CS434/534: Topics in Networked (Networking) Systems

Size: px
Start display at page:

Download "CS434/534: Topics in Networked (Networking) Systems"

Transcription

1 CS434/534: Topics in Networked (Networking) Systems Wireless Foundation: Diversity Design for Flat fading Yang (Richard) Yang Computer Science Department Yale University 208A Watson

2 Admin Start to schedule meetings w/ me on potential projects. 2

3 Recap: Digital Signal Modulation Modulation of digital signals also known as Shift Keying Amplitude Shift Keying (ASK): vary carrier amp. according to data t Frequency Shift Keying (FSK) o vary carrier freq. according to bit value t Phase Shift Keying (PSK) o vary carrier freq. according to data t 3

4 Recap: QAM as an Example Quadrature Amplitude Modulation (QAM): combines amplitude and phase modulation, e.g., 16- QAM (4 bits = 1 symbol) Q φ a I

5 Reality Check Transmitter: Receiver: From MAC From RF Scramble Decimation DQPSK Mod Despreading Direct Sequence Spread Spectrum DQPSK Demod Symbol Wave Shaping Descramble To RF To MAC (a) IEEE b 2Mbps 5

6 Recap:: How does the Receiver Detect Which g i () is Sent? Assume synchronized (i.e., the receiver knows the symbol boundary). 6

7 Recap: General Matched Filter Detection: Implementation for Multiple Sig Func. Basic idea consider each g m [0,T] as a point (with coordinates) in a space compute the coordinate of the received signal x[0,t] check the distance between g m [0,T] and the received signal x[0,t] pick m* that gives the lowest distance value 7

8 Recap: Wireless Channels Channel characteristics change over location, time, and frequency Received Signal Power (db) path loss power Large-scale fading log (distance) small-scale fading time

9 Recap: Wireless Channel: Multipath Effect (A Simple Example) Assume transmitter sends out signal cos(2p f c t) cos( 2pft) phase difference: d 1 d 2 a d ( 1 2pf [ t- ) 1 cos ] c d 1 d d d1 d2 d1 d2 p ( f c - f c ) + p = 2pf + p = 2p + p c l d ( 2 2pf [ t- ) 2 cos ] c receiver moves to the right by l/4, phase diff changes by pi. a d 2 9

10 Recap: Wireless Channel: Multipath Effect (Mover) example cos( 2pft) d Suppose d 1 =r 0 +vt d 2 =2d-r 0 -vt d1»d2 d 1 d 2 a d ( 1 2pf [ t- ) 1 cos ] c d 1 - a d ( 2 2pf [ t- ) 2 cos ] c d 2 10

11 Waveform d 2pvf d-r0 2sin(2p f [ t - ])sin( [ t - c c cv ]) v = 65 miles/h, f c = 1 GHz: f c v/c = 10 9 * 30 / 3x10 8 = 100 Hz 10 ms deep fade 11

12 Multipath with Mobility 12

13 Outline Recap Wireless background Frequency domain Modulation and demodulation Basic concepts Amplitude modulation/demodulation Digital modulation of additive noise channel Wireless channels intro shadowing multipath» space, frequency, time deep fade» delay spread 13

14 Multipath Can Disperse Signal signal at sender Time dispersion: signal is dispersed over time LOS pulse multipath pulses signal at receiver LOS: Line Of Sight 14

15 JTC Model: Delay Spread Residential Buildings 15

16 Dispersed Signal -> ISI Dispersed signal can cause interference between neighbor symbols, Inter Symbol Interference (ISI) signal at sender Assume 300 meters delay spread, the arrival time difference is 300/3x10 8 = 1 us è if symbol rate > 1 Ms/sec, we will have ISI LOS pulse multipath pulses In practice, fractional ISI can already substantially increase loss rate signal at receiver LOS: Line Of Sight 16

17 Summary of Progress: Wireless Channels Channel characteristics change over location, time, and frequency Received Signal Power (db) path loss power Large-scale fading log (distance) small-scale fading time frequency LOS pulse multipath pulses 17

18 Roadmap: Challenges and Techniques of Wireless Design Shadow fading (large-scale fading) Fast fading (small-scale, flat fading) Delay spread (small-scale fading) Performance affected received signal strength bit/packet error rate at deep fade ISI Mitigation techniques use fade margin increase power or reduce distance diversity equalization; spreadspectrum; OFDM; directional antenna 18

19 Outline Recap Wireless background Frequency domain Modulation and demodulation Wireless channels Wireless design design for flat fading how bad is flat fading diversity to handle flat fading 19

20 Offline Slides (Begin) 20

21 Background For standard Gaussian white noise N(0, 1), Prob. density function: f ( w) = 1 2 p Q(x) = Pr{w > x} = e 1 2π - w 2 2 x e u2 /2 dw 1 2p (1-1 x ) e - x 2 / 2 Q( x) e -x 2 / 2 21

22 Background Q(x) = Pr{w > x} = 1 2π x e u2 /2 dw f (w') = (w' E ) 1 2 2πσ e 2σ 2 Pr{w' > x} = 1 2πσ x e (w' E ) 2 2σ 2 dw' define w = w' E σ 1 Pr{w' > x} = 2πσ = 1 2π x E σ (w' E ) 2 e 2σ 2 dw' = x 2 e w 2 dw 1 2πσ $ = Q x E ' & ) % σ ( x E σ 2 e w 2 dw' 22

23 Baseline: Additive Gaussian Noise N(0, N 0 /2) = T 0 T 0 y(t ) = x(t)g(t)dt = T 0 T 0 = g 2 (t)dt + w(t)g(t) dt = E + w [g(t) + w(t)]g(t)dt 23

24 Baseline: Additive Gaussian Noise y(t ) = g2 (t)dt + w(t)g(t) dt T 0 T 0 " E[w] = E$ # T 0 " σ 2 w = E[w 2 ] = E$ # % w(t)g(t) dt' = & T 0 T E[w(t)]g(t) dt = 0 0 T T % w(a)g(a) da w(b)g(b) db' & 0 T 0 = E[w(a)w(b)]g(a)g(b)da db = N 0 2 T 0 0 g 2 ( t)dt = N E

25 Baseline: y(t ) = g 2 (t)dt + w(t)g(t) dt Additive Gaussian Noise 0 0 Conditional probability density of y(t), given sender sends 1: 1 (y E)2 exp{ } 2 2πσ w 2σ σ 2 w = N 0E w 2 Conditional probability density of y(t), given sender sends 0: T 1 2πσ w exp{ (y + E)2 2σ w 2 } T 25

26 Baseline: Additive Gaussian Noise σ w 2 = N 0E 2 Demodulation error probability: P{e 0}P{sends 0}+ P{e 1}P{sends 1} = P{y > 0 0}P{sends 0}+ P{y < 0 1}P{sends 1}! = Q# 2E $ assume equal 0 or 1 " N & 0 % 26

27 1 2p (1 - Baseline: Error Probability 1 x ) e - x 2 / 2 Q( x) e -x 2 / 2 P e = Q( 2E N 0 ) = Q( 2SNR) e SNR Error probability decays exponentially with signal-noise-ratio (SNR). See A.2.1: 27

28 Flat Fading Channel Assume h is Gaussian random: BPSK: For fixed h, Averaged out over h, at high SNR. 28

29 Offline Slides (End) 29

30 Outline Recap Wireless background Frequency domain Modulation and demodulation Wireless channels Wireless PHY design design for flat fading 30

31 Flat Fading Effects flat fading channel static channel 31

32 Main Storyline Today Communication over a flat fading channel has poor performance due to significant probability that channel is in a deep fade Reliability is increased by providing more resolvable signal paths that fade independently Name of the game is how to find and efficiently exploit the paths 32

33 Where to Find Diversity? Time: when signal is bad at time t, it may not be bad at t+dt Space: when one position is in deep fade, another position may be not Frequency: when one frequency is in deep fade (or has large interference), another frequency may be in good shape d p - 1 d2 d1 - d 2 f + p = 2p 2 + p c l 33

34 Outline Recap Wireless background Frequency domain Modulation and demodulation Wireless channels Wireless PHY design design for flat fading how bad is flat fading? diversity to handle flat fading» time 34

35 Time Diversity Time diversity can be obtained by interleaving and coding over symbols across different coherent time periods coherence time interleave 35

36 Example: GSM Time Structure MHz 124 channels (200 khz) downlink MHz 124 channels (200 khz) uplink time GSM TDMA frame ms GSM time-slot (normal burst) guard space tail user data S Training S user data tail 3 bits 57 bits 1 26 bits 1 57 bits 3 S: indicates data or control guard space µs 577 µs 36

37 Example: GSM Bit Assignments Amount of time diversity limited by delay constraint and how fast channel varies In GSM, delay constraint is 40 ms (voice) To get better diversity, needs faster moving vehicles! 37

38 Simplest Code: Repetition After interleaving over L coherence time periods, 1 P e µ SNR L 38

39 Performance P e µ 1 SNR L 39

40 Beyond Repetition Coding Repetition coding gets full diversity, but sends only one symbol every L symbol times We can use other codes, e.g. Reed-Solomon code 40

41 Outline Recap Wireless background Frequency domain Modulation and demodulation Wireless channels Wireless PHY design design for flat fading how bad is flat fading? diversity to handle flat fading» Time» space 41

42 Space Diversity: Antenna Receive Transmit Both 42

43 User Diversity: Cooperative Diversity Different users can form a distributed antenna array to help each other in increasing diversity Interesting characteristics: users have to exchange information and this consumes bandwidth broadcast nature of the wireless medium can be exploited we will revisit the issue later in the course 43

44 Outline Recap Wireless background Frequency domain Modulation and demodulation Wireless channels Wireless PHY design design for flat fading how bad is flat fading? diversity to handle flat fading» Time» Space» frequency f ' = f d 1 c - d 2 44

45 Sequential Frequency Diversity: FHSS (Frequency Hopping Spread Spectrum) Discrete changes of carrier frequency sequence of frequency changes determined via pseudo random number sequence used in , GSM, etc Co-inventor: Hedy Lamarr patent# 2,292,387 issued on August 11, 1942 intended to make radio-guided torpedoes harder for enemies to detect or jam used a piano roll to change between 88 frequencies 45

46 Sequential Frequency Diversity: FHSS (Frequency Hopping Spread Spectrum) Two versions slow hopping: several user bits per frequency fast hopping: several frequencies per user bit t b user data t f t d f 3 f 2 f 1 slow hopping (3 bits/hop) f t d t f 3 f 2 f 1 fast hopping (3 hops/bit) t b : bit period t d : dwell time t 46

47 FHSS: Advantages Frequency selective fading and interference limited to short period Simple implementation what is a major issue in design? Uses only small portion of spectrum at any time explores frequency sequentially used in simple devices such Bluetooth 47

48 Bluetooth Design Objective Design objective: a cable replacement technology 1 Mb/s range 10+ meters single chip radio + baseband (means digital part) low power low price point (target price $5 or lower) 48

49 Bluetooth Architecture 49

50 Bluetooth Radio Link Bluetooth shares the same freq. range as Radio link is the most expensive part of a communication chip and hence chose simpler FHSS GHz + k MHz, k=0,, 78 1,600 hops per second A type of FSK modulation 1 Mb/s symbol rate transmit power: 1mW 50

51 Bluetooth Physical Layer Nodes form piconet: one master and upto 7 slaves Each radio can function as a master or a slave The slaves follow the pseudorandom jumping sequence of the master A piconet 51

52 Piconet Formation Master hopes at a universal frequency hopping sequence (32 frequencies) announce the master and sends Inquiry msg Joining slave: jump at a much lower speed after receiving an Inquiry message, wait for a random time, then send a request to the master The master sends a paging message to the slave to join it 52

53 Outline Recap Wireless background Frequency domain Modulation and demodulation Wireless channels Wireless PHY design design for flat fading how bad is flat fading? diversity to handle flat fading» Time» Space» Frequency sequential parallel 53

54 Direct Sequence Spread Spectrum (DSSS) Basic idea: increase signaling function alternating rate to expand frequency spectrum (explores frequency in parallel) f c : carrier freq. R b : freq. of data 10dB = 10; 20dB =100 54

55 Direct Sequence Spread Spectrum (DSSS) Approach: One symbol is spread to multiple chips the number of chips is called the expansion factor t b user data d(t) 1-1 X t c chipping sequence c(t) = resulting signal t b : bit period t c : chip period 55

56 DSSS Encoding chip: Data: [1-1 ]

57 DSSS in Real Life : 11 Mcps; 1 Msps how may chips per symbol? WCDMA: 3.84 Mcps; suppose 7,500 sps how many chips per symbol? 57

58 Effects of Spreading sender dp/df dp/df f f un-spread signal spread signal B s B b B b B s B s : num. of bits in the chip * B b 58

59 DSSS Encoding/Decoding: An Operating View user data X spread spectrum signal modulator transmit signal chipping sequence radio carrier transmitter correlator received signal demodulator X products low pass sampled sums decision data radio carrier chipping sequence receiver 59

60 DSSS Decoding chip: Data: [1-1] Trans chips decoded chips Chip seq: inner product: 6 decision:

61 DSSS Decoding with noise chip: Data: [1-1] Trans chips decoded chips Chip seq: inner product: 4 decision:

62 Assume no DSSS Consider narrowband interference Consider BPSK with carrier frequency fc A worst-case scenario data to be sent x(t) = 1 channel fades completely at fc (or a jam signal at fc) then no data can be recovered 62

63 Why Does DSSS Work: A Decoding Perspective Assume BPSK modulation using carrier frequency f : A: amplitude of signal f : carrier frequency x(t): data [+1, -1] c(t): chipping [+1, -1] y(t) = A x(t)c(t) cos(2p ft) 63

64 Add Noise/Jamming/Channel Loss Assume noise at carrier frequency f: w(t) = a(t)cos(2π ft) Received signal: y(t) + w(t) = Ax(t)c(t)cos(2π ft)+ acos(2π ft) 64

65 DSSS Decoding (BPSK): Matched Filter compute correlation for each bit time take N samples of a bit time sum = 0; for i =0; { sum += y[i] * c[i] * s[i] } if sum >= 0 return 1; else return -1; bit time y: received signal c: chipping seq. s: modulating sinoid t b 0 y(t)c(t)cos( 2π ft)dt 65

66 DSSS/BPSK Decoding T sym 0 [Ax(t)c(t)cos(2π ft) + a cos(2π ft)]c(t)cos( 2π ft)dt T sym 0 = Ax(t)cos(2π ft)cos( 2π ft)dt T sym 0 + ac(t)cos(2π ft)cos( 2π ft)dt Properties of chipping sequence to help? 66

67 Why Does DSSS Work: A Spectrum Perspective sender i) dp/df ii) dp/df user signal broadband interference narrowband interference receiver dp/df f dp/df f dp/df iii) iv) f f f i) ii): multiply data x(t) by chipping sequence c(t) spreads the spectrum ii) iii): received signal: x(t) c(t) + w(t), where w(t) is noise iii) iv): (x(t) c(t) + w(t)) c(t) = x(t) + w(t) c(t) iv) v) : low pass filtering v) 67

68 Reality Check Transmitter: Receiver: From MAC From RF Scramble Decimation DQPSK Mod Despreading Direct Sequence Spread Spectrum DQPSK Demod Symbol Wave Shaping Descramble To RF To MAC (a) IEEE b 2Mbps 68

69 Backup Slides

70 Inquiry Hopping 70

71 The Bluetooth Link Establishment Protocol FS: Frequency Synchronization DAC: Device Access Code IAC: Inquiry Access Code 71

72 Bluetooth Links 72

73 Bluetooth Packet Format Header 73

74 Multiple-Slot Packet 74

Wireless Networks (PHY): Design for Diversity

Wireless Networks (PHY): Design for Diversity Wireless Networks (PHY): Design for Diversity Y. Richard Yang 9/20/2012 Outline Admin and recap Design for diversity 2 Admin Assignment 1 questions Assignment 1 office hours Thursday 3-4 @ AKW 307A 3 Recap:

More information

Outline. Wireless Networks (PHY): Design for Diversity. Admin. Outline. Page 1. Recap: Impact of Channel on Decisions. [hg(t) + w(t)]g(t)dt.

Outline. Wireless Networks (PHY): Design for Diversity. Admin. Outline. Page 1. Recap: Impact of Channel on Decisions. [hg(t) + w(t)]g(t)dt. Wireless Networks (PHY): Design or Diversity Admin and recap Design or diversity Y. Richard Yang 9/2/212 2 Admin Assignment 1 questions Assignment 1 oice hours Thursday 3-4 @ AKW 37A Channel characteristics

More information

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2)

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2) 192620010 Mobile & Wireless Networking Lecture 2: Wireless Transmission (2/2) [Schiller, Section 2.6 & 2.7] [Reader Part 1: OFDM: An architecture for the fourth generation] Geert Heijenk Outline of Lecture

More information

Multiple Access Techniques

Multiple Access Techniques Multiple Access Techniques EE 442 Spring Semester Lecture 13 Multiple Access is the use of multiplexing techniques to provide communication service to multiple users over a single channel. It allows for

More information

Chapter 2: Wireless Transmission. Mobile Communications. Spread spectrum. Multiplexing. Modulation. Frequencies. Antenna. Signals

Chapter 2: Wireless Transmission. Mobile Communications. Spread spectrum. Multiplexing. Modulation. Frequencies. Antenna. Signals Mobile Communications Chapter 2: Wireless Transmission Frequencies Multiplexing Signals Spread spectrum Antenna Modulation Signal propagation Cellular systems Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/

More information

Spread Spectrum: Definition

Spread Spectrum: Definition Spread Spectrum: Definition refers to the expansion of signal bandwidth, by several orders of magnitude in some cases, which occurs when a key is attached to the communication channel an RF communications

More information

Chapter 7 Multiple Division Techniques for Traffic Channels

Chapter 7 Multiple Division Techniques for Traffic Channels Introduction to Wireless & Mobile Systems Chapter 7 Multiple Division Techniques for Traffic Channels Outline Introduction Concepts and Models for Multiple Divisions Frequency Division Multiple Access

More information

Chapter 2 Overview - 1 -

Chapter 2 Overview - 1 - Chapter 2 Overview Part 1 (last week) Digital Transmission System Frequencies, Spectrum Allocation Radio Propagation and Radio Channels Part 2 (today) Modulation, Coding, Error Correction Part 3 (next

More information

Chapter 2 Overview - 1 -

Chapter 2 Overview - 1 - Chapter 2 Overview Part 1 (last week) Digital Transmission System Frequencies, Spectrum Allocation Radio Propagation and Radio Channels Part 2 (today) Modulation, Coding, Error Correction Part 3 (next

More information

Physical Layer: Modulation, FEC. Wireless Networks: Guevara Noubir. S2001, COM3525 Wireless Networks Lecture 3, 1

Physical Layer: Modulation, FEC. Wireless Networks: Guevara Noubir. S2001, COM3525 Wireless Networks Lecture 3, 1 Wireless Networks: Physical Layer: Modulation, FEC Guevara Noubir Noubir@ccsneuedu S, COM355 Wireless Networks Lecture 3, Lecture focus Modulation techniques Bit Error Rate Reducing the BER Forward Error

More information

Introduction to Wireless and Mobile Networking. Hung-Yu Wei g National Taiwan University

Introduction to Wireless and Mobile Networking. Hung-Yu Wei g National Taiwan University Introduction to Wireless and Mobile Networking Lecture 3: Multiplexing, Multiple Access, and Frequency Reuse Hung-Yu Wei g National Taiwan University Multiplexing/Multiple Access Multiplexing Multiplexing

More information

About Homework. The rest parts of the course: focus on popular standards like GSM, WCDMA, etc.

About Homework. The rest parts of the course: focus on popular standards like GSM, WCDMA, etc. About Homework The rest parts of the course: focus on popular standards like GSM, WCDMA, etc. Good news: No complicated mathematics and calculations! Concepts: Understanding and remember! Homework: review

More information

Chapter 7. Multiple Division Techniques

Chapter 7. Multiple Division Techniques Chapter 7 Multiple Division Techniques 1 Outline Frequency Division Multiple Access (FDMA) Division Multiple Access (TDMA) Code Division Multiple Access (CDMA) Comparison of FDMA, TDMA, and CDMA Walsh

More information

Lecture 9: Spread Spectrum Modulation Techniques

Lecture 9: Spread Spectrum Modulation Techniques Lecture 9: Spread Spectrum Modulation Techniques Spread spectrum (SS) modulation techniques employ a transmission bandwidth which is several orders of magnitude greater than the minimum required bandwidth

More information

EC 551 Telecommunication System Engineering. Mohamed Khedr

EC 551 Telecommunication System Engineering. Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr 1 Mohamed Khedr., 2008 Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week

More information

Wireless Transmission:

Wireless Transmission: Wireless Transmission: Physical Layer Aspects and Channel Characteristics Frequencies Signals Antenna Signal propagation Multiplexing Modulation Spread spectrum Cellular systems 1 Frequencies for communication

More information

CS263: Wireless Communications and Sensor Networks

CS263: Wireless Communications and Sensor Networks CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 3: Antennas, Propagation, and Spread Spectrum September 30, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Antennas and

More information

Multiple Access Schemes

Multiple Access Schemes Multiple Access Schemes Dr Yousef Dama Faculty of Engineering and Information Technology An-Najah National University 2016-2017 Why Multiple access schemes Multiple access schemes are used to allow many

More information

Outline / Wireless Networks and Applications Lecture 5: Physical Layer Signal Propagation and Modulation

Outline / Wireless Networks and Applications Lecture 5: Physical Layer Signal Propagation and Modulation Outline 18-452/18-750 Wireless Networks and Applications Lecture 5: Physical Layer Signal Propagation and Modulation Peter Steenkiste Carnegie Mellon University Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17/

More information

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth.

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth. UNIT- 7 Radio wave propagation and propagation models EM waves below 2Mhz tend to travel as ground waves, These wave tend to follow the curvature of the earth and lose strength rapidly as they travel away

More information

Multiplexing Module W.tra.2

Multiplexing Module W.tra.2 Multiplexing Module W.tra.2 Dr.M.Y.Wu@CSE Shanghai Jiaotong University Shanghai, China Dr.W.Shu@ECE University of New Mexico Albuquerque, NM, USA 1 Multiplexing W.tra.2-2 Multiplexing shared medium at

More information

SPREAD SPECTRUM (SS) SIGNALS FOR DIGITAL COMMUNICATIONS

SPREAD SPECTRUM (SS) SIGNALS FOR DIGITAL COMMUNICATIONS Dr. Ali Muqaibel SPREAD SPECTRUM (SS) SIGNALS FOR DIGITAL COMMUNICATIONS VERSION 1.1 Dr. Ali Hussein Muqaibel 1 Introduction Narrow band signal (data) In Spread Spectrum, the bandwidth W is much greater

More information

Part 3. Multiple Access Methods. p. 1 ELEC6040 Mobile Radio Communications, Dept. of E.E.E., HKU

Part 3. Multiple Access Methods. p. 1 ELEC6040 Mobile Radio Communications, Dept. of E.E.E., HKU Part 3. Multiple Access Methods p. 1 ELEC6040 Mobile Radio Communications, Dept. of E.E.E., HKU Review of Multiple Access Methods Aim of multiple access To simultaneously support communications between

More information

Wireless Transmission & Media Access

Wireless Transmission & Media Access Wireless Transmission & Media Access Signals and Signal Propagation Multiplexing Modulation Media Access 1 Significant parts of slides are based on original material by Prof. Dr.-Ing. Jochen Schiller,

More information

Admin. OFDM, Mobile Software Development Framework. Recap. Multiple Carrier Modulation. Benefit of Symbol Rate on ISI.

Admin. OFDM, Mobile Software Development Framework. Recap. Multiple Carrier Modulation. Benefit of Symbol Rate on ISI. Admin. OFDM, Mobile Software Development Framework Homework to be posted by Friday Start to think about project 9/7/01 Y. Richard Yang 1 Recap Inter-Symbol Interference (ISI) Handle band limit ISI Handle

More information

Digital Communication System

Digital Communication System Digital Communication System Purpose: communicate information at required rate between geographically separated locations reliably (quality) Important point: rate, quality spectral bandwidth, power requirements

More information

ICT 5305 Mobile Communications. Lecture - 3 April Dr. Hossen Asiful Mustafa

ICT 5305 Mobile Communications. Lecture - 3 April Dr. Hossen Asiful Mustafa ICT 5305 Mobile Communications Lecture - 3 April 2016 Dr. Hossen Asiul Mustaa Advanced Phase Shit Keying Q BPSK (Binary Phase Shit Keying): bit value 0: sine wave bit value 1: inverted sine wave very simple

More information

Simple Algorithm in (older) Selection Diversity. Receiver Diversity Can we Do Better? Receiver Diversity Optimization.

Simple Algorithm in (older) Selection Diversity. Receiver Diversity Can we Do Better? Receiver Diversity Optimization. 18-452/18-750 Wireless Networks and Applications Lecture 6: Physical Layer Diversity and Coding Peter Steenkiste Carnegie Mellon University Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17/

More information

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont.

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont. TSTE17 System Design, CDIO Lecture 5 1 General project hints 2 Project hints and deadline suggestions Required documents Modulation, cont. Requirement specification Channel coding Design specification

More information

Point-to-Point Communications

Point-to-Point Communications Point-to-Point Communications Key Aspects of Communication Voice Mail Tones Alphabet Signals Air Paper Media Language English/Hindi English/Hindi Outline of Point-to-Point Communication 1. Signals basic

More information

Spread Spectrum Techniques

Spread Spectrum Techniques 0 Spread Spectrum Techniques Contents 1 1. Overview 2. Pseudonoise Sequences 3. Direct Sequence Spread Spectrum Systems 4. Frequency Hopping Systems 5. Synchronization 6. Applications 2 1. Overview Basic

More information

Receiver Designs for the Radio Channel

Receiver Designs for the Radio Channel Receiver Designs for the Radio Channel COS 463: Wireless Networks Lecture 15 Kyle Jamieson [Parts adapted from C. Sodini, W. Ozan, J. Tan] Today 1. Delay Spread and Frequency-Selective Fading 2. Time-Domain

More information

ECS455: Chapter 4 Multiple Access

ECS455: Chapter 4 Multiple Access ECS455: Chapter 4 Multiple Access 4.4 DS/SS 1 Dr.Prapun Suksompong prapun.com/ecs455 Office Hours: BKD 3601-7 Tuesday 9:30-10:30 Tuesday 13:30-14:30 Thursday 13:30-14:30 Spread spectrum (SS) Historically

More information

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss Introduction Small-scale fading is used to describe the rapid fluctuation of the amplitude of a radio

More information

Adoption of this document as basis for broadband wireless access PHY

Adoption of this document as basis for broadband wireless access PHY Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Proposal on modulation methods for PHY of FWA 1999-10-29 Source Jay Bao and Partha De Mitsubishi Electric ITA 571 Central

More information

2: Diversity. 2. Diversity. Some Concepts of Wireless Communication

2: Diversity. 2. Diversity. Some Concepts of Wireless Communication 2. Diversity 1 Main story Communication over a flat fading channel has poor performance due to significant probability that channel is in a deep fade. Reliability is increased by providing more resolvable

More information

Wireless Channel Propagation Model Small-scale Fading

Wireless Channel Propagation Model Small-scale Fading Wireless Channel Propagation Model Small-scale Fading Basic Questions T x What will happen if the transmitter - changes transmit power? - changes frequency? - operates at higher speed? Transmit power,

More information

Mobile Communications Chapter 2: Wireless Transmission

Mobile Communications Chapter 2: Wireless Transmission Mobile Communications Chapter 2: Wireless Transmission Frequencies Signals, antennas, signal propagation, MIMO Multiplexing, Cognitive Radio Spread spectrum, modulation Cellular systems 2.1 Frequencies

More information

CH 5. Air Interface of the IS-95A CDMA System

CH 5. Air Interface of the IS-95A CDMA System CH 5. Air Interface of the IS-95A CDMA System 1 Contents Summary of IS-95A Physical Layer Parameters Forward Link Structure Pilot, Sync, Paging, and Traffic Channels Channel Coding, Interleaving, Data

More information

King Fahd University of Petroleum & Minerals Computer Engineering Dept

King Fahd University of Petroleum & Minerals Computer Engineering Dept King Fahd University of Petroleum & Minerals Computer Engineering Dept COE 543 Mobile and Wireless Networks Term 0 Dr. Ashraf S. Hasan Mahmoud Rm -148-3 Ext. 174 Email: ashraf@ccse.kfupm.edu.sa 4//003

More information

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Lecture 3: Wireless Physical Layer: Modulation Techniques Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Modulation We saw a simple example of amplitude modulation in the last lecture Modulation how

More information

Chapter 1 Acknowledgment:

Chapter 1 Acknowledgment: Chapter 1 Acknowledgment: This material is based on the slides formatted by Dr Sunilkumar S. Manvi and Dr Mahabaleshwar S. Kakkasageri, the authors of the textbook: Wireless and Mobile Networks, concepts

More information

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang Wireless Communication: Concepts, Techniques, and Models Hongwei Zhang http://www.cs.wayne.edu/~hzhang Outline Digital communication over radio channels Channel capacity MIMO: diversity and parallel channels

More information

Wireless PHY: Modulation and Demodulation

Wireless PHY: Modulation and Demodulation Wireless PHY: Modulation and Demodulation Y. Richard Yang 09/11/2012 Outline Admin and recap Amplitude demodulation Digital modulation 2 Admin Assignment 1 posted 3 Recap: Modulation Objective o Frequency

More information

Project = An Adventure : Wireless Networks. Lecture 4: More Physical Layer. What is an Antenna? Outline. Page 1

Project = An Adventure : Wireless Networks. Lecture 4: More Physical Layer. What is an Antenna? Outline. Page 1 Project = An Adventure 18-759: Wireless Networks Checkpoint 2 Checkpoint 1 Lecture 4: More Physical Layer You are here Done! Peter Steenkiste Departments of Computer Science and Electrical and Computer

More information

Outline / Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing. Cartoon View 1 A Wave of Energy

Outline / Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing. Cartoon View 1 A Wave of Energy Outline 18-452/18-750 Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing Peter Steenkiste Carnegie Mellon University Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17/

More information

CS434/534: Topics in Networked (Networking) Systems

CS434/534: Topics in Networked (Networking) Systems CS434/534: Topics in Networked (Networking) Systems Wireless Foundation: Wireless Mesh Networks Yang (Richard) Yang Computer Science Department Yale University 08A Watson Email: yry@cs.yale.edu http://zoo.cs.yale.edu/classes/cs434/

More information

CIS 632 / EEC 687 Mobile Computing. Mobile Communications (for Dummies) Chansu Yu. Contents. Modulation Propagation Spread spectrum

CIS 632 / EEC 687 Mobile Computing. Mobile Communications (for Dummies) Chansu Yu. Contents. Modulation Propagation Spread spectrum CIS 632 / EEC 687 Mobile Computing Mobile Communications (for Dummies) Chansu Yu Contents Modulation Propagation Spread spectrum 2 1 Digital Communication 1 0 digital signal t Want to transform to since

More information

Announcements : Wireless Networks Lecture 3: Physical Layer. Bird s Eye View. Outline. Page 1

Announcements : Wireless Networks Lecture 3: Physical Layer. Bird s Eye View. Outline. Page 1 Announcements 18-759: Wireless Networks Lecture 3: Physical Layer Please start to form project teams» Updated project handout is available on the web site Also start to form teams for surveys» Send mail

More information

CS434/534: Topics in Networked (Networking) Systems

CS434/534: Topics in Networked (Networking) Systems CS434/534: Topics in Networked (Networking) Systems Wireless Foundation: Modulation and Demodulation Yang (Richard) Yang Computer Science Department Yale University 208A Watson Email: yry@cs.yale.edu http://zoo.cs.yale.edu/classes/cs434/

More information

Spread Spectrum. Chapter 18. FHSS Frequency Hopping Spread Spectrum DSSS Direct Sequence Spread Spectrum DSSS using CDMA Code Division Multiple Access

Spread Spectrum. Chapter 18. FHSS Frequency Hopping Spread Spectrum DSSS Direct Sequence Spread Spectrum DSSS using CDMA Code Division Multiple Access Spread Spectrum Chapter 18 FHSS Frequency Hopping Spread Spectrum DSSS Direct Sequence Spread Spectrum DSSS using CDMA Code Division Multiple Access Single Carrier The traditional way Transmitted signal

More information

CHAPTER 2. Instructor: Mr. Abhijit Parmar Course: Mobile Computing and Wireless Communication ( )

CHAPTER 2. Instructor: Mr. Abhijit Parmar Course: Mobile Computing and Wireless Communication ( ) CHAPTER 2 Instructor: Mr. Abhijit Parmar Course: Mobile Computing and Wireless Communication (2170710) Syllabus Chapter-2.4 Spread Spectrum Spread Spectrum SS was developed initially for military and intelligence

More information

CH 4. Air Interface of the IS-95A CDMA System

CH 4. Air Interface of the IS-95A CDMA System CH 4. Air Interface of the IS-95A CDMA System 1 Contents Summary of IS-95A Physical Layer Parameters Forward Link Structure Pilot, Sync, Paging, and Traffic Channels Channel Coding, Interleaving, Data

More information

A Guide. Wireless Network Library Ultra Wideband (UWB)

A Guide. Wireless Network Library Ultra Wideband (UWB) A Guide to the Wireless Network Library Ultra Wideband () Conforming to IEEE P802.15-02/368r5-SG3a IEEE P802.15-3a/541r1 IEEE P802.15-04/0137r3 IEEE P802.15.3/D15 SystemView by ELANIX Copyright 1994-2005,

More information

Objectives. Presentation Outline. Digital Modulation Revision

Objectives. Presentation Outline. Digital Modulation Revision Digital Modulation Revision Professor Richard Harris Objectives To identify the key points from the lecture material presented in the Digital Modulation section of this paper. What is in the examination

More information

Lecture #2. EE 471C / EE 381K-17 Wireless Communication Lab. Professor Robert W. Heath Jr.

Lecture #2. EE 471C / EE 381K-17 Wireless Communication Lab. Professor Robert W. Heath Jr. Lecture #2 EE 471C / EE 381K-17 Wireless Communication Lab Professor Robert W. Heath Jr. Preview of today s lecture u Introduction to digital communication u Components of a digital communication system

More information

Wireless Communication Fundamentals Feb. 8, 2005

Wireless Communication Fundamentals Feb. 8, 2005 Wireless Communication Fundamentals Feb. 8, 005 Dr. Chengzhi Li 1 Suggested Reading Chapter Wireless Communications by T. S. Rappaport, 001 (version ) Rayleigh Fading Channels in Mobile Digital Communication

More information

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology CSC344 Wireless and Mobile Computing Department of Computer Science COMSATS Institute of Information Technology Wireless Physical Layer Concepts Part III Noise Error Detection and Correction Hamming Code

More information

Page 1. Outline : Wireless Networks Lecture 6: Final Physical Layer. Direct Sequence Spread Spectrum (DSSS) Spread Spectrum

Page 1. Outline : Wireless Networks Lecture 6: Final Physical Layer. Direct Sequence Spread Spectrum (DSSS) Spread Spectrum Outline 18-759 : Wireless Networks Lecture 6: Final Physical Layer Peter Steenkiste Dina Papagiannaki Spring Semester 2009 http://www.cs.cmu.edu/~prs/wireless09/ Peter A. Steenkiste 1 RF introduction Modulation

More information

Digital Modulation Schemes

Digital Modulation Schemes Digital Modulation Schemes 1. In binary data transmission DPSK is preferred to PSK because (a) a coherent carrier is not required to be generated at the receiver (b) for a given energy per bit, the probability

More information

Difference Between. 1. Old connection is broken before a new connection is activated.

Difference Between. 1. Old connection is broken before a new connection is activated. Difference Between Hard handoff Soft handoff 1. Old connection is broken before a new connection is activated. 1. New connection is activated before the old is broken. 2. "break before make" connection

More information

Satellite Navigation Principle and performance of GPS receivers

Satellite Navigation Principle and performance of GPS receivers Satellite Navigation Principle and performance of GPS receivers AE4E08 GPS Block IIF satellite Boeing North America Christian Tiberius Course 2010 2011, lecture 3 Today s topics Introduction basic idea

More information

Mobile Communications Chapter 2: Wireless Transmission

Mobile Communications Chapter 2: Wireless Transmission Prof. Dr.-Ing Jochen H. Schiller Inst. of Computer Science Freie Universität Berlin Germany Mobile Communications Chapter 2: Wireless Transmission Frequencies Signals, antennas, signal propagation, MIMO

More information

SC - Single carrier systems One carrier carries data stream

SC - Single carrier systems One carrier carries data stream Digital modulation SC - Single carrier systems One carrier carries data stream MC - Multi-carrier systems Many carriers are used for data transmission. Data stream is divided into sub-streams and each

More information

Wireless PHY: Modulation and Demodulation

Wireless PHY: Modulation and Demodulation Wireless PHY: Modulation and Demodulation Y. Richard Yang 09/6/2012 Outline Admin and recap Frequency domain examples Basic concepts of modulation Amplitude modulation Amplitude demodulation frequency

More information

Digital Communication System

Digital Communication System Digital Communication System Purpose: communicate information at certain rate between geographically separated locations reliably (quality) Important point: rate, quality spectral bandwidth requirement

More information

CHAPTER 5 DIVERSITY. Xijun Wang

CHAPTER 5 DIVERSITY. Xijun Wang CHAPTER 5 DIVERSITY Xijun Wang WEEKLY READING 1. Goldsmith, Wireless Communications, Chapters 7 2. Tse, Fundamentals of Wireless Communication, Chapter 3 2 FADING HURTS THE RELIABILITY n The detection

More information

Assignment 1: Solutions to Problems on Direct Sequence Spread Spectrum

Assignment 1: Solutions to Problems on Direct Sequence Spread Spectrum G. S. Sanyal School of Telecommunications Indian Institute of Technology Kharagpur MOOC: Spread Spectrum Communications & Jamming Assignment 1: Solutions to Problems on Direct Sequence Spread Spectrum

More information

MODULATION AND MULTIPLE ACCESS TECHNIQUES

MODULATION AND MULTIPLE ACCESS TECHNIQUES 1 MODULATION AND MULTIPLE ACCESS TECHNIQUES Networks and Communication Department Dr. Marwah Ahmed Outlines 2 Introduction Digital Transmission Digital Modulation Digital Transmission of Analog Signal

More information

<3rd generation CDMA wireless systems>

<3rd generation CDMA wireless systems> Page 1 Overview What is 3G? A brief overview of IS95 Key design choices for CDMA 3G systems. Bandwidth Modulation Coding Power Control

More information

Testing c2k Mobile Stations Using a Digitally Generated Faded Signal

Testing c2k Mobile Stations Using a Digitally Generated Faded Signal Testing c2k Mobile Stations Using a Digitally Generated Faded Signal Agenda Overview of Presentation Fading Overview Mitigation Test Methods Agenda Fading Presentation Fading Overview Mitigation Test Methods

More information

Lecture 3 Cellular Systems

Lecture 3 Cellular Systems Lecture 3 Cellular Systems I-Hsiang Wang ihwang@ntu.edu.tw 3/13, 2014 Cellular Systems: Additional Challenges So far: focus on point-to-point communication In a cellular system (network), additional issues

More information

Wireless Networks: An Introduction

Wireless Networks: An Introduction Wireless Networks: An Introduction Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Cellular Networks WLAN WPAN Conclusions Wireless Networks:

More information

Chapter 2 PHYSICAL AND LINK LAYER

Chapter 2 PHYSICAL AND LINK LAYER Chapter 2 PHYSICAL AND LINK LAYER Distributed Computing Group Mobile Computing Winter 2005 / 2006 Overview Frequencies Signals Antennas Signal propagation Multiplexing Spread spectrum CDMA Modulation Distributed

More information

Outline. Wireless PHY: Modulation and Demodulation. Recap: Modulation. Admin. Recap: Demod of AM. Page 1. Recap: Amplitude Modulation (AM)

Outline. Wireless PHY: Modulation and Demodulation. Recap: Modulation. Admin. Recap: Demod of AM. Page 1. Recap: Amplitude Modulation (AM) Outline Wireless PHY: Modulation and Demodulation Admin and recap Amplitude demodulation Digital modulation Y. Richard Yang 9// Admin Assignment posted Recap: Modulation Objective o Frequency assignment

More information

Wireless Network Security Spring 2016

Wireless Network Security Spring 2016 Wireless Network Security Spring 2016 Patrick Tague Class #4 Physical Layer Threats; Jamming 2016 Patrick Tague 1 Class #4 PHY layer basics and threats Jamming 2016 Patrick Tague 2 PHY 2016 Patrick Tague

More information

Spread Spectrum (SS) is a means of transmission in which the signal occupies a

Spread Spectrum (SS) is a means of transmission in which the signal occupies a SPREAD-SPECTRUM SPECTRUM TECHNIQUES: A BRIEF OVERVIEW SS: AN OVERVIEW Spread Spectrum (SS) is a means of transmission in which the signal occupies a bandwidth in excess of the minimum necessary to send

More information

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system 1 2 TSTE17 System Design, CDIO Introduction telecommunication OFDM principle How to combat ISI How to reduce out of band signaling Practical issue: Group definition Project group sign up list will be put

More information

EE359 Lecture 18 Outline

EE359 Lecture 18 Outline EE359 Lecture 18 Outline Announcements HW due Fri; last HW posted, due Friday 12/9 at 4 pm (no late HWs) MIMO decoder supplemental handout posted Lectures net week are Monday 12/5 12-1:20 (Thornton 102

More information

Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels

Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels Prashanth G S 1 1Department of ECE, JNNCE, Shivamogga ---------------------------------------------------------------------***----------------------------------------------------------------------

More information

Week 2. Topics in Wireless Systems EE584-F 03 9/9/2003. Copyright 2003 Stevens Institute of Technology - All rights reserved

Week 2. Topics in Wireless Systems EE584-F 03 9/9/2003. Copyright 2003 Stevens Institute of Technology - All rights reserved Week Topics in Wireless Systems 43 0 th Generation Wireless Systems Mobile Telephone Service Few, high-power, long-range basestations -> No sharing of spectrum -> few users -> expensive 44 Cellular Systems

More information

Lecture 7: Centralized MAC protocols. Mythili Vutukuru CS 653 Spring 2014 Jan 27, Monday

Lecture 7: Centralized MAC protocols. Mythili Vutukuru CS 653 Spring 2014 Jan 27, Monday Lecture 7: Centralized MAC protocols Mythili Vutukuru CS 653 Spring 2014 Jan 27, Monday Centralized MAC protocols Previous lecture contention based MAC protocols, users decide who transmits when in a decentralized

More information

Wireless Networked Systems. Lec #1b: PHY Basics

Wireless Networked Systems. Lec #1b: PHY Basics Wireless Networked Systems CS 795/895 - Spring 2013 Lec #1b: PHY Basics Tamer Nadeem Dept. of Computer Science Wireless Communication Page 2 Spring 2013 CS 795/895 - Wireless Networked Systems Radio Signal

More information

Multiple Access System

Multiple Access System Multiple Access System TDMA and FDMA require a degree of coordination among users: FDMA users cannot transmit on the same frequency and TDMA users can transmit on the same frequency but not at the same

More information

WIRELESS COMMUNICATIONS PRELIMINARIES

WIRELESS COMMUNICATIONS PRELIMINARIES WIRELESS COMMUNICATIONS Preliminaries Radio Environment Modulation Performance PRELIMINARIES db s and dbm s Frequency/Time Relationship Bandwidth, Symbol Rate, and Bit Rate 1 DECIBELS Relative signal strengths

More information

Fundamentals of Digital Communication

Fundamentals of Digital Communication Fundamentals of Digital Communication Network Infrastructures A.A. 2017/18 Digital communication system Analog Digital Input Signal Analog/ Digital Low Pass Filter Sampler Quantizer Source Encoder Channel

More information

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE Overview 18-759: Wireless Networks Lecture 9: OFDM, WiMAX, LTE Dina Papagiannaki & Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2009 http://www.cs.cmu.edu/~prs/wireless09/

More information

CDMA Principle and Measurement

CDMA Principle and Measurement CDMA Principle and Measurement Concepts of CDMA CDMA Key Technologies CDMA Air Interface CDMA Measurement Basic Agilent Restricted Page 1 Cellular Access Methods Power Time Power Time FDMA Frequency Power

More information

Wireless Transmission in Cellular Networks

Wireless Transmission in Cellular Networks Wireless Transmission in Cellular Networks Frequencies Signal propagation Signal to Interference Ratio Channel capacity (Shannon) Multipath propagation Multiplexing Spatial reuse in cellular systems Antennas

More information

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates?

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates? Page 1 Outline 18-452/18-750 Wireless Networks and Applications Lecture 7: Physical Layer OFDM Peter Steenkiste Carnegie Mellon University RF introduction Modulation and multiplexing Channel capacity Antennas

More information

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P.

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. The Radio Channel COS 463: Wireless Networks Lecture 14 Kyle Jamieson [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. Steenkiste] Motivation The radio channel is what limits most radio

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2005 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM)

Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM) Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM) 1 4G File transfer at 10 Mbps High resolution 1024 1920 pixel hi-vision picture

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2003 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Wireless Physical Layer Concepts: Part III

Wireless Physical Layer Concepts: Part III Wireless Physical Layer Concepts: Part III Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

September, Submission. September, 1998

September, Submission. September, 1998 Summary The CCK MBps Modulation for IEEE 802. 2.4 GHz WLANs Mark Webster and Carl Andren Harris Semiconductor CCK modulation will enable MBps operation in the 2.4 GHz ISM band An interoperable preamble

More information

Chapter 3. System Theory and Technologies. 3.1 Physical Layer. ... How to transport digital symbols...?

Chapter 3. System Theory and Technologies. 3.1 Physical Layer. ... How to transport digital symbols...? Chapter 3 System Theory and Technologies 1 r... How to transport digital symbols...? 3.1.1 Introduction 3.1. Symbols, Bits and Baud 3.1.3 Wired Physical Layers 3.1.4 Radio based physical layer electromagnetic

More information

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013 ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013 Lecture 17 Today: Spread Spectrum: (1) Frequency Hopping, (2) Direct Sequence Reading: Today Molisch 18.1, 18.2. Thu: MUSE Channel

More information

UNIK4230: Mobile Communications. Abul Kaosher

UNIK4230: Mobile Communications. Abul Kaosher UNIK4230: Mobile Communications Abul Kaosher abul.kaosher@nsn.com Multiple Access Multiple Access Introduction FDMA (Frequency Division Multiple Access) TDMA (Time Division Multiple Access) CDMA (Code

More information

CSCD 433/533 Wireless Networks

CSCD 433/533 Wireless Networks CSCD 433/533 Wireless Networks Lecture 8 Physical Layer, and 802.11 b,g,a,n Differences Winter 2017 1 Topics Spread Spectrum in General Differences between 802.11 b,g,a and n Frequency ranges Speed DSSS

More information