Channel Models for Wireless Sensor Networks in Smart City Applications

Radio Channel Models for Wireless Sensor Networks in Smart City Applications Proceedings of the 213 International Conference on Electronics, Signal Processing and Communication Systems Radio Channel Models for Wireless Sensor Networks in Smart City Applications Andrej Hrovat, Tomaž

More information

Channel Modeling ETI 085

Channel Modeling ETI 085 Channel Modeling ETI 085 Overview Lecture no: 9 What is Ultra-Wideband (UWB)? Why do we need UWB channel models? UWB Channel Modeling UWB channel modeling Standardized UWB channel models Fredrik Tufvesson

More information

Antennas and Propagation. Chapter 6a: Propagation Definitions, Path-based Modeling

Antennas and Propagation. Chapter 6a: Propagation Definitions, Path-based Modeling Antennas and Propagation a: Propagation Definitions, Path-based Modeling Introduction Propagation How signals from antennas interact with environment Goal: model channel connecting TX and RX Antennas and

More information

Small Planar Antenna for WLAN Applications

Small Planar Antenna for WLAN Applications Small Planar Antenna for WLAN Applications # M. M. Yunus 1,2, N. Misran 2,3 and M. T. Islam 3 1 Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka 2 Faculty of Engineering,

More information

NTT DOCOMO Technical Journal. 1. Introduction. 2. Features of an Activeantenna. 2.1 Basic Configuration of Base Station using an Active Antenna

NTT DOCOMO Technical Journal. 1. Introduction. 2. Features of an Activeantenna. 2.1 Basic Configuration of Base Station using an Active Antenna Active Antenna for More Advanced and Economical Radio Base Stations Base Station Active antennas that integrate radio transceiver functions in the antenna unit have been attracting attention as an approach

More information

UNIT Write short notes on travelling wave antenna? Ans: Travelling Wave Antenna

UNIT Write short notes on travelling wave antenna? Ans:   Travelling Wave Antenna UNIT 4 1. Write short notes on travelling wave antenna? Travelling Wave Antenna Travelling wave or non-resonant or aperiodic antennas are those antennas in which there is no reflected wave i.e., standing

More information

Test sites for EMC measurements

Test sites for EMC measurements Test sites for EMC measurements EMV Fachtagung 21. Januar 2014 Christophe Perrenoud www.montenaemc.ch montena emc Route de Montena 75 CH - 1728 Rossens Tel. +41 26 411 93 33 Fax +41 26 411 93 30 office.emc@montenaemc.ch

More information

Revision of Lecture One

Revision of Lecture One Revision of Lecture One System blocks and basic concepts Multiple access, MIMO, space-time Transceiver Wireless Channel Signal/System: Bandpass (Passband) Baseband Baseband complex envelope Linear system:

More information

Industrial Wireless Systems

Industrial Wireless Systems Application Considerations Don Pretty Principal Engineer Geometric Controls Inc Bethlehem, PA Sheet 1 Ethernet Dominates on the Plant Floor Sheet 2 Recognize Any of These? Sheet 3 Answers: 10 BASE 2 RG

More information

Radio propagation modeling on 433 MHz

Radio propagation modeling on 433 MHz Ákos Milánkovich 1, Károly Lendvai 1, Sándor Imre 1, Sándor Szabó 1 1 Budapest University of Technology and Economics, Műegyetem rkp. 3-9. 1111 Budapest, Hungary {milankovich, lendvai, szabos, imre}@hit.bme.hu

More information

Rec. ITU-R F RECOMMENDATION ITU-R F *

Rec. ITU-R F RECOMMENDATION ITU-R F * Rec. ITU-R F.162-3 1 RECOMMENDATION ITU-R F.162-3 * Rec. ITU-R F.162-3 USE OF DIRECTIONAL TRANSMITTING ANTENNAS IN THE FIXED SERVICE OPERATING IN BANDS BELOW ABOUT 30 MHz (Question 150/9) (1953-1956-1966-1970-1992)

More information

Radiation characteristics of an array of two dipole antennas

Radiation characteristics of an array of two dipole antennas Department of Electrical and Electronic Engineering (EEE), Bangladesh University of Engineering and Technology (BUET). EEE 434: Microwave Engineering Laboratory Experiment No.: A2 Radiation characteristics

More information

Session2 Antennas and Propagation

Session2 Antennas and Propagation Wireless Communication Presented by Dr. Mahmoud Daneshvar Session2 Antennas and Propagation 1. Introduction Types of Anttenas Free space Propagation 2. Propagation modes 3. Transmission Problems 4. Fading

More information

Calibrating And Comparing Simulators for Wireless Sensor Networks

Calibrating And Comparing Simulators for Wireless Sensor Networks 211 Eighth IEEE International Conference on Mobile Ad-Hoc and Sensor Systems Calibrating And Comparing Simulators for Wireless Sensor Networks Andriy Stetsko, Martin Stehlík, Vashek Matyas Faculty of Informatics,

More information

Experimental Evaluation Scheme of UWB Antenna Performance

Experimental Evaluation Scheme of UWB Antenna Performance Tokyo Tech. Experimental Evaluation Scheme of UWB Antenna Performance Sathaporn PROMWONG Wataru HACHITANI Jun-ichi TAKADA TAKADA-Laboratory Mobile Communication Research Group Graduate School of Science

More information

Dr. John S. Seybold. November 9, IEEE Melbourne COM/SP AP/MTT Chapters

Dr. John S. Seybold. November 9, IEEE Melbourne COM/SP AP/MTT Chapters Antennas Dr. John S. Seybold November 9, 004 IEEE Melbourne COM/SP AP/MTT Chapters Introduction The antenna is the air interface of a communication system An antenna is an electrical conductor or system

More information

Radio Network Planning for Outdoor WLAN-Systems

Radio Network Planning for Outdoor WLAN-Systems Radio Network Planning for Outdoor WLAN-Systems S-72.333 Postgraduate Course in Radio Communications Jarkko Unkeri jarkko.unkeri@hut.fi 54029P 1 Outline Introduction WLAN Radio network planning challenges

More information

Electromagnetic field distribution within a semi anechoic chamber

Electromagnetic field distribution within a semi anechoic chamber Electromagnetic field distribution within a semi anechoic chamber Martin Pospisilik and Josef Soldan Abstract The paper deals with determination of a resonant frequency of a semi anechoic chamber with

More information

Politecnico di Torino. Porto Institutional Repository

Politecnico di Torino. Porto Institutional Repository Politecnico di Torino Porto Institutional Repository [Proceeding] Integrated miniaturized antennas for automotive applications Original Citation: Vietti G., Dassano G., Orefice M. (2010). Integrated miniaturized

More information

LTE Band 7. Channel

LTE Band 7. Channel Bandwidth 5MHz Frequency (MHz) LTE Band 7 Bandwidth 10MHz Peak To Average Ratio (db) Frequency Peak To Average Ratio (db) QPSK 16QAM (MHz) QPSK 16QAM 20775 2502.5 3.57 4.34 20800 2505 3.51 4.28 21100 2535

More information

The Physics of Radio By John White

The Physics of Radio By John White The Physics of Radio By John White Radio Bands and Channels The use of wireless devices is heavily regulated throughout the world. Each country has a government department responsible for deciding where

More information

Antennas and Propagation

Antennas and Propagation CMPE 477 Wireless and Mobile Networks Lecture 3: Antennas and Propagation Antennas Propagation Modes Line of Sight Transmission Fading in the Mobile Environment Introduction An antenna is an electrical

More information

Groundwave Propagation, Part One

Groundwave Propagation, Part One Groundwave Propagation, Part One 1 Planar Earth groundwave 2 Planar Earth groundwave example 3 Planar Earth elevated antenna effects Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17,

More information

Ray-Tracing Urban Picocell 3D Propagation Statistics for LTE Heterogeneous Networks

Ray-Tracing Urban Picocell 3D Propagation Statistics for LTE Heterogeneous Networks 13 7th European Conference on Antennas and Propagation (EuCAP) Ray-Tracing Urban Picocell 3D Propagation Statistics for LTE Heterogeneous Networks Evangelos Mellios, Geoffrey S. Hilton and Andrew R. Nix

More information

Basic Radio Physics. Developed by Sebastian Buettrich. ItrainOnline MMTK 1

Basic Radio Physics. Developed by Sebastian Buettrich. ItrainOnline MMTK   1 Basic Radio Physics Developed by Sebastian Buettrich 1 Goals Understand radiation/waves used in wireless networking. Understand some basic principles of their behaviour. Apply this understanding to real

More information

PROPAGATION MODELING 4C4

PROPAGATION MODELING 4C4 PROPAGATION MODELING ledoyle@tcd.ie 4C4 http://ledoyle.wordpress.com/temp/ Classification Band Initials Frequency Range Characteristics Extremely low ELF < 300 Hz Infra low ILF 300 Hz - 3 khz Ground wave

More information

ENGINEERING TEST REPORT # C LSR Job #: C-2411 Compliance Testing of: RM186-SM

ENGINEERING TEST REPORT # C LSR Job #: C-2411 Compliance Testing of: RM186-SM W66 N220 Commerce Court Cedarburg, WI 53012 USA Phone: 262.375.4400 Fax: 262.375.4248 www.lsr.com ENGINEERING TEST REPORT # 316062C LSR Job #: C-2411 Compliance Testing of: RM186-SM Test Date(s): 3-28-16

More information