Versuch 7: Implementing Viterbi Algorithm in DLX Assembler

Size: px
Start display at page:

Download "Versuch 7: Implementing Viterbi Algorithm in DLX Assembler"

Transcription

1 FB Elektrotechnik und Informationstechnik AG Entwurf mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn Vertieferlabor Mikroelektronik Modelling the DLX RISC Architecture in VHDL Versuch 7: Implementing Viterbi Algorithm in DLX Assembler Introduction Within this lab test, the following goals shall be achieved: Understand channel decoding using the Viterbi Algorithm (VA) Complete VA assembler source code Test and verify source code using ModelSim Synthesize DLX VHDL model Channel Coding and Decoding Figure 1: Information Transmission System Figure 1 shows a typical information transmission system. The output of the information source can be both analog or digital and is transformed into information bits by the source encoder. The purpose of the channel encoder is to group the information bits and to add parity bits. The encoded information bits are mapped to waveforms by the digital modulator and transmitted by the communication channel. During the transmission, the waveforms

2 2 may be altered or corrupted by noise or distortion. The digital demodulator estimates which symbol was sent with the greatest likelihood. The channel decoder uses its knowledge about the most likely sequence of the source information to correct faulty bits. One of the possible channel decoding techniques is the Viterbi Algorithm (VA) that is described indepth in the Appendix. As last step on the receiver side, the source decoder reverses the decoded information bits into the analog or digital signal that equals to the source signal with the greatest likelihood and hands the signal to the information sink. Convolutional codes are used to encode digital data before transmission through noisy or error-prone channels. They operate on serial data and are a major technique of forward error correction (FER) of wireless transmission standards. By adding thoroughly designed redundant bits to the payload data, the capacity of a channel can be exploited close to the Shannon Limit. This technique is particularly suited for communication channels that are disturbed by additive white gaussian noise (AWGN). The Viterbi algorithm (VA) was developed by Andrew J. Viterbi and published first in Its purpose is to estimate the most likely sequence of symbols that were potentially corrupted during transmission. The main advantages of this algorithm compared to other decoding techniques, e.g. sequential decoding, are consumption of fixed decoding time and maximum likelihood decoding. During the 1970s, it became part of the coding standard in deepspace data transmission. Later on, it was used in modems and for high-density magnetic recording. Today, the VA is used in more than 1 billion cell phones as it is the decoding algorithm utilized in CDMA and TDMA systems. However, the most important application measured in transferred bits is Digital Video Broadcasting (DVB) with approximately 1015 decoded bits per second worldwide. Furthermore, the VA is used in the standards for Wireless LANs. Future applications also include speech recognition, keyword spotting and computational linguistics. Performing the Viterbi Algorithm As a preparation for the lab test, encode the following message using the 4-state-non-recursive, non-systematic convolutional encoder that is explained in the Appendix. The message consists out of 10 bits: dk Please write the output of the encoder into the blank row named xk in the diagram on the next page. These are the encoded output symbols that would be transmitted over the channel. Due to noise, the fourth and sixth symbol were corrupted. All other symbols were received as they were encoded. Please fill the blank boxes named yk, accordingly. Now, the Viterbi Algorithm can be performed as explained in the Appendix. Please fill all empty boxes within the trellis according to the following scheme: The numbers to the right of the dot are the path metrics. They consist out of the lower path metric (first number) and the upper path metric (second number). The number below the dot is the decision bit. In case the lower path metric survives, it's value is 0, in case the upper path metric survives it's value is 1.

3 3

4 4 Completing the Source Code The Viterbi Algorithm needs to be implemented using the DLX assembler programming language. After you performed the Viterbi Algorithm in the previous example, you should be able to program the computation of the branch and path metric using the instructions depicted in the Appendix. Start with the computation of the branch metric (BM) using the Hamming Distance (HD). As first step, the BM for the state transitions TO state S(3) shall be calculated. The already written parts of the source code hands over the received symbol in register R1. The value of the lower path metric shall be stored in register R12, the value of the upper path metric shall be stored in R13. After the branch metrics have been calculated, the corresponding path metrics can be computed. The path metric of the previous step of state S(2) has been stored in R4, the path metric of S(3) has been stored in R5. Subsequently, the survivor state needs to be determined; therefore, the lower path metric (LPM) needs to be compared with the upper path metric (UPM). In case the UPM is greater or equal to the LPM, the decision bit stored in R10 must be 1, otherwise it must equal 0. As temporary register for all set-on-comparisons, register R11 shall be used. As soon as the survivor state was identified, the new path metric for state S (3) must be stored in R9. Table 1 depicts the register allocation for the path metric calculation routine. Table 1: Register Allocation Please write the source code for the path metric calculation prior to the lab test. Within the lab test, you are going to insert your module into the existing source code.

5 5 Testing the Source Code After logging on into the terminal browse to the directory Lab_Test_7\DLX_VHDL\asm and open the file VA.S using nedit. Enter your source code between the specified labels in lines 72 to 85. After completing the source code, the binaries for the simulation need to be generated. The assembler is started from the terminal with the command: python asm.py [VA.s]. Subsequently, the source code can be tested. For this purpose, the software ModelSim is used. After starting ModelSim with the command vsim &, compile all required.vhd-files. After the compilation, the simulation can be started. Browse the library window and double click on dlx_tb. Add the required signals to the simulation signal list. As simulation time, choose 1800µs. If your source code performed the Viterbi Algorithm correctly, the values stored in the memory (signal /dlx_tb/mem/ram) at addresses need to be identical as shown in the screenshot below: Please measure the effective execution time between fetching the first instruction and writing back the result of the last instruction. As the cycle time within the simulation is set to 50ns, you can compute the number of cycles needed to execute the Viterbi Algorithm for the 320 bit exemplary message. DLX w/o extensions Number of Cycles Instructions per decoded bit

6 6 Synthesizing the VHDL Model Following to the successful simulation, the DLX VHDL model can be synthesized to measure the hardware cost within an actual implementation on an FPGA. To start the synthesizing, the program ISE is utilized. Start it from the console with the command ise & and open the existing project file dlx_synth.ise from the directory DLX_VHDL\Synth\dlx_synth As first step, the synthesis needs to be performed. This process is initiated within the navigation menu on the left side as depicted in the screenshot. After the synthesis, the place and route can be performed. Following to the successful place&route, a report shows the number of used slices, the number of slice flip flops and 4input LUT's. Please note these numbers in the table below: DLX w/o extensions Number of Slices Number of Slice Flip Flops Number of 4 Input LUTs Thereof Logic Cycle Time [ns] Frequency [MHz]

Hardware/Software Co-Simulation of BPSK Modulator and Demodulator using Xilinx System Generator

Hardware/Software Co-Simulation of BPSK Modulator and Demodulator using Xilinx System Generator www.semargroups.org, www.ijsetr.com ISSN 2319-8885 Vol.02,Issue.10, September-2013, Pages:984-988 Hardware/Software Co-Simulation of BPSK Modulator and Demodulator using Xilinx System Generator MISS ANGEL

More information

Outline. Communications Engineering 1

Outline. Communications Engineering 1 Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

Simulink Modeling of Convolutional Encoders

Simulink Modeling of Convolutional Encoders Simulink Modeling of Convolutional Encoders * Ahiara Wilson C and ** Iroegbu Chbuisi, *Department of Computer Engineering, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria **Department

More information

International Journal of Scientific & Engineering Research Volume 9, Issue 3, March ISSN

International Journal of Scientific & Engineering Research Volume 9, Issue 3, March ISSN International Journal of Scientific & Engineering Research Volume 9, Issue 3, March-2018 1605 FPGA Design and Implementation of Convolution Encoder and Viterbi Decoder Mr.J.Anuj Sai 1, Mr.P.Kiran Kumar

More information

VHDL based Design of Convolutional Encoder using Vedic Mathematics and Viterbi Decoder using Parallel Processing

VHDL based Design of Convolutional Encoder using Vedic Mathematics and Viterbi Decoder using Parallel Processing IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 01 July 2016 ISSN (online): 2349-784X VHDL based Design of Convolutional Encoder using Vedic Mathematics and Viterbi Decoder

More information

BPSK System on Spartan 3E FPGA

BPSK System on Spartan 3E FPGA INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGIES, VOL. 02, ISSUE 02, FEB 2014 ISSN 2321 8665 BPSK System on Spartan 3E FPGA MICHAL JON 1 M.S. California university, Email:santhoshini33@gmail.com. ABSTRACT-

More information

FPGA Implementation of Viterbi Algorithm for Decoding of Convolution Codes

FPGA Implementation of Viterbi Algorithm for Decoding of Convolution Codes IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 5, Ver. I (Sep-Oct. 4), PP 46-53 e-issn: 39 4, p-issn No. : 39 497 FPGA Implementation of Viterbi Algorithm for Decoding of Convolution

More information

6. FUNDAMENTALS OF CHANNEL CODER

6. FUNDAMENTALS OF CHANNEL CODER 82 6. FUNDAMENTALS OF CHANNEL CODER 6.1 INTRODUCTION The digital information can be transmitted over the channel using different signaling schemes. The type of the signal scheme chosen mainly depends on

More information

VA04D 16 State DVB S2/DVB S2X Viterbi Decoder. Small World Communications. VA04D Features. Introduction. Signal Descriptions. Code

VA04D 16 State DVB S2/DVB S2X Viterbi Decoder. Small World Communications. VA04D Features. Introduction. Signal Descriptions. Code 16 State DVB S2/DVB S2X Viterbi Decoder Preliminary Product Specification Features 16 state (memory m = 4, constraint length 5) tail biting Viterbi decoder Rate 1/5 (inputs can be punctured for higher

More information

Lecture 9b Convolutional Coding/Decoding and Trellis Code modulation

Lecture 9b Convolutional Coding/Decoding and Trellis Code modulation Lecture 9b Convolutional Coding/Decoding and Trellis Code modulation Convolutional Coder Basics Coder State Diagram Encoder Trellis Coder Tree Viterbi Decoding For Simplicity assume Binary Sym.Channel

More information

Chapter 1 Coding for Reliable Digital Transmission and Storage

Chapter 1 Coding for Reliable Digital Transmission and Storage Wireless Information Transmission System Lab. Chapter 1 Coding for Reliable Digital Transmission and Storage Institute of Communications Engineering National Sun Yat-sen University 1.1 Introduction A major

More information

On a Viterbi decoder design for low power dissipation

On a Viterbi decoder design for low power dissipation On a Viterbi decoder design for low power dissipation By Samirkumar Ranpara Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements

More information

Ultra Low Power Consumption Military Communication Systems

Ultra Low Power Consumption Military Communication Systems Ultra Low Power Consumption Military Communication Systems Sagara Pandu Assistant Professor, Department of ECE, Gayatri College of Engineering Visakhapatnam-530048. ABSTRACT New military communications

More information

PROJECT 5: DESIGNING A VOICE MODEM. Instructor: Amir Asif

PROJECT 5: DESIGNING A VOICE MODEM. Instructor: Amir Asif PROJECT 5: DESIGNING A VOICE MODEM Instructor: Amir Asif CSE4214: Digital Communications (Fall 2012) Computer Science and Engineering, York University 1. PURPOSE In this laboratory project, you will design

More information

6.02 Fall 2013 Lecture #7

6.02 Fall 2013 Lecture #7 6. Fall Lecture #7 Viterbi decoding of convoluonal codes 6. Fall Lecture 7, Slide # Convolutional Coding Shift Register View + mod p [n] x[n] x[n-] x[n-] The values in the registers define the state of

More information

Hardware/Software Co-Simulation of BPSK Modulator Using Xilinx System Generator

Hardware/Software Co-Simulation of BPSK Modulator Using Xilinx System Generator IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719, Volume 2, Issue 10 (October 2012), PP 54-58 Hardware/Software Co-Simulation of BPSK Modulator Using Xilinx System Generator Thotamsetty

More information

A Low Power and High Speed Viterbi Decoder Based on Deep Pipelined, Clock Blocking and Hazards Filtering

A Low Power and High Speed Viterbi Decoder Based on Deep Pipelined, Clock Blocking and Hazards Filtering Int. J. Communications, Network and System Sciences, 2009, 6, 575-582 doi:10.4236/ijcns.2009.26064 Published Online September 2009 (http://www.scirp.org/journal/ijcns/). 575 A Low Power and High Speed

More information

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013 ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013 Lecture 18 Today: (1) da Silva Discussion, (2) Error Correction Coding, (3) Error Detection (CRC) HW 8 due Tue. HW 9 (on Lectures

More information

Convolutional Coding Using Booth Algorithm For Application in Wireless Communication

Convolutional Coding Using Booth Algorithm For Application in Wireless Communication Available online at www.interscience.in Convolutional Coding Using Booth Algorithm For Application in Wireless Communication Sishir Kalita, Parismita Gogoi & Kandarpa Kumar Sarma Department of Electronics

More information

Basics of Error Correcting Codes

Basics of Error Correcting Codes Basics of Error Correcting Codes Drawing from the book Information Theory, Inference, and Learning Algorithms Downloadable or purchasable: http://www.inference.phy.cam.ac.uk/mackay/itila/book.html CSE

More information

Lab/Project Error Control Coding using LDPC Codes and HARQ

Lab/Project Error Control Coding using LDPC Codes and HARQ Linköping University Campus Norrköping Department of Science and Technology Erik Bergfeldt TNE066 Telecommunications Lab/Project Error Control Coding using LDPC Codes and HARQ Error control coding is an

More information

Know your Algorithm! Architectural Trade-offs in the Implementation of a Viterbi Decoder. Matthias Kamuf,

Know your Algorithm! Architectural Trade-offs in the Implementation of a Viterbi Decoder. Matthias Kamuf, Know your Algorithm! Architectural Trade-offs in the Implementation of a Viterbi Decoder Matthias Kamuf, 2009-12-08 Agenda Quick primer on communication and coding The Viterbi algorithm Observations to

More information

Final Exam (ECE 408/508 Digital Communications) (05/05/10, Wed, 6 8:30PM)

Final Exam (ECE 408/508 Digital Communications) (05/05/10, Wed, 6 8:30PM) Final Exam (ECE 407 Digital Communications) Page 1 Final Exam (ECE 408/508 Digital Communications) (05/05/10, Wed, 6 8:30PM) Name: Bring calculators. 2 ½ hours. 20% of your final grade. Question 1. (20%,

More information

Design and Implementation of BPSK Modulator and Demodulator using VHDL

Design and Implementation of BPSK Modulator and Demodulator using VHDL Design and Implementation of BPSK Modulator and Demodulator using VHDL Mohd. Amin Sultan Research scholar JNTU HYDERABAD, TELANGANA,INDIA amin.ashrafi@yahoo.com Hina Malik Research Scholar ROYAL INSTITUTE

More information

BPSK Modulation and Demodulation Scheme on Spartan-3 FPGA

BPSK Modulation and Demodulation Scheme on Spartan-3 FPGA BPSK Modulation and Demodulation Scheme on Spartan-3 FPGA Mr. Pratik A. Bhore 1, Miss. Mamta Sarde 2 pbhore3@gmail.com1, mmsarde@gmail.com2 Department of Electronics & Communication Engineering Abha Gaikwad-Patil

More information

FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY

FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY 1 Information Transmission Chapter 5, Block codes FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY 2 Methods of channel coding For channel coding (error correction) we have two main classes of codes,

More information

Disclaimer. Primer. Agenda. previous work at the EIT Department, activities at Ericsson

Disclaimer. Primer. Agenda. previous work at the EIT Department, activities at Ericsson Disclaimer Know your Algorithm! Architectural Trade-offs in the Implementation of a Viterbi Decoder This presentation is based on my previous work at the EIT Department, and is not connected to current

More information

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013 ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013 Lecture 18 Today: (1) da Silva Discussion, (2) Error Correction Coding, (3) Error Detection (CRC) HW 8 due Tue. HW 9 (on Lectures

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE

TABLE OF CONTENTS CHAPTER TITLE PAGE TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS i i i i i iv v vi ix xi xiv 1 INTRODUCTION 1 1.1

More information

Available online at ScienceDirect. Procedia Technology 17 (2014 )

Available online at   ScienceDirect. Procedia Technology 17 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Technology 17 (2014 ) 107 113 Conference on Electronics, Telecommunications and Computers CETC 2013 Design of a Power Line Communications

More information

Digital Communications I: Modulation and Coding Course. Term Catharina Logothetis Lecture 12

Digital Communications I: Modulation and Coding Course. Term Catharina Logothetis Lecture 12 Digital Communications I: Modulation and Coding Course Term 3-8 Catharina Logothetis Lecture Last time, we talked about: How decoding is performed for Convolutional codes? What is a Maximum likelihood

More information

Improved concatenated (RS-CC) for OFDM systems

Improved concatenated (RS-CC) for OFDM systems Improved concatenated (RS-CC) for OFDM systems Mustafa Dh. Hassib 1a), JS Mandeep 1b), Mardina Abdullah 1c), Mahamod Ismail 1d), Rosdiadee Nordin 1e), and MT Islam 2f) 1 Department of Electrical, Electronics,

More information

ISSN: International Journal of Innovative Research in Science, Engineering and Technology

ISSN: International Journal of Innovative Research in Science, Engineering and Technology ISSN: 39-8753 Volume 3, Issue 7, July 4 Graphical User Interface for Simulating Convolutional Coding with Viterbi Decoding in Digital Communication Systems using Matlab Ezeofor C. J., Ndinechi M.C. Lecturer,

More information

Optimized BPSK and QAM Techniques for OFDM Systems

Optimized BPSK and QAM Techniques for OFDM Systems I J C T A, 9(6), 2016, pp. 2759-2766 International Science Press ISSN: 0974-5572 Optimized BPSK and QAM Techniques for OFDM Systems Manikandan J.* and M. Manikandan** ABSTRACT A modulation is a process

More information

The figures and the logic used for the MATLAB are given below.

The figures and the logic used for the MATLAB are given below. MATLAB FIGURES & PROGRAM LOGIC: Transmitter: The figures and the logic used for the MATLAB are given below. Binary Data Sequence: For our project we assume that we have the digital binary data stream.

More information

VITERBI DECODER WITH LOW POWER AND LOW COMPLEXITY FOR SPACE-TIME TRELLIS CODES

VITERBI DECODER WITH LOW POWER AND LOW COMPLEXITY FOR SPACE-TIME TRELLIS CODES VITERBI DECODER WITH LOW POWER AND LOW COMPLEXITY FOR SPACE-TIME TRELLIS CODES P. Uma Devi 1 *, P. Seshagiri Rao 2 (1* Asst.Professor, Department of Electronics and Communication, JJIIT, Hyderabad) (2

More information

International Journal of Computer Trends and Technology (IJCTT) Volume 40 Number 2 - October2016

International Journal of Computer Trends and Technology (IJCTT) Volume 40 Number 2 - October2016 Signal Power Consumption in Digital Communication using Convolutional Code with Compared to Un-Coded Madan Lal Saini #1, Dr. Vivek Kumar Sharma *2 # Ph. D. Scholar, Jagannath University, Jaipur * Professor,

More information

Department of Electronic Engineering FINAL YEAR PROJECT REPORT

Department of Electronic Engineering FINAL YEAR PROJECT REPORT Department of Electronic Engineering FINAL YEAR PROJECT REPORT BEngECE-2009/10-- Student Name: CHEUNG Yik Juen Student ID: Supervisor: Prof.

More information

COPYRIGHTED MATERIAL. Introduction. 1.1 Communication Systems

COPYRIGHTED MATERIAL. Introduction. 1.1 Communication Systems 1 Introduction The reliable transmission of information over noisy channels is one of the basic requirements of digital information and communication systems. Here, transmission is understood both as transmission

More information

Design and Comparison of Viterbi Decoder on Spartan-3A (XC3S400A- 4FTG256C) and Spartan- 3E (XC3S500E- 4FT256) Using Verilog

Design and Comparison of Viterbi Decoder on Spartan-3A (XC3S400A- 4FTG256C) and Spartan- 3E (XC3S500E- 4FT256) Using Verilog Design and Comparison of Viterbi Decoder on Spartan-3A (XC3S400A- 4FTG256C) and Spartan- 3E (XC3S500E- 4FT256) Using Verilog 1 Jigar B Patel, 2 Prof.Nabila Shaikh 1 L.J. Institute of Engineering and Technology,

More information

FPGA Implementation of MHz and mw High Speed Low Power Viterbi Decoder

FPGA Implementation of MHz and mw High Speed Low Power Viterbi Decoder FPGA Implementation of 413.121 MHz and 11.34 mw High Speed Low Power Viterbi Decoder Pooran Singh and Santosh Kr. Vishvakarma Abstract High speed and low power Viterbi Decoder of rate ½ convolutional coding

More information

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont.

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont. TSTE17 System Design, CDIO Lecture 5 1 General project hints 2 Project hints and deadline suggestions Required documents Modulation, cont. Requirement specification Channel coding Design specification

More information

Implementation of Different Interleaving Techniques for Performance Evaluation of CDMA System

Implementation of Different Interleaving Techniques for Performance Evaluation of CDMA System Implementation of Different Interleaving Techniques for Performance Evaluation of CDMA System Anshu Aggarwal 1 and Vikas Mittal 2 1 Anshu Aggarwal is student of M.Tech. in the Department of Electronics

More information

FPGA IMPLEMENTATION OF HIGH SPEED AND LOW POWER VITERBI ENCODER AND DECODER

FPGA IMPLEMENTATION OF HIGH SPEED AND LOW POWER VITERBI ENCODER AND DECODER FPGA IMPLEMENTATION OF HIGH SPEED AND LOW POWER VITERBI ENCODER AND DECODER M.GAYATHRI #1, D.MURALIDHARAN #2 #1 M.Tech, School of Computing #2 Assistant Professor, SASTRA University, Thanjavur. #1 gayathrimurugan.12

More information

Maximum Likelihood Sequence Detection (MLSD) and the utilization of the Viterbi Algorithm

Maximum Likelihood Sequence Detection (MLSD) and the utilization of the Viterbi Algorithm Maximum Likelihood Sequence Detection (MLSD) and the utilization of the Viterbi Algorithm Presented to Dr. Tareq Al-Naffouri By Mohamed Samir Mazloum Omar Diaa Shawky Abstract Signaling schemes with memory

More information

Single Chip FPGA Based Realization of Arbitrary Waveform Generator using Rademacher and Walsh Functions

Single Chip FPGA Based Realization of Arbitrary Waveform Generator using Rademacher and Walsh Functions IEEE ICET 26 2 nd International Conference on Emerging Technologies Peshawar, Pakistan 3-4 November 26 Single Chip FPGA Based Realization of Arbitrary Waveform Generator using Rademacher and Walsh Functions

More information

Chapter 4. Communication System Design and Parameters

Chapter 4. Communication System Design and Parameters Chapter 4 Communication System Design and Parameters CHAPTER 4 COMMUNICATION SYSTEM DESIGN AND PARAMETERS 4.1. Introduction In this chapter the design parameters and analysis factors are described which

More information

Chapter 3 Convolutional Codes and Trellis Coded Modulation

Chapter 3 Convolutional Codes and Trellis Coded Modulation Chapter 3 Convolutional Codes and Trellis Coded Modulation 3. Encoder Structure and Trellis Representation 3. Systematic Convolutional Codes 3.3 Viterbi Decoding Algorithm 3.4 BCJR Decoding Algorithm 3.5

More information

Spreading Codes and Characteristics. Error Correction Codes

Spreading Codes and Characteristics. Error Correction Codes Spreading Codes and Characteristics and Error Correction Codes Global Navigational Satellite Systems (GNSS-6) Short course, NERTU Prasad Krishnan International Institute of Information Technology, Hyderabad

More information

Advanced channel coding : a good basis. Alexandre Giulietti, on behalf of the team

Advanced channel coding : a good basis. Alexandre Giulietti, on behalf of the team Advanced channel coding : a good basis Alexandre Giulietti, on behalf of the T@MPO team Errors in transmission are fowardly corrected using channel coding e.g. MPEG4 e.g. Turbo coding e.g. QAM source coding

More information

Front End To Back End VLSI Design For Convolution Encoder Pravin S. Tupkari Prof. A. S. Joshi

Front End To Back End VLSI Design For Convolution Encoder Pravin S. Tupkari Prof. A. S. Joshi Front End To Back End VLSI Design For Convolution Encoder Pravin S. Tupkari Prof. A. S. Joshi Abstract For many digital communication system bandwidth and transmission power are limited resource and it

More information

II. FRAME STRUCTURE In this section, we present the downlink frame structure of 3GPP LTE and WiMAX standards. Here, we consider

II. FRAME STRUCTURE In this section, we present the downlink frame structure of 3GPP LTE and WiMAX standards. Here, we consider Forward Error Correction Decoding for WiMAX and 3GPP LTE Modems Seok-Jun Lee, Manish Goel, Yuming Zhu, Jing-Fei Ren, and Yang Sun DSPS R&D Center, Texas Instruments ECE Depart., Rice University {seokjun,

More information

ECEN 449: Microprocessor System Design Department of Electrical and Computer Engineering Texas A&M University

ECEN 449: Microprocessor System Design Department of Electrical and Computer Engineering Texas A&M University ECEN 449: Microprocessor System Design Department of Electrical and Computer Engineering Texas A&M University Prof. Sunil P Khatri (Lab exercise created and tested by Ramu Endluri, He Zhou, Andrew Douglass

More information

HARDWARE-EFFICIENT IMPLEMENTATION OF THE SOVA FOR SOQPSK-TG

HARDWARE-EFFICIENT IMPLEMENTATION OF THE SOVA FOR SOQPSK-TG HARDWARE-EFFICIENT IMPLEMENTATION OF THE SOVA FOR SOQPSK-TG Ehsan Hosseini, Gino Rea Department of Electrical Engineering & Computer Science University of Kansas Lawrence, KS 66045 ehsan@ku.edu Faculty

More information

Design High speed Reed Solomon Decoder on FPGA

Design High speed Reed Solomon Decoder on FPGA Design High speed Reed Solomon Decoder on FPGA Saroj Bakale Agnihotri College of Engineering, 1 Wardha, India. sarojvb87@gmail.com Dhananjay Dabhade Assistant Professor, Agnihotri College of Engineering,

More information

AN INTRODUCTION TO ERROR CORRECTING CODES Part 2

AN INTRODUCTION TO ERROR CORRECTING CODES Part 2 AN INTRODUCTION TO ERROR CORRECTING CODES Part Jack Keil Wolf ECE 54 C Spring BINARY CONVOLUTIONAL CODES A binary convolutional code is a set of infinite length binary sequences which satisfy a certain

More information

EFFECTIVE CHANNEL CODING OF SERIALLY CONCATENATED ENCODERS AND CPM OVER AWGN AND RICIAN CHANNELS

EFFECTIVE CHANNEL CODING OF SERIALLY CONCATENATED ENCODERS AND CPM OVER AWGN AND RICIAN CHANNELS EFFECTIVE CHANNEL CODING OF SERIALLY CONCATENATED ENCODERS AND CPM OVER AWGN AND RICIAN CHANNELS Manjeet Singh (ms308@eng.cam.ac.uk) Ian J. Wassell (ijw24@eng.cam.ac.uk) Laboratory for Communications Engineering

More information

Vector-LDPC Codes for Mobile Broadband Communications

Vector-LDPC Codes for Mobile Broadband Communications Vector-LDPC Codes for Mobile Broadband Communications Whitepaper November 23 Flarion Technologies, Inc. Bedminster One 35 Route 22/26 South Bedminster, NJ 792 Tel: + 98-947-7 Fax: + 98-947-25 www.flarion.com

More information

RADIO SYSTEMS ETIN15. Channel Coding. Ove Edfors, Department of Electrical and Information Technology

RADIO SYSTEMS ETIN15. Channel Coding. Ove Edfors, Department of Electrical and Information Technology RADIO SYSTEMS ETIN15 Lecture no: 7 Channel Coding Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se 2016-04-18 Ove Edfors - ETIN15 1 Contents (CHANNEL CODING) Overview

More information

DIGITAL COMMINICATIONS

DIGITAL COMMINICATIONS Code No: R346 R Set No: III B.Tech. I Semester Regular and Supplementary Examinations, December - 23 DIGITAL COMMINICATIONS (Electronics and Communication Engineering) Time: 3 Hours Max Marks: 75 Answer

More information

Joint Viterbi Detector/Decoder for Satellite Comms.

Joint Viterbi Detector/Decoder for Satellite Comms. Joint Viterbi Detector/Decoder for Satellite Comms. Chan Kheong Sann, Ashish James, Sari Shafidah Data Storage Institute (DSI), Agency for Science Technology and Research (A*STAR) 21-23 July 2016 Satellite

More information

An Efficient Method for Implementation of Convolution

An Efficient Method for Implementation of Convolution IAAST ONLINE ISSN 2277-1565 PRINT ISSN 0976-4828 CODEN: IAASCA International Archive of Applied Sciences and Technology IAAST; Vol 4 [2] June 2013: 62-69 2013 Society of Education, India [ISO9001: 2008

More information

Design and Simulation of Universal Asynchronous Receiver Transmitter on Field Programmable Gate Array Using VHDL

Design and Simulation of Universal Asynchronous Receiver Transmitter on Field Programmable Gate Array Using VHDL International Journal Of Scientific Research And Education Volume 2 Issue 7 Pages 1091-1097 July-2014 ISSN (e): 2321-7545 Website:: http://ijsae.in Design and Simulation of Universal Asynchronous Receiver

More information

Lecture 4: Wireless Physical Layer: Channel Coding. Mythili Vutukuru CS 653 Spring 2014 Jan 16, Thursday

Lecture 4: Wireless Physical Layer: Channel Coding. Mythili Vutukuru CS 653 Spring 2014 Jan 16, Thursday Lecture 4: Wireless Physical Layer: Channel Coding Mythili Vutukuru CS 653 Spring 2014 Jan 16, Thursday Channel Coding Modulated waveforms disrupted by signal propagation through wireless channel leads

More information

Forward Error Correction Technique using Convolution Encoder & Viterbi Decoder

Forward Error Correction Technique using Convolution Encoder & Viterbi Decoder Forward Error Correction Technique using Convolution Encoder & Viterbi Decoder Awantika Vishwakarma 1, Pankaj Gulhane 2 Dept. of VLSI & Embeded System, Electronics & tele Communication, Disha Institute

More information

Intro to coding and convolutional codes

Intro to coding and convolutional codes Intro to coding and convolutional codes Lecture 11 Vladimir Stojanović 6.973 Communication System Design Spring 2006 Massachusetts Institute of Technology 802.11a Convolutional Encoder Rate 1/2 convolutional

More information

Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing

Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing 16.548 Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing Outline! Introduction " Pushing the Bounds on Channel Capacity " Theory of Iterative Decoding " Recursive Convolutional Coding

More information

FPGA Realization of Gaussian Pulse Shaped QPSK Modulator

FPGA Realization of Gaussian Pulse Shaped QPSK Modulator FPGA Realization of Gaussian Pulse Shaped QPSK Modulator TANANGI SNEHITHA, Mr. AMAN KUMAR Abstract In past few years, a major transition from analog to digital modulation techniques has occurred and it

More information

CHAPTER 5 NOVEL CARRIER FUNCTION FOR FUNDAMENTAL FORTIFICATION IN VSI

CHAPTER 5 NOVEL CARRIER FUNCTION FOR FUNDAMENTAL FORTIFICATION IN VSI 98 CHAPTER 5 NOVEL CARRIER FUNCTION FOR FUNDAMENTAL FORTIFICATION IN VSI 5.1 INTRODUCTION This chapter deals with the design and development of FPGA based PWM generation with the focus on to improve the

More information

CT-516 Advanced Digital Communications

CT-516 Advanced Digital Communications CT-516 Advanced Digital Communications Yash Vasavada Winter 2017 DA-IICT Lecture 17 Channel Coding and Power/Bandwidth Tradeoff 20 th April 2017 Power and Bandwidth Tradeoff (for achieving a particular

More information

Using TCM Techniques to Decrease BER Without Bandwidth Compromise. Using TCM Techniques to Decrease BER Without Bandwidth Compromise. nutaq.

Using TCM Techniques to Decrease BER Without Bandwidth Compromise. Using TCM Techniques to Decrease BER Without Bandwidth Compromise. nutaq. Using TCM Techniques to Decrease BER Without Bandwidth Compromise 1 Using Trellis Coded Modulation Techniques to Decrease Bit Error Rate Without Bandwidth Compromise Written by Jean-Benoit Larouche INTRODUCTION

More information

Performance comparison of convolutional and block turbo codes

Performance comparison of convolutional and block turbo codes Performance comparison of convolutional and block turbo codes K. Ramasamy 1a), Mohammad Umar Siddiqi 2, Mohamad Yusoff Alias 1, and A. Arunagiri 1 1 Faculty of Engineering, Multimedia University, 63100,

More information

Hardware implementation of Zero-force Precoded MIMO OFDM system to reduce BER

Hardware implementation of Zero-force Precoded MIMO OFDM system to reduce BER Hardware implementation of Zero-force Precoded MIMO OFDM system to reduce BER Deepak Kumar S Nadiger 1, Meena Priya Dharshini 2 P.G. Student, Department of Electronics & communication Engineering, CMRIT

More information

Available online at ScienceDirect. Procedia Technology 25 (2016 )

Available online at   ScienceDirect. Procedia Technology 25 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Technology 25 (2016 ) 435 442 Global Colloquium in Recent Advancement and Effectual Researches in Engineering, Science and Technology (RAEREST

More information

Discontinued IP. IEEE e CTC Decoder v4.0. Introduction. Features. Functional Description

Discontinued IP. IEEE e CTC Decoder v4.0. Introduction. Features. Functional Description DS634 December 2, 2009 Introduction The IEEE 802.16e CTC decoder core performs iterative decoding of channel data that has been encoded as described in Section 8.4.9.2.3 of the IEEE Std 802.16e-2005 specification

More information

Introduction to Coding Theory

Introduction to Coding Theory Coding Theory Massoud Malek Introduction to Coding Theory Introduction. Coding theory originated with the advent of computers. Early computers were huge mechanical monsters whose reliability was low compared

More information

IJESRT. (I2OR), Publication Impact Factor: 3.785

IJESRT. (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY ERROR DETECTION USING BINARY BCH (55, 15, 5) CODES Sahana C*, V Anandi *M.Tech,Dept of Electronics & Communication, M S Ramaiah

More information

An Improved Rate Matching Method for DVB Systems Through Pilot Bit Insertion

An Improved Rate Matching Method for DVB Systems Through Pilot Bit Insertion Research Journal of Applied Sciences, Engineering and Technology 4(18): 3251-3256, 2012 ISSN: 2040-7467 Maxwell Scientific Organization, 2012 Submitted: December 28, 2011 Accepted: March 02, 2012 Published:

More information

SIMULATIONS OF ERROR CORRECTION CODES FOR DATA COMMUNICATION OVER POWER LINES

SIMULATIONS OF ERROR CORRECTION CODES FOR DATA COMMUNICATION OVER POWER LINES SIMULATIONS OF ERROR CORRECTION CODES FOR DATA COMMUNICATION OVER POWER LINES Michelle Foltran Miranda Eduardo Parente Ribeiro mifoltran@hotmail.com edu@eletrica.ufpr.br Departament of Electrical Engineering,

More information

Channel Coding RADIO SYSTEMS ETIN15. Lecture no: Ove Edfors, Department of Electrical and Information Technology

Channel Coding RADIO SYSTEMS ETIN15. Lecture no: Ove Edfors, Department of Electrical and Information Technology RADIO SYSTEMS ETIN15 Lecture no: 7 Channel Coding Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se 2012-04-23 Ove Edfors - ETIN15 1 Contents (CHANNEL CODING) Overview

More information

CH 4. Air Interface of the IS-95A CDMA System

CH 4. Air Interface of the IS-95A CDMA System CH 4. Air Interface of the IS-95A CDMA System 1 Contents Summary of IS-95A Physical Layer Parameters Forward Link Structure Pilot, Sync, Paging, and Traffic Channels Channel Coding, Interleaving, Data

More information

IMPLEMENTATION OF G.726 ITU-T VOCODER ON A SINGLE CHIP USING VHDL

IMPLEMENTATION OF G.726 ITU-T VOCODER ON A SINGLE CHIP USING VHDL IMPLEMENTATION OF G.726 ITU-T VOCODER ON A SINGLE CHIP USING VHDL G.Murugesan N. Ramadass Dr.J.Raja paul Perinbum School of ECE Anna University Chennai-600 025 Gm1gm@rediffmail.com ramadassn@yahoo.com

More information

Trellis-Coded Modulation [TCM]

Trellis-Coded Modulation [TCM] Trellis-Coded Modulation [TCM] Limitations of conventional block and convolutional codes on bandlimited channels Basic principles of trellis coding: state, trellis, and set partitioning Coding gain with

More information

CHAPTER III THE FPGA IMPLEMENTATION OF PULSE WIDTH MODULATION

CHAPTER III THE FPGA IMPLEMENTATION OF PULSE WIDTH MODULATION 34 CHAPTER III THE FPGA IMPLEMENTATION OF PULSE WIDTH MODULATION 3.1 Introduction A number of PWM schemes are used to obtain variable voltage and frequency supply. The Pulse width of PWM pulsevaries with

More information

Implementation of a Block Interleaver Structure for use in Wireless Channels

Implementation of a Block Interleaver Structure for use in Wireless Channels Implementation of a Block Interleaver Structure for use in Wireless Channels BARNALI DAS, MANASH P. SARMA and KANDARPA KUMAR SARMA Gauhati University, Deptt. of Electronics and Communication Engineering,

More information

Physical Layer: Modulation, FEC. Wireless Networks: Guevara Noubir. S2001, COM3525 Wireless Networks Lecture 3, 1

Physical Layer: Modulation, FEC. Wireless Networks: Guevara Noubir. S2001, COM3525 Wireless Networks Lecture 3, 1 Wireless Networks: Physical Layer: Modulation, FEC Guevara Noubir Noubir@ccsneuedu S, COM355 Wireless Networks Lecture 3, Lecture focus Modulation techniques Bit Error Rate Reducing the BER Forward Error

More information

BSc (Hons) Computer Science with Network Security, BEng (Hons) Electronic Engineering. Cohorts: BCNS/17A/FT & BEE/16B/FT

BSc (Hons) Computer Science with Network Security, BEng (Hons) Electronic Engineering. Cohorts: BCNS/17A/FT & BEE/16B/FT BSc (Hons) Computer Science with Network Security, BEng (Hons) Electronic Engineering Cohorts: BCNS/17A/FT & BEE/16B/FT Examinations for 2016-2017 Semester 2 & 2017 Semester 1 Resit Examinations for BEE/12/FT

More information

Vol. 4, No. 4 April 2013 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved.

Vol. 4, No. 4 April 2013 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved. FPGA Implementation Platform for MIMO- Based on UART 1 Sherif Moussa,, 2 Ahmed M.Abdel Razik, 3 Adel Omar Dahmane, 4 Habib Hamam 1,3 Elec and Comp. Eng. Department, Université du Québec à Trois-Rivières,

More information

A Dynamic Reconcile Algorithm for Address Generator in Wimax Deinterleaver

A Dynamic Reconcile Algorithm for Address Generator in Wimax Deinterleaver A Dynamic Reconcile Algorithm for Address Generator in Wimax Deinterleaver Kavya J Mohan 1, Riboy Cheriyan 2 M Tech Scholar, Dept. of Electronics and Communication, SAINTGITS College of Engineering, Kottayam,

More information

Error Protection: Detection and Correction

Error Protection: Detection and Correction Error Protection: Detection and Correction Communication channels are subject to noise. Noise distorts analog signals. Noise can cause digital signals to be received as different values. Bits can be flipped

More information

SCHEME OF COURSE WORK. Course Code : 13EC1114 L T P C : ELECTRONICS AND COMMUNICATION ENGINEERING

SCHEME OF COURSE WORK. Course Code : 13EC1114 L T P C : ELECTRONICS AND COMMUNICATION ENGINEERING SCHEME OF COURSE WORK Course Details: Course Title : DIGITAL COMMUNICATIONS Course Code : 13EC1114 L T P C 4 0 0 3 Program Specialization Semester Prerequisites Courses to which it is a prerequisite :

More information

Department of Electronics & Telecommunication Engg. LAB MANUAL. B.Tech V Semester [ ] (Branch: ETE)

Department of Electronics & Telecommunication Engg. LAB MANUAL. B.Tech V Semester [ ] (Branch: ETE) Department of Electronics & Telecommunication Engg. LAB MANUAL SUBJECT:-DIGITAL COMMUNICATION SYSTEM [BTEC-501] B.Tech V Semester [2013-14] (Branch: ETE) KCT COLLEGE OF ENGG & TECH., FATEHGARH PUNJAB TECHNICAL

More information

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE A Novel Approach of -Insensitive Null Convention Logic Microprocessor Design J. Asha Jenova Student, ECE Department, Arasu Engineering College, Tamilndu,

More information

Contents Chapter 1: Introduction... 2

Contents Chapter 1: Introduction... 2 Contents Chapter 1: Introduction... 2 1.1 Objectives... 2 1.2 Introduction... 2 Chapter 2: Principles of turbo coding... 4 2.1 The turbo encoder... 4 2.1.1 Recursive Systematic Convolutional Codes... 4

More information

Lecture #2. EE 471C / EE 381K-17 Wireless Communication Lab. Professor Robert W. Heath Jr.

Lecture #2. EE 471C / EE 381K-17 Wireless Communication Lab. Professor Robert W. Heath Jr. Lecture #2 EE 471C / EE 381K-17 Wireless Communication Lab Professor Robert W. Heath Jr. Preview of today s lecture u Introduction to digital communication u Components of a digital communication system

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON ELEC6014W1 SEMESTER II EXAMINATIONS 2007/08 RADIO COMMUNICATION NETWORKS AND SYSTEMS Duration: 120 mins Answer THREE questions out of FIVE. University approved calculators may

More information

The Optimal Employment of CSI in COFDM-Based Receivers

The Optimal Employment of CSI in COFDM-Based Receivers The Optimal Employment of CSI in COFDM-Based Receivers Akram J. Awad, Timothy O Farrell School of Electronic & Electrical Engineering, University of Leeds, UK eenajma@leeds.ac.uk Abstract: This paper investigates

More information

ECE 6640 Digital Communications

ECE 6640 Digital Communications ECE 6640 Digital Communications Dr. Bradley J. Bazuin Assistant Professor Department of Electrical and Computer Engineering College of Engineering and Applied Sciences Chapter 8 8. Channel Coding: Part

More information

Analysis of Convolutional Encoder with Viterbi Decoder for Next Generation Broadband Wireless Access Systems

Analysis of Convolutional Encoder with Viterbi Decoder for Next Generation Broadband Wireless Access Systems International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-3, Issue-4, April 2015 Analysis of Convolutional Encoder with Viterbi Decoder for Next Generation Broadband Wireless

More information

Introduction to Simulation of Verilog Designs. 1 Introduction. For Quartus II 13.0

Introduction to Simulation of Verilog Designs. 1 Introduction. For Quartus II 13.0 Introduction to Simulation of Verilog Designs For Quartus II 13.0 1 Introduction An effective way of determining the correctness of a logic circuit is to simulate its behavior. This tutorial provides an

More information