Abstract. Marío A. Bedoya-Martinez. He joined Fujitsu Europe Telecom R&D Centre (UK), where he has been working on R&D of Second-and

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Abstract. Marío A. Bedoya-Martinez. He joined Fujitsu Europe Telecom R&D Centre (UK), where he has been working on R&D of Second-and"

Transcription

1 Abstract The adaptive antenna array is one of the advanced techniques which could be implemented in the IMT-2 mobile telecommunications systems to achieve high system capacity. In this paper, an integrated adaptive antenna array system for W-CDMA, which consists of both the uplink and the downlink beam-formers in the baseband, is described. The uplink beam-former is based on the concept of finger beam-former in which each dominant component of the multi-path signal is allocated to a dedicated beam, and the normalised least mean square algorithm (NLMS) is used as the beam-forming algorithm. In the meanwhile, a low complexity but high performance algorithm known as the iterative beam steering (IBS) is applied to the uplink signal to form a steering beam for the downlink. Simulation results show that, compared with using the conventional sectorial antenna, about four times as much system capacity can be achieved by employing a four-element adaptive antenna array. In addition, the effectiveness of the antenna array is demonstrated by experimental results. Y. J. Guo He has been with Fujitsu Europe Telecom R & D Centre, U. K., working on advanced BTS techniques for IMT-2. Marío A. Bedoya-Martinez He joined Fujitsu Europe Telecom R&D Centre (UK), where he has been working on R&D of Second-and Third-Generation mobile communication systems. Currently he is a Principal Engineer in Advanced Wireless Communications Section. Jahangir E. Austin He has now been with Advanced Wireless Communications Section of Fujitsu Europe Telecom R & D Centre Ltd. Principal Engineer responsible for the hardware development of Secondand Third-Generation mobile telecommunication systems. 66 FUJITSU.51, 1, pp (1,2)

2 1. Introduction Currently, the mobile telecommunications industry is working on the 3 rd generation mobile telecommunications systems known as IMT-2 (International Mobile Telecommunications 2). IMT-2 is designed to provide wireless access to the global telecommunication infrastructure through both satellite and terrestrial systems, serving fixed and mobile users in public and private networks. One of the most promising members of the IMT-2 family is based on the wideband code division multiple access (W-CDMA) technique jointly developed in Japan and Europe. 1) Compared with the 2 nd generation mobile communications systems like GSM or PDC, the W-CDMA is expected to offer much higher system capacity and to accommodate larger number of high data rate (HDR) applications such as mobile multimedia and mobile computing. In a W-CDMA system, different users are allocated with different codes and all the active user signals are present all the time. For any given active user, the interference caused by other active users can be effectively rejected by virtue of the so-called processing gain. When the number of active users in a cell is very large, however, the total interference caused by many users to any particular user, which is known as multiple access interference (MAI), becomes so severe that the signal quality at the receiver degrades to an unacceptable level. A conventional solution to this problem is the sectorisation technique, which is to divide each cell into several sectors (normally three or six) and group the active users accordingly. Because different sectorial antennas are used in different sectors and each antenna beam is concentrated in its own sector, users in different sectors do not interfere with each other strongly and the total MAI experienced by each active user is significantly reduced. The problem with the conventional sectorisation techniques is that each sectorial beam is designed to support all the users in the sector so the beam may not be optimal for any individual one. When there is a HDR user in a sector, which is equivalent to many co-located speech users, the number of channels available to other users will be greatly decreased. Instead of having all the users in a sector share the same antenna beam, the adaptive antenna array is aimed to generate an optimal antenna beam pattern for each user. By creating a narrow beam pointed at the wanted user and a null in the direction of the HDR user, the total MAI experienced by the former can be effectively reduced. As a result, the system can accommodate a much larger number of HDR and common users. In addition, employing the adaptive antenna array can also reduce the outage at the cell edge and within buildings, and extend cell range. When used in the uplink (from mobiles to a base station), it can reduce the required mobile terminal transmit power and hence increase the battery life in terms of both talk time and standby time. It is envisaged that many W-CDMA systems will be based on the six-sector site configuration in order to guarantee high initial capacity, and adaptive antenna arrays will be introduced in the second phase of the system deployment when traffic congestion caused by HDR users becomes severe. To this end, a four-element linear adaptive antenna array with an inter-element spacing of one wavelength of the operating frequency is studied for W-CDMA base stations using six sectors in macro-cellular environments. The NLMS and IBS beam-forming algorithms are used for the uplink and the downlink (from a base station to mobiles) respectively, but the same wide-band antenna elements are employed for the two FDD (frequency division duplex) sub-bands. The two algorithms have four salient features: fast convergence, low complexity, stability and ease of implementation. Compared with using one sectorial antenna for each sector, about four times of as much system capacity can be achieved using the proposed technique. 2. System configuration The proposed adaptive antenna array system 67

3 consists of both the uplink and the downlink beamformers in the base band. The uplink beam-former employs the NLMS algorithm with fading compensation. The downlink beam is synthesised based on the angle of arrival (AoA) information and the downlink data rates required by mobile users, with the former being derived from the uplink signal using a new algorithm called iterative beam steering (IBS). The combination of the two beam-forming algorithms which are suited for two links provides an effective means of improving the system capacity of an IMT-2 system. 2.1 Uplink beam-forming The uplink beam-former employs the socalled finger beam-former configuration, in which a set of finger beams are formed to track different signal components of each active mobile user. 2) The number of fingers allocated to a user is determined by the number of signal components caused by the multipath in the channel, and the beam of each finger is locked to each path. A dynamic finger beam-former allocation scheme will be employed in the proposed system. In other words, a base station has a number of finger beamformers as a shared resource and up to four finger beam-formers will be activated by each active user. Compared with the common beam-former which employs only one common beam for all the multipath components, the finger beam-former configuration offers much better performance when the angular spread of the mobile signal is large, as a narrower finger beam can be produced to point at the AoA of each path of the wanted user signal. Another advantage of the finger beam-former configuration is that it can be operated at the symbol rate instead of the chip rate, so the power consumption can be reduced and the algorithm can be implemented using reprogrammable signal processing devices, which offers flexibility in fine-tuning and updating the algorithm at a later stage. A generic architecture of the proposed uplink beam-former using NLMS is shown in Figure 1, where there are a number of finger beamformers, each equipped with a dedicated NLMS algorithm and a channel estimator, and the blocks refer to correlators. Also, a combination of the pilot signal and tentative decisions is taken as the common reference signal. It is noted that signals at the output of the correlators are normalised to the mean signal intensity of each individual path before being fed into the beamformer. Furthermore, the reference signal is phase compensated before being subtracted from the output of the beam-former. These two functions are used to separate the fading compensation from the angular tracking of mobiles, thus improving the performance of the beam-former. 2.2 Downlink beam-forming Downlink beam-forming is inherently different from the uplink beam-forming. For the uplink, an optimum beam can be formed for each individual mobile to maximise the SINR experienced by the corresponding receiver at the base station. For the downlink, however, the quality of the signal received by each mobile depends on not only the beam patterns formed for the mobile and the associated transmit power, but also the beam patterns formed for other mobiles and the associated powers. In theory, therefore, all the beams should be jointly optimised in association with the transmit powers in order to achieve maximum SINR at each mobile and minimum interference NLMS Figure 1 NLMS based uplink beam-former. + - Ch Est MRC Combiner Tentative Decision Pilot 68

4 to other users. Unfortunately, such a global optimisation approach is not feasible in practice due to both the excessive signal processing complexity and the inaccuracy of downlink AoA estimation. Therefore, the following practical beam-forming approach is proposed. First, based on the signal received from the uplink, the IBS algorithm is used to estimate the AoA s of all the users. Second, based on the AoA s of each wanted user, a common steering beam is synthesised for it. It should be pointed out that although the propagation mechanism for the uplink is similar to that for the downlink, the angular positions of the dominant paths are generally different in the two cases because of the frequency difference in the FDD scheme. Therefore, a dedicated common beam for each user is required in the downlink to cover the spatial spread of the multi-path signals. As an illustration to the concept, a generic diagram of the downlink beam-former is shown in Figure 2. Compared with the uplink beam-former shown in Figure 1, the configuration of the downlink beam-former appears to be much simpler, which is due to the fact that major signal processing is performed by the AoA estimator. 3. Simulation results In order to obtain a quantitative capacity measure of the W-CDMA system employing adaptive antennas, a large number of multi-user simulations have been conducted using the parameters specified in the 3GPP document. 3) In the simulations, it is assumed that all the users are randomly located according to an uniform distribution in each sector, and the multi-path components of each user signal are spatially distributed according to a Gaussian distribution with 2.5º standard deviation. The power control mechanism is modelled as a Gaussian process with a 2.3 db standard deviation. The ITU Vehicular B model is used for all the radio channels and the Doppler frequency is assumed to be 8 Hz. The processing gain is chosen as 128, which corresponds to a 32 kb/s raw data rate, and a convolutional coding scheme with R = 1/3 and K = 9 is used. Previous study showed that the inter-element spacing is an important parameter in the design of an adaptive antenna array. 4) In the proposed system, this parameter is chosen as one wavelength of the operating frequency to achieve high capacity. Figure 3 shows the required E b /N o per antenna branch for different number of simultaneous speech channels which the adaptive antenna array can support in one sector to achieve the targeted bit error ratio (BER) of 1-3, where a practical antenna pattern with -3 db tapering at the sector boundaries is used. To account for discon- Data Code generator Weights Beam synthesis AoA AoA estimator No of speech channels per sector Adaptive antenna 2 Branch diversity One antenna Figure 2 Illustration of downlink beam-former. Uplink signal Required receive E b /N o per branch Figure 3 Capacity comparison of using one antenna, two branch diversity and adaptive antenna in uplink. 69

5 Tx power saving (db) Sector load (Number of speech channels) Figure 4 Mobile transmit power saving in different loading conditions when using adaptive antenna array at base station compared with using single antenna. Signal intensity (db) beam pattern wanted user HDR user Angle of arrival (deg.) Figure 5 Formed beam pattern. tinuous transmission of voice signals, a voice activity factor of.5 has been assumed. For comparison, simulation results obtained using one antenna and two-branch diversity are also shown in the figure. It is seen that when only one antenna is used, the maximum number of speech channels which the system can support is about 82. The system capacity is increased to about 157 when two-branch diversity is employed. Using the adaptive antenna array, the maximum number of simultaneous speech channels the system can support reaches about 314. When the inter-cell and inter-sector interference is considered, it is found that the average system capacity becomes smaller than that shown in Figure 3, but the capacity achieved by using the adaptive antenna is still approximately four times of that achieved using one antenna. Figure 3 also reveals the advantage of using adaptive antennas for saving mobile transmit power. It is observed that in a system loaded with 8 speech users, using single antenna at the base station requires 15.8 db E b /N o to achieve a BER of 1-3, whereas with the adaptive antenna array only db E b /N o per branch is required to achieve the same BER. This implies that the transmit power of the mobile terminals can be reduced by 15.8 db, thus resulting in many fold increase in battery life. Alternatively, the communication range of the uplink could be extended by about 2.5 times under the same load. The mobile transmit power saving achieved in different loading conditions when using the adaptive antenna at the base station is shown in Figure 4. Another major advantage of using adaptive antennas is to accommodate HDR users. 4) The adaptive antenna can not only support much greater number of simultaneous HDR users by virtue of a narrow beam, but also reduce the strong interference caused by HDR users by nulling, thus increasing the overall system capacity. To illustrate this point, the following scenario has been studied. Assume that there are a.5 Mb/s HDR user located at -1º and a speech user located at 1º with 32 kb/s data rate. To the speech user, the HDR user is equivalent to a group of 3 co-located speech users interfering with it. When the adaptive antenna array is used, an optimum beam pattern can be so formed that the interference from the HDR user can be reduced to a negligible level. The beam pattern formed for the speech user is shown in Figure 5 and it is observed that a deep null is formed in the direction of the HDR user and the main beam is also shaped. Figure 6 shows the BER for the speech user achieved by using the adaptive antenna and also included is the BER achievable for a single user when there is no multi-user interference. It can 7

6 .1 1 User + 1 High data Rate interferer 1 user BER E b /N o Figure 6 BER for speech user shown in Figure 5. Figure 8 Prototype model of adaptive antenna array. No of speech channels per sector 5 1 Antenna element 45 Adaptive antenna Required E b /N o at receiver Figure 7 Capacity comparison of using one antenna and adaptive antenna array in downlink. be seen that, because of the use of the adaptive antenna array, the E b /N o required for the speech user to achieve the targeted BER of 1-3 in the presence of a HDR user is more or less the same as that for the single user case. In practice, this means that more active users can be accommodated in the sector and/or the power required for the speech user can be reduced. Figure 7 shows the capacity improvement when the proposed adaptive antenna array is employed in the downlink. It is observed again that employing the four-element antenna array improves the system capacity by about four times. Compared with Figure 3, it is seen that the downlink capacity for an isolated sector is greater than that of the uplink, which is due to the orthogonality of the downlink channel codes. 1) When inter-cell interference and the spectral occupancy of the common control channels are considered, 3) however, it is expected that the downlink capacity will be actually smaller than that of the uplink. 4. Prototype model Figure 8 shows a photograph of an experimental base station model where the proposed 4-element adaptive antenna array is implemented. Amongst various experiments, the generated antenna beam pattern as well as improvement of BER performance is being evaluated. Figure 9 shows generated directivity characteristics of the antenna array and Figure 1 shows the improvement of BER performance by the antenna array in presence of an equal power interferer. 5. Conclusions The architecture and beam-forming algorithms of an adaptive antenna array are described. The adaptive antenna consists of an uplink beamformer and a downlink beam-former, and is designed to operate in an existing six-sector site 71

7 BER Relative signal power (db) Direction of arrival (deg.) 1.E+ 1.E-1 1.E-2 1.E-3 1.E-4 1.E-5 1.E path rayleigh fading 8 Hz 1 path static channel without FEC Desired user AoA = deg Received power of desired signal (dbm) in one antenna element Figure 1 BER performance improvement. Measured Theoratical Figure 9 Directivity characteristics of 4-element antenna array. Single element, equal power interferer Beamformer, equal power interferer AoA = deg. Beamformer, equal power interferer AoA = deg. Beamformer without interferer to improve system capacity. The uplink employs the finger beam-former configuration and the NLMS algorithm is used. The IBS algorithm is operated on the uplink signal to form a steering beam for the downlink. Simulation and experimental results demonstrate the effectiveness of using the adaptive antenna array to increase system capacity by a factor of four and to support HDR users in W-CDMA. References 1) F. Adachi, M. Sawahashi, and H. Suda: Wideband DS-CDMA for Next Generation Mobile Communications Systems. IEEE Communications Magazine., pp.56-69, Sept ) A. J. Paulraj and C. B. Papadias: Space-Time Processing for Wireless Communications. IEEE Signal Processing Magazine., pp.49-83, Nov ) Technical Specification, V2, Working Group 1 (WG1), Technical Specification Group (TSG), Radio Access Network (RAN), 3 rd Generation Partnership Project (3GPP), September ) Y. J. Guo, M. Davies. M. Zarri, S. Vadgama, and E. Fukuda: Improving the System Capacity of UMTS Using Digital Beamformer. Proceedings of European Wireless 99, Munich, Germany, Oct

6 Uplink is from the mobile to the base station.

6 Uplink is from the mobile to the base station. It is well known that by using the directional properties of adaptive arrays, the interference from multiple users operating on the same channel as the desired user in a time division multiple access (TDMA)

More information

2-2 Advanced Wireless Packet Cellular System using Multi User OFDM- SDMA/Inter-BTS Cooperation with 1.3 Gbit/s Downlink Capacity

2-2 Advanced Wireless Packet Cellular System using Multi User OFDM- SDMA/Inter-BTS Cooperation with 1.3 Gbit/s Downlink Capacity 2-2 Advanced Wireless Packet Cellular System using Multi User OFDM- SDMA/Inter-BTS Cooperation with 1.3 Gbit/s Downlink Capacity KAWAZAWA Toshio, INOUE Takashi, FUJISHIMA Kenzaburo, TAIRA Masanori, YOSHIDA

More information

WiMAX Summit Testing Requirements for Successful WiMAX Deployments. Fanny Mlinarsky. 28-Feb-07

WiMAX Summit Testing Requirements for Successful WiMAX Deployments. Fanny Mlinarsky. 28-Feb-07 WiMAX Summit 2007 Testing Requirements for Successful WiMAX Deployments Fanny Mlinarsky 28-Feb-07 Municipal Multipath Environment www.octoscope.com 2 WiMAX IP-Based Architecture * * Commercial off-the-shelf

More information

Multiple Antenna Processing for WiMAX

Multiple Antenna Processing for WiMAX Multiple Antenna Processing for WiMAX Overview Wireless operators face a myriad of obstacles, but fundamental to the performance of any system are the propagation characteristics that restrict delivery

More information

CHAPTER 6 JOINT SUBCHANNEL POWER CONTROL AND ADAPTIVE BEAMFORMING FOR MC-CDMA SYSTEMS

CHAPTER 6 JOINT SUBCHANNEL POWER CONTROL AND ADAPTIVE BEAMFORMING FOR MC-CDMA SYSTEMS CHAPTER 6 JOINT SUBCHANNEL POWER CONTROL AND ADAPTIVE BEAMFORMING FOR MC-CDMA SYSTEMS 6.1 INTRODUCTION The increasing demand for high data rate services necessitates technology advancement and adoption

More information

PERFORMANCE GAIN OF SMART DUAL ANTENNAS AT HANDSETS IN 3G CDMA SYSTEM

PERFORMANCE GAIN OF SMART DUAL ANTENNAS AT HANDSETS IN 3G CDMA SYSTEM PERFORMANCE GAIN OF SMART DUAL ANTENNAS AT HANDSETS IN 3G CDMA SYSTEM Suk Won Kim 1,DongSamHa 1,andJeongHoKim 2 1 VTVT (Virginia Tech VLSI for Telecommunications) Laboratory Department of Electrical and

More information

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document.

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document. Hunukumbure, R. M. M., Beach, M. A., Allen, B., Fletcher, P. N., & Karlsson, P. (2001). Smart antenna performance degradation due to grating lobes in FDD systems. (pp. 5 p). Link to publication record

More information

Third Generation Mobile Radio Systems (IMT-2000) Using Wideband CDMA Technology and Interference Canceller for Its Base Station

Third Generation Mobile Radio Systems (IMT-2000) Using Wideband CDMA Technology and Interference Canceller for Its Base Station UDC 621.396.9 Third Generation Mobile Radio Systems (IMT-2000) Using Wideband CDMA Technology and Interference Canceller for Its Base Station VYoshinori Tanaka VHiroyuki Seki (Manuscript received March

More information

A LITERATURE REVIEW IN METHODS TO REDUCE MULTIPLE ACCESS INTERFERENCE, INTER-SYMBOL INTERFERENCE AND CO-CHANNEL INTERFERENCE

A LITERATURE REVIEW IN METHODS TO REDUCE MULTIPLE ACCESS INTERFERENCE, INTER-SYMBOL INTERFERENCE AND CO-CHANNEL INTERFERENCE Ninth LACCEI Latin American and Caribbean Conference (LACCEI 2011), Engineering for a Smart Planet, Innovation, Information Technology and Computational Tools for Sustainable Development, August 3-5, 2011,

More information

K.NARSING RAO(08R31A0425) DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING (NOVH).

K.NARSING RAO(08R31A0425) DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING (NOVH). Smart Antenna K.NARSING RAO(08R31A0425) DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING (NOVH). ABSTRACT:- One of the most rapidly developing areas of communications is Smart Antenna systems. This paper

More information

CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions

CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions This dissertation reported results of an investigation into the performance of antenna arrays that can be mounted on handheld radios. Handheld arrays

More information

Code Planning of 3G UMTS Mobile Networks Using ATOLL Planning Tool

Code Planning of 3G UMTS Mobile Networks Using ATOLL Planning Tool Code Planning of 3G UMTS Mobile Networks Using ATOLL Planning Tool A. Benjamin Paul, Sk.M.Subani, M.Tech in Bapatla Engg. College, Assistant Professor in Bapatla Engg. College, Abstract This paper involves

More information

EE 382C Literature Survey. Adaptive Power Control Module in Cellular Radio System. Jianhua Gan. Abstract

EE 382C Literature Survey. Adaptive Power Control Module in Cellular Radio System. Jianhua Gan. Abstract EE 382C Literature Survey Adaptive Power Control Module in Cellular Radio System Jianhua Gan Abstract Several power control methods in cellular radio system are reviewed. Adaptive power control scheme

More information

SNS COLLEGE OF ENGINEERING COIMBATORE DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK

SNS COLLEGE OF ENGINEERING COIMBATORE DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK SNS COLLEGE OF ENGINEERING COIMBATORE 641107 DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK EC6801 WIRELESS COMMUNICATION UNIT-I WIRELESS CHANNELS PART-A 1. What is propagation model? 2. What are the

More information

Transmit Diversity Schemes for CDMA-2000

Transmit Diversity Schemes for CDMA-2000 1 of 5 Transmit Diversity Schemes for CDMA-2000 Dinesh Rajan Rice University 6100 Main St. Houston, TX 77005 dinesh@rice.edu Steven D. Gray Nokia Research Center 6000, Connection Dr. Irving, TX 75240 steven.gray@nokia.com

More information

Advanced Communication Systems -Wireless Communication Technology

Advanced Communication Systems -Wireless Communication Technology Advanced Communication Systems -Wireless Communication Technology Dr. Junwei Lu The School of Microelectronic Engineering Faculty of Engineering and Information Technology Outline Introduction to Wireless

More information

Mobile Communication Systems. Part 7- Multiplexing

Mobile Communication Systems. Part 7- Multiplexing Mobile Communication Systems Part 7- Multiplexing Professor Z Ghassemlooy Faculty of Engineering and Environment University of Northumbria U.K. http://soe.ac.uk/ocr Contents Multiple Access Multiplexing

More information

Advances in Radio Science

Advances in Radio Science Advances in Radio Science (23) 1: 149 153 c Copernicus GmbH 23 Advances in Radio Science Downlink beamforming concepts in UTRA FDD M. Schacht 1, A. Dekorsy 1, and P. Jung 2 1 Lucent Technologies, Thurn-und-Taxis-Strasse

More information

Comparison of Beamforming Techniques for W-CDMA Communication Systems

Comparison of Beamforming Techniques for W-CDMA Communication Systems 752 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 52, NO. 4, JULY 2003 Comparison of Beamforming Techniques for W-CDMA Communication Systems Hsueh-Jyh Li and Ta-Yung Liu Abstract In this paper, different

More information

Smart antenna technology

Smart antenna technology Smart antenna technology In mobile communication systems, capacity and performance are usually limited by two major impairments. They are multipath and co-channel interference [5]. Multipath is a condition

More information

The Parametric Analysis of Gaussian Pulse Shaping Filter in WCDMA Network

The Parametric Analysis of Gaussian Pulse Shaping Filter in WCDMA Network Abstract The Parametric Analysis of Gaussian Pulse Shaping Filter in WCDMA Network Shilpa Shukla*, Mr. Puran Gour,*Student, H.O.D, Department of Electronics & Comm., NIIST, Bhopal (M.P.) Digital Signal

More information

Level 6 Graduate Diploma in Engineering Wireless and mobile communications

Level 6 Graduate Diploma in Engineering Wireless and mobile communications 9210-119 Level 6 Graduate Diploma in Engineering Wireless and mobile communications Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil,

More information

2. LITERATURE REVIEW

2. LITERATURE REVIEW 2. LITERATURE REVIEW In this section, a brief review of literature on Performance of Antenna Diversity Techniques, Alamouti Coding Scheme, WiMAX Broadband Wireless Access Technology, Mobile WiMAX Technology,

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

MU-MIMO with Fixed Beamforming for

MU-MIMO with Fixed Beamforming for MU-MIMO with Fixed Beamforming for FDD Systems Manfred Litzenburger, Thorsten Wild, Michael Ohm Alcatel-Lucent R&I Stuttgart, Germany MU-MIMO - Motivation MU-MIMO Supporting multiple users in a cell on

More information

Performance Evaluation of Uplink Closed Loop Power Control for LTE System

Performance Evaluation of Uplink Closed Loop Power Control for LTE System Performance Evaluation of Uplink Closed Loop Power Control for LTE System Bilal Muhammad and Abbas Mohammed Department of Signal Processing, School of Engineering Blekinge Institute of Technology, Ronneby,

More information

doi: /

doi: / doi: 10.1109/25.923057 452 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 50, NO. 2, MARCH 2001 Theoretical Analysis of Reverse Link Capacity for an SIR-Based Power-Controlled Cellular CDMA System in

More information

FPGA Simulation of WCDMA Baseband Receiver Carrier Synchronization Unit

FPGA Simulation of WCDMA Baseband Receiver Carrier Synchronization Unit FPGA Simulation of WCDMA Baseband Receiver Carrier Synchronization Unit Sujatha E 1, Dr. C Subhas 2 Assistant professor, Dept. of EConE, Sree Vidyanikethan Engineering College, Tirupati, A.P, India 1 Professor,

More information

Challenges for Broadband Wireless Technology

Challenges for Broadband Wireless Technology Challenges for Broadband Wireless Technology Fumiyuki Adachi Electrical and Communication Engineering Graduate School of Engineering, Tohoku University 05 Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8579 Japan

More information

Application Note. StarMIMO. RX Diversity and MIMO OTA Test Range

Application Note. StarMIMO. RX Diversity and MIMO OTA Test Range Application Note StarMIMO RX Diversity and MIMO OTA Test Range Contents Introduction P. 03 StarMIMO setup P. 04 1/ Multi-probe technology P. 05 Cluster vs Multiple Cluster setups Volume vs Number of probes

More information

Planning of LTE Radio Networks in WinProp

Planning of LTE Radio Networks in WinProp Planning of LTE Radio Networks in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen mail@awe-communications.com Issue Date Changes V1.0 Nov. 2010 First version of document V2.0

More information

Sensitivity of optimum downtilt angle for geographical traffic load distribution in WCDMA

Sensitivity of optimum downtilt angle for geographical traffic load distribution in WCDMA Sensitivity of optimum downtilt angle for geographical traffic load distribution in WCDMA Jarno Niemelä, Tero Isotalo, Jakub Borkowski, and Jukka Lempiäinen Institute of Communications Engineering, Tampere

More information

The 5th Smart Antenna Workshop 21 April 2003, Hanyang University, Korea Broadband Mobile Technology Fumiyuki Adachi

The 5th Smart Antenna Workshop 21 April 2003, Hanyang University, Korea Broadband Mobile Technology Fumiyuki Adachi The 5th Smart Antenna Workshop 21 April 2003, Hanyang University, Korea Broadband Mobile Technology Fumiyuki Adachi Dept. of Electrical and Communications Engineering, Tohoku University, Japan adachi@ecei.tohoku.ac.jp

More information

Performance of Smart Antennas with Adaptive Combining at Handsets for the 3GPP WCDMA System

Performance of Smart Antennas with Adaptive Combining at Handsets for the 3GPP WCDMA System Performance of Smart Antennas with Adaptive Combining at Handsets for the 3GPP WCDMA System Suk Won Kim, Dong Sam Ha, Jeong Ho Kim, and Jung Hwan Kim 3 VTVT (Virginia Tech VLSI for Telecommunications)

More information

Performance Evaluation of the VBLAST Algorithm in W-CDMA Systems

Performance Evaluation of the VBLAST Algorithm in W-CDMA Systems erformance Evaluation of the VBLAST Algorithm in W-CDMA Systems Dragan Samardzija, eter Wolniansky, Jonathan Ling Wireless Research Laboratory, Bell Labs, Lucent Technologies, 79 Holmdel-Keyport Road,

More information

Simulated BER Performance of, and Initial Hardware Results from, the Uplink in the U.K. LINK-CDMA Testbed

Simulated BER Performance of, and Initial Hardware Results from, the Uplink in the U.K. LINK-CDMA Testbed Simulated BER Performance of, and Initial Hardware Results from, the Uplink in the U.K. LINK-CDMA Testbed J.T.E. McDonnell1, A.H. Kemp2, J.P. Aldis3, T.A. Wilkinson1, S.K. Barton2,4 1Mobile Communications

More information

A Novel SINR Estimation Scheme for WCDMA Receivers

A Novel SINR Estimation Scheme for WCDMA Receivers 1 A Novel SINR Estimation Scheme for WCDMA Receivers Venkateswara Rao M 1 R. David Koilpillai 2 1 Flextronics Software Systems, Bangalore 2 Department of Electrical Engineering, IIT Madras, Chennai - 36.

More information

Advanced Antenna Technology

Advanced Antenna Technology Advanced Antenna Technology Abdus Salam ICTP, February 2004 School on Digital Radio Communications for Research and Training in Developing Countries Ermanno Pietrosemoli Latin American Networking School

More information

ETSI SMG#24 TDoc SMG2 898 / 97 Madrid, Spain December 15-19, 1997 Source: SMG2. Concept Group Delta WB-TDMA/CDMA: Evaluation Summary

ETSI SMG#24 TDoc SMG2 898 / 97 Madrid, Spain December 15-19, 1997 Source: SMG2. Concept Group Delta WB-TDMA/CDMA: Evaluation Summary ETSI SMG#24 TDoc SMG2 898 / 97 Madrid, Spain December 15-19, 1997 Source: SMG2 Concept Group Delta WB-TDMA/CDMA: Evaluation Summary Introduction In the procedure to define the UMTS Terrestrial Radio Access

More information

IJPSS Volume 2, Issue 9 ISSN:

IJPSS Volume 2, Issue 9 ISSN: INVESTIGATION OF HANDOVER IN WCDMA Kuldeep Sharma* Gagandeep** Virender Mehla** _ ABSTRACT Third generation wireless system is based on the WCDMA access technique. In this technique, all users share the

More information

On the Uplink Capacity of Cellular CDMA and TDMA over Nondispersive Channels

On the Uplink Capacity of Cellular CDMA and TDMA over Nondispersive Channels On the Uplink Capacity of Cellular CDMA and TDMA over Nondispersive Channels Hikmet Sari (1), Heidi Steendam (), Marc Moeneclaey () (1) Alcatel Access Systems Division () Communications Engineering Laboratory

More information

CDMA - QUESTIONS & ANSWERS

CDMA - QUESTIONS & ANSWERS CDMA - QUESTIONS & ANSWERS http://www.tutorialspoint.com/cdma/questions_and_answers.htm Copyright tutorialspoint.com 1. What is CDMA? CDMA stands for Code Division Multiple Access. It is a wireless technology

More information

Optimizing Multi-Cell Massive MIMO for Spectral Efficiency

Optimizing Multi-Cell Massive MIMO for Spectral Efficiency Optimizing Multi-Cell Massive MIMO for Spectral Efficiency How Many Users Should Be Scheduled? Emil Björnson 1, Erik G. Larsson 1, Mérouane Debbah 2 1 Linköping University, Linköping, Sweden 2 Supélec,

More information

System Performance of Cooperative Massive MIMO Downlink 5G Cellular Systems

System Performance of Cooperative Massive MIMO Downlink 5G Cellular Systems IEEE WAMICON 2016 April 11-13, 2016 Clearwater Beach, FL System Performance of Massive MIMO Downlink 5G Cellular Systems Chao He and Richard D. Gitlin Department of Electrical Engineering University of

More information

Beamforming for 4.9G/5G Networks

Beamforming for 4.9G/5G Networks Beamforming for 4.9G/5G Networks Exploiting Massive MIMO and Active Antenna Technologies White Paper Contents 1. Executive summary 3 2. Introduction 3 3. Beamforming benefits below 6 GHz 5 4. Field performance

More information

CELLULAR COMMUNICATION AND ANTENNAS. Doç. Dr. Mehmet ÇİYDEM

CELLULAR COMMUNICATION AND ANTENNAS. Doç. Dr. Mehmet ÇİYDEM CELLULAR COMMUNICATION AND ANTENNAS Doç. Dr. Mehmet ÇİYDEM mehmet.ciydem@engitek.com.tr, 533 5160580 1 CONTENT 1 ABOUT ENGİTEK 2 CELLULAR COMMUNICATION 3 BASE STATION ANTENNAS 4 5G CELLULAR COMMUNICATION

More information

MIMO Systems and Applications

MIMO Systems and Applications MIMO Systems and Applications Mário Marques da Silva marques.silva@ieee.org 1 Outline Introduction System Characterization for MIMO types Space-Time Block Coding (open loop) Selective Transmit Diversity

More information

Interference Reduction in Wireless Communication Using Adaptive Beam Forming Algorithm and Windows

Interference Reduction in Wireless Communication Using Adaptive Beam Forming Algorithm and Windows Volume 117 No. 21 2017, 789-797 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Interference Reduction in Wireless Communication Using Adaptive Beam

More information

IMPROVEMENT OF CALL BLOCKING PROBABILITY IN UMTS

IMPROVEMENT OF CALL BLOCKING PROBABILITY IN UMTS International Journal of Latest Research in Science and Technology Vol.1,Issue 3 :Page No.299-303,September-October (2012) http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 IMPROVEMENT OF CALL

More information

ETSI SMG#24 TDoc SMG 903 / 97. December 15-19, 1997 Source: SMG2. Concept Group Alpha - Wideband Direct-Sequence CDMA: System Description Summary

ETSI SMG#24 TDoc SMG 903 / 97. December 15-19, 1997 Source: SMG2. Concept Group Alpha - Wideband Direct-Sequence CDMA: System Description Summary ETSI SMG#24 TDoc SMG 903 / 97 Madrid, Spain Agenda item 4.1: UTRA December 15-19, 1997 Source: SMG2 Concept Group Alpha - Wideband Direct-Sequence CDMA: System Description Summary Concept Group Alpha -

More information

Mobile Broadband Multimedia Networks

Mobile Broadband Multimedia Networks Mobile Broadband Multimedia Networks Techniques, Models and Tools for 4G Edited by Luis M. Correia v c» -''Vi JP^^fte«jfc-iaSfllto ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN

More information

CHAPTER 7 ROLE OF ADAPTIVE MULTIRATE ON WCDMA CAPACITY ENHANCEMENT

CHAPTER 7 ROLE OF ADAPTIVE MULTIRATE ON WCDMA CAPACITY ENHANCEMENT CHAPTER 7 ROLE OF ADAPTIVE MULTIRATE ON WCDMA CAPACITY ENHANCEMENT 7.1 INTRODUCTION Originally developed to be used in GSM by the Europe Telecommunications Standards Institute (ETSI), the AMR speech codec

More information

MULTI-HOP RADIO ACCESS CELLULAR CONCEPT FOR FOURTH-GENERATION MOBILE COMMUNICATION SYSTEMS

MULTI-HOP RADIO ACCESS CELLULAR CONCEPT FOR FOURTH-GENERATION MOBILE COMMUNICATION SYSTEMS MULTI-HOP RADIO ACCESS CELLULAR CONCEPT FOR FOURTH-GENERATION MOBILE COMMUNICATION SYSTEMS MR. AADITYA KHARE TIT BHOPAL (M.P.) PHONE 09993716594, 09827060004 E-MAIL aadkhare@rediffmail.com aadkhare@gmail.com

More information

<3rd generation CDMA wireless systems>

<3rd generation CDMA wireless systems> Page 1 Overview What is 3G? A brief overview of IS95 Key design choices for CDMA 3G systems. Bandwidth Modulation Coding Power Control

More information

Analysis of RF requirements for Active Antenna System

Analysis of RF requirements for Active Antenna System 212 7th International ICST Conference on Communications and Networking in China (CHINACOM) Analysis of RF requirements for Active Antenna System Rong Zhou Department of Wireless Research Huawei Technology

More information

Beamforming on mobile devices: A first study

Beamforming on mobile devices: A first study Beamforming on mobile devices: A first study Hang Yu, Lin Zhong, Ashutosh Sabharwal, David Kao http://www.recg.org Two invariants for wireless Spectrum is scarce Hardware is cheap and getting cheaper 2

More information

RADIO LINK ASPECT OF GSM

RADIO LINK ASPECT OF GSM RADIO LINK ASPECT OF GSM The GSM spectral allocation is 25 MHz for base transmission (935 960 MHz) and 25 MHz for mobile transmission With each 200 KHz bandwidth, total number of channel provided is 125

More information

System-level simulation results of UMTS networks with smart antennas

System-level simulation results of UMTS networks with smart antennas Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 553 System-level simulation results of UMTS networks with smart

More information

A Complete MIMO System Built on a Single RF Communication Ends

A Complete MIMO System Built on a Single RF Communication Ends PIERS ONLINE, VOL. 6, NO. 6, 2010 559 A Complete MIMO System Built on a Single RF Communication Ends Vlasis Barousis, Athanasios G. Kanatas, and George Efthymoglou University of Piraeus, Greece Abstract

More information

mm Wave Communications J Klutto Milleth CEWiT

mm Wave Communications J Klutto Milleth CEWiT mm Wave Communications J Klutto Milleth CEWiT Technology Options for Future Identification of new spectrum LTE extendable up to 60 GHz mm Wave Communications Handling large bandwidths Full duplexing on

More information

Lecture 12: Summary Advanced Digital Communications (EQ2410) 1

Lecture 12: Summary Advanced Digital Communications (EQ2410) 1 : Advanced Digital Communications (EQ2410) 1 Monday, Mar. 7, 2016 15:00-17:00, B23 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 15 Overview 1 2 3 4 2 / 15 Equalization Maximum

More information

Smart Antenna ABSTRACT

Smart Antenna ABSTRACT Smart Antenna ABSTRACT One of the most rapidly developing areas of communications is Smart Antenna systems. This paper deals with the principle and working of smart antennas and the elegance of their applications

More information

Downlink Erlang Capacity of Cellular OFDMA

Downlink Erlang Capacity of Cellular OFDMA Downlink Erlang Capacity of Cellular OFDMA Gauri Joshi, Harshad Maral, Abhay Karandikar Department of Electrical Engineering Indian Institute of Technology Bombay Powai, Mumbai, India 400076. Email: gaurijoshi@iitb.ac.in,

More information

Adaptive Modulation, Adaptive Coding, and Power Control for Fixed Cellular Broadband Wireless Systems: Some New Insights 1

Adaptive Modulation, Adaptive Coding, and Power Control for Fixed Cellular Broadband Wireless Systems: Some New Insights 1 Adaptive, Adaptive Coding, and Power Control for Fixed Cellular Broadband Wireless Systems: Some New Insights Ehab Armanious, David D. Falconer, and Halim Yanikomeroglu Broadband Communications and Wireless

More information

REPORT ITU-R M

REPORT ITU-R M Rep. ITU-R M.2113-1 1 REPORT ITU-R M.2113-1 Sharing studies in the 2 500-2 690 band between IMT-2000 and fixed broadband wireless access systems including nomadic applications in the same geographical

More information

Optimum Rate Allocation for Two-Class Services in CDMA Smart Antenna Systems

Optimum Rate Allocation for Two-Class Services in CDMA Smart Antenna Systems 810 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 51, NO. 5, MAY 2003 Optimum Rate Allocation for Two-Class Services in CDMA Smart Antenna Systems Il-Min Kim, Member, IEEE, Hyung-Myung Kim, Senior Member,

More information

Resource Management in Third Generation Mobile Communication Systems Employing Smart Antennas

Resource Management in Third Generation Mobile Communication Systems Employing Smart Antennas Resource Management in Third Generation Mobile Communication Systems Employing Smart Antennas Shakheela H. Marikar and Luiz A. DaSilva Bradley Department of Electrical and Computer Engineering, Virginia

More information

Evolution of Cellular Systems. Challenges for Broadband Wireless Systems. Convergence of Wireless, Computing and Internet is on the Way

Evolution of Cellular Systems. Challenges for Broadband Wireless Systems. Convergence of Wireless, Computing and Internet is on the Way International Technology Conference, 14~15 Jan. 2003, Hong Kong Technology Drivers for Tomorrow Challenges for Broadband Systems Fumiyuki Adachi Dept. of Electrical and Communications Engineering, Tohoku

More information

Background: Cellular network technology

Background: Cellular network technology Background: Cellular network technology Overview 1G: Analog voice (no global standard ) 2G: Digital voice (again GSM vs. CDMA) 3G: Digital voice and data Again... UMTS (WCDMA) vs. CDMA2000 (both CDMA-based)

More information

Access Methods and Spectral Efficiency

Access Methods and Spectral Efficiency Access Methods and Spectral Efficiency Yousef Dama An-Najah National University Mobile Communications Access methods SDMA/FDMA/TDMA SDMA (Space Division Multiple Access) segment space into sectors, use

More information

Survey of Power Control Schemes for LTE Uplink E Tejaswi, Suresh B

Survey of Power Control Schemes for LTE Uplink E Tejaswi, Suresh B Survey of Power Control Schemes for LTE Uplink E Tejaswi, Suresh B Department of Electronics and Communication Engineering K L University, Guntur, India Abstract In multi user environment number of users

More information

Performance Gain of Smart Antennas with Hybrid Combining at Handsets for the 3GPP WCDMA System

Performance Gain of Smart Antennas with Hybrid Combining at Handsets for the 3GPP WCDMA System Performance Gain of Smart Antennas with Hybrid Combining at Handsets for the 3GPP WCDMA System Suk Won Kim 1, Dong Sam Ha 1, Jeong Ho Kim 2, and Jung Hwan Kim 3 1 VTVT (Virginia Tech VLSI for Telecommunications)

More information

Combined Beamforming and Space-Time Block Coding with Sparse Array Antennas

Combined Beamforming and Space-Time Block Coding with Sparse Array Antennas San Jose State University SJSU ScholarWorks Faculty Publications Electrical Engineering 10-1-2003 Combined Beamforming and Space-Time Block Coding with Sparse Array Antennas Robert H. Morelos-Zaragoza

More information

A MULTICARRIER CDMA ARCHITECTURE BASED ON ORTHOGONAL COMPLEMENTARY CODES FOR NEW GENERATION OF WIDEBAND WIRELESS COMMUNICATIONS

A MULTICARRIER CDMA ARCHITECTURE BASED ON ORTHOGONAL COMPLEMENTARY CODES FOR NEW GENERATION OF WIDEBAND WIRELESS COMMUNICATIONS A MULTICARRIER CDMA ARCHITECTURE BASED ON ORTHOGONAL COMPLEMENTARY CODES FOR NEW GENERATION OF WIDEBAND WIRELESS COMMUNICATIONS BY: COLLINS ACHEAMPONG GRADUATE STUDENT TO: Dr. Lijun Quin DEPT OF ELECTRICAL

More information

Channel Estimation and Multiple Access in Massive MIMO Systems. Junjie Ma, Chongbin Xu and Li Ping City University of Hong Kong, Hong Kong

Channel Estimation and Multiple Access in Massive MIMO Systems. Junjie Ma, Chongbin Xu and Li Ping City University of Hong Kong, Hong Kong Channel Estimation and Multiple Access in Massive MIMO Systems Junjie Ma, Chongbin Xu and Li Ping City University of Hong Kong, Hong Kong 1 Main references Li Ping, Lihai Liu, Keying Wu, and W. K. Leung,

More information

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline Multiple Antennas Capacity and Basic Transmission Schemes Mats Bengtsson, Björn Ottersten Basic Transmission Schemes 1 September 8, 2005 Presentation Outline Channel capacity Some fine details and misconceptions

More information

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 10 - LTE (4G) -Technologies used in 4G and 5G The Need for LTE Long Term Evolution (LTE) With the growth of mobile data and mobile users, it becomes essential

More information

3 RANGE INCREASE OF ADAPTIVE AND PHASED ARRAYS IN THE PRESENCE OF INTERFERERS

3 RANGE INCREASE OF ADAPTIVE AND PHASED ARRAYS IN THE PRESENCE OF INTERFERERS 3 RANGE INCREASE OF ADAPTIVE AND PHASED ARRAYS IN THE PRESENCE OF INTERFERERS A higher directive gain at the base station will result in an increased signal level at the mobile receiver, allowing longer

More information

Channel Modelling for Beamforming in Cellular Systems

Channel Modelling for Beamforming in Cellular Systems Channel Modelling for Beamforming in Cellular Systems Salman Durrani Department of Engineering, The Australian National University, Canberra. Email: salman.durrani@anu.edu.au DERF June 26 Outline Introduction

More information

TDD and FDD Wireless Access Systems

TDD and FDD Wireless Access Systems WHITE PAPER WHITE PAPER Coexistence of TDD and FDD Wireless Access Systems In the 3.5GHz Band We Make WiMAX Easy TDD and FDD Wireless Access Systems Coexistence of TDD and FDD Wireless Access Systems In

More information

EFFICIENT SMART ANTENNA FOR 4G COMMUNICATIONS

EFFICIENT SMART ANTENNA FOR 4G COMMUNICATIONS http:// EFFICIENT SMART ANTENNA FOR 4G COMMUNICATIONS 1 Saloni Aggarwal, 2 Neha Kaushik, 3 Deeksha Sharma 1,2,3 UG, Department of Electronics and Communication Engineering, Raj Kumar Goel Institute of

More information

SOFT HANDOVER OPTIMIZATION IN UMTS FDD NETWORKS

SOFT HANDOVER OPTIMIZATION IN UMTS FDD NETWORKS SOFT HANDOVER OPTIMIZATION IN UMTS FDD NETWORKS Václav Valenta Doctoral Degree Programme (1), FEEC BUT; Université Paris-Est, ESYCOM, ESIEE E-mail: xvalen7@stud.feec.vutbr.cz Supervised by: Roman Maršálek

More information

A Simulation Tool for Third Generation CDMA Systems Presentation to IEEE Sarnoff Symposium

A Simulation Tool for Third Generation CDMA Systems Presentation to IEEE Sarnoff Symposium A Simulation Tool for Third Generation CDMA Systems Presentation to IEEE Sarnoff Symposium March 22, 2000 Fakhrul Alam, William Tranter, Brian Woerner Mobile and Portable Radio Research Group () e-mail:

More information

Deployment and Radio Resource Reuse in IEEE j Multi-hop Relay Network in Manhattan-like Environment

Deployment and Radio Resource Reuse in IEEE j Multi-hop Relay Network in Manhattan-like Environment Deployment and Radio Resource Reuse in IEEE 802.16j Multi-hop Relay Network in Manhattan-like Environment I-Kang Fu and Wern-Ho Sheen Department of Communication Engineering National Chiao Tung University

More information

Tuning the Receiver Structure and the Pilot-to-Data Power Ratio in Multiple Input Multiple Output Systems

Tuning the Receiver Structure and the Pilot-to-Data Power Ratio in Multiple Input Multiple Output Systems Tuning the Receiver Structure and the Pilot-to-Data Power Ratio in Multiple Input Multiple Output Systems Gabor Fodor Ericsson Research Royal Institute of Technology 5G: Scenarios & Requirements Traffic

More information

Effect of repeaters on the performance in WCDMA networks. Panu Lähdekorpi* and Jarno Niemelä. Jukka Lempiäinen

Effect of repeaters on the performance in WCDMA networks. Panu Lähdekorpi* and Jarno Niemelä. Jukka Lempiäinen Int. J. Mobile Network Design and Innovation, Vol. 2, No. 1, 2007 39 Effect of repeaters on the performance in WCDMA networks Panu Lähdekorpi* and Jarno Niemelä Institute of Communications Engineering,

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 ISSN 258 Intelligent Closed Loop Power Control For Reverse Link CDMA System Using Fuzzy Logic System. K.Sanmugapriyaa II year, M.E-Communication System Department of ECE Paavai Engineering College Namakkal,India

More information

5G deployment below 6 GHz

5G deployment below 6 GHz 5G deployment below 6 GHz Ubiquitous coverage for critical communication and massive IoT White Paper There has been much attention on the ability of new 5G radio to make use of high frequency spectrum,

More information

Active Antennas: The Next Step in Radio and Antenna Evolution

Active Antennas: The Next Step in Radio and Antenna Evolution Active Antennas: The Next Step in Radio and Antenna Evolution Kevin Linehan VP, Chief Technology Officer, Antenna Systems Dr. Rajiv Chandrasekaran Director of Technology Development, RF Power Amplifiers

More information

Apex Group of Institution Indri, Karnal, Haryana, India

Apex Group of Institution Indri, Karnal, Haryana, India Volume 5, Issue 8, August 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Blind Detection

More information

URL: <http://dx.doi.org/ /isape >

URL:  <http://dx.doi.org/ /isape > Citation: Bobor-Oyibo, Freeborn, Foti, Steve and Smith, Dave (2008) A multiple switched beam smart antenna with beam shaping for dynamic optimisation of capacity and coverage in mobile telecommunication

More information

REPORT ITU-R M Characteristics of broadband wireless access systems operating in the land mobile service for use in sharing studies

REPORT ITU-R M Characteristics of broadband wireless access systems operating in the land mobile service for use in sharing studies Rep. ITU-R M.2116 1 REPORT ITU-R M.2116 Characteristics of broadband wireless access systems operating in the land mobile service for use in sharing studies (Questions ITU-R 1/8 and ITU-R 7/8) (2007) 1

More information

A New Technique for Capacity Enhancement in WCDMA Uplink with Synchronization

A New Technique for Capacity Enhancement in WCDMA Uplink with Synchronization Lecture Notes on Information Theory Vol., No. 1, March 14 A New Technique for Capacity Enhancement in WCDMA Uplink with Synchronization Mridula S. Korde Visvesaraya National Institute of Technology, Nagpur,

More information

History of the Digital Mobile Radio Systems in NTT & DoCoMo

History of the Digital Mobile Radio Systems in NTT & DoCoMo History of the Digital Mobile Radio Systems in NTT & DoCoMo The University of Electro-Communications Nobuo Nakajima Progress of the Mobile Radio Systems Every 10 years 1 G Analog 2 G Digital 3 G IMT-2000

More information

IEEE Workshop on Applications and Services in Wireless Networks 2002 July 3 rd - 5 th, 2002

IEEE Workshop on Applications and Services in Wireless Networks 2002 July 3 rd - 5 th, 2002 How to Minimize the Impact of Cell Breathing on UMTS Networks IEEE Workshop on Applications and Services in Wireless Networks 2002 July 3 rd - 5 th, 2002 Yannick DUPUCH Alcatel - Mobile Networks Division

More information

Data and Computer Communications. Tenth Edition by William Stallings

Data and Computer Communications. Tenth Edition by William Stallings Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education - 2013 CHAPTER 10 Cellular Wireless Network

More information

Chapter 4 DOA Estimation Using Adaptive Array Antenna in the 2-GHz Band

Chapter 4 DOA Estimation Using Adaptive Array Antenna in the 2-GHz Band Chapter 4 DOA Estimation Using Adaptive Array Antenna in the 2-GHz Band 4.1. Introduction The demands for wireless mobile communication are increasing rapidly, and they have become an indispensable part

More information

Smart Antennas for wireless communication

Smart Antennas for wireless communication Smart Antennas for wireless communication T.S. Jyothi Lakshmi 1, Sandeep Sivvam 2 1 Research Scholar, Dept. of E.C.E, A.U College of Engineering (A), Andhra University, Visakhapatnam, jyoths.lakshmi@gmail.com

More information

System-Level Simulator for the W-CDMA Low Chip Rate TDD System y

System-Level Simulator for the W-CDMA Low Chip Rate TDD System y System-Level Simulator for the W-CDMA Low Chip Rate TDD System y Sung Ho Moon Λ, Jae Hoon Chung Λ, Jae Kyun Kwon Λ, Suwon Park Λ, Dan Keun Sung Λ, Sungoh Hwang ΛΛ, and Junggon Kim ΛΛ * CNR Lab., Dept.

More information

Soft Handoff Parameters Evaluation in Downlink WCDMA System

Soft Handoff Parameters Evaluation in Downlink WCDMA System Soft Handoff Parameters Evaluation in Downlink WCDMA System A. A. AL-DOURI S. A. MAWJOUD Electrical Engineering Department Tikrit University Electrical Engineering Department Mosul University Abstract

More information