Energy Efficient Decoder Architecture For Communication System

Size: px
Start display at page:

Download "Energy Efficient Decoder Architecture For Communication System"

Transcription

1 Energy Efficient Decoder Architecture For Communication System Chandana P, Agalya P, B. N Shoba Abstract In the communication domain low complexity and low power are the main criteria to be considered for the efficient utilization of the communication channel, which also requires reduction in the error rate. Turbo codes aids the energy constrained wireless communication by providing less energy consumption during data sending and receiving operation. In this paper, we are breaking down the LUT-Log-BCJR architecture into most fundamental add compare select unit and perform them using novel low complexity ACS unit, since we are using ACS unit with LUT architecture it employs an order of magnitude of fewer gates than previous LUT-log_BCJR architecture, providing approximately 72% energy consumption reduction compared to existing previous max log algorithm. Index Terms Energy-efficient, error-correcting code (ECC), LUT-Log-BCJR algorithm, turbo code. I. INTRODUCTION MODERN wireless communication standards rely on powerful channel coding to ensure reliable (error free) transmission. Turbo codes have recently been considered for energy-constrained wireless communication applications, since they facilitate a low transmission energy consumption. However, in order to reduce the overall energy consumption, look up table-log-bcjr (LUT-Log-BCJR) architectures having a low processing energy consumption are required. In this paper, we decompose the LUT-Log-BCJR architecture into its most fundamental add compare select (ACS) operations and perform them using a novel low-complexity ACS unit. II. RELATED WORK Recent application-specific integrated circuit (ASIC) based turbo decoder architectures [5] [7] have been designed for achieving a high transmission throughput, rather than for a low transmission energy. Manuscript received April, Chandana P, is currently pursuing Masters degree program in VLSI and ES at Sapthagiri college of Engineering, Bengaluru, Karnataka,affiliated to VTU. Agalya P, Associate professor, Dept. of Electronic and Communication Engineering, Sapthagiri college of Engineering, Bengaluru, Karnataka. Shoba B N, Associate professor, Dept. of Electronic and Communication Engineering, Sapthagiri college of Engineering, Bengaluru, Karnataka For example, turbo codes have facilitated transmission throughputs in excess of 50 Mbit/s in cellular standards, such as the 3rd Generation Partnership Project 3GPP Long Term Evolution (LTE) and recent ASIC turbo decoder architectures have been designed for throughputs that are in excess of 100 Mbit/s [5], [6]. This has been achieved by employing the Max Log - BCJR turbo decoding algorithm, which is a low-complexity approximation of the optimal Logarithmic Bahl-Cocke-Jelinek-Raviv (Log-BCJR) algorithm [8]. The Max-Log-BCJR algorithm appears to lend itself to both high-throughput scenarios, as well as to the above-mentioned energy-constrained scenarios. This is because a low turbo decoder energy consumption is implied by Max-Log-BCJR algorithm s low complexity. However, this is achieved at the cost of degrading the coding gain by 0.5 db compared to the optimal Log-BCJR algorithm [9], increasing the required transmission energy by 10%. This disadvantage of the Max-Log-BCJR outweighs its attractively low complexity, when optimizing the overall energy consumption of sensor nodes that are separated by dozens of meters. This motivates the employment of the lookup-table-log- BCJR (LUT-Log-BCJR) algorithm [8] in energy-constrained scenarios, since it approximates the optimal Log-BCJR more closely than the Max-Log-BCJR and therefore does not suffer from the associated coding gain degradation. However, to the best of our knowledge, no LUT-Log-BCJR ASICs have been specifically designed for energy-constrained scenarios. Previous LUT-Log-BCJR turbo decoder designs [10] [13] were developed as a part of the on-going drive for higher and higher processing throughputs, although their throughputs have since been eclipsed by the Max-Log-BCJR architectures. This opens the door for a new generation of LUT-Log-BCJR ASICs that exchange processing throughput for energy efficiency. The energy consumption of conventional LUT-Log-BCJR architectures cannot be significantly reduced by simply reducing their clock frequency and throughput. This motivates our novel architecture of, which is specifically designed to have a minimal hardware complexity and hence a low energy consumption. we validate our architecture in the context of an LTE turbo decoder and demonstrate that it has an order of magnitude lower chip area, hence reducing the energy consumption of the state-of-the-art LUT-Log-BCJR implementation by approximately 72%. Compared to state-of-the-art Max-Log-BCJR implementations, our approach facilitates approximately 10% reduction in the overall energy consumption of at transmission ranges above 58 m. 1117

2 III. PROPOSED SYSTEM The lookup-table-log-bcjr (LUT-Log-BCJR) algorithm is useful in energy-constrained scenarios, since it approximates the optimal Log-BCJR more closely than the Max-Log-BCJR and therefore does not suffer from the associated coding gain degradation. We validate our architecture and demonstrate that it has an order of magnitude of lower chip area, hence reducing the energy consumption of the state-of-the-art LUT-Log-BCJR implementation by 72%. We can keep on changing the architecture of lookup-table-log-bcr to achieve an efficient frequency which in turn helps in Power Consumption. Fig 1.Turbo encoder and decoder scheme Fig.3.Recursive Systematic Coder\RSC These codes are very similar in nature to conventional convolutional codes, also called nonsystematic convolutional codes (NSC), which are commonly used for 2G cellular systems, data modems, satellite communications, and many other applications. Data {Xi} enter from the left and are stored in a linear shift register (D denotes a D flip-flop). Each time a new data bit arrives, the data is shifted to the right into the next flip-flop. Each of the tw output bits {Z1,i,Z2,i} is computed by XOR-ing a particular subset of the three bits stored in the shift register with the bit at the encoder s input. The systematic outputs are not needed because they are identical to each other (although ordered differently) and to the turbo code input (which becomes the systematic part of the overall turbo code word). Fig 2. Encoder Block Diagram One of the most interesting characteristics of a turbo code is that it is not just a single code. It is, in fact, a combination of two codes1 that work together to achieve a synergy that would not be possible by merely using one code by itself. In particular, a turbo code is formed from the parallel concatenation of two constituent codes separated by an interleaver. Each constituent code may be any type of FEC code used for conventional. The interleaver is a critical part of the turbo code. It is a simple device that rearranges the order f the data bits in a prescribed, but irregular, manner. Although the same set of data bits is present at the output of the interleaver, the order of these bits has been changed, much like a 1Turbo codes can also be constructed using three or more constituent codes. Such structures are called multiple turbo codes. However, they are not used in any standards and are therefore not discussed here. Fig 4. Energy-efficient LUT-Log-BCJR architecture Our architecture implements the entire algorithm using ACS units in parallel, each of which performs one ACS operation per clock cycle. Furthermore, the proposed architecture employs a twin-level register structure to minimize the highly energy-consuming main-memory access operations. At the first register level, each ACS unit is paired with a set of general purpose registers R1, R2, and R3. These are used to store intermediate results that are required by the same ACS unit in consecutive clock cycles. For example, this allows the four ACS operations equivalent to a calculation to be performed in four consecutive clock cycles using a single ACS unit, as Fig.4. Energy-efficient LUT-Log-BCJR architecture. The second register level comprises REG bank 1 and REG bank 2 of Fig. 4, which are used to temporarily store the LUT-Log-BCJR variables between consecutive values of the bit index during the 1118

3 recursions decoding processes. The REG bank 1 comprises registers for input variables C 1, C 3. Meanwhile, the sets of input C 3, C 2 are stored in REG bank 2 of Fig. 4. The main memory stores all the calculated ACS outputs for the decoding process. Since the proposed architecture supports a fully parallel arrangement of an arbitrary number of ACS units of Fig. 4, it may be readily applied to any LUT-Log- BCJR decoder, regardless of the specific convolution encoder parameters2 employed. Note that in contrast to the differentlength data paths of Fig. 2, the identical parallel data paths shown in Fig.4. have equal lengths, which avoids energy wastage, as described above. O TABLE I OPERATIONS OF THE ACS Function TABLE II COMPARISON OF THE IMPLEMENTED TURBO DECODER Fig 5. ACS Unit A. Novel ACS Unit In this section Fig.5 shows, the novel low-gate-count ACS unit, which performs one ACS operation per clock cycle. The control signals of the ACS unit are provided by the operation code O={0,1,2,3,4,5}, which can be used to perform the functions listed in Table I. The ACS unit is responsible for implementing the state metric computation. A direct implementation requires two identical data paths each with two additions, a comparison, and a selection. Op 1 In this clock cycle max * the calculation is activated by using the operation code O = of Table I and loading operands p^ and q^ from the registers R 1 and R 2 of Fig. 5, respectively. The result r^ is then stored in register R 3, which is the approximated as R 1 -R 2. The result C 0 determines max(r 1,R 2 ). Op 2 The MAX * calculation of (2) is completed in the fourth clock cycle by using the operation code O = of Table I. Here the operand P^ is provided by the maximum of R 1 and R 2, as identified by C 0 of Fig.5. Meanwhile, a value for the operand Q^ is selected from the set {0.75, 0.5,0.25,0}, depending on the contents of C 1 and C 2n of Fig. 5. As a result, we have Publication Proposed Existing Algorithm LUT-Log Max-Log Block size(bit) Area(mm 2 ) Power consumption(mw) Clock Frequency F (MHz) In Table II, we compare the proposed architecture to the latest LUT-Log-BCJR and Max-Log-BCJR decoder architectures. The area and energy consumptions E pr are estimated based on post-layout simulations. The implementation results arising from different technologies are also scaled3 to give a fair comparison. As shown in Table II, the energy consumption E pr of the proposed architecture is significantly lower than that of the conventional LUT-Log-BCJR architectures. Furthermore, our proposed architecture has a similar energy E tr consumption to that of the recent Max-Log-BCJR decoders, but facilitates a 10% lower transmission energy, as discussed in Section I. IV. SYNTHESIS RESULT The Figures Fig.6.1, Fig.6.2, Fig.6.3 and Fig.6.4 of this section are the final output waveform generated using Xilinx tool. In Fig.6.1 Encoder output waveform along with RCS and Interlever outputs are shown. In Fig.6.2 and Fig.6.3 decoder output waveform along with Upper and Lower LUT-Log BCGR outputs are shown. In Fig.6.4 de-interleved output and final result of Decoder outputs are shown. 1119

4 Fig.6.1 Synthesis output of Encoder, RCS and Interlever Blocks. Fig.6.4 Synthesis output of de-interlever and final result of Decoder outputs. Fig.6.2 Synthesis output of Decoder, Upper LUT-Log BCGR Blocks. V. CONCLUSION In this paper, we have proposed low complexity energy-efficient architecture providing low area and low energy consumption by breaking down the LUT log BCJR into its most fundamental ACS operations. In the previous existing architecture i.e conventional LUT log architecture may have wasteful design requiring high chip area leading high energy consumption, where in the proposed architecture consider different turbo codes for encoding and decoding algorithm by validating the architecture using an LTE turbo decoder, to have an order of magnitude of lower area than the existing conventional LUT-log-BCJR architecture and our proposed system provides approximately 72% lower energy consumption compared to max-log BCJR implementation. REFERENCES Fig.6.3 Synthesis output of Upper and Lower LUT-Log BCGR Blocks. [1] F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, Wireless sensor networks: A survey, Comput. Netw.: Int. J. Comput. Telecommun. Netw., vol. 52, pp , [2] P. Corke, T. Wark, R. Jurdak, H. Wen, P. Valencia, and D. Moore, Environmental wireless sensor networks, Proc. IEEE, vol. 98, no.11, pp , Nov [3] S. L. Howard, C. Schlegel, and K. Iniewski, Error control coding in low-power wireless sensor networks:when is ECC energy-efficient?, EURASIP J. Wirel. Commun. Netw., vol. 2006, pp. 1 14, [4] L. Li, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, An energy-efficient error correction scheme for IEEE wireless sensor networks, Trans. Circuits Syst. II, vol. 57, no. 3, pp , [5] M.May, T. Ilnseher, N.Wehn, andw. Raab, A 150 Mbit/s 3GPP LTE turbo code decoder, in Proc. 1120

5 Design, Autom. Test in Euro. Conf. Exhib. (DATE), 2010, pp [6] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, Design and implementation of a parallel turbo-decoder ASIC for 3GPP-LTE, IEEE J. Solid-State Circuits, vol. 46, pp. 8 17, [7] C. Wong, Y. Lee, and H. Chang, A 188-size 2.1 mm reconfigurable turbo decoder chip with parallel architecture for 3GPP LTE system, in Proc. Symp. VLSI Circuits, 2009, pp [8] P. Robertson, P. Hoeher, and E. Villebrun, Optimal and sub-optimal maximum a posteriori algorithms suitable for turbo decoding, Euro. Trans. Telecommun., vol. 8, no. 2, pp , [9] W.-P. Ang and H. K. Garg, A new iterative channel estimator for the log-map & max-log-map turbo decoder in Rayleigh fading channel, in Proc. Global Telecommun. Conf., 2001, vol. 6, pp [10] M. A. Bickerstaff, D. Garrett, T. Prokop, C. Thomas, B. Widdup, G. Zhou, L.M. Davis, G.Woodward, C. Nicol, and R.-H. Yan, A unified turbo/viterbi channel decoder for 3GPP mobile wireless in m CMOS, IEEE J. Solid-State Circuits, vol. 37, no. 11, pp ,Nov [11] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, A 24 Mb/s radix-4 log-map turbo decoder for 3GPP-HSDPA mobile wireless, in Proc. IEEE Int. Solid-State Circuits Conf., 2003, pp [12] Z. Wang, High-speed recursion architectures for MAP-Based turbo decoders, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 4, pp , Apr [13] F.-M. Li, C.-H. Lin, and A.-Y. Wu, Unified convolutional/turbo decoder design using tile-based timing analysis of VA/MAP kernel, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 10, pp , Oct [14] C. Berrou, A. Glavieux, and P. Thitimajshima, Near Shannon limit error correcting coding and decoding: Turbo codes, in Proc. IEEE Int. Conf. Commun., 1993, pp [15] L. Hanzo, T. H. Liew, B. L. Yeap, R. Tee, and S. X. Ng, Turbo Coding, Turbo Equalisation and Space-Time Coding. New York:Wiley, [16] L. Hanzo, J. P. Woodard, and P. Robertson, Turbo decoding and detection for wireless applications, Proc. IEEE, vol. 95, no. 6, pp , Jun Agalya P, Associate Professor in Dept. of Electronic and Communication Engineering, Sapthagiri college of Engineering, Bengaluru, Karnataka. Shoba B N, Associate Professor in Dept. of Electronic and Communication Engineering, Sapthagiri college of Engineering, Bengaluru, Karnataka. Chandana P The author is currently pursuing M.tech in VLSI and Embedded System at Sapthagiri College of Engineering, Bengalur, Karnataka, affiliated to Visvesvaraya Technological University. 1121

An Improved Rate Matching Method for DVB Systems Through Pilot Bit Insertion

An Improved Rate Matching Method for DVB Systems Through Pilot Bit Insertion Research Journal of Applied Sciences, Engineering and Technology 4(18): 3251-3256, 2012 ISSN: 2040-7467 Maxwell Scientific Organization, 2012 Submitted: December 28, 2011 Accepted: March 02, 2012 Published:

More information

A to nj/bit/iteration Scalable 3GPP LTE Turbo Decoder with an Adaptive Sub-Block Parallel Scheme and an Embedded DVFS Engine

A to nj/bit/iteration Scalable 3GPP LTE Turbo Decoder with an Adaptive Sub-Block Parallel Scheme and an Embedded DVFS Engine A 0.077 to 0.168 nj/bit/iteration Scalable GPP LTE Turbo Decoder with an Adaptive Sub-Block Parallel Scheme and an Embedded DVFS Engine The MIT Faculty has made this article openly available. Please share

More information

A rate one half code for approaching the Shannon limit by 0.1dB

A rate one half code for approaching the Shannon limit by 0.1dB 100 A rate one half code for approaching the Shannon limit by 0.1dB (IEE Electronics Letters, vol. 36, no. 15, pp. 1293 1294, July 2000) Stephan ten Brink S. ten Brink is with the Institute of Telecommunications,

More information

Methods for Reducing the Activity Switching Factor

Methods for Reducing the Activity Switching Factor International Journal of Engineering Research and Development e-issn: 2278-67X, p-issn: 2278-8X, www.ijerd.com Volume, Issue 3 (March 25), PP.7-25 Antony Johnson Chenginimattom, Don P John M.Tech Student,

More information

TURBO coding [1] is a well-known channel-coding technique

TURBO coding [1] is a well-known channel-coding technique Analysis of the Convergence Process by EXIT Charts for Parallel Implementations of Turbo Decoders Oscar Sánchez, Christophe Jégo Member IEEE and Michel Jézéquel Member IEEE Abstract Iterative process is

More information

SNR Estimation in Nakagami-m Fading With Diversity Combining and Its Application to Turbo Decoding

SNR Estimation in Nakagami-m Fading With Diversity Combining and Its Application to Turbo Decoding IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 11, NOVEMBER 2002 1719 SNR Estimation in Nakagami-m Fading With Diversity Combining Its Application to Turbo Decoding A. Ramesh, A. Chockalingam, Laurence

More information

Design of HSDPA System with Turbo Iterative Equalization

Design of HSDPA System with Turbo Iterative Equalization Abstract Research Journal of Recent Sciences ISSN 2277-2502 Design of HSDPA System with Turbo Iterative Equalization Kilari. Subash Theja 1 and Vaishnavi R. 1 Joginpally B R Engineering college 2 Vivekananda

More information

A High-Throughput VLSI Architecture for SC-FDMA MIMO Detectors

A High-Throughput VLSI Architecture for SC-FDMA MIMO Detectors A High-Throughput VLSI Architecture for SC-FDMA MIMO Detectors K.Keerthana 1, G.Jyoshna 2 M.Tech Scholar, Dept of ECE, Sri Krishnadevaraya University College of, AP, India 1 Lecturer, Dept of ECE, Sri

More information

Performance comparison of convolutional and block turbo codes

Performance comparison of convolutional and block turbo codes Performance comparison of convolutional and block turbo codes K. Ramasamy 1a), Mohammad Umar Siddiqi 2, Mohamad Yusoff Alias 1, and A. Arunagiri 1 1 Faculty of Engineering, Multimedia University, 63100,

More information

THE idea behind constellation shaping is that signals with

THE idea behind constellation shaping is that signals with IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 52, NO. 3, MARCH 2004 341 Transactions Letters Constellation Shaping for Pragmatic Turbo-Coded Modulation With High Spectral Efficiency Dan Raphaeli, Senior Member,

More information

Journal of Babylon University/Engineering Sciences/ No.(5)/ Vol.(25): 2017

Journal of Babylon University/Engineering Sciences/ No.(5)/ Vol.(25): 2017 Performance of Turbo Code with Different Parameters Samir Jasim College of Engineering, University of Babylon dr_s_j_almuraab@yahoo.com Ansam Abbas College of Engineering, University of Babylon 'ansamabbas76@gmail.com

More information

INTERNATIONAL JOURNAL OF PROFESSIONAL ENGINEERING STUDIES Volume VIII /Issue 1 / DEC 2016

INTERNATIONAL JOURNAL OF PROFESSIONAL ENGINEERING STUDIES Volume VIII /Issue 1 / DEC 2016 VLSI DESIGN OF A HIGH SPEED PARTIALLY PARALLEL ENCODER ARCHITECTURE THROUGH VERILOG HDL Pagadala Shivannarayana Reddy 1 K.Babu Rao 2 E.Rama Krishna Reddy 3 A.V.Prabu 4 pagadala1857@gmail.com 1,baburaokodavati@gmail.com

More information

Study of Turbo Coded OFDM over Fading Channel

Study of Turbo Coded OFDM over Fading Channel International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 3, Issue 2 (August 2012), PP. 54-58 Study of Turbo Coded OFDM over Fading Channel

More information

On the performance of Turbo Codes over UWB channels at low SNR

On the performance of Turbo Codes over UWB channels at low SNR On the performance of Turbo Codes over UWB channels at low SNR Ranjan Bose Department of Electrical Engineering, IIT Delhi, Hauz Khas, New Delhi, 110016, INDIA Abstract - In this paper we propose the use

More information

Iterative Decoding for MIMO Channels via. Modified Sphere Decoding

Iterative Decoding for MIMO Channels via. Modified Sphere Decoding Iterative Decoding for MIMO Channels via Modified Sphere Decoding H. Vikalo, B. Hassibi, and T. Kailath Abstract In recent years, soft iterative decoding techniques have been shown to greatly improve the

More information

High performance Radix-16 Booth Partial Product Generator for 64-bit Binary Multipliers

High performance Radix-16 Booth Partial Product Generator for 64-bit Binary Multipliers High performance Radix-16 Booth Partial Product Generator for 64-bit Binary Multipliers Dharmapuri Ranga Rajini 1 M.Ramana Reddy 2 rangarajini.d@gmail.com 1 ramanareddy055@gmail.com 2 1 PG Scholar, Dept

More information

Low Power Error Correcting Codes Using Majority Logic Decoding

Low Power Error Correcting Codes Using Majority Logic Decoding RESEARCH ARTICLE OPEN ACCESS Low Power Error Correcting Codes Using Majority Logic Decoding A. Adline Priya., II Yr M. E (Communicasystems), Arunachala College Of Engg For Women, Manavilai, adline.priya@yahoo.com

More information

n Based on the decision rule Po- Ning Chapter Po- Ning Chapter

n Based on the decision rule Po- Ning Chapter Po- Ning Chapter n Soft decision decoding (can be analyzed via an equivalent binary-input additive white Gaussian noise channel) o The error rate of Ungerboeck codes (particularly at high SNR) is dominated by the two codewords

More information

High-performance Parallel Concatenated Polar-CRC Decoder Architecture

High-performance Parallel Concatenated Polar-CRC Decoder Architecture JOURAL OF SEMICODUCTOR TECHOLOGY AD SCIECE, VOL.8, O.5, OCTOBER, 208 ISS(Print) 598-657 https://doi.org/0.5573/jsts.208.8.5.560 ISS(Online) 2233-4866 High-performance Parallel Concatenated Polar-CRC Decoder

More information

High Speed Binary Counters Based on Wallace Tree Multiplier in VHDL

High Speed Binary Counters Based on Wallace Tree Multiplier in VHDL High Speed Binary Counters Based on Wallace Tree Multiplier in VHDL E.Sangeetha 1 ASP and D.Tharaliga 2 Department of Electronics and Communication Engineering, Tagore College of Engineering and Technology,

More information

Simulation Performance of MMSE Iterative Equalization with Soft Boolean Value Propagation

Simulation Performance of MMSE Iterative Equalization with Soft Boolean Value Propagation Simulation Performance of MMSE Iterative Equalization with Soft Boolean Value Propagation Aravindh Krishnamoorthy, Leela Srikar Muppirisetty, Ravi Jandial ST-Ericsson (India) Private Limited http://www.stericsson.com

More information

A Comparative Study on Direct form -1, Broadcast and Fine grain structure of FIR digital filter

A Comparative Study on Direct form -1, Broadcast and Fine grain structure of FIR digital filter A Comparative Study on Direct form -1, Broadcast and Fine grain structure of FIR digital filter Jaya Bar Madhumita Mukherjee Abstract-This paper presents the VLSI architecture of pipeline digital filter.

More information

Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing

Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing 16.548 Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing Outline! Introduction " Pushing the Bounds on Channel Capacity " Theory of Iterative Decoding " Recursive Convolutional Coding

More information

3GPP TSG RAN WG1 Meeting #85 R Decoding algorithm** Max-log-MAP min-sum List-X

3GPP TSG RAN WG1 Meeting #85 R Decoding algorithm** Max-log-MAP min-sum List-X 3GPP TSG RAN WG1 Meeting #85 R1-163961 3GPP Nanjing, TSGChina, RAN23 WG1 rd 27Meeting th May 2016 #87 R1-1702856 Athens, Greece, 13th 17th February 2017 Decoding algorithm** Max-log-MAP min-sum List-X

More information

FPGA IMPLEMENTATION OF HIGH SPEED AND LOW POWER VITERBI ENCODER AND DECODER

FPGA IMPLEMENTATION OF HIGH SPEED AND LOW POWER VITERBI ENCODER AND DECODER FPGA IMPLEMENTATION OF HIGH SPEED AND LOW POWER VITERBI ENCODER AND DECODER M.GAYATHRI #1, D.MURALIDHARAN #2 #1 M.Tech, School of Computing #2 Assistant Professor, SASTRA University, Thanjavur. #1 gayathrimurugan.12

More information

Comparison of MAP decoding methods for turbo codes

Comparison of MAP decoding methods for turbo codes POSTER 2016, PRAGUE MAY 24 1 Comparison of MAP decoding methods for turbo codes Vitor ĎURČEK 1, Tibor PETROV 2 1,2 Dept. of Telecommunications and Multimedia, Faculty of Electrical Engineering, University

More information

SNR Estimation in Nakagami Fading with Diversity for Turbo Decoding

SNR Estimation in Nakagami Fading with Diversity for Turbo Decoding SNR Estimation in Nakagami Fading with Diversity for Turbo Decoding A. Ramesh, A. Chockalingam Ý and L. B. Milstein Þ Wireless and Broadband Communications Synopsys (India) Pvt. Ltd., Bangalore 560095,

More information

Design of Area and Power Efficient FIR Filter Using Truncated Multiplier Technique

Design of Area and Power Efficient FIR Filter Using Truncated Multiplier Technique Design of Area and Power Efficient FIR Filter Using Truncated Multiplier Technique TALLURI ANUSHA *1, and D.DAYAKAR RAO #2 * Student (Dept of ECE-VLSI), Sree Vahini Institute of Science and Technology,

More information

EFFICIENT DESIGN OF FFT/IFFT PROCESSOR USING VERILOG HDL

EFFICIENT DESIGN OF FFT/IFFT PROCESSOR USING VERILOG HDL EFFICIENT DESIGN OF FFT/IFFT PROCESSOR USING VERILOG HDL M. SRIDHANYA (1), MRS. G. ANNAPURNA (2) M.TECH, VLSI SYSTEM DESIGN, VIDYA JYOTHI INSTITUTE OF TECHNOLOGY (1) M.TECH, ASSISTANT PROFESSOR, VIDYA

More information

Chapter 3 Convolutional Codes and Trellis Coded Modulation

Chapter 3 Convolutional Codes and Trellis Coded Modulation Chapter 3 Convolutional Codes and Trellis Coded Modulation 3. Encoder Structure and Trellis Representation 3. Systematic Convolutional Codes 3.3 Viterbi Decoding Algorithm 3.4 BCJR Decoding Algorithm 3.5

More information

32-Bit CMOS Comparator Using a Zero Detector

32-Bit CMOS Comparator Using a Zero Detector 32-Bit CMOS Comparator Using a Zero Detector M Premkumar¹, P Madhukumar 2 ¹M.Tech (VLSI) Student, Sree Vidyanikethan Engineering College (Autonomous), Tirupati, India 2 Sr.Assistant Professor, Department

More information

Design A Redundant Binary Multiplier Using Dual Logic Level Technique

Design A Redundant Binary Multiplier Using Dual Logic Level Technique Design A Redundant Binary Multiplier Using Dual Logic Level Technique Sreenivasa Rao Assistant Professor, Department of ECE, Santhiram Engineering College, Nandyala, A.P. Jayanthi M.Tech Scholar in VLSI,

More information

SIGNED PIPELINED MULTIPLIER USING HIGH SPEED COMPRESSORS

SIGNED PIPELINED MULTIPLIER USING HIGH SPEED COMPRESSORS INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 SIGNED PIPELINED MULTIPLIER USING HIGH SPEED COMPRESSORS 1 T.Thomas Leonid, 2 M.Mary Grace Neela, and 3 Jose Anand

More information

Department of Electronic Engineering FINAL YEAR PROJECT REPORT

Department of Electronic Engineering FINAL YEAR PROJECT REPORT Department of Electronic Engineering FINAL YEAR PROJECT REPORT BEngECE-2009/10-- Student Name: CHEUNG Yik Juen Student ID: Supervisor: Prof.

More information

II. FRAME STRUCTURE In this section, we present the downlink frame structure of 3GPP LTE and WiMAX standards. Here, we consider

II. FRAME STRUCTURE In this section, we present the downlink frame structure of 3GPP LTE and WiMAX standards. Here, we consider Forward Error Correction Decoding for WiMAX and 3GPP LTE Modems Seok-Jun Lee, Manish Goel, Yuming Zhu, Jing-Fei Ren, and Yang Sun DSPS R&D Center, Texas Instruments ECE Depart., Rice University {seokjun,

More information

Hybrid throughput aware variable puncture rate coding for PHY-FEC in video processing

Hybrid throughput aware variable puncture rate coding for PHY-FEC in video processing IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 PP 19-21 www.iosrjen.org Hybrid throughput aware variable puncture rate coding for PHY-FEC in video processing 1 S.Lakshmi,

More information

Low Power Implementation of Turbo Code with Variable Iteration

Low Power Implementation of Turbo Code with Variable Iteration International Journal of Electronics Communication Engineering. ISSN 0974-2166 Volume 4, Number 1 (2011), pp.41-48 International Research Publication House http://www.irphouse.com Low Power Implementation

More information

Optimization of energy consumption in a NOC link by using novel data encoding technique

Optimization of energy consumption in a NOC link by using novel data encoding technique Optimization of energy consumption in a NOC link by using novel data encoding technique Asha J. 1, Rohith P. 1M.Tech, VLSI design and embedded system, RIT, Hassan, Karnataka, India Assistent professor,

More information

Data Word Length Reduction for Low-Power DSP Software

Data Word Length Reduction for Low-Power DSP Software EE382C: LITERATURE SURVEY, APRIL 2, 2004 1 Data Word Length Reduction for Low-Power DSP Software Kyungtae Han Abstract The increasing demand for portable computing accelerates the study of minimizing power

More information

Index Terms. Adaptive filters, Reconfigurable filter, circuit optimization, fixed-point arithmetic, least mean square (LMS) algorithms. 1.

Index Terms. Adaptive filters, Reconfigurable filter, circuit optimization, fixed-point arithmetic, least mean square (LMS) algorithms. 1. DESIGN AND IMPLEMENTATION OF HIGH PERFORMANCE ADAPTIVE FILTER USING LMS ALGORITHM P. ANJALI (1), Mrs. G. ANNAPURNA (2) M.TECH, VLSI SYSTEM DESIGN, VIDYA JYOTHI INSTITUTE OF TECHNOLOGY (1) M.TECH, ASSISTANT

More information

Hybrid throughput aware variable puncture rate coding for PHY-FEC in video processing

Hybrid throughput aware variable puncture rate coding for PHY-FEC in video processing IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p-issn: 2278-8727, Volume 20, Issue 3, Ver. III (May. - June. 2018), PP 78-83 www.iosrjournals.org Hybrid throughput aware variable puncture

More information

Linear Turbo Equalization for Parallel ISI Channels

Linear Turbo Equalization for Parallel ISI Channels 860 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 51, NO. 6, JUNE 2003 Linear Turbo Equalization for Parallel ISI Channels Jill Nelson, Student Member, IEEE, Andrew Singer, Member, IEEE, and Ralf Koetter,

More information

An Area Efficient FFT Implementation for OFDM

An Area Efficient FFT Implementation for OFDM Vol. 2, Special Issue 1, May 20 An Area Efficient FFT Implementation for OFDM R.KALAIVANI#1, Dr. DEEPA JOSE#1, Dr. P. NIRMAL KUMAR# # Department of Electronics and Communication Engineering, Anna University

More information

A Low Power and High Speed Viterbi Decoder Based on Deep Pipelined, Clock Blocking and Hazards Filtering

A Low Power and High Speed Viterbi Decoder Based on Deep Pipelined, Clock Blocking and Hazards Filtering Int. J. Communications, Network and System Sciences, 2009, 6, 575-582 doi:10.4236/ijcns.2009.26064 Published Online September 2009 (http://www.scirp.org/journal/ijcns/). 575 A Low Power and High Speed

More information

The Case for Optimum Detection Algorithms in MIMO Wireless Systems. Helmut Bölcskei

The Case for Optimum Detection Algorithms in MIMO Wireless Systems. Helmut Bölcskei The Case for Optimum Detection Algorithms in MIMO Wireless Systems Helmut Bölcskei joint work with A. Burg, C. Studer, and M. Borgmann ETH Zurich Data rates in wireless double every 18 months throughput

More information

A low cost soft mapper for turbo equalization with high order modulation

A low cost soft mapper for turbo equalization with high order modulation University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2012 A low cost soft mapper for turbo equalization

More information

Goa, India, October Question: 4/15 SOURCE 1 : IBM. G.gen: Low-density parity-check codes for DSL transmission.

Goa, India, October Question: 4/15 SOURCE 1 : IBM. G.gen: Low-density parity-check codes for DSL transmission. ITU - Telecommunication Standardization Sector STUDY GROUP 15 Temporary Document BI-095 Original: English Goa, India, 3 7 October 000 Question: 4/15 SOURCE 1 : IBM TITLE: G.gen: Low-density parity-check

More information

Design and Analysis of Low Power Dual Binary ML MAP Decoder Using VLSI Technology

Design and Analysis of Low Power Dual Binary ML MAP Decoder Using VLSI Technology P P P IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 11, November 2015. Design and Analysis of Low Power Dual Binary ML MAP Decoder Using VLSI Technology 1

More information

An Optimized Design of High-Speed and Energy- Efficient Carry Skip Adder with Variable Latency Extension

An Optimized Design of High-Speed and Energy- Efficient Carry Skip Adder with Variable Latency Extension An Optimized Design of High-Speed and Energy- Efficient Carry Skip Adder with Variable Latency Extension Monisha.T.S 1, Senthil Prakash.K 2 1 PG Student, ECE, Velalar College of Engineering and Technology

More information

VHDL based Design of Convolutional Encoder using Vedic Mathematics and Viterbi Decoder using Parallel Processing

VHDL based Design of Convolutional Encoder using Vedic Mathematics and Viterbi Decoder using Parallel Processing IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 01 July 2016 ISSN (online): 2349-784X VHDL based Design of Convolutional Encoder using Vedic Mathematics and Viterbi Decoder

More information

TURBOCODING PERFORMANCES ON FADING CHANNELS

TURBOCODING PERFORMANCES ON FADING CHANNELS TURBOCODING PERFORMANCES ON FADING CHANNELS Ioana Marcu, Simona Halunga, Octavian Fratu Telecommunications Dept. Electronics, Telecomm. & Information Theory Faculty, Bd. Iuliu Maniu 1-3, 061071, Bucharest

More information

A HIGH SPEED FFT/IFFT PROCESSOR FOR MIMO OFDM SYSTEMS

A HIGH SPEED FFT/IFFT PROCESSOR FOR MIMO OFDM SYSTEMS A HIGH SPEED FFT/IFFT PROCESSOR FOR MIMO OFDM SYSTEMS Ms. P. P. Neethu Raj PG Scholar, Electronics and Communication Engineering, Vivekanadha College of Engineering for Women, Tiruchengode, Tamilnadu,

More information

Design and Implementation of Current-Mode Multiplier/Divider Circuits in Analog Processing

Design and Implementation of Current-Mode Multiplier/Divider Circuits in Analog Processing Design and Implementation of Current-Mode Multiplier/Divider Circuits in Analog Processing N.Rajini MTech Student A.Akhila Assistant Professor Nihar HoD Abstract This project presents two original implementations

More information

Comparison of Cooperative Schemes using Joint Channel Coding and High-order Modulation

Comparison of Cooperative Schemes using Joint Channel Coding and High-order Modulation Comparison of Cooperative Schemes using Joint Channel Coding and High-order Modulation Ioannis Chatzigeorgiou, Weisi Guo, Ian J. Wassell Digital Technology Group, Computer Laboratory University of Cambridge,

More information

FUTURE wireless communication systems tend to become

FUTURE wireless communication systems tend to become IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 1, JANUARY 2008 3 Towards Software Defined Radios Using Coarse-Grained Reconfigurable Hardware Gerard K. Rauwerda, Paul M.

More information

AREA AND DELAY EFFICIENT DESIGN FOR PARALLEL PREFIX FINITE FIELD MULTIPLIER

AREA AND DELAY EFFICIENT DESIGN FOR PARALLEL PREFIX FINITE FIELD MULTIPLIER AREA AND DELAY EFFICIENT DESIGN FOR PARALLEL PREFIX FINITE FIELD MULTIPLIER 1 CH.JAYA PRAKASH, 2 P.HAREESH, 3 SK. FARISHMA 1&2 Assistant Professor, Dept. of ECE, 3 M.Tech-Student, Sir CR Reddy College

More information

COMPARISION OF LOW POWER AND DELAY USING BAUGH WOOLEY AND WALLACE TREE MULTIPLIERS

COMPARISION OF LOW POWER AND DELAY USING BAUGH WOOLEY AND WALLACE TREE MULTIPLIERS COMPARISION OF LOW POWER AND DELAY USING BAUGH WOOLEY AND WALLACE TREE MULTIPLIERS ( 1 Dr.V.Malleswara rao, 2 K.V.Ganesh, 3 P.Pavan Kumar) 1 Professor &HOD of ECE,GITAM University,Visakhapatnam. 2 Ph.D

More information

FPGA Implementation of Viterbi Algorithm for Decoding of Convolution Codes

FPGA Implementation of Viterbi Algorithm for Decoding of Convolution Codes IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 5, Ver. I (Sep-Oct. 4), PP 46-53 e-issn: 39 4, p-issn No. : 39 497 FPGA Implementation of Viterbi Algorithm for Decoding of Convolution

More information

Low Power Approach for Fir Filter Using Modified Booth Multiprecision Multiplier

Low Power Approach for Fir Filter Using Modified Booth Multiprecision Multiplier Low Power Approach for Fir Filter Using Modified Booth Multiprecision Multiplier Gowridevi.B 1, Swamynathan.S.M 2, Gangadevi.B 3 1,2 Department of ECE, Kathir College of Engineering 3 Department of ECE,

More information

ECE 6640 Digital Communications

ECE 6640 Digital Communications ECE 6640 Digital Communications Dr. Bradley J. Bazuin Assistant Professor Department of Electrical and Computer Engineering College of Engineering and Applied Sciences Chapter 8 8. Channel Coding: Part

More information

PERFORMANCE ANALYSIS OF IDMA SCHEME USING DIFFERENT CODING TECHNIQUES WITH RECEIVER DIVERSITY USING RANDOM INTERLEAVER

PERFORMANCE ANALYSIS OF IDMA SCHEME USING DIFFERENT CODING TECHNIQUES WITH RECEIVER DIVERSITY USING RANDOM INTERLEAVER 1008 PERFORMANCE ANALYSIS OF IDMA SCHEME USING DIFFERENT CODING TECHNIQUES WITH RECEIVER DIVERSITY USING RANDOM INTERLEAVER Shweta Bajpai 1, D.K.Srivastava 2 1,2 Department of Electronics & Communication

More information

Design and FPGA Implementation of Stochastic Turbo Decoder

Design and FPGA Implementation of Stochastic Turbo Decoder Design and FPGA Implementation of Stochastic Turbo Decoder Quang Trung Dong, Matthieu Arzel, Christophe Jego To cite this version: Quang Trung Dong, Matthieu Arzel, Christophe Jego. Design and FPGA Implementation

More information

DESIGN OF LOW POWER MULTIPLIER USING COMPOUND CONSTANT DELAY LOGIC STYLE

DESIGN OF LOW POWER MULTIPLIER USING COMPOUND CONSTANT DELAY LOGIC STYLE DESIGN OF LOW POWER MULTIPLIER USING COMPOUND CONSTANT DELAY LOGIC STYLE 1 S. DARWIN, 2 A. BENO, 3 L. VIJAYA LAKSHMI 1 & 2 Assistant Professor Electronics & Communication Engineering Department, Dr. Sivanthi

More information

Design of Baugh Wooley Multiplier with Adaptive Hold Logic. M.Kavia, V.Meenakshi

Design of Baugh Wooley Multiplier with Adaptive Hold Logic. M.Kavia, V.Meenakshi International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 105 Design of Baugh Wooley Multiplier with Adaptive Hold Logic M.Kavia, V.Meenakshi Abstract Mostly, the overall

More information

Iterative Decoding with M-ary Orthogonal Walsh Modulation in OFDM-CDMA Systems. Armin Dekorsy, Volker Kühn and Karl-Dirk Kammeyer

Iterative Decoding with M-ary Orthogonal Walsh Modulation in OFDM-CDMA Systems. Armin Dekorsy, Volker Kühn and Karl-Dirk Kammeyer Iterative Decoding with -ary Orthogonal Walsh odulation in OFD-CDA Systems Armin Dekorsy, Volker Kühn and Karl-Dirk Kammeyer University of Bremen, FB-, Department of Telecommunications.O. Box 33 04 40,

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013 Design and Implementation of -Ring-Turbo Decoder Riyadh A. Al-hilali Abdulkareem S. Abdallah Raad H. Thaher College of Engineering College of Engineering College of Engineering Al-Mustansiriyah University

More information

Information Processing and Combining in Channel Coding

Information Processing and Combining in Channel Coding Information Processing and Combining in Channel Coding Johannes Huber and Simon Huettinger Chair of Information Transmission, University Erlangen-Nürnberg Cauerstr. 7, D-958 Erlangen, Germany Email: [huber,

More information

Design of an optimized multiplier based on approximation logic

Design of an optimized multiplier based on approximation logic ISSN:2348-2079 Volume-6 Issue-1 International Journal of Intellectual Advancements and Research in Engineering Computations Design of an optimized multiplier based on approximation logic Dhivya Bharathi

More information

An Area Efficient Decomposed Approximate Multiplier for DCT Applications

An Area Efficient Decomposed Approximate Multiplier for DCT Applications An Area Efficient Decomposed Approximate Multiplier for DCT Applications K.Mohammed Rafi 1, M.P.Venkatesh 2 P.G. Student, Department of ECE, Shree Institute of Technical Education, Tirupati, India 1 Assistant

More information

Design and Implementation of 64-bit MAC Unit for DSP Applications using verilog HDL

Design and Implementation of 64-bit MAC Unit for DSP Applications using verilog HDL Design and Implementation of 64-bit MAC Unit for DSP Applications using verilog HDL 1 Shaik. Mahaboob Subhani 2 L.Srinivas Reddy Subhanisk491@gmal.com 1 lsr@ngi.ac.in 2 1 PG Scholar Dept of ECE Nalanda

More information

A BIST Circuit for Fault Detection Using Recursive Pseudo- Exhaustive Two Pattern Generator

A BIST Circuit for Fault Detection Using Recursive Pseudo- Exhaustive Two Pattern Generator Vol.2, Issue.3, May-June 22 pp-676-681 ISSN 2249-6645 A BIST Circuit for Fault Detection Using Recursive Pseudo- Exhaustive Two Pattern Generator K. Nivitha 1, Anita Titus 2 1 ME-VLSI Design 2 Dept of

More information

PERFORMANCE OF TWO LEVEL TURBO CODED 4-ARY CPFSK SYSTEMS OVER AWGN AND FADING CHANNELS

PERFORMANCE OF TWO LEVEL TURBO CODED 4-ARY CPFSK SYSTEMS OVER AWGN AND FADING CHANNELS ISTANBUL UNIVERSITY JOURNAL OF ELECTRICAL & ELECTRONICS ENGINEERING YEAR VOLUME NUMBER : 006 : 6 : (07- ) PERFORMANCE OF TWO LEVEL TURBO CODED 4-ARY CPFSK SYSTEMS OVER AWGN AND FADING CHANNELS Ianbul University

More information

Performance Analysis of MIMO Equalization Techniques with Highly Efficient Channel Coding Schemes

Performance Analysis of MIMO Equalization Techniques with Highly Efficient Channel Coding Schemes Performance Analysis of MIMO Equalization Techniques with Highly Efficient Channel Coding Schemes Neha Aggarwal 1 Shalini Bahel 2 Teglovy Singh Chohan 3 Jasdeep Singh 4 1,2,3,4 Department of Electronics

More information

A High-Speed Low-Complexity Modified Processor for High Rate WPAN Applications

A High-Speed Low-Complexity Modified Processor for High Rate WPAN Applications IEEE TRASACTIOS O VERY LARGE SCALE ITEGRATIO (VLSI) SYSTEMS, VOL. 21, O. 1, JAUARY 2013 187 [4] J. A. de Lima and C. Dualibe, A linearly tunable low-voltage CMOS transconductor with improved common-mode

More information

BROADBAND fixed wireless access (FWA) systems enable

BROADBAND fixed wireless access (FWA) systems enable This article has been accepted for inclusion in a future issue of this journal Content is final as presented, with the exception of pagination IEEE TRANSACTIONS ON BROADCASTING 1 Comparison of Convolutional

More information

Abstract. Marío A. Bedoya-Martinez. He joined Fujitsu Europe Telecom R&D Centre (UK), where he has been working on R&D of Second-and

Abstract. Marío A. Bedoya-Martinez. He joined Fujitsu Europe Telecom R&D Centre (UK), where he has been working on R&D of Second-and Abstract The adaptive antenna array is one of the advanced techniques which could be implemented in the IMT-2 mobile telecommunications systems to achieve high system capacity. In this paper, an integrated

More information

Polar Codes for Magnetic Recording Channels

Polar Codes for Magnetic Recording Channels Polar Codes for Magnetic Recording Channels Aman Bhatia, Veeresh Taranalli, Paul H. Siegel, Shafa Dahandeh, Anantha Raman Krishnan, Patrick Lee, Dahua Qin, Moni Sharma, and Teik Yeo University of California,

More information

A Dynamic Reconcile Algorithm for Address Generator in Wimax Deinterleaver

A Dynamic Reconcile Algorithm for Address Generator in Wimax Deinterleaver A Dynamic Reconcile Algorithm for Address Generator in Wimax Deinterleaver Kavya J Mohan 1, Riboy Cheriyan 2 M Tech Scholar, Dept. of Electronics and Communication, SAINTGITS College of Engineering, Kottayam,

More information

Novel implementation of Data Encoding and Decoding Techniques for Reducing Power Consumption in Network-on-Chip

Novel implementation of Data Encoding and Decoding Techniques for Reducing Power Consumption in Network-on-Chip Novel implementation of Data Encoding and Decoding Techniques for Reducing Power Consumption in Network-on-Chip Rathod Shilpa M.Tech, VLSI Design and Embedded Systems, Department of Electronics & CommunicationEngineering,

More information

Design And Implementation of FM0/Manchester coding for DSRC. Applications

Design And Implementation of FM0/Manchester coding for DSRC. Applications Design And Implementation of / coding for DSRC Applications Supriya Shivaji Garade, Prof.P.R.Badadapure Department of Electronics and Telecommunication JSPM s Imperial College of Engineering and Research

More information

VITERBI DECODER WITH LOW POWER AND LOW COMPLEXITY FOR SPACE-TIME TRELLIS CODES

VITERBI DECODER WITH LOW POWER AND LOW COMPLEXITY FOR SPACE-TIME TRELLIS CODES VITERBI DECODER WITH LOW POWER AND LOW COMPLEXITY FOR SPACE-TIME TRELLIS CODES P. Uma Devi 1 *, P. Seshagiri Rao 2 (1* Asst.Professor, Department of Electronics and Communication, JJIIT, Hyderabad) (2

More information

Design of a High Speed FIR Filter on FPGA by Using DA-OBC Algorithm

Design of a High Speed FIR Filter on FPGA by Using DA-OBC Algorithm Design of a High Speed FIR Filter on FPGA by Using DA-OBC Algorithm Vijay Kumar Ch 1, Leelakrishna Muthyala 1, Chitra E 2 1 Research Scholar, VLSI, SRM University, Tamilnadu, India 2 Assistant Professor,

More information

Recursive Pseudo-Exhaustive Two-Pattern Generator PRIYANSHU PANDEY 1, VINOD KAPSE 2 1 M.TECH IV SEM, HOD 2

Recursive Pseudo-Exhaustive Two-Pattern Generator PRIYANSHU PANDEY 1, VINOD KAPSE 2 1 M.TECH IV SEM, HOD 2 Recursive Pseudo-Exhaustive Two-Pattern Generator PRIYANSHU PANDEY 1, VINOD KAPSE 2 1 M.TECH IV SEM, HOD 2 Abstract Pseudo-exhaustive pattern generators for built-in self-test (BIST) provide high fault

More information

Design and Performance Analysis of a Reconfigurable Fir Filter

Design and Performance Analysis of a Reconfigurable Fir Filter Design and Performance Analysis of a Reconfigurable Fir Filter S.karthick Department of ECE Bannari Amman Institute of Technology Sathyamangalam INDIA Dr.s.valarmathy Department of ECE Bannari Amman Institute

More information

Design and implementation of LDPC decoder using time domain-ams processing

Design and implementation of LDPC decoder using time domain-ams processing 2015; 1(7): 271-276 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 5.2 IJAR 2015; 1(7): 271-276 www.allresearchjournal.com Received: 31-04-2015 Accepted: 01-06-2015 Shirisha S M Tech VLSI

More information

Front End To Back End VLSI Design For Convolution Encoder Pravin S. Tupkari Prof. A. S. Joshi

Front End To Back End VLSI Design For Convolution Encoder Pravin S. Tupkari Prof. A. S. Joshi Front End To Back End VLSI Design For Convolution Encoder Pravin S. Tupkari Prof. A. S. Joshi Abstract For many digital communication system bandwidth and transmission power are limited resource and it

More information

A High-Throughput Memory-Based VLC Decoder with Codeword Boundary Prediction

A High-Throughput Memory-Based VLC Decoder with Codeword Boundary Prediction 1514 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000 A High-Throughput Memory-Based VLC Decoder with Codeword Boundary Prediction Bai-Jue Shieh, Yew-San Lee,

More information

FOR wireless applications on fading channels, channel

FOR wireless applications on fading channels, channel 160 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998 Design and Analysis of Turbo Codes on Rayleigh Fading Channels Eric K. Hall and Stephen G. Wilson, Member, IEEE Abstract

More information

A FPGA Implementation of Power Efficient Encoding Schemes for NoC with Error Detection

A FPGA Implementation of Power Efficient Encoding Schemes for NoC with Error Detection IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 6, Issue 3, Ver. II (May. -Jun. 2016), PP 70-76 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org A FPGA Implementation of Power

More information

An Optimized Wallace Tree Multiplier using Parallel Prefix Han-Carlson Adder for DSP Processors

An Optimized Wallace Tree Multiplier using Parallel Prefix Han-Carlson Adder for DSP Processors An Optimized Wallace Tree Multiplier using Parallel Prefix Han-Carlson Adder for DSP Processors T.N.Priyatharshne Prof. L. Raja, M.E, (Ph.D) A. Vinodhini ME VLSI DESIGN Professor, ECE DEPT ME VLSI DESIGN

More information

An Efficient 4-D 8PSK TCM Decoder Architecture Jinjin He, Zhongfeng Wang, Senior Member, IEEE, and Huping Liu, Senior Member, IEEE

An Efficient 4-D 8PSK TCM Decoder Architecture Jinjin He, Zhongfeng Wang, Senior Member, IEEE, and Huping Liu, Senior Member, IEEE 808 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 5, MAY 2010 An Efficient 4-D 8PSK TCM Decoder Architecture Jinjin He, Zhongfeng Wang, Senior Member, IEEE, and Huping

More information

UNEXPECTED through-silicon-via (TSV) defects may occur

UNEXPECTED through-silicon-via (TSV) defects may occur IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 10, OCTOBER 2017 1759 Grouping-Based TSV Test Architecture for Resistive Open and Bridge Defects in 3-D-ICs Young-woo

More information

International Journal of Computer Engineering and Applications, Volume XI, Issue XI, Nov. 17, ISSN

International Journal of Computer Engineering and Applications, Volume XI, Issue XI, Nov. 17,  ISSN International Journal of Computer Engineering and Applications, Volume XI, Issue XI, Nov. 17, www.ijcea.com ISSN 2321-3469 DESIGN OF DADDA MULTIPLIER WITH OPTIMIZED POWER USING ANT ARCHITECTURE M.Sukanya

More information

A Novel Hybrid ARQ Scheme Using Packet Coding

A Novel Hybrid ARQ Scheme Using Packet Coding 27-28 January 26, Sophia Antipolis France A Novel Hybrid ARQ Scheme Using Pacet Coding LiGuang Li (ZTE Corperation), Jun Xu (ZTE Corperation), Can Duan (ZTE Corperation), Jin Xu (ZTE Corperation), Xiaomei

More information

An Design of Radix-4 Modified Booth Encoded Multiplier and Optimised Carry Select Adder Design for Efficient Area and Delay

An Design of Radix-4 Modified Booth Encoded Multiplier and Optimised Carry Select Adder Design for Efficient Area and Delay An Design of Radix-4 Modified Booth Encoded Multiplier and Optimised Carry Select Adder Design for Efficient Area and Delay 1. K. Nivetha, PG Scholar, Dept of ECE, Nandha Engineering College, Erode. 2.

More information

Modified Booth Encoding Multiplier for both Signed and Unsigned Radix Based Multi-Modulus Multiplier

Modified Booth Encoding Multiplier for both Signed and Unsigned Radix Based Multi-Modulus Multiplier Modified Booth Encoding Multiplier for both Signed and Unsigned Radix Based Multi-Modulus Multiplier M.Shiva Krushna M.Tech, VLSI Design, Holy Mary Institute of Technology And Science, Hyderabad, T.S,

More information

Low-Power Multipliers with Data Wordlength Reduction

Low-Power Multipliers with Data Wordlength Reduction Low-Power Multipliers with Data Wordlength Reduction Kyungtae Han, Brian L. Evans, and Earl E. Swartzlander, Jr. Dept. of Electrical and Computer Engineering The University of Texas at Austin Austin, TX

More information

ENCODER ARCHITECTURE FOR LONG POLAR CODES

ENCODER ARCHITECTURE FOR LONG POLAR CODES ENCODER ARCHITECTURE FOR LONG POLAR CODES Laxmi M Swami 1, Dr.Baswaraj Gadgay 2, Suman B Pujari 3 1PG student Dept. of VLSI Design & Embedded Systems VTU PG Centre Kalaburagi. Email: laxmims0333@gmail.com

More information

Recent Progress in Mobile Transmission

Recent Progress in Mobile Transmission Recent Progress in Mobile Transmission Joachim Hagenauer Institute for Communications Engineering () Munich University of Technology (TUM) D-80290 München, Germany State University of Telecommunications

More information

IN 1993, powerful so-called turbo codes were introduced [1]

IN 1993, powerful so-called turbo codes were introduced [1] 206 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998 Bandwidth-Efficient Turbo Trellis-Coded Modulation Using Punctured Component Codes Patrick Robertson, Member, IEEE, and

More information