Status of the ESS Accelerator Workpackage

Size: px
Start display at page:

Download "Status of the ESS Accelerator Workpackage"

Transcription

1 Status of the ESS Accelerator Workpackage Peter McIntosh STFC Daresbury Laboratory UK ESS Interactions and Opportunities Rutherford Appleton Laboratory 3 Dec 2014

2 The ESS Linac The European Spallation Source (ESS) will house the most powerful proton linac ever built: Average beam power of 5 MW. Peak beam power of 125 MW Acceleration to 2 GeV Peak proton beam current of 62.5 ma Pulse length of 2.86 ms at a rate of 14 Hz (4% duty factor) 97% of the acceleration is provided by superconducting cavities. The linac will require over 150 individual high power RF sources: With 80% of the RF power sources requiring over 1.1 MW of peak RF power. Expect to cost over 200 M on the RF system alone! 2

3 Top-Level ESS Project Schedule Start Of Construction Construction End Of Construction 3 ESS Program Conventional Facilities Accelerator Target Neutron Scattering Systems Integrated Control Systems Design Design Construction Building Commissioning Design & Prototyping Procurement Design Procurement Concept Devlopment Design Design Development Ground Break Installing Commissioning Licensing Preliminary Design Acccelerator Bldngs Detailed Design Accelerator Bldngs Construction Installation Commissioning Installation Commissioning Commissioning First installations (of Machine Systems) Earth Works G01 Linac Tunnel G02 Klystron Bldng Cryo Kompressor Bldng Commissioning First Neutrons Machine 2.0 GeV Concluding Initial Operation Accelerator, Target, Aux, Office, Lab & Instr Bldngs* Medium Beta Fabrication Spoke Series Procurement High Beta Fabrication 570 MeV Installation Phase 1 CS Network Operational Instrument Selection - Decision 3 Instruments ready for Comm. Innstr 16 Constr & Inst. 1st Call for User Proposals Installed for 2.0 GeV Installation Phase 2 Innstr 16 Cold Comm. 16 Instr

4 ESS Linac Evolution

5 New Baseline New Baseline Headline Parameters: 5 MW Linac 2.0 GeV Energy (30 elliptical cryomodules) 62.5 ma beam current 4% duty factor (2.86 ms pulse length, 14 Hz) First beam by 2019 (1.0 MW at 570 MeV) The new baseline was achieved by: Increasing beam current by 25% Increasing Peak Surface Field by 12% Setting High Beta b g to 0.86 Adopting maximum voltage profile Adopting a uniform lattice cell length in the elliptical section to permit design flexibility schedule flexibility. 5

6 Linac Design Choices User facilities demand high availability (>95%) ESS will limit the peak beam current below 65 ma Linac Energy > 2 GeV to accomplish 125 MW peak power. Front end frequency is 352 MHz (CERN Standard) High energy section is at 704 MHz 6

7 Ion Source and NC Linac The RFQ and DTL will be similar to the CERN Linac4 design. The RFQ: 4.5 m long Energy of 3.6 MeV The DTL: Will consist of five tanks Tank length ~7.5 m Final energy of 88 MeV Six klystrons: Operating at 352 MHz Max. saturated power of 2.8 MW Duty factor of 4% Prototype proton source operational, and under further development, at ESS-Bilbao (Spain). Output Energy 75 kev. Design exists for ESS RFQ similar to 5m long IPHI RFQ at CEA-Saclay (France). Energy 75 kev -3.6 MeV. Picture from CERN Linac4 DTL. DTL design work at ESS and INFN-Legnaro (Italy), Energy MeV. 7 Design work at ESS-Bilbao for MEBT with instrumentation, chopping and collimation.

8 Spoke Cavities Superconducting double-spoke accelerating cavity, for particles with b=0.5, energy MeV. ESS will be the first accelerator to use 352 MHz double spoke cavity resonators. Design performed by CNRS-IN2P3 (France). 28 cavities with an accelerating gradient of 9 MV/m, requiring 320 kw peak power. What type of power source to choose? Tetrode Klystron IOT Solid State First IN2P3 in Oct

9 Elliptical Cavities Universal Cryomodule: Cryomodules are expensive and difficult to fabricate. Pick cavity b and number of cells: Optimize power transfer Optimize length Power in couplers is limited to 1200 MW (peak). Cavity and cryomodule design well advanced at CEA-Saclay (France). Medium b = cell cavities Cavity length = 0.86 m 32 cavities in 8 cryomodules Maximum peak RF power = 800 kw High b = cell cavities Cavity length = 0.92 m 88 cavities in 22 cryomodules Maximum peak RF power = 1100 kw 9

10 10 Universal Cryomodule

11 First Test of ESS high-b Prototype Cavity Expected in vertical cryostat Rs = 9 nw Test limited by RF amplifier (saturation at 190 W) and high X-ray level Specification in cryomodule No quench observed Vertical test done the 22th of May 2014 at CEA Saclay Next plans: Measurement of resonant frequency of 1st bandpass mode at 2K Measurement of resonant frequency of HOM at 2K If possible, increase accelerating field up to the quench limit Perform heat treatment at CERN at 650 o C under vacuum 11 11

12 Spoke Linac (352 MHz) RF System Layout 26 Double Spoke cavities Power range kw Combination of two tetrodes Other options: Solid State Amplifiers Large power supply (330 kva) to supply 8 stations (16 tetrodes) 12

13 ESS Linac RF System 13 Each ESS cavity to be individually powered: 36 med-b amplifiers (klystrons) 84 high-b amplifiers (IOTs/klystrons) Total 120 high power RF amplifier systems delivering 1.1 MW each! 4 amplifiers per modulator anticipated.

14 Elliptical (704 MHz) RF System Layout Klystrons Racks and Controls Modulator WR1150 Distribution Cells of 8 klystrons for Med-b 10.5 Cells of 8 klystrons (IOTs) for High-b

15 ESS Cryogenics Three cryogenic plants: Accelerator: K, K - plus 8 g/s helium liquefaction Target: - ~ 20 16K Test & Instruments - ~ 250 W@ 4.5 K K Distribution system: Permits independent cool down & warm up of cryomodules, likely IKC Cryoplant orders to be placed in 2015 with operations starting in 2017/18 Valve box Cryoline Jumper connection Cryomodule 15

16 ESS Beam Diagnostics Beam Loss Monitor Beam Current Monitor Beam Position Monitor Slit (H & V) Grid (H & V) Faraday Cup Wire Scanner Non-Invasive Profile Monitor Optical Imaging Halo Monitor LEBT MEBT DTL Spoke Med-b High-b Upgrade High-b A2T DumpLine TOTAL Day 1 Day 1+ Note: These numbers were the result of an scope reduction from the initial diagnostics to meet budget targets. Still need to be confirmed by beam physics studies and commissioning planning. Bunch Shape Monitor 16

17 Diagnostics In-Kind Status BLM (IC) BCM BPM FC EMIT WS/Halo IPM Lumi/BIF BSM Imaging SEM TC LEBT MEBT DTL Spoke MBE HBE HEBT A2T BLD procurement with CERN DAQ BLD Bilbao DAQ BLD Bilbao Legnaro DAQ BLD procurement Bilbao DAQ BLD Saclay Bilbao DAQ Saclay Bilbao BLD Bilbao DAQ BLD DAQ BLD Bilbao DAQ BLD Bilbao DAQ Bilbao BLD DAQ BLD DAQ BLD DAQ Overarching agreement exists, technical details/specification to be refined Discussions with potential partner ongoing (e.g. DESY, Trieste, Legnaro, CI, RAL/ISIS, PSI, GSI ) 17

18 Linac Warm Section Layouts BPMs BPMs BSM BCT WS BIF BPMs WS BPMs IPM 18

19 Diagnostics Prototypes Position Monitors Current Monitors 19

20 ESS Integrated Control System The ESS Control System is a complex network of hardware, software, and configuration databases that integrate the operations of the Accelerator, Target, Instruments and Conventional Facility infrastructure. Hardware platforms MicroTCA High performance applications such as fast signal processing EtherCAT Distributed, khz range acquisition PLC Low-end I/O, interlocking, etc. Software EPICS Used for control of the entire facility(some offline use of LabVIEW) CS-Studio Generic user interface tool (GUI, Alarms, Archiving) DISCS Distributed Services for Controls (databases, configuration, ) 20 20/

21 ESS Control System Work Packages The ESS Cost Book lists 39 separate control system work packages, 30 of which include provision for a significant In-Kind contribution. In addition, many other technical work packages either include a requirement for a control system interface or are interested in adding this as an option. The main areas covered are: Application software Development of application, frameworks and toolkits Core Software Databases, software tools and services Core Hardware Development of timing system and control boxes Equipment Supply of computer/electronics hardware Infrastructure Control room, data centre and network equipment Integration Support Integration of Accelerator, Target and Conventional Facilities 21 21/

22 What s Happening Now? Accelerator areas being investigated: RF: SRF elliptical cavity procurement (med-b and high-b), test and delivery: STFC ASTeC/Technology. RF Distribution systems: Huddersfield University. Diagnostics: Target diagnostic imaging: Liverpool University, STFC ISIS Other diagnostic systems being discussed: Liverpool University, STFC Technology/ISIS. Vacuum: Vacuum component test facilities (incl. Controls): STFC ASTeC/Technology. Design and supply of Linac Warm Units (incl. Controls): STFC ASTeC/Technology. Controls: EPICS for Freescale PowerPC P2020 FPGA controllers: STFC Technology Timing and Event EPICS applications: STFC Technology Other control system areas: STFC Technology/ISIS 22

23 23 RF & Vacuum

24 Diagnostics & RF Targetry Beam Imaging RF Distribution Spoke Distribution Elliptical Distribution C Welsch (Liverpool University & opac) 24 R Edgecock (Huddersfield University)

25 UK Opportunities RF: High power amplifiers Klystrons, IOT s or SSA s. RF distribution systems. RF control systems. Cryogenics: Cryogenic distribution systems. Diagnostics: Diagnostic device production (wide variety). DAQ/Interfacing. Vacuum: Pumps, controllers, gauges Controls: I/O controllers, DAQ units, software development. Generic: Cabling 25

26 ACCSYS update in-kind discussions Potential partners identified for 47% of the total planned/potential in-kind value, contracting under way! Planned/potential in-kind is 78% of accelerator budget Many activities start 2014, reflecting the importance of reaching agreements soon 26 Håkan Danared, ACCSYS in-kind manager 26

The European Spallation Source. Dave McGinnis Chief Engineer ESS\Accelerator Division IVEC 2013

The European Spallation Source. Dave McGinnis Chief Engineer ESS\Accelerator Division IVEC 2013 The European Spallation Source Dave McGinnis Chief Engineer ESS\Accelerator Division IVEC 2013 Overview The European Spallation Source (ESS) will house the most powerful proton linac ever built. The average

More information

Strategy for the engineering integration of the ESS accelerator

Strategy for the engineering integration of the ESS accelerator Applications of Nuclear Techniques (CRETE15) International Journal of Modern Physics: Conference Series Vol. 44 (2016) 1660208 (7 pages) The Author(s) DOI: 10.1142/S2010194516602088 Nikolaos Gazis nick.gazis@esss.se

More information

Beam Loss Monitoring (BLM) System for ESS

Beam Loss Monitoring (BLM) System for ESS Beam Loss Monitoring (BLM) System for ESS Lali Tchelidze European Spallation Source ESS AB lali.tchelidze@esss.se March 2, 2011 Outline 1. BLM Types; 2. BLM Positioning and Calibration; 3. BLMs as part

More information

ESS RF Development at Uppsala University. Roger Ruber for the FREIA team Uppsala University

ESS RF Development at Uppsala University. Roger Ruber for the FREIA team Uppsala University ESS RF Development at Uppsala University Roger Ruber for the FREIA team Uppsala University ESS-UU Collaboration 2009 ESS and UU start discussion on 704 MHz RF development proposal for ESS dedicated test

More information

FREIA Facility for Research Instrumentation and Accelerator Development Infrastructure and Control Architecture

FREIA Facility for Research Instrumentation and Accelerator Development Infrastructure and Control Architecture FREIA Facility for Research Instrumentation and Accelerator Development Infrastructure and Control Architecture Konrad Gajewski 10 September 2013, Uppsala Why FREIA? Several circumstances test stand for

More information

Plans for the ESS Linac. Steve Peggs, ESS for the ESS collaboration

Plans for the ESS Linac. Steve Peggs, ESS for the ESS collaboration Plans for the ESS Linac, ESS for the ESS collaboration 8 Work Packages Romuald Duperrier (30 years ago) Cristina Oyon Josu Eguia Work Packages in the Design Upgrade Mats Lindroos 1. Management Coordination

More information

Interfaces with MPS/PSS

Interfaces with MPS/PSS Interfaces with / European Spallation Source Accelerator Division TB, 16 November 2016, Lund, Sweden / interfaces 1/21 Outline 1 Introduction 2 3 4 Conclusions / interfaces 2/21 Outline 1 Introduction

More information

Commissioning of the ALICE SRF Systems at Daresbury Laboratory Alan Wheelhouse, ASTeC, STFC Daresbury Laboratory ESLS RF 1 st 2 nd October 2008

Commissioning of the ALICE SRF Systems at Daresbury Laboratory Alan Wheelhouse, ASTeC, STFC Daresbury Laboratory ESLS RF 1 st 2 nd October 2008 Commissioning of the ALICE SRF Systems at Daresbury Laboratory Alan Wheelhouse, ASTeC, STFC Daresbury Laboratory ESLS RF 1 st 2 nd October 2008 Overview ALICE (Accelerators and Lasers In Combined Experiments)

More information

ESS Beam Diagnostics Overview. Andreas Jansson, ESS/BI Group IBIC12, Tsukuba, Japan

ESS Beam Diagnostics Overview. Andreas Jansson, ESS/BI Group IBIC12, Tsukuba, Japan ESS Beam Diagnostics Overview Andreas Jansson, ESS/BI Group IBIC12, Tsukuba, Japan 2012-10-3 Overview Overview of ESS Project Baseline diagnostics layout Bread-and-butter diagnostics systems Some particular

More information

ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory

ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory ERL 09 8 th 12 th June 2009 ALICE Accelerators and Lasers In Combined Experiments Brief Description ALICE Superconducting

More information

INSTRUMENTATION AND CONTROL SYSTEM FOR THE INTERNATIONAL ERL CRYOMODULE

INSTRUMENTATION AND CONTROL SYSTEM FOR THE INTERNATIONAL ERL CRYOMODULE INSTRUMENTATION AND CONTROL SYSTEM FOR THE INTERNATIONAL ERL CRYOMODULE S. M. Pattalwar, R. Bate, G. Cox, P.A. McIntosh and A. Oates, STFC, Daresbury Laboratory, Warrington, UK Abstract ALICE is a prototype

More information

DEVELOPMENTS AND PROGRESS WITH ESS ELLIPTICAL CRYOMODULES AT CEA-SACLAY AND IPN-ORSAY -

DEVELOPMENTS AND PROGRESS WITH ESS ELLIPTICAL CRYOMODULES AT CEA-SACLAY AND IPN-ORSAY - DEVELOPMENTS AND PROGRESS WITH ESS ELLIPTICAL CRYOMODULES AT CEA-SACLAY AND IPN-ORSAY - F. Peauger, C. Arcambal, F. Ardellier, S. Berry, P. Bosland, A. Bouygues, E. Cenni, JP. Charrier, G. Devanz, F. Eozénou,

More information

Niowave s Growth and the Role of STTR in its Development

Niowave s Growth and the Role of STTR in its Development Niowave s Growth and the Role of STTR in its Development Terry L. Grimm Niowave, Inc. Lansing MI Presented at National Academies STTR Workshop, Wash DC, May 2015 Outline Superconducting electron linacs

More information

LARGE SCALE TESTING OF SRF CAVITIES AND MODULES

LARGE SCALE TESTING OF SRF CAVITIES AND MODULES LARGE SCALE TESTING OF SRF CAVITIES AND MODULES Jacek Swierblewski IFJ PAN Krakow IKC for the XFEL Introduction IFJ PAN 2 Institute of Nuclear Physics (IFJ) located in Kraków, Poland was founded in 1955

More information

ESS Status and Prospects

ESS Status and Prospects ESS Status and Prospects Ciprian Plostinar, on behalf of ESS Accelerator Collaboration The Future and Next Generation Capabilities of Accelerator Driven Neutron and Muon Sources Workshop RAL, 14 August

More information

ESS Naming Convention

ESS Naming Convention ESS Naming Convention Karin Rathsman 2012-11-21 Introduction ESS Naming Convention The ESS Naming Convention apply to all devices and signals in technical systems and conventional facilities. operator

More information

Tests of the Spoke Cavity RF Source and Cryomodules in Uppsala

Tests of the Spoke Cavity RF Source and Cryomodules in Uppsala FREIA Report 2012/03 October 2012 DEPARTMENT OF PHYSICS AND ASTRONOMY UPPSALA UNIVERSITY Tests of the Spoke Cavity RF Source and Cryomodules in Uppsala ESS TDR Contribution R. Ruber, T. Ekelöf, R.A. Yogi.

More information

Performance of Superconducting Cavities for the European XFEL. Detlef Reschke DESY for the EU-XFEL Accelerator Consortium

Performance of Superconducting Cavities for the European XFEL. Detlef Reschke DESY for the EU-XFEL Accelerator Consortium Performance of Superconducting Cavities for the European XFEL Detlef Reschke DESY for the EU-XFEL Accelerator Consortium Outline 2 European XFEL Linear Accelerator Cavity Production Vertical Acceptance

More information

XFEL Cryo System. Project X Collaboration Meeting, FNAL September 8-9, 2010 Bernd Petersen DESY MKS (XFEL WP10 & WP13) 1 st stage. Possible extension

XFEL Cryo System. Project X Collaboration Meeting, FNAL September 8-9, 2010 Bernd Petersen DESY MKS (XFEL WP10 & WP13) 1 st stage. Possible extension XFEL Cryo System Possible extension 1 st stage Project X Collaboration Meeting, FNAL September 8-9, 2010 (XFEL WP10 & WP13) Outline 2 XFEL accelerator structure TESLA technology Basic cryogenic parameters

More information

PROGRESS IN THE ELLIPTICAL CAVITIES AND CRYOMODULE DEMONSTRATORS FOR THE ESS LINAC

PROGRESS IN THE ELLIPTICAL CAVITIES AND CRYOMODULE DEMONSTRATORS FOR THE ESS LINAC PROGRESS IN THE ELLIPTICAL CAVITIES AND CRYOMODULE DEMONSTRATORS FOR THE ESS LINAC F. Peauger, C. Arcambal, S. Berry, N. Berton, P. Bosland, E. Cenni, J.P. Charrier, G. Devanz, F. Eozenou, F. Gougnaud,

More information

The European Spallation Source

The European Spallation Source The European Spallation Source M. Lindroos 1, S. Bousson 2, R. Calaga 3, H. Danared 1, G. Devanz 4, R. Duperrier 4, J. Eguia 5, M. Eshraqi 1, S. Gammino 6, H. Hahn 1, A. Jansson 1, C. Oyon 7, S. Pape-Møller

More information

ESS Accelerator Design Update Work Packages

ESS Accelerator Design Update Work Packages December 23, 2010 ESS Accelerator Design Update Work Packages Table of Contents 0. Project summary and objectives 3 0.1 Work Package summaries 3 0.2 Participating institutions 5 1. Accelerator Design Update

More information

5.5 SNS Superconducting Linac

5.5 SNS Superconducting Linac JP0150514 ICANS - XV 15 th Meeting of the International Collaboration on Advanced Neutron Sources November 6-9, 2000 Tsukuba, Japan Ronald M. Sundelin Jefferson Lab* 5.5 SNS Superconducting Linac 12000

More information

Status of the European XFEL Accelerator Construction Project. Reinhard Brinkmann, DESY

Status of the European XFEL Accelerator Construction Project. Reinhard Brinkmann, DESY Status of the European XFEL Accelerator Construction Project Reinhard Brinkmann, DESY European XFEL Introduction Some specifications Photon energy 0.3-24 kev Pulse duration ~ 10-100 fs Pulse energy few

More information

THE CRYOGENIC SYSTEM OF TESLA

THE CRYOGENIC SYSTEM OF TESLA THE CRYOGENIC SYSTEM OF TESLA S. Wolff, DESY, Notkestr. 85, 22607 Hamburg, Germany for the TESLA collaboration Abstract TESLA, a 33 km long 500 GeV centre-of-mass energy superconducting linear collider

More information

INSTALLATION AND FIRST COMMISSIONING OF THE LLRF SYSTEM

INSTALLATION AND FIRST COMMISSIONING OF THE LLRF SYSTEM INSTALLATION AND FIRST COMMISSIONING OF THE LLRF SYSTEM FOR THE EUROPEAN XFEL Julien Branlard, for the LLRF team TALK OVERVIEW 2 Introduction Brief reminder about the XFEL LLRF system Commissioning goals

More information

Packaging of Cryogenic Components

Packaging of Cryogenic Components Packaging of Cryogenic Components William J. Schneider Senior Mechanical Engineer Emeritus November 19-23 2007 1 Packaging of Cryogenic Components Day one Introduction and Overview 2 What is important?

More information

Overview of ERL Projects: SRF Issues and Challenges. Matthias Liepe Cornell University

Overview of ERL Projects: SRF Issues and Challenges. Matthias Liepe Cornell University Overview of ERL Projects: SRF Issues and Challenges Matthias Liepe Cornell University Overview of ERL projects: SRF issues and challenges Slide 1 Outline Introduction: SRF for ERLs What makes it special

More information

Motivation: ERL based e linac for LHeC

Motivation: ERL based e linac for LHeC Erk Jensen, for the LHeC team and the RF group ERL 2013, BINP, Novosibirsk, 09 Sep 2013 09 Sep 2013 1 Motivation: ERL based e linac for LHeC ( O. Brünings presentation) NB.: This is a 09 Sep 2013 2 Some

More information

ESS Naming Convention

ESS Naming Convention ESS Naming Convention Karin Rathsman 2013-03-04 Introduction ESS Naming Convention The ESS Naming Convention apply to all devices and signals in technical systems and conventional facilities. operator

More information

Status and Future Perspective of the HIE-ISOLDE Project

Status and Future Perspective of the HIE-ISOLDE Project Status and Future Perspective of the HIE-ISOLDE Project International Particle Accelerator Conference, IPAC 12 New Orleans, Louisiana, USA, May 20-25, 2012 Yacine.Kadi@cern.ch OUTLINE Scope of HIE-ISOLDE

More information

Cryogenics, Cryomodule & Superconductivity for Accelerator Programme in Asia

Cryogenics, Cryomodule & Superconductivity for Accelerator Programme in Asia Cryogenics, Cryomodule & Superconductivity for Accelerator Programme in Asia T S Datta Inter- University Accelerator Centre New Delhi. India (On behalf of Core Committee) ACFA 22, Dongguan ( T S Datta)

More information

COMMISSIONING AND INITIAL OPERATING EXPERIENCE WITH THE SNS 1 GEV LINAC*

COMMISSIONING AND INITIAL OPERATING EXPERIENCE WITH THE SNS 1 GEV LINAC* COMMISSIONING AND INITIAL OPERATING EXPERIENCE WITH THE SNS 1 GEV LINAC* Stuart Henderson, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge TN, USA Abstract The Spallation Neutron Source

More information

Third Harmonic Superconducting passive cavities in ELETTRA and SLS

Third Harmonic Superconducting passive cavities in ELETTRA and SLS RF superconductivity application to synchrotron radiation light sources Third Harmonic Superconducting passive cavities in ELETTRA and SLS 2 cryomodules (one per machine) with 2 Nb/Cu cavities at 1.5 GHz

More information

Aurélien Ponton. First Considerations for the Design of the ESS Cryo-Modules

Aurélien Ponton. First Considerations for the Design of the ESS Cryo-Modules Accelerator Division ESS AD Technical Note ESS/AD/0001 Aurélien Ponton First Considerations for the Design of the ESS Cryo-Modules 16 March 2010 First considerations for the design of the ESS cryo-modules

More information

Supporting Planning and Engineering Processes at XFEL Examples, Benefits and Experience

Supporting Planning and Engineering Processes at XFEL Examples, Benefits and Experience Supporting Planning and Engineering Processes at XFEL Examples, Benefits and Experience Lars Hagge, Benno List SLAC, 31.03.2014 Agenda > Introduction: Collaborative Engineering > Collaborative Design &

More information

Neutron spallation sources and the status of ESS (under construction)

Neutron spallation sources and the status of ESS (under construction) Neutron spallation sources and the status of ESS (under construction) Budapest February 2014 Mats Lindroos Head of Accelerator Neutrons Its discovery James Chadwick 1932 (α,n) reaction Whatever the radiation

More information

SPOKE CRYOMODULES CONCEPTUAL DESIGNS FOR ESS & MYRRHA

SPOKE CRYOMODULES CONCEPTUAL DESIGNS FOR ESS & MYRRHA SPOKE CRYOMODULES CONCEPTUAL DESIGNS FOR ESS & MYRRHA Hervé Saugnac- IPNO SLHIPP-2 - Catania- 3&4 May 2012 ESS 72 MeV Baseline of the Spoke linac: 10 cryomodules, each one containing 2 double Spoke β=0.5

More information

CURRENT INDUSTRIAL SRF CAPABILITIES AND FUTURE PLANS

CURRENT INDUSTRIAL SRF CAPABILITIES AND FUTURE PLANS CURRENT INDUSTRIAL SRF CAPABILITIES AND FUTURE PLANS Hanspeter Vogel ACCEL Instruments GmbH Friedrich Ebert Strasse 1, 51429 Bergisch Gladbach, Germany Corresponding author: Hanspeter Vogel ACCEL Instruments

More information

Alban Mosnier. CEA-Saclay, DSM/IRFU. Alban Mosnier Sept 29 - Oct 3, 2008 LINAC'08 Victoria British Columbia Canada page 1

Alban Mosnier. CEA-Saclay, DSM/IRFU. Alban Mosnier Sept 29 - Oct 3, 2008 LINAC'08 Victoria British Columbia Canada page 1 THE IFMIF 5 MW LINACS Alban Mosnier CEA-Saclay, DSM/IRFU Alban Mosnier Sept 29 - Oct 3, 2008 LINAC'08 Victoria British Columbia Canada page 1 ITER International Road Map Advanced Materials are at a critical

More information

HIGH POWER COUPLER FOR THE TESLA TEST FACILITY

HIGH POWER COUPLER FOR THE TESLA TEST FACILITY Abstract HIGH POWER COUPLER FOR THE TESLA TEST FACILITY W.-D. Moeller * for the TESLA Collaboration, Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany The TeV Energy Superconducting Linear

More information

Current Industrial SRF Capabilities and Future Plans

Current Industrial SRF Capabilities and Future Plans and Future Plans Capabilities in view of Design Engineering Manufacturing Preparation Testing Assembly Taking into operation Future Plans Participate in and contribute to development issues, provide prototypes

More information

Maurizio Vretenar Linac4 Project Leader EuCARD-2 Coordinator

Maurizio Vretenar Linac4 Project Leader EuCARD-2 Coordinator Maurizio Vretenar Linac4 Project Leader EuCARD-2 Coordinator Every accelerator needs a linac as injector to pass the region where the velocity of the particles increases with energy. At high energies (relativity)

More information

ESS Naming Convention

ESS Naming Convention ESS Naming Convention Karin Rathsman 2012-12-05 Introduction ESS Naming Convention The ESS Naming Convention apply to all devices and signals in technical systems and conventional facilities. operator

More information

Status Report. Design report of a 3 MW power amplifier

Status Report. Design report of a 3 MW power amplifier TIARA-REP-WP7-2014-005 Test Infrastructure and Accelerator Research Area Status Report Design report of a 3 MW power amplifier Montesinos, E. (CERN) et al 10 February 2014 The research leading to these

More information

C100 Cryomodule. Seven cell Cavity, 0.7 m long (high Q L ) 8 Cavities per Cryomodule Fits the existing Cryomodule footprint

C100 Cryomodule. Seven cell Cavity, 0.7 m long (high Q L ) 8 Cavities per Cryomodule Fits the existing Cryomodule footprint 1 new module C100 Cryomodule Seven cell Cavity, 0.7 m long (high Q L ) 8 Cavities per Cryomodule Fits the existing Cryomodule footprint Fundamental frequency f 0 Accelerating gradient E acc 1497 MHz >

More information

SPES Control System. M. Bellato

SPES Control System. M. Bellato SPES Control System M. Bellato Topics Update on LLRF Update on CB controls Update on network infrastructure Update on Software infrastructure Update on Software developments Topics Update on LLRF Update

More information

Beam Control: Timing, Protection, Database and Application Software

Beam Control: Timing, Protection, Database and Application Software Beam Control: Timing, Protection, Database and Application Software C.M. Chu, J. Tang 储中明 / 唐渊卿 Spallation Neutron Source Oak Ridge National Laboratory Outline Control software overview Timing system Protection

More information

ReA3 Marc Doleans (On behalf of the ReA3 team)

ReA3 Marc Doleans (On behalf of the ReA3 team) ReA3 Marc Doleans (On behalf of the ReA3 team) HIAT09, 08/06/2009, Slide 1 Building addition Office building (~100 staff + conf. rooms) ReA3 Experimental area 9100 sqft HIAT09, 08/06/2009, Slide 2 Why

More information

Development of Superconducting CH-Cavities for the EUROTRANS and IFMIF Project 1

Development of Superconducting CH-Cavities for the EUROTRANS and IFMIF Project 1 1 AT/P5-01-POSTER Development of Superconducting CH-Cavities for the EUROTRANS and IFMIF Project 1 F. Dziuba 2, H. Podlech 2, M. Buh 2, U. Ratzinger 2, A. Bechtold 3, H. Klein 2 2 Institute for Applied

More information

CEBAF Overview June 4, 2010

CEBAF Overview June 4, 2010 CEBAF Overview June 4, 2010 Yan Wang Deputy Group Leader of the Operations Group Outline CEBAF Timeline Machine Overview Injector Linear Accelerators Recirculation Arcs Extraction Systems Beam Specifications

More information

To produce more powerful and high-efficiency particle accelerator, efforts have

To produce more powerful and high-efficiency particle accelerator, efforts have Measuring Unloaded Quality Factor of Superconducting RF Cryomodule Jian Cong Zeng Department of Physics and Astronomy, State University of New York at Geneseo, Geneseo, NY 14454 Elvin Harms, Jr. Accelerator

More information

R.Bachimanchi, IPAC, May 2015, Richmond, VA

R.Bachimanchi, IPAC, May 2015, Richmond, VA 1 new module C100 Cryomodule Seven cell Cavity, 0.7 m long (high Q L ) 8 Cavities per Cryomodule Fits the existing Cryomodule footprint Fundamental frequency f 0 Accelerating gradient E acc 1497 MHz >

More information

BEAM DYNAMICS SIMULATIONS ON THE ESS BILBAO RFQ

BEAM DYNAMICS SIMULATIONS ON THE ESS BILBAO RFQ BEAM DYNAMICS SIMULATIONS ON THE ESS BILBAO RFQ D. de Cos, I. Bustinduy, J. Feuchtwanger, J.L. Muñoz, A. Vélez, O. González, ESS Bilbao, Spain A. Letchford, ISIS (RAL), UK S. Jolly, P. Savage, Imperial

More information

SUPERCONDUCTING CAVITIES AND CRYOMODULES FOR PROTON AND DEUTERON LINACS

SUPERCONDUCTING CAVITIES AND CRYOMODULES FOR PROTON AND DEUTERON LINACS Proceedings of LINAC2014, Geneva, Switzerland THIOA04 SUPERCONDUCTING CAVITIES AND CRYOMODULES FOR PROTON AND DEUTERON LINACS G. Devanz, CEA-Irfu CEA-Saclay, Gif-sur-Yvette 91191, France Abstract We review

More information

Linear Particle Accelerator Control Performance

Linear Particle Accelerator Control Performance Linear Particle Accelerator Control Performance 2007 ExpertTune-TiPS Conference April 17-19, 2007 Austin, TX Johnny Tang Overview of the Spallation Neutron Source Accelerator J. Tang 2 Overview of the

More information

Low-Level RF. S. Simrock, DESY. MAC mtg, May 05 Stefan Simrock DESY

Low-Level RF. S. Simrock, DESY. MAC mtg, May 05 Stefan Simrock DESY Low-Level RF S. Simrock, DESY Outline Scope of LLRF System Work Breakdown for XFEL LLRF Design for the VUV-FEL Cost, Personpower and Schedule RF Systems for XFEL RF Gun Injector 3rd harmonic cavity Main

More information

RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS

RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS J. Teichert, A. Büchner, H. Büttig, F. Gabriel, P. Michel, K. Möller, U. Lehnert, Ch. Schneider, J. Stephan, A.

More information

ESS-Bilbao Contribution to ESS Warm LINAC High Power RF Systems

ESS-Bilbao Contribution to ESS Warm LINAC High Power RF Systems ESS-Bilbao Contribution to ESS Warm LINAC High Power RF Systems Arash Kaftoosian RF Group www.essbilbao.org On behalf of: Pedro Gonzalez Ibon Bustinduy RF Project Leader MEBT Project Leader ESS-Bilbao

More information

ESS RF Source and Spoke Cavity Test Plan

ESS RF Source and Spoke Cavity Test Plan FREIA Report 2015/01 26 February 2015 DEPARTMENT OF PHYSICS AND ASTRONOMY UPPSALA UNIVERSITY ESS RF Source and Spoke Cavity Test Plan R. Ruber (ed.), A. Bhattacharyya, D. Dancila, T. Ekelöf, J. Eriksson,

More information

SNS CRYOMODULE PERFORMANCE*

SNS CRYOMODULE PERFORMANCE* SNS CRYOMODULE PERFORMANCE* J. Preble*, I. E. Campisi, E. Daly, G. K. Davis, J. R. Delayen, M. Drury, C. Grenoble, J. Hogan, L. King, P. Kneisel, J. Mammosser, T. Powers, M. Stirbet, H. Wang, T. Whitlatch,

More information

A Superconducting Proton Linac for the ESS-Bilbao Accelerator

A Superconducting Proton Linac for the ESS-Bilbao Accelerator A Superconducting Proton Linac for the ESS-Bilbao Accelerator ILC-GDE / MICINN - FPA Mtg. Madrid, Jan. 20 2009 F.J. Bermejo, CSIC & Dept. Electricity & Electronics, Univ. Basque Country ZTF/FCT Leioa,

More information

SPALLATION NEUTRON SOURCE OPERATION AT 1 MW AND BEYOND*

SPALLATION NEUTRON SOURCE OPERATION AT 1 MW AND BEYOND* SPALLATION NEUTRON SOURCE OPERATION AT 1 MW AND BEYOND* Stuart D. Henderson #, Oak Ridge National Laboratory, Oak Ridge, TN 37830, U.S.A. Abstract Since the Spallation Neutron Source construction was completed

More information

Superconducting RF System. Heung-Sik Kang

Superconducting RF System. Heung-Sik Kang Design of PLS-II Superconducting RF System Heung-Sik Kang On behalf of PLS-II RF group Pohang Accelerator Laboratory Content 1. Introduction 2. Physics design 3. Cryomodules 4. Cryogenic system 5. High

More information

Work Package Status Report

Work Package Status Report Work Package Status Report Date: August 2018 Work Package: WP5 Elliptical cavities and cryomodules Author: Pierre Bosland, Roger Ruber, Daniele Sertore, Mike Ellis, Christine Darve 1. Accomplishments by

More information

Physics Requirements Document Document Title: SCRF 1.3 GHz Cryomodule Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7

Physics Requirements Document Document Title: SCRF 1.3 GHz Cryomodule Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7 Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7 Document Approval: Originator: Tor Raubenheimer, Physics Support Lead Date Approved Approver: Marc Ross, Cryogenic System Manager Approver: Jose Chan,

More information

Superstructures; First Cold Test and Future Applications

Superstructures; First Cold Test and Future Applications Superstructures; First Cold Test and Future Applications DESY: C. Albrecht, V. Ayvazyan, R. Bandelmann, T. Büttner, P. Castro, S. Choroba, J. Eschke, B. Faatz, A. Gössel, K. Honkavaara, B. Horst, J. Iversen,

More information

Title: Research and Development on Superconducting Radio-Frequency Technology for Accelerator Application

Title: Research and Development on Superconducting Radio-Frequency Technology for Accelerator Application D.Proch DESY,2.Nov.04 (Joined Research Activity) (coordinated accelerator research in Europe) Title: Research and Development on Superconducting Radio-Frequency Technology for Accelerator Application Acronym:

More information

ACCELERATOR PHYSICS OF HIGH INTENSITY PROTON LINACS

ACCELERATOR PHYSICS OF HIGH INTENSITY PROTON LINACS ACCELERATOR PHYSICS OF HIGH INTENSITY PROTON LINACS K. Bongardt and M. Pabst, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany Abstract The accelerator physics of high intensity linacs, either pulsed

More information

DESIGN STUDY OF A 176 MHZ SRF HALF WAVE RESONATOR FOR THE SPIRAL-2 PROJECT

DESIGN STUDY OF A 176 MHZ SRF HALF WAVE RESONATOR FOR THE SPIRAL-2 PROJECT DESIGN STUDY OF A 176 MHZ SRF HALF WAVE RESONATOR FOR THE SPIRAL-2 PROJECT J-L. Biarrotte*, S. Blivet, S. Bousson, T. Junquera, G. Olry, H. Saugnac CNRS / IN2P3 / IPN Orsay, France Abstract In November

More information

FLASH at DESY. FLASH. Free-Electron Laser in Hamburg. The first soft X-ray FEL operating two undulator beamlines simultaneously

FLASH at DESY. FLASH. Free-Electron Laser in Hamburg. The first soft X-ray FEL operating two undulator beamlines simultaneously FLASH at DESY The first soft X-ray FEL operating two undulator beamlines simultaneously Katja Honkavaara, DESY for the FLASH team FEL Conference 2014, Basel 25-29 August, 2014 First Lasing FLASH2 > First

More information

System Integration of the TPS. J.R. Chen NSRRC, Hsinchu

System Integration of the TPS. J.R. Chen NSRRC, Hsinchu System Integration of the TPS J.R. Chen NSRRC, Hsinchu OUTLINE I. Main features of the TPS II. Major concerns and intersystem effects of an advanced synchrotron light source III. Subsystems and intersystem

More information

SNS LLRF Design Experience and its Possible Adoption for the ILC

SNS LLRF Design Experience and its Possible Adoption for the ILC SNS LLRF Design Experience and its Possible Adoption for the ILC Brian Chase SNS - Mark Champion Fermilab International Linear Collider Workshop 11/28/2005 1 Why Consider the SNS System for ILC R&D at

More information

Progresses on China ADS Superconducting Cavities

Progresses on China ADS Superconducting Cavities Progresses on China ADS Superconducting Cavities Peng Sha IHEP, CAS 2013/06/12 1 Outline 1. Introduction 2. Spoke012 cavity 3. Spoke021 cavity 4. Spoke040 cavity 5. 650MHz β=0.82 5-cell cavity 6. High

More information

DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT

DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT G. Olry, J-L. Biarrotte, S. Blivet, S. Bousson, C. Commeaux, C. Joly, T. Junquera, J. Lesrel, E. Roy,

More information

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser P. Castro for the TTF-FEL team 100 nm 1 Å FEL radiation TESLA Test Facility at DESY

More information

Beam Loss monitoring R&D. Arden Warner Fermilab MPS2014 Workshop March 5-6, 2014

Beam Loss monitoring R&D. Arden Warner Fermilab MPS2014 Workshop March 5-6, 2014 Beam Loss monitoring R&D Arden Warner Fermilab MPS2014 Workshop March 5-6, 2014 Outline PXIE Technical Concerns PXIE Study plans Preliminary scvd R&D Cold Ionization chambers 2 MPS2014; Arden Warner Loss

More information

Project X Cavity RF and mechanical design. T. Khabiboulline, FNAL/TD/SRF

Project X Cavity RF and mechanical design. T. Khabiboulline, FNAL/TD/SRF Project X Cavity RF and mechanical design T. Khabiboulline, FNAL/TD/SRF TTC meeting on CW-SRF, 2013 Project X Cavity RF and mechanical design T 1 High ß Low ß 0.5 HWR SSR1 SSR2 0 1 10 100 1 10 3 1 10 4

More information

Amit Roy Director, IUAC

Amit Roy Director, IUAC SUPERCONDUCTING RF DEVELOPMENT AT INTER-UNIVERSITY ACCELERATOR CENTRE (IUAC) (JOINT PROPOSAL FROM IUAC & Delhi University (DU)) Amit Roy Director, IUAC to be presented by Kirti Ranjan (DU / Fermilab) Overview

More information

Structures for RIA and FNAL Proton Driver

Structures for RIA and FNAL Proton Driver Structures for RIA and FNAL Proton Driver Speaker: Mike Kelly 12 th International Workshop on RF Superconductivity July 11-15, 2005 Argonne National Laboratory A Laboratory Operated by The University of

More information

Crab Cavities for FCC

Crab Cavities for FCC Crab Cavities for FCC R. Calaga, A. Grudiev, CERN FCC Week 2017, May 30, 2017 Acknowledgements: O. Bruning, E. Cruz-Alaniz, K. Ohmi, R. Martin, R. Tomas, F. Zimmermann Livingston Plot 100 TeV FCC-hh: 0.5-3x1035

More information

Non-invasive Beam Profile Measurements using an Electron-Beam Scanner

Non-invasive Beam Profile Measurements using an Electron-Beam Scanner Non-invasive Beam Profile Measurements using an Electron-Beam Scanner W. Blokland and S. Cousineau Willem Blokland for the Spallation Neutron Source Managed by UT-Battelle Overview SNS Accelerator Electron

More information

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES S. Belomestnykh HPC workshop JLAB, 30 October 2002 Introduction Many aspects of the high-power coupler design, fabrication, preparation, conditioning, integration

More information

Advances in CW Ion Linacs

Advances in CW Ion Linacs IPAC 2015 P.N. Ostroumov May 8, 2015 Content Two types of CW ion linacs Example of a normal conducting CW RFQ Cryomodule design and performance High performance quarter wave and half wave SC resonators

More information

Advance on High Power Couplers for SC Accelerators

Advance on High Power Couplers for SC Accelerators Advance on High Power Couplers for SC Accelerators Eiji Kako (KEK, Japan) IAS conference at Hong Kong for High Energy Physics, 2017, January 23th Eiji KAKO (KEK, Japan) IAS at Hong Kong, 2017 Jan. 23 1

More information

SARAF commissioning & safety issues. L. Weissman on behalf of the SARAF team SPIRAL week 2010

SARAF commissioning & safety issues. L. Weissman on behalf of the SARAF team SPIRAL week 2010 SARAF commissioning & safety issues L. Weissman on behalf of the SARAF team SPIRAL week 2010 1 Outline commissioning of SARAF project : RFQ status Cryomodule status Accumulated beam operation experience

More information

Physical Design of Superconducting Magnet for ADS Injection I

Physical Design of Superconducting Magnet for ADS Injection I Submitted to Chinese Physics C' Physical Design of Superconducting Magnet for ADS Injection I PENG Quan-ling( 彭全岭 ), WANG Bing( 王冰 ), CHEN Yuan( 陈沅 ) YANG Xiang-chen( 杨向臣 ) Institute of High Energy Physics,

More information

Engineering Challenges and Solutions for MeRHIC. Andrew Burrill for the MeRHIC Team

Engineering Challenges and Solutions for MeRHIC. Andrew Burrill for the MeRHIC Team Engineering Challenges and Solutions for MeRHIC Andrew Burrill for the MeRHIC Team Key Components Photoinjector Design Photocathodes & Drive Laser Linac Cavities 703.75 MHz 5 cell cavities 3 rd Harmonic

More information

Superconducting 1.3 GHz Cavities for European XFEL

Superconducting 1.3 GHz Cavities for European XFEL Superconducting 1.3 GHz Cavities for European XFEL W. Singer, J. Iversen, A. Matheisen, X. Singer (DESY, Germany) P. Michelato (INFN, Italy) Presented by Waldemar Singer Main issues: preparation phase

More information

OVERVIEW OF THE HIGH INTENSITY NEUTRINO SOURCE LINAC R&D PROGRAM AT FERMILAB *

OVERVIEW OF THE HIGH INTENSITY NEUTRINO SOURCE LINAC R&D PROGRAM AT FERMILAB * OVERVIEW OF THE HIGH INTENSITY NEUTRINO SOURCE LINAC R&D PROGRAM AT FERMILAB * R. C. Webber #, G. Apollinari, J. P. Carneiro, I. Gonin, B. Hanna, S. Hays, T. Khabiboulline, G. Lanfranco, R. L. Madrak,

More information

Present and future beams for SHE research at GSI W. Barth, GSI - Darmstadt

Present and future beams for SHE research at GSI W. Barth, GSI - Darmstadt Present and future beams for SHE research at GSI W. Barth, GSI - Darmstadt 1. Heavy Ion Linear Accelerator UNILAC 2. GSI Accelerator Facility Injector for FAIR 3. Status Quo of the UNILAC-performance 4.

More information

Cryogenics for Large Accelerators

Cryogenics for Large Accelerators Cryogenics for Large Accelerators Dr. Sergiy Putselyk Deutsches Elektronen-Synchrotron (DESY) MKS Division Notkestrasse 85 22607 Hamburg (Germany) Phone: +49 40 89983492 Fax: +49 40 89982858 E-Mail: Sergiy.Putselyk@desy.de

More information

ASSEMBLY PREPARATIONS FOR THE INTERNATIONAL ERL CRYOMODULE AT DARESBURY LABORATORY

ASSEMBLY PREPARATIONS FOR THE INTERNATIONAL ERL CRYOMODULE AT DARESBURY LABORATORY ASSEMBLY PREPARATIONS FOR THE INTERNATIONAL ERL CRYOMODULE AT DARESBURY LABORATORY P. A. McIntosh #, R. Bate, C. D. Beard, M. A. Cordwell, D. M. Dykes, S. M. Pattalwar and J. Strachan, STFC Daresbury Laboratory,

More information

HIGH POWER INPUT COUPLERS FOR THE STF BASELINE CAVITY SYSTEM AT KEK

HIGH POWER INPUT COUPLERS FOR THE STF BASELINE CAVITY SYSTEM AT KEK HIGH POWER INPUT COUPLERS FOR THE STF BASELINE CAVITY SYSTEM AT KEK E. Kako #, H. Hayano, S. Noguchi, T. Shishido, K. Watanabe and Y. Yamamoto KEK, Tsukuba, Ibaraki, 305-0801, Japan Abstract An input coupler,

More information

A few results [2,3] obtained with the individual cavities inside their horizontal cryostats are summarized in Table I and a typical Q o

A few results [2,3] obtained with the individual cavities inside their horizontal cryostats are summarized in Table I and a typical Q o Particle Accelerators, 1990, Vol. 29, pp. 47-52 Reprints available directly from the publisher Photocopying permitted by license only 1990 Gordon and Breach, Science Publishers, Inc. Printed in the United

More information

DEVELOPMENT OF ROOM TEMPERATURE AND SUPERCONDUCTING CH-STRUCTURES H. Podlech IAP, Universität Frankfurt/Main, Germany. Abstract

DEVELOPMENT OF ROOM TEMPERATURE AND SUPERCONDUCTING CH-STRUCTURES H. Podlech IAP, Universität Frankfurt/Main, Germany. Abstract EU contract number RII3-CT-2003-506395 CARE Conf-04-011-HIPPI DEVELOPMENT OF ROOM TEMPERATURE AND SUPERCONDUCTING CH-STRUCTURES H. Podlech IAP, Universität Frankfurt/Main, Germany Abstract Abstract In

More information

Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at DESY

Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at DESY Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at FLASH @ DESY N. Baboi, DESY, Hamburg for the HOM team : S. Molloy 1, N. Baboi 2, N. Eddy 3, J. Frisch 1, L. Hendrickson

More information

DEVELOPMENT OF CAPACITIVE LINEAR-CUT BEAM POSITION MONITOR FOR HEAVY-ION SYNCHROTRON OF KHIMA PROJECT

DEVELOPMENT OF CAPACITIVE LINEAR-CUT BEAM POSITION MONITOR FOR HEAVY-ION SYNCHROTRON OF KHIMA PROJECT DEVELOPMENT OF CAPACITIVE LINEAR-CUT BEAM POSITION MONITOR FOR HEAVY-ION SYNCHROTRON OF KHIMA PROJECT Ji-Gwang Hwang, Tae-Keun Yang, Seon Yeong Noh Korea Institute of Radiological and Medical Sciences,

More information

PROJECT X: A MULTI-MW PROTON SOURCE AT FERMILAB *

PROJECT X: A MULTI-MW PROTON SOURCE AT FERMILAB * PROJECT X: A MULTI-MW PROTON SOURCE AT FERMILAB * Stephen D. Holmes, Fermilab, Batavia, IL, 60510, U.S.A. Abstract As the Fermilab Tevatron Collider program draws to a close a strategy has emerged of an

More information

200 MHz 350 MHz 750 MHz Linac2 RFQ2 202 MHz 0.5 MeV /m Weight : 1000 kg/m Ext. diameter : 45 cm

200 MHz 350 MHz 750 MHz Linac2 RFQ2 202 MHz 0.5 MeV /m Weight : 1000 kg/m Ext. diameter : 45 cm M. Vretenar, CERN for the HF-RFQ Working Group (V.A. Dimov, M. Garlasché, A. Grudiev, B. Koubek, A.M. Lombardi, S. Mathot, D. Mazur, E. Montesinos, M. Timmins, M. Vretenar) 1 1988-92 Linac2 RFQ2 202 MHz

More information