ECE 6640 Digital Communications

Size: px
Start display at page:

Download "ECE 6640 Digital Communications"

Transcription

1 ECE 6640 Digital Communications Dr. Bradley J. Bazuin Assistant Professor Department of Electrical and Computer Engineering College of Engineering and Applied Sciences

2 Chapter 8 8. Channel Coding: Part Reed-Solomon Codes. 2. Interleaving and Concatenated Codes. 3. Coding and Interleaving Applied to the Compact Disc Digital Audio System. 4. Turbo Codes. 5. Appendix 8A. The Sum of Log-Likelihood Ratios. ECE

3 Sklar s Communications System Notes and figures are based on or taken from materials in the course textbook: ECE 6640 Bernard Sklar, Digital Communications, Fundamentals and Applications, 3 Prentice Hall PTR, Second Edition, 2001.

4 Reed-Solomon Codes Nonbinary cyclic codes with symbols consisting of m-bit sequences (n, k) codes of m-bit symbols exist for all n and k where Convenient example 0 k n 2 An extended code could use n=2 m and become a perfect length hexidecimal or byte-length word. R-S codes achieve the largest possible code minimum distance for any linear code with the same encoder input and output block lengths! d min n k 1 ECE m m m n,k 2 1, t 2 d t min 1 n k 2 2

5 Comparative Advantage to Binary For a (7,3) binary code: 2^7=128 n-tuples 2^3=8 3- symbol codewords 8/128=1/16 of the n-tuples are codewords For a (7,3) R-S with 3-bit symbols (2^7)^3 =2,097,152 n-tuples (2^3)^3= symbol codewords 2^9/2^21=1/2^12=1/4,096 of the n-tuples are codewords Significantly increasing hamming distances are possible! ECE

6 ECE R-S Error Probability Useful for burst-error corrections Numerous systems suffer from burst-errors Error Probability The bit error probability can be upper bounded by the symbol error probability for specific modulation types. For MFSK t j j 1 2 j m m E m m p 1 p j 1 2 j P P P m 1 m E B

7 Burst Errors Result in a series of bits or symbols being corrupted. Causes: Signal fading (cell phone Rayleigh Fading) Lightening or other impulse noise (radar, switches, etc.) Rapid Transients CD/DVD damage See Wikipedia for references: Note that for R-S Codes, the t correction is for symbols, not just bits therefore, t=4 implies 3 to 4 n-tuples of sequential errors. ECE

8 R-S and Finite Fields R-S codes use generator polynomials Encoding may be done in a systematic form Operations (addition, subtraction, multiplication and division) must be defined for the m-bit symbol systems. Galois Fields (GF) allow operations to be readily defined ECE

9 R-S Encoding/Decoding Done similarly to binary cyclic codes GF math performed for multiplication and addition of feedback polynomial U(X)=m(X) x g(x) with p(x) parity computed Syndrome computation performed Errors detected and corrected, but with higher complexity (a binary error calls for flipping a bit, what about an m-bit symbol?) r(x)=u(x) + e(x) Must determine error location and error value ECE

10 Reed-Solomon Summary Widely used in data storage and communications protocols You may need to know more in the future (systems you work with may use it) ECE

11 7.11 Reed-Solomon Codes Reed-Solomon codes are a special class of nonbinary BCH codes that were first introduced in Reed and Solomon. An good overview can be found at: on_codes.html Matlab Information ECE 6640 John G. Proakis, Digital Communications, 5th ed., McGraw Hill, Fourth Edition, ISBN:

12 Reed-Solomon Codes Nonbinary cyclic codes with symbols consisting of m-bit sequences (n, k) codes of m-bit symbols exist for all n and k where Convenient example m 0 k n 2 2 m m n,k 2 1, t An extended code could use n=2 m and become a perfect length hexidecimal or byte-length word. R-S codes achieve the largest possible code minimum distance for any linear code with the same encoder input and output block lengths! d min n k 1 d t 1 n k 2 2 ECE 6640 John G. Proakis, Digital Communications, 5th ed., McGraw Hill, Fourth Edition, ISBN: min

13 Comparative Advantage to Binary For a (7,3) binary code: 2^7=128 n-tuples 2^3=8 3- symbol codewords 8/128=1/16 of the n-tuples are codewords For a (7,3) R-S with 3-bit symbols (t=2) (2^7)^3 =2,097,152 n-tuples (2^3)^3= symbol codewords 2^9/2^21=1/2^12=1/4,096 of the n-tuples are codewords Significantly increasing hamming distances are possible! Notes and figures are based on or taken from materials in the course textbook: ECE 6640 Bernard Sklar, Digital Communications, Fundamentals and Applications, 13 Prentice Hall PTR, Second Edition, 2001.

14 Reed Solomon Code Options m=3 (7,5) 3-bit symbols, t=1 (7,3) 3-bit symbols, t=2 m=4 (15,13) 4-bit symbols, t=1 (15,11) 4-bit symbols, t=2 (15, 9) 4-bit symbols, t=3 (15, 7) 4-bit symbols, t=4 (15, 5) 4-bit symbols, t=5 Byte wide coding m=8 (255,223) 8-bit symbols, t=16 (255,239) 8-bit symbols, t=8 t represents m-bit symbol error corrections Note: The symbols may be transmitted as m-ary elements. (i.e. m=3 8-psk or m=4 16-QAM) ECE 6640 John G. Proakis, Digital Communications, 5th ed., McGraw Hill, Fourth Edition, ISBN:

15 ECE R-S Error Probability Useful for burst-error corrections Numerous systems suffer from burst-errors Error Probability - Symbol The bit error probability can be upper bounded by the symbol error probability for specific modulation types. For MFSK t j j 1 2 j m m E m m p 1 p j 1 2 j P P P m 1 m E B John G. Proakis, Digital Communications, 5th ed., McGraw Hill, Fourth Edition, ISBN:

16 Example ECE 6640 John G. Proakis, Digital Communications, 5th ed., McGraw Hill, Fourth Edition, ISBN:

17 R-S and Finite Fields R-S codes use generator polynomials Encoding may be done in a systematic form Operations (addition, subtraction, multiplication and division) must be defined for the m-bit symbol systems. Galois Fields (GF) allow operations to be readily defined ECE 6640 John G. Proakis, Digital Communications, 5th ed., McGraw Hill, Fourth Edition, ISBN:

18 R-S Encoding/Decoding Done similarly to binary cyclic codes GF math performed for multiplication and addition of feedback polynomial U(X)=m(X) x g(x) with p(x) parity computed Syndrome computation performed Errors detected and corrected, but with higher complexity (a binary error calls for flipping a bit, what about an m-bit symbol?) r(x)=u(x) + e(x) Must determine error location and error value ECE 6640 John G. Proakis, Digital Communications, 5th ed., McGraw Hill, Fourth Edition, ISBN:

19 Reed-Solomon Summary Widely used in data storage and communications protocols You may need to know more in the future (systems you work with may use it) ECE 6640 John G. Proakis, Digital Communications, 5th ed., McGraw Hill, Fourth Edition, ISBN:

20 Interleaving Convolutional codes are suitable for memoryless channels with random error events. Some errors have bursty nature: Statistical dependence among successive error events (time-correlation) due to the channel memory. Like errors in multipath fading channels in wireless communications, errors due to the switching noise, Interleaving makes the channel looks like as a memoryless channel at the decoder. Digital Communications I: Modulation and Coding Course, Period , Sorour Falahati, Lecture 13 ECE

21 Interleaving Interleaving is done by spreading the coded symbols in time (interleaving) before transmission. The reverse in done at the receiver by deinterleaving the received sequence. Interleaving makes bursty errors look like random. Hence, Conv. codes can be used. Types of interleaving: Block interleaving Convolutional or cross interleaving Digital Communications I: Modulation and Coding Course, Period , Sorour Falahati, Lecture 13 ECE

22 Interleaving Consider a code with t=1 and 3 coded bits. A burst error of length 3 can not be corrected. A1 A2 A3 B1 B2 B3 C1 C2 C3 2 errors Let us use a block interleaver 3X3 A1 A2 A3 B1 B2 B3 C1 C2 C3 A1 B1 C1 A2 B2 C2 A3 B3 C3 Interleaver Deinterleaver A1 B1 C1 A2 B2 C2 A3 B3 C3 A1 A2 A3 B1 B2 B3 C1 C2 C3 1 errors 1 errors 1 errors ECE Digital Communications I: Modulation and Coding Course, Period , Sorour Falahati, Lecture 13

23 A Block Interleaver A block interleaver formats the encoded data in a rectangular array of m rows and n columns. Usually, each row of the array constitutes a codeword of length n. An interleaver of degree m consists of m rows (m codewords) as illustrated in Figure ECE 6640 John G. Proakis, Digital Communications, 5th ed., McGraw Hill, 23 Fourth Edition, ISBN:

24 Convolutional Interleaving A simple banked switching and delay structure can be used as proposed by Ramsey and Forney. Interleave after encoding and prior to transmission Deinterleave after reception but prior to decoding ECE

25 Forney Reference Forney, G., Jr., "Burst-Correcting Codes for the Classic Bursty Channel," Communication Technology, IEEE Transactions on, vol.19, no.5, pp.772,781, October ECE

26 Convolutional Example Data fills the commutator registers Output sequence (in repeating blocks of 16) ECE

27 Proakis 7.13 Combining Codes The problem, however, is that the decoding complexity of a block code generally increases with the block length, and this dependence in general is an exponential dependence. Therefore improved performance through using block codes is achieved at the cost of increased decoding complexity. One approach to design block codes with long block lengths and with manageable complexity is to begin with two or more simple codes with short block lengths and combine them in a certain way to obtain codes with longer block length that have better distance properties. Then some kind of suboptimal decoding can be applied to the combined code based on the decoding algorithms of the simple constituent codes. Product Codes Concatenated Codes ECE 6640 John G. Proakis, Digital Communications, 5th ed., McGraw Hill, Fourth Edition, ISBN:

28 Product Codes A simple method of combining two or more codes is described in this section. Let us assume we have two systematic linear block codes; code C i is an (n i, k i ) code with minimum distance d min i for i = 1, 2. The product of these codes is an (n 1 n 2, k 1 k 2 ) linear block code whose bits are arranged in a matrix form as shown in Figure ECE 6640 John G. Proakis, Digital Communications, 5th ed., McGraw Hill, Fourth Edition, ISBN:

29 Concatenated codes A concatenated code uses two levels on coding, an inner code and an outer code (higher rate). Popular concatenated codes: Convolutional codes with Viterbi decoding as the inner code and Reed-Solomon codes as the outer code The purpose is to reduce the overall complexity, yet achieving the required error performance. Input data Outer encoder Interleaver Inner encoder Modulate Channel Output data Outer decoder Deinterleaver Inner decoder Demodulate ECE Digital Communications I: Modulation and Coding Course, Period , Sorour Falahati, Lecture 13

30 Practical example: Compact Disc Without error correcting codes, digital audio would not be technically feasible. Channel in a CD playback system consists of a transmitting laser, a recorded disc and a photo-detector. Sources of errors are manufacturing damages, fingerprints or scratches Errors have bursty like nature. Error correction and concealment is done by using a concatenated error control scheme, called cross-interleaver Reed-Solomon code (CIRC). ECE Digital Communications I: Modulation and Coding Course, Period , Sorour Falahati, Lecture 13

31 CD CIRC Specifications Maximum correctable burst length 4000 bits (2.5 mm track length) Maximum interpolatable burst length 12,000 bit (8 mm) Sample interpolation rate One sample every 10 hours at P B = samples/min at P B =10-3 Undetected error samples (clicks) Less than one every 750 hours at P B =10-3 Negligible at P B =10-3 New discs are characterized by P B =10-4 ECE

32 Compact disc cont d CIRC encoder and decoder: Encoder interleave C * 2 D C1 D encode interleave encode interleave deinterleave C * 2 D C1 D decode deinterleave decode deinterleave Decoder ECE Digital Communications I: Modulation and Coding Course, Period , Sorour Falahati, Lecture 13

33 CD Encoder Process 16-bit Left Audio 16-bit Right Audio (24 byte frame) RS code 8-bit symbols RS(255, 251) 24 Used Symbols 227 Unused Symbols Equ. RS(28, 24) RS(255, 251) 28 Used Symbols 223 Unused Symbols Equ. RS(32, 28) Overall Rate 3/4 ECE

34 CD Decoder Process ECE

35 Advanced Topic: Turbo Codes Concatenated coding scheme for achieving large coding gains Combine two or more relatively simple building blocks or component codes. Often combined with interleaving. For example: A Reed-Solomon outer code with a convolutional inner code May use soft decisions in first decoder to pass to next decoder. Multiple iterations of decoding may be used to improve decisions! A popular topic for research, publications, and applications. ECE

36 Turbo Code MATLAB I have been trying to run a simulation. Reed Solomon Examples Turbo Code Examples ECE

37 Turbo Code Performance The decoding operation can be performed multiple times or iterations. There is a degree of improvement as shown. ECE

38 MATLAB Simulations 10 0 LTE Turbo-Coding N = 2048, 1 iterations 10 0 LTE Turbo-Coding N = 2048, 2 iterations BER 10-4 BER E b /N 0 (db) E b /N 0 (db) ECE

39 MATLAB Simulations 10 0 LTE Turbo-Coding N = 2048, 3 iterations 10 0 LTE Turbo-Coding N = 2048, 4 iterations BER 10-4 BER E b /N 0 (db) E b /N 0 (db) ECE

40 Section 8.9 Turbo Codes The construction and decoding of concatenated codes with interleaving, using convolutional codes. Parallel concatenated convolutional codes (PCCCs) with interleaving, also called turbo codes, were introduced by Berrou et al. (1993) and Berrou and Glavieux (1996). A basic turbo encoder, shown in Figure 8.9 1, is a recursive systematic encoder (RSC or RSCC) that employs two recursive systematic convolutional encoders in parallel, where the second encoder is preceded by an interleaver. ECE 6640 John G. Proakis, Digital Communications, 5th ed., McGraw Hill, Fourth Edition, ISBN:

41 Turbo Coding We observe that the nominal rate at the output of the turbo encoder is Rc = 1/3. As in the case of concatenated block codes, the interleaver is usually selected to be a block pseudorandom interleaver that reorders the bits in the information sequence before feeding them to the second encoder. In effect, as will be shown later, the use of two recursive convolutional encoders in conjunction with the interleaver produces a code that contains very few codewords of low weight. ECE 6640 The use of the interleaver in conjunction with the two encoders results in codewords that have relatively few nearest neighbors. That is, the codewords are relatively sparse. John G. Proakis, Digital Communications, 5th ed., McGraw Hill, Fourth Edition, ISBN:

42 An Recursive Systematic encoder (RSC) EXAMPLE A (31, 27) RSC encoder is represented by g1 = (11001) and g2 =(10111) corresponding to g 1 (D) = 1+ D + D 4 g 2 (D) = 1+ D 2 + D 3 + D 4. The encoder is given by the block diagram shown in Figure ECE 6640 John G. Proakis, Digital Communications, 5th ed., McGraw Hill, Fourth Edition, ISBN:

43 Performance Bounds Turbo codes are two recursive systematic convolutional codes concatenated by an interleaver. Although the codes are linear and time-invariant, the operation of the interleaver, although linear, is not timeinvariant. The trellis of the resulting linear but time-varying finitestate machine has a huge number of states that makes maximum-likelihood decoding hopeless. Therefore the text offers a union bound approach but refers readers to other papers. ECE 6640 John G. Proakis, Digital Communications, 5th ed., McGraw Hill, Fourth Edition, ISBN:

44 Iterative Decoding A suboptimal iterative decoding algorithm, known as the turbo decoding algorithm, was proposed by Berrou et al. (1993) which achieves excellent performance very close to the theoretical bound predicted by Shannon. The turbo decoding algorithm is based on iterative usage of the Log-APP or the Max-Log-APP algorithm. (APP: a-posteriori probability) a BCJR simplification described on p A soft-input soft-output decoder is used that allows multiple iterations to be performed. ECE 6640 John G. Proakis, Digital Communications, 5th ed., McGraw Hill, Fourth Edition, ISBN:

45 Decoder Performance It is seen from these plots that three regions are distinguishable. For the low-snr region where the error probability changes very slowly as a function of Eb/N 0 and the number of iterations. For moderate SNRs the error probability drops rapidly with increasing Eb/N 0 and over many iterations Pb decreases consistently. This region is called the waterfall region or the turbo cliff region. Finally, for moderately large Eb/N 0 values, the code exhibits an error floor which is typically achieved with a few iterations. As discussed before, the error floor effect in turbo codes is due to their low minimum distance. ECE 6640 John G. Proakis, Digital Communications, 5th ed., McGraw Hill, Fourth Edition, ISBN:

46 Drawback and Summary The major drawback with decoding turbo codes with large interleavers is the decoding delay and the computational complexity inherent in the iterative decoding algorithm. In most data communication systems, however, the decoding delay is tolerable, and the additional computational complexity is usually justified by the significant coding gain that is achieved by the turbo code. ECE

47 References Digital Communications I: Modulation and Coding Course, Period , Sorour Falahati, Lecture 13 A Tutorial on Convolutional Coding with Viterbi Decoding by Chip Fleming of Spectrum Applications Robert Morelos-Zaragoza, The Error Correcting Codes (ECC) Page Matthew C. Valenti, Center for Identification Technology Research (CITeR), West Virginia University Site ECE

ECE 6640 Digital Communications

ECE 6640 Digital Communications ECE 6640 Digital Communications Dr. Bradley J. Bazuin Assistant Professor Department of Electrical and Computer Engineering College of Engineering and Applied Sciences Chapter 8 8. Channel Coding: Part

More information

Digital Communications I: Modulation and Coding Course. Term Catharina Logothetis Lecture 12

Digital Communications I: Modulation and Coding Course. Term Catharina Logothetis Lecture 12 Digital Communications I: Modulation and Coding Course Term 3-8 Catharina Logothetis Lecture Last time, we talked about: How decoding is performed for Convolutional codes? What is a Maximum likelihood

More information

ECE 8771, Information Theory & Coding for Digital Communications Summer 2010 Syllabus & Outline (Draft 1 - May 12, 2010)

ECE 8771, Information Theory & Coding for Digital Communications Summer 2010 Syllabus & Outline (Draft 1 - May 12, 2010) ECE 8771, Information Theory & Coding for Digital Communications Summer 2010 Syllabus & Outline (Draft 1 - May 12, 2010) Instructor: Kevin Buckley, Tolentine 433a, 610-519-5658 (W), 610-519-4436 (F), buckley@ece.vill.edu,

More information

A Survey of Advanced FEC Systems

A Survey of Advanced FEC Systems A Survey of Advanced FEC Systems Eric Jacobsen Minister of Algorithms, Intel Labs Communication Technology Laboratory/ Radio Communications Laboratory July 29, 2004 With a lot of material from Bo Xia,

More information

ERROR CONTROL CODING From Theory to Practice

ERROR CONTROL CODING From Theory to Practice ERROR CONTROL CODING From Theory to Practice Peter Sweeney University of Surrey, Guildford, UK JOHN WILEY & SONS, LTD Contents 1 The Principles of Coding in Digital Communications 1.1 Error Control Schemes

More information

Convolutional Coding Using Booth Algorithm For Application in Wireless Communication

Convolutional Coding Using Booth Algorithm For Application in Wireless Communication Available online at www.interscience.in Convolutional Coding Using Booth Algorithm For Application in Wireless Communication Sishir Kalita, Parismita Gogoi & Kandarpa Kumar Sarma Department of Electronics

More information

Advanced channel coding : a good basis. Alexandre Giulietti, on behalf of the team

Advanced channel coding : a good basis. Alexandre Giulietti, on behalf of the team Advanced channel coding : a good basis Alexandre Giulietti, on behalf of the T@MPO team Errors in transmission are fowardly corrected using channel coding e.g. MPEG4 e.g. Turbo coding e.g. QAM source coding

More information

Contents Chapter 1: Introduction... 2

Contents Chapter 1: Introduction... 2 Contents Chapter 1: Introduction... 2 1.1 Objectives... 2 1.2 Introduction... 2 Chapter 2: Principles of turbo coding... 4 2.1 The turbo encoder... 4 2.1.1 Recursive Systematic Convolutional Codes... 4

More information

Turbo coding (CH 16)

Turbo coding (CH 16) Turbo coding (CH 16) Parallel concatenated codes Distance properties Not exceptionally high minimum distance But few codewords of low weight Trellis complexity Usually extremely high trellis complexity

More information

Digital Television Lecture 5

Digital Television Lecture 5 Digital Television Lecture 5 Forward Error Correction (FEC) Åbo Akademi University Domkyrkotorget 5 Åbo 8.4. Error Correction in Transmissions Need for error correction in transmissions Loss of data during

More information

Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing

Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing 16.548 Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing Outline! Introduction " Pushing the Bounds on Channel Capacity " Theory of Iterative Decoding " Recursive Convolutional Coding

More information

Outline. Communications Engineering 1

Outline. Communications Engineering 1 Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

Performance comparison of convolutional and block turbo codes

Performance comparison of convolutional and block turbo codes Performance comparison of convolutional and block turbo codes K. Ramasamy 1a), Mohammad Umar Siddiqi 2, Mohamad Yusoff Alias 1, and A. Arunagiri 1 1 Faculty of Engineering, Multimedia University, 63100,

More information

Performance of Reed-Solomon Codes in AWGN Channel

Performance of Reed-Solomon Codes in AWGN Channel International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 4, Number 3 (2011), pp. 259-266 International Research Publication House http://www.irphouse.com Performance of

More information

Single Error Correcting Codes (SECC) 6.02 Spring 2011 Lecture #9. Checking the parity. Using the Syndrome to Correct Errors

Single Error Correcting Codes (SECC) 6.02 Spring 2011 Lecture #9. Checking the parity. Using the Syndrome to Correct Errors Single Error Correcting Codes (SECC) Basic idea: Use multiple parity bits, each covering a subset of the data bits. No two message bits belong to exactly the same subsets, so a single error will generate

More information

Error Control Coding. Aaron Gulliver Dept. of Electrical and Computer Engineering University of Victoria

Error Control Coding. Aaron Gulliver Dept. of Electrical and Computer Engineering University of Victoria Error Control Coding Aaron Gulliver Dept. of Electrical and Computer Engineering University of Victoria Topics Introduction The Channel Coding Problem Linear Block Codes Cyclic Codes BCH and Reed-Solomon

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 9: Error Control Coding

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 9: Error Control Coding ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2005 Lecture 9: Error Control Coding Chapter 8 Coding and Error Control From: Wireless Communications and Networks by William Stallings,

More information

Physical Layer: Modulation, FEC. Wireless Networks: Guevara Noubir. S2001, COM3525 Wireless Networks Lecture 3, 1

Physical Layer: Modulation, FEC. Wireless Networks: Guevara Noubir. S2001, COM3525 Wireless Networks Lecture 3, 1 Wireless Networks: Physical Layer: Modulation, FEC Guevara Noubir Noubir@ccsneuedu S, COM355 Wireless Networks Lecture 3, Lecture focus Modulation techniques Bit Error Rate Reducing the BER Forward Error

More information

Improved concatenated (RS-CC) for OFDM systems

Improved concatenated (RS-CC) for OFDM systems Improved concatenated (RS-CC) for OFDM systems Mustafa Dh. Hassib 1a), JS Mandeep 1b), Mardina Abdullah 1c), Mahamod Ismail 1d), Rosdiadee Nordin 1e), and MT Islam 2f) 1 Department of Electrical, Electronics,

More information

Chapter 3 Convolutional Codes and Trellis Coded Modulation

Chapter 3 Convolutional Codes and Trellis Coded Modulation Chapter 3 Convolutional Codes and Trellis Coded Modulation 3. Encoder Structure and Trellis Representation 3. Systematic Convolutional Codes 3.3 Viterbi Decoding Algorithm 3.4 BCJR Decoding Algorithm 3.5

More information

Decoding of Block Turbo Codes

Decoding of Block Turbo Codes Decoding of Block Turbo Codes Mathematical Methods for Cryptography Dedicated to Celebrate Prof. Tor Helleseth s 70 th Birthday September 4-8, 2017 Kyeongcheol Yang Pohang University of Science and Technology

More information

n Based on the decision rule Po- Ning Chapter Po- Ning Chapter

n Based on the decision rule Po- Ning Chapter Po- Ning Chapter n Soft decision decoding (can be analyzed via an equivalent binary-input additive white Gaussian noise channel) o The error rate of Ungerboeck codes (particularly at high SNR) is dominated by the two codewords

More information

On the performance of Turbo Codes over UWB channels at low SNR

On the performance of Turbo Codes over UWB channels at low SNR On the performance of Turbo Codes over UWB channels at low SNR Ranjan Bose Department of Electrical Engineering, IIT Delhi, Hauz Khas, New Delhi, 110016, INDIA Abstract - In this paper we propose the use

More information

Study of Turbo Coded OFDM over Fading Channel

Study of Turbo Coded OFDM over Fading Channel International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 3, Issue 2 (August 2012), PP. 54-58 Study of Turbo Coded OFDM over Fading Channel

More information

Lecture 17 Components Principles of Error Control Borivoje Nikolic March 16, 2004.

Lecture 17 Components Principles of Error Control Borivoje Nikolic March 16, 2004. EE29C - Spring 24 Advanced Topics in Circuit Design High-Speed Electrical Interfaces Lecture 17 Components Principles of Error Control Borivoje Nikolic March 16, 24. Announcements Project phase 1 is posted

More information

M4B-4. Concatenated RS-Convolutional Codes for Ultrawideband Multiband-OFDM. Nyembezi Nyirongo, Wasim Q. Malik, and David. J.

M4B-4. Concatenated RS-Convolutional Codes for Ultrawideband Multiband-OFDM. Nyembezi Nyirongo, Wasim Q. Malik, and David. J. Concatenated RS-Convolutional Codes for Ultrawideband Multiband-OFDM Nyembezi Nyirongo, Wasim Q. Malik, and David. J. Edwards M4B-4 Department of Engineering Science, University of Oxford, Parks Road,

More information

SIMULATIONS OF ERROR CORRECTION CODES FOR DATA COMMUNICATION OVER POWER LINES

SIMULATIONS OF ERROR CORRECTION CODES FOR DATA COMMUNICATION OVER POWER LINES SIMULATIONS OF ERROR CORRECTION CODES FOR DATA COMMUNICATION OVER POWER LINES Michelle Foltran Miranda Eduardo Parente Ribeiro mifoltran@hotmail.com edu@eletrica.ufpr.br Departament of Electrical Engineering,

More information

Chapter 1 Coding for Reliable Digital Transmission and Storage

Chapter 1 Coding for Reliable Digital Transmission and Storage Wireless Information Transmission System Lab. Chapter 1 Coding for Reliable Digital Transmission and Storage Institute of Communications Engineering National Sun Yat-sen University 1.1 Introduction A major

More information

Digital Transmission using SECC Spring 2010 Lecture #7. (n,k,d) Systematic Block Codes. How many parity bits to use?

Digital Transmission using SECC Spring 2010 Lecture #7. (n,k,d) Systematic Block Codes. How many parity bits to use? Digital Transmission using SECC 6.02 Spring 2010 Lecture #7 How many parity bits? Dealing with burst errors Reed-Solomon codes message Compute Checksum # message chk Partition Apply SECC Transmit errors

More information

Simulink Modelling of Reed-Solomon (Rs) Code for Error Detection and Correction

Simulink Modelling of Reed-Solomon (Rs) Code for Error Detection and Correction Simulink Modelling of Reed-Solomon (Rs) Code for Error Detection and Correction Okeke. C Department of Electrical /Electronics Engineering, Michael Okpara University of Agriculture, Umudike, Abia State,

More information

Implementation of Different Interleaving Techniques for Performance Evaluation of CDMA System

Implementation of Different Interleaving Techniques for Performance Evaluation of CDMA System Implementation of Different Interleaving Techniques for Performance Evaluation of CDMA System Anshu Aggarwal 1 and Vikas Mittal 2 1 Anshu Aggarwal is student of M.Tech. in the Department of Electronics

More information

Multilevel RS/Convolutional Concatenated Coded QAM for Hybrid IBOC-AM Broadcasting

Multilevel RS/Convolutional Concatenated Coded QAM for Hybrid IBOC-AM Broadcasting IEEE TRANSACTIONS ON BROADCASTING, VOL. 46, NO. 1, MARCH 2000 49 Multilevel RS/Convolutional Concatenated Coded QAM for Hybrid IBOC-AM Broadcasting Sae-Young Chung and Hui-Ling Lou Abstract Bandwidth efficient

More information

Revision of Lecture Eleven

Revision of Lecture Eleven Revision of Lecture Eleven Previous lecture we have concentrated on carrier recovery for QAM, and modified early-late clock recovery for multilevel signalling as well as star 16QAM scheme Thus we have

More information

Journal of Babylon University/Engineering Sciences/ No.(5)/ Vol.(25): 2017

Journal of Babylon University/Engineering Sciences/ No.(5)/ Vol.(25): 2017 Performance of Turbo Code with Different Parameters Samir Jasim College of Engineering, University of Babylon dr_s_j_almuraab@yahoo.com Ansam Abbas College of Engineering, University of Babylon 'ansamabbas76@gmail.com

More information

Performance of Parallel Concatenated Convolutional Codes (PCCC) with BPSK in Nakagami Multipath M-Fading Channel

Performance of Parallel Concatenated Convolutional Codes (PCCC) with BPSK in Nakagami Multipath M-Fading Channel Vol. 2 (2012) No. 5 ISSN: 2088-5334 Performance of Parallel Concatenated Convolutional Codes (PCCC) with BPSK in Naagami Multipath M-Fading Channel Mohamed Abd El-latif, Alaa El-Din Sayed Hafez, Sami H.

More information

High-Rate Non-Binary Product Codes

High-Rate Non-Binary Product Codes High-Rate Non-Binary Product Codes Farzad Ghayour, Fambirai Takawira and Hongjun Xu School of Electrical, Electronic and Computer Engineering University of KwaZulu-Natal, P. O. Box 4041, Durban, South

More information

Implementation of Reed-Solomon RS(255,239) Code

Implementation of Reed-Solomon RS(255,239) Code Implementation of Reed-Solomon RS(255,239) Code Maja Malenko SS. Cyril and Methodius University - Faculty of Electrical Engineering and Information Technologies Karpos II bb, PO Box 574, 1000 Skopje, Macedonia

More information

Comparison Between Serial and Parallel Concatenated Channel Coding Schemes Using Continuous Phase Modulation over AWGN and Fading Channels

Comparison Between Serial and Parallel Concatenated Channel Coding Schemes Using Continuous Phase Modulation over AWGN and Fading Channels Comparison Between Serial and Parallel Concatenated Channel Coding Schemes Using Continuous Phase Modulation over AWGN and Fading Channels Abstract Manjeet Singh (ms308@eng.cam.ac.uk) - presenter Ian J.

More information

On Performance Improvements with Odd-Power (Cross) QAM Mappings in Wireless Networks

On Performance Improvements with Odd-Power (Cross) QAM Mappings in Wireless Networks San Jose State University From the SelectedWorks of Robert Henry Morelos-Zaragoza April, 2015 On Performance Improvements with Odd-Power (Cross) QAM Mappings in Wireless Networks Quyhn Quach Robert H Morelos-Zaragoza

More information

International Journal of Computer Trends and Technology (IJCTT) Volume 40 Number 2 - October2016

International Journal of Computer Trends and Technology (IJCTT) Volume 40 Number 2 - October2016 Signal Power Consumption in Digital Communication using Convolutional Code with Compared to Un-Coded Madan Lal Saini #1, Dr. Vivek Kumar Sharma *2 # Ph. D. Scholar, Jagannath University, Jaipur * Professor,

More information

6. FUNDAMENTALS OF CHANNEL CODER

6. FUNDAMENTALS OF CHANNEL CODER 82 6. FUNDAMENTALS OF CHANNEL CODER 6.1 INTRODUCTION The digital information can be transmitted over the channel using different signaling schemes. The type of the signal scheme chosen mainly depends on

More information

Hybrid ARQ Using Serially Concatenated Block Codes for Real-Time Communication - An Iterative Decoding Approach

Hybrid ARQ Using Serially Concatenated Block Codes for Real-Time Communication - An Iterative Decoding Approach Hybrid ARQ Using Serially Concatenated Block Codes for Real-Time Communication - An Iterative Decoding Approach ELISABETH UHLEMANN School of Information Science, Computer and Electrical Engineering, Halmstad

More information

A rate one half code for approaching the Shannon limit by 0.1dB

A rate one half code for approaching the Shannon limit by 0.1dB 100 A rate one half code for approaching the Shannon limit by 0.1dB (IEE Electronics Letters, vol. 36, no. 15, pp. 1293 1294, July 2000) Stephan ten Brink S. ten Brink is with the Institute of Telecommunications,

More information

SNR Estimation in Nakagami-m Fading With Diversity Combining and Its Application to Turbo Decoding

SNR Estimation in Nakagami-m Fading With Diversity Combining and Its Application to Turbo Decoding IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 11, NOVEMBER 2002 1719 SNR Estimation in Nakagami-m Fading With Diversity Combining Its Application to Turbo Decoding A. Ramesh, A. Chockalingam, Laurence

More information

Block code Encoder. In some applications, message bits come in serially rather than in large blocks. WY Tam - EIE POLYU

Block code Encoder. In some applications, message bits come in serially rather than in large blocks. WY Tam - EIE POLYU Convolutional Codes In block coding, the encoder accepts a k-bit message block and generates an n-bit code word. Thus, codewords are produced on a block-by-block basis. Buffering is needed. m 1 m 2 Block

More information

Periodic Impulsive Noise Suppression in OFDM- Based Power-Line Communications through Filtering Under Different Coding Schemes

Periodic Impulsive Noise Suppression in OFDM- Based Power-Line Communications through Filtering Under Different Coding Schemes http:// Periodic Impulsive Noise Suppression in OFDM- Based Power-Line Communications through Filtering Under Different Coding Schemes Sree Lekshmi.K 1, 1 M.Tech Scholar, ECE Department, TKM Institute

More information

Channel Coding for IEEE e Mobile WiMAX

Channel Coding for IEEE e Mobile WiMAX Channel Coding for IEEE 80.16e Mobile WiMAX Matthew C. Valenti Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. June 9 ( Lane Department Coding for ofwimax

More information

Bit-Interleaved Coded Modulation for Delay-Constrained Mobile Communication Channels

Bit-Interleaved Coded Modulation for Delay-Constrained Mobile Communication Channels Bit-Interleaved Coded Modulation for Delay-Constrained Mobile Communication Channels Hugo M. Tullberg, Paul H. Siegel, IEEE Fellow Center for Wireless Communications UCSD, 9500 Gilman Drive, La Jolla CA

More information

EDI042 Error Control Coding (Kodningsteknik)

EDI042 Error Control Coding (Kodningsteknik) EDI042 Error Control Coding (Kodningsteknik) Chapter 1: Introduction Michael Lentmaier November 3, 2014 Michael Lentmaier, Fall 2014 EDI042 Error Control Coding: Chapter 1 1 / 26 Course overview I Lectures:

More information

Turbo Codes for Pulse Position Modulation: Applying BCJR algorithm on PPM signals

Turbo Codes for Pulse Position Modulation: Applying BCJR algorithm on PPM signals Turbo Codes for Pulse Position Modulation: Applying BCJR algorithm on PPM signals Serj Haddad and Chadi Abou-Rjeily Lebanese American University PO. Box, 36, Byblos, Lebanon serj.haddad@lau.edu.lb, chadi.abourjeily@lau.edu.lb

More information

TURBOCODING PERFORMANCES ON FADING CHANNELS

TURBOCODING PERFORMANCES ON FADING CHANNELS TURBOCODING PERFORMANCES ON FADING CHANNELS Ioana Marcu, Simona Halunga, Octavian Fratu Telecommunications Dept. Electronics, Telecomm. & Information Theory Faculty, Bd. Iuliu Maniu 1-3, 061071, Bucharest

More information

Page 1. Outline. Basic Idea. Hamming Distance. Hamming Distance Visual: HD=2

Page 1. Outline. Basic Idea. Hamming Distance. Hamming Distance Visual: HD=2 Outline Basic Concepts Physical Redundancy Error Detecting/Correcting Codes Re-Execution Techniques Backward Error Recovery Techniques Basic Idea Start with k-bit data word Add r check bits Total = n-bit

More information

BER Analysis of BPSK and QAM Modulation Schemes using RS Encoding over Rayleigh Fading Channel

BER Analysis of BPSK and QAM Modulation Schemes using RS Encoding over Rayleigh Fading Channel BER Analysis of BPSK and QAM Modulation Schemes using RS Encoding over Rayleigh Fading Channel Faisal Rasheed Lone Department of Computer Science & Engineering University of Kashmir Srinagar J&K Sanjay

More information

Robust Reed Solomon Coded MPSK Modulation

Robust Reed Solomon Coded MPSK Modulation ITB J. ICT, Vol. 4, No. 2, 2, 95-4 95 Robust Reed Solomon Coded MPSK Modulation Emir M. Husni School of Electrical Engineering & Informatics, Institut Teknologi Bandung, Jl. Ganesha, Bandung 432, Email:

More information

Performance of Nonuniform M-ary QAM Constellation on Nonlinear Channels

Performance of Nonuniform M-ary QAM Constellation on Nonlinear Channels Performance of Nonuniform M-ary QAM Constellation on Nonlinear Channels Nghia H. Ngo, S. Adrian Barbulescu and Steven S. Pietrobon Abstract This paper investigates the effects of the distribution of a

More information

Using TCM Techniques to Decrease BER Without Bandwidth Compromise. Using TCM Techniques to Decrease BER Without Bandwidth Compromise. nutaq.

Using TCM Techniques to Decrease BER Without Bandwidth Compromise. Using TCM Techniques to Decrease BER Without Bandwidth Compromise. nutaq. Using TCM Techniques to Decrease BER Without Bandwidth Compromise 1 Using Trellis Coded Modulation Techniques to Decrease Bit Error Rate Without Bandwidth Compromise Written by Jean-Benoit Larouche INTRODUCTION

More information

Near-Optimal Low Complexity MLSE Equalization

Near-Optimal Low Complexity MLSE Equalization Near-Optimal Low Complexity MLSE Equalization Abstract An iterative Maximum Likelihood Sequence Estimation (MLSE) equalizer (detector) with hard outputs, that has a computational complexity quadratic in

More information

Improvement Of Block Product Turbo Coding By Using A New Concept Of Soft Hamming Decoder

Improvement Of Block Product Turbo Coding By Using A New Concept Of Soft Hamming Decoder European Scientific Journal June 26 edition vol.2, No.8 ISSN: 857 788 (Print) e - ISSN 857-743 Improvement Of Block Product Turbo Coding By Using A New Concept Of Soft Hamming Decoder Alaa Ghaith, PhD

More information

THE idea behind constellation shaping is that signals with

THE idea behind constellation shaping is that signals with IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 52, NO. 3, MARCH 2004 341 Transactions Letters Constellation Shaping for Pragmatic Turbo-Coded Modulation With High Spectral Efficiency Dan Raphaeli, Senior Member,

More information

PROJECT 5: DESIGNING A VOICE MODEM. Instructor: Amir Asif

PROJECT 5: DESIGNING A VOICE MODEM. Instructor: Amir Asif PROJECT 5: DESIGNING A VOICE MODEM Instructor: Amir Asif CSE4214: Digital Communications (Fall 2012) Computer Science and Engineering, York University 1. PURPOSE In this laboratory project, you will design

More information

Channel Coding RADIO SYSTEMS ETIN15. Lecture no: Ove Edfors, Department of Electrical and Information Technology

Channel Coding RADIO SYSTEMS ETIN15. Lecture no: Ove Edfors, Department of Electrical and Information Technology RADIO SYSTEMS ETIN15 Lecture no: 7 Channel Coding Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se 2012-04-23 Ove Edfors - ETIN15 1 Contents (CHANNEL CODING) Overview

More information

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Amr Shehab Amin 37-20200 Abdelrahman Taha 31-2796 Yahia Mobasher 28-11691 Mohamed Yasser

More information

SNR Estimation in Nakagami Fading with Diversity for Turbo Decoding

SNR Estimation in Nakagami Fading with Diversity for Turbo Decoding SNR Estimation in Nakagami Fading with Diversity for Turbo Decoding A. Ramesh, A. Chockalingam Ý and L. B. Milstein Þ Wireless and Broadband Communications Synopsys (India) Pvt. Ltd., Bangalore 560095,

More information

Performance of Turbo codec OFDM in Rayleigh fading channel for Wireless communication

Performance of Turbo codec OFDM in Rayleigh fading channel for Wireless communication Performance of Turbo codec OFDM in Rayleigh fading channel for Wireless communication Arjuna Muduli, R K Mishra Electronic science Department, Berhampur University, Berhampur, Odisha, India Email: arjunamuduli@gmail.com

More information

Department of Electronic Engineering FINAL YEAR PROJECT REPORT

Department of Electronic Engineering FINAL YEAR PROJECT REPORT Department of Electronic Engineering FINAL YEAR PROJECT REPORT BEngECE-2009/10-- Student Name: CHEUNG Yik Juen Student ID: Supervisor: Prof.

More information

Lecture 12: Summary Advanced Digital Communications (EQ2410) 1

Lecture 12: Summary Advanced Digital Communications (EQ2410) 1 : Advanced Digital Communications (EQ2410) 1 Monday, Mar. 7, 2016 15:00-17:00, B23 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 15 Overview 1 2 3 4 2 / 15 Equalization Maximum

More information

ISSN: International Journal of Innovative Research in Science, Engineering and Technology

ISSN: International Journal of Innovative Research in Science, Engineering and Technology ISSN: 39-8753 Volume 3, Issue 7, July 4 Graphical User Interface for Simulating Convolutional Coding with Viterbi Decoding in Digital Communication Systems using Matlab Ezeofor C. J., Ndinechi M.C. Lecturer,

More information

BER Performance Analysis of QAM Modulation Techniques in MIMO Rayleigh Channel for WCDMA System

BER Performance Analysis of QAM Modulation Techniques in MIMO Rayleigh Channel for WCDMA System International Journal of Advancements in Research & Technology, Volume 2, Issue2, February-2013 1 BER Performance Analysis of QAM Modulation Techniques in MIMO Rayleigh Channel for WCDMA System Sonal Singh,

More information

FOR applications requiring high spectral efficiency, there

FOR applications requiring high spectral efficiency, there 1846 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 52, NO. 11, NOVEMBER 2004 High-Rate Recursive Convolutional Codes for Concatenated Channel Codes Fred Daneshgaran, Member, IEEE, Massimiliano Laddomada, Member,

More information

EFFECTIVE CHANNEL CODING OF SERIALLY CONCATENATED ENCODERS AND CPM OVER AWGN AND RICIAN CHANNELS

EFFECTIVE CHANNEL CODING OF SERIALLY CONCATENATED ENCODERS AND CPM OVER AWGN AND RICIAN CHANNELS EFFECTIVE CHANNEL CODING OF SERIALLY CONCATENATED ENCODERS AND CPM OVER AWGN AND RICIAN CHANNELS Manjeet Singh (ms308@eng.cam.ac.uk) Ian J. Wassell (ijw24@eng.cam.ac.uk) Laboratory for Communications Engineering

More information

Performance Evaluation and Comparative Analysis of Various Concatenated Error Correcting Codes Using BPSK Modulation for AWGN Channel

Performance Evaluation and Comparative Analysis of Various Concatenated Error Correcting Codes Using BPSK Modulation for AWGN Channel International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 5, Number 3 (2012), pp. 235-244 International Research Publication House http://www.irphouse.com Performance Evaluation

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 8, February 2014

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 8, February 2014 Spectrally Efficient Modulation and Turbo Coding for Wireless Communication in Gaussian Channel Amer H. Al Habsi, Yahiea Al-Naiemy, Hussain M. Al-Rizzo, Robert Akl, and Maytham M. Hammood Abstract - The

More information

Lecture #2. EE 471C / EE 381K-17 Wireless Communication Lab. Professor Robert W. Heath Jr.

Lecture #2. EE 471C / EE 381K-17 Wireless Communication Lab. Professor Robert W. Heath Jr. Lecture #2 EE 471C / EE 381K-17 Wireless Communication Lab Professor Robert W. Heath Jr. Preview of today s lecture u Introduction to digital communication u Components of a digital communication system

More information

RADIO SYSTEMS ETIN15. Channel Coding. Ove Edfors, Department of Electrical and Information Technology

RADIO SYSTEMS ETIN15. Channel Coding. Ove Edfors, Department of Electrical and Information Technology RADIO SYSTEMS ETIN15 Lecture no: 7 Channel Coding Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se 2016-04-18 Ove Edfors - ETIN15 1 Contents (CHANNEL CODING) Overview

More information

Error Control Codes. Tarmo Anttalainen

Error Control Codes. Tarmo Anttalainen Tarmo Anttalainen email: tarmo.anttalainen@evitech.fi.. Abstract: This paper gives a brief introduction to error control coding. It introduces bloc codes, convolutional codes and trellis coded modulation

More information

designing the inner codes Turbo decoding performance of the spectrally efficient RSCC codes is further evaluated in both the additive white Gaussian n

designing the inner codes Turbo decoding performance of the spectrally efficient RSCC codes is further evaluated in both the additive white Gaussian n Turbo Decoding Performance of Spectrally Efficient RS Convolutional Concatenated Codes Li Chen School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China Email: chenli55@mailsysueducn

More information

Hamming net based Low Complexity Successive Cancellation Polar Decoder

Hamming net based Low Complexity Successive Cancellation Polar Decoder Hamming net based Low Complexity Successive Cancellation Polar Decoder [1] Makarand Jadhav, [2] Dr. Ashok Sapkal, [3] Prof. Ram Patterkine [1] Ph.D. Student, [2] Professor, Government COE, Pune, [3] Ex-Head

More information

Detection and Estimation of Signals in Noise. Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia

Detection and Estimation of Signals in Noise. Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia Detection and Estimation of Signals in Noise Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia Vancouver, August 24, 2010 2 Contents 1 Basic Elements

More information

Performance of Turbo Product Code in Wimax

Performance of Turbo Product Code in Wimax Performance of Turbo Product Code in Wimax Trushita Chaware Department of Information Technology Thakur College of Engineering and Technology Kandivali(E), Mumbai, India Nileema Pathak Computer Engineering

More information

Near-Optimal Low Complexity MLSE Equalization

Near-Optimal Low Complexity MLSE Equalization Near-Optimal Low Complexity MLSE Equalization HC Myburgh and Jan C Olivier Department of Electrical, Electronic and Computer Engineering, University of Pretoria RSA Tel: +27-12-420-2060, Fax +27 12 362-5000

More information

Implementation of a Block Interleaver Structure for use in Wireless Channels

Implementation of a Block Interleaver Structure for use in Wireless Channels Implementation of a Block Interleaver Structure for use in Wireless Channels BARNALI DAS, MANASH P. SARMA and KANDARPA KUMAR SARMA Gauhati University, Deptt. of Electronics and Communication Engineering,

More information

Rekha S.M, Manoj P.B. International Journal of Engineering and Advanced Technology (IJEAT) ISSN: , Volume-2, Issue-6, August 2013

Rekha S.M, Manoj P.B. International Journal of Engineering and Advanced Technology (IJEAT) ISSN: , Volume-2, Issue-6, August 2013 Comparing the BER Performance of WiMAX System by Using Different Concatenated Channel Coding Techniques under AWGN, Rayleigh and Rician Fading Channels Rekha S.M, Manoj P.B Abstract WiMAX (Worldwide Interoperability

More information

Performance Analysis of n Wireless LAN Physical Layer

Performance Analysis of n Wireless LAN Physical Layer 120 1 Performance Analysis of 802.11n Wireless LAN Physical Layer Amr M. Otefa, Namat M. ElBoghdadly, and Essam A. Sourour Abstract In the last few years, we have seen an explosive growth of wireless LAN

More information

Improvements encoding energy benefit in protected telecommunication data transmission channels

Improvements encoding energy benefit in protected telecommunication data transmission channels Communications 2014; 2(1): 7-14 Published online September 20, 2014 (http://www.sciencepublishinggroup.com/j/com) doi: 10.11648/j.com.20140201.12 ISSN: 2328-5966 (Print); ISSN: 2328-5923 (Online) Improvements

More information

Recent Progress in Mobile Transmission

Recent Progress in Mobile Transmission Recent Progress in Mobile Transmission Joachim Hagenauer Institute for Communications Engineering () Munich University of Technology (TUM) D-80290 München, Germany State University of Telecommunications

More information

ISSN: Page 320

ISSN: Page 320 To Reduce Bit Error Rate in Turbo Coded OFDM with using different Modulation Techniques Shivangi #1, Manoj Sindhwani *2 #1 Department of Electronics & Communication, Research Scholar, Lovely Professional

More information

Input weight 2 trellis diagram for a 37/21 constituent RSC encoder

Input weight 2 trellis diagram for a 37/21 constituent RSC encoder Application of Distance Spectrum Analysis to Turbo Code Performance Improvement Mats Oberg and Paul H. Siegel Department of Electrical and Computer Engineering University of California, San Diego La Jolla,

More information

LDPC Decoding: VLSI Architectures and Implementations

LDPC Decoding: VLSI Architectures and Implementations LDPC Decoding: VLSI Architectures and Implementations Module : LDPC Decoding Ned Varnica varnica@gmail.com Marvell Semiconductor Inc Overview Error Correction Codes (ECC) Intro to Low-density parity-check

More information

FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY

FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY 1 Information Transmission Chapter 5, Block codes FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY 2 Methods of channel coding For channel coding (error correction) we have two main classes of codes,

More information

An Improved Rate Matching Method for DVB Systems Through Pilot Bit Insertion

An Improved Rate Matching Method for DVB Systems Through Pilot Bit Insertion Research Journal of Applied Sciences, Engineering and Technology 4(18): 3251-3256, 2012 ISSN: 2040-7467 Maxwell Scientific Organization, 2012 Submitted: December 28, 2011 Accepted: March 02, 2012 Published:

More information

Performance of Combined Error Correction and Error Detection for very Short Block Length Codes

Performance of Combined Error Correction and Error Detection for very Short Block Length Codes Performance of Combined Error Correction and Error Detection for very Short Block Length Codes Matthias Breuninger and Joachim Speidel Institute of Telecommunications, University of Stuttgart Pfaffenwaldring

More information

Convolutional Coding in Hybrid Type-II ARQ Schemes on Wireless Channels Sorour Falahati, Tony Ottosson, Arne Svensson and Lin Zihuai Chalmers Univ. of Technology, Dept. of Signals and Systems, Communication

More information

Study of turbo codes across space time spreading channel

Study of turbo codes across space time spreading channel University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2004 Study of turbo codes across space time spreading channel I.

More information

Abstract. Keywords - Cognitive Radio, Bit Error Rate, Rician Fading, Reed Solomon encoding, Convolution encoding.

Abstract. Keywords - Cognitive Radio, Bit Error Rate, Rician Fading, Reed Solomon encoding, Convolution encoding. Analysing Cognitive Radio Physical Layer on BER Performance over Rician Fading Amandeep Kaur Virk, Ajay K Sharma Computer Science and Engineering Department, Dr. B.R Ambedkar National Institute of Technology,

More information

Course Specifications

Course Specifications Development Cluster Computer and Networking Engineering (CNE) Cluster Lead Developer Amir Asif Module Names Module 1: Baseband and Bandpass Communications (40 characters or less Module 2: Channel Coding

More information

IN 1993, powerful so-called turbo codes were introduced [1]

IN 1993, powerful so-called turbo codes were introduced [1] 206 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998 Bandwidth-Efficient Turbo Trellis-Coded Modulation Using Punctured Component Codes Patrick Robertson, Member, IEEE, and

More information

High Speed Turbo Tcm Ofdm For Uwb And Powerline System

High Speed Turbo Tcm Ofdm For Uwb And Powerline System University of Central Florida Electronic Theses and Dissertations Doctoral Dissertation (Open Access) High Speed Turbo Tcm Ofdm For Uwb And Powerline System 26 Yanxia Wang University of Central Florida

More information

Basics of Error Correcting Codes

Basics of Error Correcting Codes Basics of Error Correcting Codes Drawing from the book Information Theory, Inference, and Learning Algorithms Downloadable or purchasable: http://www.inference.phy.cam.ac.uk/mackay/itila/book.html CSE

More information

S. A. Hanna Hanada Electronics, P.O. Box 56024, Abstract

S. A. Hanna Hanada Electronics, P.O. Box 56024, Abstract CONVOLUTIONAL INTERLEAVING FOR DIGITAL RADIO COMMUNICATIONS S. A. Hanna Hanada Electronics, P.O. Box 56024, 407 Laurier Ave. W., Ottawa, Ontario, K1R 721 Abstract Interleaving enhances the quality of digital

More information

AN INTRODUCTION TO ERROR CORRECTING CODES Part 2

AN INTRODUCTION TO ERROR CORRECTING CODES Part 2 AN INTRODUCTION TO ERROR CORRECTING CODES Part Jack Keil Wolf ECE 54 C Spring BINARY CONVOLUTIONAL CODES A binary convolutional code is a set of infinite length binary sequences which satisfy a certain

More information