Recent Advances to Obtain Real - time Displacements for Engineering Applications

Size: px
Start display at page:

Download "Recent Advances to Obtain Real - time Displacements for Engineering Applications"

Transcription

1 Recent Advances to Obtain Real - time Displacements for Engineering Applications Mehmet Çelebi USGS (MS977), 345 Middlefield Rd., Menlo Park, Ca. 945 Abstract This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications. Introduction Seismic monitoring of structural systems constitutes an integral part of hazard reduction strategies in seismically active regions of the world. In addition to the United States, extensive programs for seismic monitoring of structures have been established in Japan, Taiwan, Mexico and Chile. Other active programs exist in Italy, Turkey and Greece. Nuclear facilities usually have rather unique aims and strategies in seismic instrumentation. However, at least the second approach that is described in this study can be easily adopted for nuclear facilities as well. In general, and until recently, accelerometers have been used to capture the time-variant level of shaking at strategically selected orientations and locations within a structure. Recordings of the acceleration response of structures have served the scientific and engineering community well and have been useful in assessing design/analysis procedures, improving code provisions, and in correlating the system response with damage. Unfortunately, there are only a few records from damaged instrumented structures to facilitate studies of the initiation and progression of damage during strong shaking (e.g. Imperial County Services Building during the 979 Imperial Valley earthquake, [Rojahn and Mork, 98]). In the future, instrumentation programs should consider this deficiency. Jennings (997) summarizes this view as follows: As more records become available and understood, it seems inevitable that the process of earthquake resistant design will be increasingly, and quite appropriately, based more and more upon records and measured properties of materials, and less and less upon empiricism and qualitative assessments of earthquake performance. This process is well along now in the design of special structures.

2 An instrumented structure should provide enough information to (a) reconstruct the response of the structure in sufficient detail to compare with the response predicted by mathematical models and those observed in laboratories, the goal being to improve the models, (b) make it possible to explain the reasons for any damage to the structure, and (c) to facilitate decisions to retrofit/strengthen the structural systems when warranted. In addition, a structural array should include, if physically possible, an associated free-field tri-axial accelerograph so that the interaction between soil and structure can be quantified. Recent trends in the development of performance-based earthquake-resistant design methods and related needs of the engineering community, as well as advances in computation, communication and data transmission capabilities, have prompted development of new approaches for structural monitoring applications. In particular, (a) verification of performance-based design methods and (b) needs of owners to rapidly and informedly assess the damage condition and therefore the functionality of a building following an event require measurement of displacement rather than, or in addition to, accelerations as is commonly done. However, it has to be acknowledged that the development of the new monitoring tools is being driven not only by the stated needs of engineers but also by the advent of the data acquisition systems with specific software that can record, digitize and process accelerations and, integrate to displacements and transmit both accelerations and displacements in real-time or near real-time. Displacement Measurement Needs and Arrays Two important factors are driving the recent push for developing technologies for measuring displacements in real-time or near real-time: (a) the evolution of performance-based design methods and procedures which rely on displacement as the main parameter and (b) the needs of local and state officials and prudent property owners to establish procedures to assess the functionality of buildings and other important structures, such as lifelines, following a significant seismic event. As a result, structural engineers increasingly want the measurement of displacements during strong shaking events in order to assess drift ratios that in turn are related to performance of the structure. A challenge to meeting these objectives is the fact that dynamically measuring relative displacements between floors of a building directly is very difficult and, except for tests conducted in a laboratory (e.g., using displacement transducers), has yet to be readily and feasibly achieved for a variety of real-life structures. However, recent technological developments have already made it possible to successfully develop and implement two approaches to dynamically measure and/or compute real-time displacements from which drift ratios or average drift ratios can be computed. Both approaches can be used for performance evaluation of structures and can be considered as building health-monitoring applications. Drift ratios can be related to damage as shown schematically in Figure. Once drift ratios are computed in near real-time, technical assessment of the damage condition of a building can be made. Relevant parameters, such as the type of connections and story structural characteristics (including geometry e.g. story height) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, recorded (or observed) drift ratios are compared with those precomputed threshold drift ratios to technically assess the damage condition of a building. Use of GPS for direct measurements of displacements

3 For long-period structures such as tall buildings and long-span bridges, dynamic displacement measurements are now possible using differential Global Positioning Systems (GPS) (Çelebi and Sanli, ). However, GPS technology is limited to sampling rates of - Hz and, for buildings, measurement of displacement is possible only at the roof. Currently, the accuracy of GPS measurements is ± cm horizontal and ± cm vertical. A schematic and photos of an application in the use of GPS to directly measure displacements is shown in Figure. In this particular case, two GPS units are used in order to capture both the translational and torsional response of the 34-story building in San Francisco, Ca. Furthermore, at the same locations as the GPS antennas, tri-axial accelerometers are deployed to compare the displacements measured by GPS with those obtained by doubleintegration of the accelerometer records. Real-time acceleration and displacement data streaming into the PC based monitoring system is shown also in Figure. In absence of strong shaking data from the deployed system, ambient data obtained are analyzed to infer the validity of the recorded vibration signals even though both the signal amplitude and signal to noise ratio are low (Figure 3). The GPS displacement data is within the margin of error specified by the manufacturer (< cm. horizontal). Figure. Hypothetical displacement time-history as related to FEMA- 74. In Figure 4, cross-spectra () of pairs of parallel records (north-south component of north deployment [N_N] vs. north-south component of south deployment [S_N], and east-west component of north deployment [N_E] vs east-west component of south deployment [S_E]) from accelerometers are calculated. The same is repeated for the differential displacement records from GPS units. The clearly indicate a dominant frequency of.4-.5 Hz from both acceleration and displacement data. This frequency is within the band of expected frequency for a 34-story building. The lower amplitude peak in frequency (near ~. Hz) seen in the cross-spectra of displacement records is due to noise, which is probably microseisms. It is expected that during larger amplitude motions with higher signalto-noise ratios, such low frequency amplitudes due to noise will not be noticeable. In the acceleration data, a second frequency at.3 Hz is apparent. The.4-.5 Hz is the fundamental translational frequency (in both directions). This is confirmed by the fact that at this frequency, the cross spectra of parallel acceleration records have a coherency of approximately unity (~ ) and they are in-phase ( o ). On the other hand, the of parallel acceleration records at.3 Hz also show coherency of approximately unity but they are out of phase (8 o ). Therefore, this frequency corresponds to a torsional mode. 3

4 Figure. Special instrumentation using GPS and accelerometers (San Francisco, CA.): (Left)- Schematic of the overall system, (Center)- GPS and Radio modem antenna and the recorders connected to PC, (Right)- streaming of acceleration and displacement data in realtime (Çelebi and Sanli, ). x -3 N_N x -3 N_E x N_N x -3 - N_E GPS_N_N ACC_N_Y (ACC_N_N) - - x -3 S_N 5 x S_E -3 5 ACC_N_X (ACC_N_E) x -3 S_N x -3 S_E N 45 o NORTH GPS_N_E DISPL[CM] DISPL[CM] N_N COMPONENT S_N COMPONENT ACC_S_Y (ACC_S_N) SOUTH GPS_S_N DISPL[CM] DISPL[CM ] ACC_S_X (ACC_S_E) GPS_S_E N_E COMPONENT S_E COMPONENT Figure 3. With locations defined in the central schematic, (Top) remotely-triggered and recorded ( and 6 second windows) accelerations at N (North) and S (South) locations. (Bottom) remotely triggered and recorded displacements from GPS at N (North) and S (South) locations. 4

5 For the fundamental frequency at.4 Hz, the displacement data exhibits a o phase angle; however, the coherencies are lower (~.6-.7). The fact that the fundamental frequency (.4 Hz) can be identified from the GPS displacement data, amplitudes of which are within the manufacturer specified error range, and that it can be confirmed by the acceleration data, is an indication of promise of better results when larger displacements can be recorded during strong shaking caused by earthquakes or strong winds. Since the deployment of the pioneering GPS units in San Francisco, CA, multiple other such arrays have been developed. An important array for monitoring the wind response of tall buildings in Chicago, IL has been developed by Kijewski-Correa and Kareem (4). x 5 CROSS-SPECTRUM 3.5 ACCELERATION [FROM ACCELEROMETER] N_N vs S_N.3.5 x 4 CROSS-SPECTRUM ACCELERATION [FROM ACCELEROMETER].3 N_E vs S_E CROSS-SPECTRUM.4 DISPL. [FROM GPS] N_N vs S_N.5 CROSS-SPECTRUM DISPL. [FROM GPS] N_E vs S_E.5 ACC:N_N vs S_N ACC:N_E vs S_E PHASE ANG.(DEG) PHASE ANG.(DEG) DISPL:N_N vs S_N DISPL:N_E vs S_E PHASE ANG.(DEG) PHASE ANG.(DEG) Figure 4. Cross-spectra () and associated coherency and phase angle plots of horizontal, and parallel accelerations and displacements. [Note: In the coherency-phase angle plots, solid lines are coherency and dashed lines are phase-angle]. Displacement via real-time double integration As mentioned previously, GPS applications are currently limited to sampling at Hz, and for building monitoring, these displacements measurements are possible only on at the roof. This limits the application to long period structures rather than wide variety of structural systems. Therefore, the alternative strategy is to compute displacements from recorded acceleration responses in real-time or near real-time. A new approach in obtaining displacements in real-time is depicted in Figure 5 which also shows the distribution of accelerometers in the building array designed to provide data from several pairs of neighboring floors to facilitate drift computations. The system has a server that (a) digitizes continuous analog acceleration data, (b) pre-processes the sps digitized data with low-pass filters (herein called as the preliminarily filtered uncorrected data), (c) decimates the data to sps and streams it locally, (d) monitors and applies server triggering threshold criteria and locally records 5

6 (with a pre-event memory) when prescribed thresholds are exceeded, and (e) broadcasts the data continuously to remote users by high-speed internet. Figure 5. General schematic of data acquisition and transmittal for seismic monitoring of the building. The broadcast streamed real-time acceleration data are acquired remotely using Client Software configured to compute velocity, displacement and a selected number of drift ratios. Figure 6 shows two PC screen snapshots of the client software display configured for channels of streaming acceleration or velocity or displacement or drift ratio time series. Each paired set of acceleration response streams is displayed with a different color. The amplitude spectrum for one of the selected channels is periodically recomputed and clearly displays several identifiable frequencies. In the lower left, time series of drift ratios are shown for 6 locations, with each color corresponding to the same pair of acceleration data from the window above. Drift ratios are computed using real-time, filtered and double integrated acceleration data. Specific filter options are built into the client software for processing of the acceleration data. To compute drift ratios, story heights are entered manually (Figure 6). This figure also shows the computed pairs of displacements that are used to compute the drift ratios. Corresponding to each drift ratio, there are 4 stages of colored indicators. When only the green color indicator is activated, it indicates that the computed drift ratio is below the first of three specific thresholds. The thresholds of drift ratios for selected pairs of data must also be manually entered in the boxes. As drift ratios exceed the designated three thresholds, additional indicators are activated with a different color (Figure 6). The drift ratios are calculated using data from any pair of accelerometer channels oriented in the same direction. The threshold drift ratios for alarming and recording are computed and decided by structural engineers using structural information and are compatible with the performance-based theme, as illustrated in Figure (Figure C-3 of FEMA-74 [ATC 997]) and summarized in Table for this particular building. Figure 6 hypothetically shows that the first level of threshold is exceeded, and the client software is recording data as indicated by the illuminated red button. 6

7 Table. Summary of Threshold Stages and Corresponding Drift Ratios Threshold Stage 3 Adopted Drift Ratio.%.8%.4 -.% Figure 6. (Left) Screen snapshot of client software display showing acceleration streams and computed amplitude and response spectra. (Right) Screen snapshot of client software display showing -channel (six pairs with each pair a different color) displacement and corresponding six-drift ratio (each corresponding to the same color displacement) streams. Also shown to the upper right are alarm systems corresponding to thresholds that must be manually input. The first threshold for the first drift ratio is hypothetically exceeded to indicate the starting of the recording and change in the color of the alarm from green to yellow. Sample Ambient Data and Analyses Sample data recorded on February 3 via the client software are shown in Figure 7. The data are from the two parallel roof channels (CH and CH) and their difference as well as the roof orthogonal channel (CH3). The intent of the differential accelerations of parallel channels (CH- CH) is to illustrate the strong presence of torsion. The recorded peak accelerations are about.-. gals (~.-. cm/s/s). The computed amplitude spectra clearly indicate a peak frequency for the fundamental translational mode (in both directions) at ~.4 Hz (~.5 second period) for all channels and at ~.6 Hz (~.67 s) for the torsional motion. Furthermore, the signal to noise ratio is high enough to identify the second translational mode at ~.HZ (~.83 s). Similarly, the second torsional mode is at ~.8 Hz (.56 s). The identified translational frequency is typical of a framed building that is 4 stories high. The identified modes and frequencies are further supported with the cross-spectrum, coherency, and phase angle plots in Figures 8 and 9. The cross spectrum, coherency, and phase angle plots of the motions recorded by CH and CH (the two parallel accelerometers at the roof level) are shown in Figure 4. The cross spectrum actually exhibits all of the significant frequencies identified in Figure 3 with very high coherency (~). At.4 and. Hz, the phase angles between the parallel motions are both degrees, which indicate that they are in phase and therefore belong to translational modes. At.6 Hz and.8 Hz, the phase angles are ~8 degrees which indicate that they are out of phase and belong to torsional modes. The strong torsional response is further illustrated through Figure 5 that exhibits cross spectrum, coherency, and phase angle plots of the differences of motions recorded by parallel channels (CH-CH) at the roof and (CH-CH9) at the 8 th floor. Again, at ~ 7

8 .6 Hz, these torsional motions exhibit significant cross-spectral amplitude with very high coherency (~) and degree phase angle. Therefore,.6 Hz belongs to the first torsional mode. At the level of low amplitude acceleration response recorded and exhibited in this set of sample data, the signal-to-noise ratio is quite high and is satisfactory to indicate several modal frequencies. It is expected that the coherency of motions between such pairs of channels will further improve when the signal-to-noise ratio is even higher during strong-shaking events. Further detailed analyses of strong shaking data will be carried out when such data become available in the future. ACCELERATION (CM/S/S) AMBIENT : CH CH CH-CH CH3 AMPLITUDE(CM/S) AMBIENT : CH(SOLID) CH(DASHED) CH-CH CH Figure 7. Twenty seconds of ambient acceleration response data obtained at the roof from parallel channels (CH & CH), their difference (CH-CH), and from CH3, orthogonal to CH and CH (left) and corresponding amplitude spectra (right). Sample Low-amplitude Earthquake Response Data and Analyses During the December, 3 San Simeon, Ca. earthquake (Mw=6.4), at an epicentral distance of 58 km., a complete set of low-amplitude earthquake response data was recorded in the building. The largest peak acceleration was approximately % of g. Synchronized bandpass-filtered accelerations and corresponding double-integrated displacements are exhibited in Figure 9 for one side of the building. Figure further exhibits computed displacements -4 s into the record and reveals the propagation of waves from the ground floor to the roof. The travel time is extracted as about.5 seconds. Since the height of the building is known (6.5 ft [8m]), travel velocity is computed as 6 m/s. One of the possible approaches in detection of possible damage to structures by keeping track of significant changes in the travel time since such travel of waves will be delayed if there are cracks in the structural system (Safak, 999). 8

9 AMBIENT: AMBIENT: CH & CH CH-CH & CH-CH PHASE (DEG.) - PHASE(DEG.) Figure 8. [Left] Cross spectrum, coherency, and phase angle plots of ambient acceleration response data obtained from parallel channels (CH and CH) at the roof and [Right] Cross spectrum, coherency, and phase angle plots of ambient acceleration response data obtained from differences of parallel channels, CH-CH at the roof and CH-CH9 at the 8 th floor. In Figure, the two parallel and orthogonal motions recorded at the roof are used to identify the first mode translational and torsional frequencies as.38 Hz and.6hz respectively. Figures and 3 similarly exhibit the cross-spectrum () and coherency and phase angles at these frequencies. ACCELERATIONS PARALLEL TO FIRST STREET DISPLACEMENTS: PARALLEL TO FIRST STREET 4 CH3 (ROOF) 8 CH3 (ROOF) ACCELERATION (CM/S/S) CH9 (3RD. ) CH8 (8TH. ) CH7 (7TH. ) CH6 (4TH. ) CH5 (TH. ) CH4 (7TH. ) CH3 (6TH. ) CH (EL. 5FT.) CH (GR. ) DISPLACEMENT (CM) CH9 (3RD.) CH8 (8TH.) CH7 (7TH.) CH6 (4TH.) CH5 (TH.) CH4 (7TH.) CH3 (6TH.) CH (EL. 5 ) FT. CH (GR.) Figure9. Bandpass-filtered accelerations (left) and double-integrated displacements (right) at each instrumented floor (from ground floor to the roof) on one side of the building [San Simeon earthquake, December, 3]. 9

10 DISPLACEMENTS: PARALLEL TO FIRST STREET 8 CH3 (ROOF) DISPLACEMENT (CM) CH9 (3RD.) CH8 (8TH.) CH7 (7TH.) CH6 (4TH.) CH5 (TH.) CH4 (7TH.) CH3 (6TH.) CH (EL. 5 ) FT. CH (GR.) Figure. A twenty second window plotted from -4seconds into the record of computed displacements. Travel time of propagating vibrational waves from the ground floor to the roof of the 8 m tall building is approximately.5 second. EQ: DEC., 3 EQ: DEC., CH CH (SOLID) CH (DASHED).8 ACCELERATION (CM/S/S) 4 3 CH CH - CH CH3 AMPLITUDE (CM/S).5.5 CH - CH.5.5 CH Figure. Acceleration response data [San Simeon, Ca. earthquake of December, 3) obtained at the roof from parallel channels (CH & CH), their difference (CH-CH), and from CH3, orthogonal to CH and CH (left) and corresponding amplitude spectra (right).

11 EQ: DEC., CH & CH PHASE ANG.(DEG.) Figure. Cross spectrum, coherency, and phase angle plots of ambient acceleration response data obtained from parallel channels (CH and CH) at the roof. 6 EQ: DEC., 3 4 CH - CH & CH - CH PHASE (DEG.) Figure 3. Cross spectrum, coherency, and phase angle plots of ambient acceleration response data obtained from differences of parallel channels, CH- H at the roof and CH- CH9 at the 8 th floor.

12 Conclusions Capitalizing on advances in global positioning systems, computational and data transmission technology, it is now possible to configure and implement a seismic monitoring system for a specific building with the objective of rapidly obtaining and evaluating response data during a strong shaking event in order to help make informed decisions regarding the health and occupancy of that specific building. Using GPS technology and/or real-time double-integration and related data acquisition systems, displacements and, in turn, drift ratios, in real-time or near real-time are obtained. Drift ratios are related to damage condition of the structural system by using relevant parameters of the type of connections and story structural characteristics including its geometry. Thus, once observed drift ratios are computed in near real-time, technical assessment of the damage condition of a building can be made by comparing the observed with pre-computed threshold stages of drift ratios corresponding to pre-selected damage levels. Both GPS and double integration applications can be used for performance evaluation of structures and can be considered as building health-monitoring applications. Benefits in using such real-time systems in either direct measurement of displacements using GPS or real-time computation of displacements by double-integration of accelerations during very strong shaking caused by earthquakes or other extreme events are yet to be recorded and proven. However, analyses of data recorded during smaller events or low-amplitude shaking are promising. References Applied Technology Council (ATC), 997. NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings, prepared for the Building Seismic Safety Council, published by the Federal Emergency Management Agency, FEMA 74, Washington, D.C. Celebi, M., Sanli, A., Sinclair, M., Gallant, S., and Radulescu, D., 4, Real-Time Seismic Monitoring Needs of a Building Owner and the solution A Cooperative Effort, Journal of EERI, Earthquake Spectra, v.9, Issue, pp.-3. Çelebi, M., and Sanli, A.,, GPS in Pioneering Dynamic Monitoring of Long-Period Structures, Earthquake Spectra, Journal of EERI,. Volume 8, No., pages 47 6, February. Jennings, P.C., 997, Use if strong-motion data in earthquake resistant design, in Proc.SMIP97 Seminar on Utilization of Strong-motion Data, California strong Motion Instrumentation Program, Div. of Mines and Geology, California Dept. of Conservation, Sacramento, Ca.,-8. Kijewski-Correa, T. and Kareem, A., (4, The Height of Precision: New Perspectives in Structural Monitoring, Proceedings of Earth & Space: 9 th Aerospace Division International Conference on Engineering, Construction and Operations Challenging Environments, 7- March, Houston, Tx. Rojahn, C., and Mork, P.N., 98, An analysis of strong-motion data from a severely damaged structure, the Imperial County Services Building, El Centro, California: U.S. Geological Survey Open-File Report Safak, E. (999). Wave-propagation formulation of seismic response of multistory buildings, ASCE, Journal of Structural Engineering, vol. 5, no. 4, April 999, pp

GPS in Pioneering Dynamic Monitoring of Long-Period Structures

GPS in Pioneering Dynamic Monitoring of Long-Period Structures GPS in Pioneering Dynamic Monitoring of Long-Period Structures Mehmet Çelebi, a) M.EERI, and Ahmet Sanli, a) M.EERI Global Positioning System (GPS) technology with 10 20-Hz sampling rates allows scientifically

More information

Structure Health Monitoring System Using MEMS-Applied Vibration Sensor

Structure Health Monitoring System Using MEMS-Applied Vibration Sensor Structure Health Monitoring System Using MEMS-Applied Vibration Sensor SAKAUE Satoru MURAKAMI Keizo KITAGAWA Shinji ABSTRACT Recently, studies have come to be increasingly energetically conducted on structure

More information

STRUCTURAL HEALTH MONITORING USING STRONG AND WEAK EARTHQUAKE MOTIONS

STRUCTURAL HEALTH MONITORING USING STRONG AND WEAK EARTHQUAKE MOTIONS 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska STRUCTURAL HEALTH MONITORING USING STRONG AND WEAK EARTHQUAKE MOTIONS

More information

Bulletin of the Seismological Society of America, Vol. 73, No. 1. pp , February 1983

Bulletin of the Seismological Society of America, Vol. 73, No. 1. pp , February 1983 Bulletin of the Seismological Society of America, Vol. 73, No. 1. pp. 297-305, February 1983 AN EARTHQUAKE ALARM SYSTEM FOR THE MAUI A OFFSHORE PLATFORM, NEW ZEALAND BY R. G. TYLER AND J. L. BECK ABSTRACT

More information

Site-specific seismic hazard analysis

Site-specific seismic hazard analysis Site-specific seismic hazard analysis ABSTRACT : R.K. McGuire 1 and G.R. Toro 2 1 President, Risk Engineering, Inc, Boulder, Colorado, USA 2 Vice-President, Risk Engineering, Inc, Acton, Massachusetts,

More information

CONCEPT OF INTEGRATED CONTROL SYSTEM FOR MONITORING GEOMETRIC CHANGES OF THE TEMPORARY BRIDGE CROSSINGS

CONCEPT OF INTEGRATED CONTROL SYSTEM FOR MONITORING GEOMETRIC CHANGES OF THE TEMPORARY BRIDGE CROSSINGS CONCEPT OF INTEGRATED CONTROL SYSTEM FOR MONITORING GEOMETRIC CHANGES OF THE TEMPORARY BRIDGE CROSSINGS A. Bartnicki 1), J. Bogusz 2), G. Nykiel 2), M. Szołucha 2), M. Wrona 2) 1) Faculty of Mechanical

More information

Spatial coherency of earthquake-induced ground accelerations recorded by 100-Station of Istanbul Rapid Response Network

Spatial coherency of earthquake-induced ground accelerations recorded by 100-Station of Istanbul Rapid Response Network Spatial coherency of -induced ground accelerations recorded by 100-Station of Istanbul Rapid Response Network Ebru Harmandar, Eser Cakti, Mustafa Erdik Kandilli Observatory and Earthquake Research Institute,

More information

Observations of the OSOP Sixaola, March 1-3, 2016, at the Albuquerque Seismological Laboratory

Observations of the OSOP Sixaola, March 1-3, 2016, at the Albuquerque Seismological Laboratory Observations of the OSOP Sixaola, March 1-3, 2016, at the Albuquerque Seismological Laboratory There were two representatives (Angel Rodriquez and David Nelson) from OSOP at ASL March 1-3, 2016, and they

More information

IOMAC'13 5 th International Operational Modal Analysis Conference

IOMAC'13 5 th International Operational Modal Analysis Conference IOMAC'13 5 th International Operational Modal Analysis Conference 2013 May 13-15 Guimarães - Portugal STRUCTURAL HEALTH MONITORING OF A MID HEIGHT BUILDING IN CHILE R. Boroschek 1, A. Aguilar 2, J. Basoalto

More information

Seismic intensities derived from strong motion instruments in New Zealand

Seismic intensities derived from strong motion instruments in New Zealand Seismic intensities derived from strong motion instruments in New Zealand P.N. Davenport Institute of Geological and Nuclear Sciences, Lower Hutt NZSEE 2001 Conference ABSTRACT: Intensity of ground shaking

More information

GENERAL GUIDELINES FOR APPLICATION OF THE EXTENDED SUBTRACTION METHOD IN SASSI SOIL-STRUCTURE INTERACTION ANALYSIS

GENERAL GUIDELINES FOR APPLICATION OF THE EXTENDED SUBTRACTION METHOD IN SASSI SOIL-STRUCTURE INTERACTION ANALYSIS Transactions, SMiRT-22 GENERAL GUIDELINES FOR APPLICATION OF THE EXTENDED SUBTRACTION METHOD IN SASSI SOIL-STRUCTURE INTERACTION ANALYSIS C. C. Chin 1, Nan Deng 2, and Farhang Ostadan 3 1 Senior Engineer,

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara COHERENCE VS DISTANCE AT THE GARNER VALLEY AND WILDLIFE

More information

TRAIN INDUCED SEISMIC NOISE OF ACCELERATING AND DECELERATING TRAIN SETS

TRAIN INDUCED SEISMIC NOISE OF ACCELERATING AND DECELERATING TRAIN SETS TRAIN INDUCED SEISMIC NOISE OF ACCELERATING AND DECELERATING TRAIN SETS ABSTRACT: M. Çetin 1, A. Tongut 2, S.Ü. Dikmen 3 and Ali Pınar 4 1 Civil Eng., Dept. of Earthquake Engineering, KOERI, Bogazici University,

More information

Influence of Peak Factors on Random Vibration Theory Based Site Response Analysis

Influence of Peak Factors on Random Vibration Theory Based Site Response Analysis 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Influence of Peak Factors on Random Vibration Theory Based Site Response Analysis X. Wang

More information

Modal Parameter Identification of A Continuous Beam Bridge by Using Grouped Response Measurements

Modal Parameter Identification of A Continuous Beam Bridge by Using Grouped Response Measurements Modal Parameter Identification of A Continuous Beam Bridge by Using Grouped Response Measurements Hasan CEYLAN and Gürsoy TURAN 2 Research and Teaching Assistant, Izmir Institute of Technology, Izmir,

More information

CASE STUDY BRIDGE DYNAMIC MONITORING

CASE STUDY BRIDGE DYNAMIC MONITORING Introduction BRIDGE DYNAMIC MONITORING Monitoring of structure movements and vibrations (bridges, buildings, monuments, towers etc.) is an increasingly important task for today s construction engineers.

More information

IOMAC' May Guimarães - Portugal REAL-TIME STRUCTURAL HEALTH MONITORUN AND DAMAG DETECTION

IOMAC' May Guimarães - Portugal REAL-TIME STRUCTURAL HEALTH MONITORUN AND DAMAG DETECTION IOMAC'13 5 th International Operational Modal Analysis Conference 2013 May 13-15 Guimarães - Portugal REAL-TIME STRUCTURAL HEALTH MONITORUN AND DAMAG DETECTION Yavuz Kaya 1, Erdal Safak 2 ABSTRACT Structural

More information

Response spectrum Time history Power Spectral Density, PSD

Response spectrum Time history Power Spectral Density, PSD A description is given of one way to implement an earthquake test where the test severities are specified by time histories. The test is done by using a biaxial computer aided servohydraulic test rig.

More information

Microtremor Array Measurements and Three-component Microtremor Measurements in San Francisco Bay Area

Microtremor Array Measurements and Three-component Microtremor Measurements in San Francisco Bay Area Microtremor Array Measurements and Three-component Microtremor Measurements in San Francisco Bay Area K. Hayashi & D. Underwood Geometrics, Inc., United States SUMMARY: Microtremor array measurements and

More information

ISTANBUL EARTHQUAKE RAPID RESPONSE AND THE EARLY WARNING SYSTEM. M. Erdik Department of Earthquake Engineering aziçi University,, Istanbul

ISTANBUL EARTHQUAKE RAPID RESPONSE AND THE EARLY WARNING SYSTEM. M. Erdik Department of Earthquake Engineering aziçi University,, Istanbul ISTANBUL EARTHQUAKE RAPID RESPONSE AND THE EARLY WARNING SYSTEM M. Erdik Department of Earthquake Engineering Boğazi aziçi University,, Istanbul ISTANBUL THREATENED BY MAIN MARMARA FAULT ROBABILITY OF

More information

Strong Motion Data: Structures

Strong Motion Data: Structures Strong Motion Data: Structures Adam Pascale Chief Technology Officer, Seismology Research Centre a division of ESS Earth Sciences Treasurer, Australian Earthquake Engineering Society Why monitor buildings?

More information

EXPERIMENTAL MODAL AND AERODYNAMIC ANALYSIS OF A LARGE SPAN CABLE-STAYED BRIDGE

EXPERIMENTAL MODAL AND AERODYNAMIC ANALYSIS OF A LARGE SPAN CABLE-STAYED BRIDGE The Seventh Asia-Pacific Conference on Wind Engineering, November 82, 29, Taipei, Taiwan EXPERIMENTAL MODAL AND AERODYNAMIC ANALYSIS OF A LARGE SPAN CABLE-STAYED BRIDGE Chern-Hwa Chen, Jwo-Hua Chen 2,

More information

2166. Modal identification of Karun IV arch dam based on ambient vibration tests and seismic responses

2166. Modal identification of Karun IV arch dam based on ambient vibration tests and seismic responses 2166. Modal identification of Karun IV arch dam based on ambient vibration tests and seismic responses R. Tarinejad 1, K. Falsafian 2, M. T. Aalami 3, M. T. Ahmadi 4 1, 2, 3 Faculty of Civil Engineering,

More information

WIND-INDUCED VIBRATION OF SLENDER STRUCTURES WITH TAPERED CIRCULAR CYLINDERS

WIND-INDUCED VIBRATION OF SLENDER STRUCTURES WITH TAPERED CIRCULAR CYLINDERS The Seventh Asia-Pacific Conference on Wind Engineering, November 8-2, 2009, Taipei, Taiwan WIND-INDUCED VIBRATION OF SLENDER STRUCTURES WITH TAPERED CIRCULAR CYLINDERS Delong Zuo Assistant Professor,

More information

PeakVue Analysis for Antifriction Bearing Fault Detection

PeakVue Analysis for Antifriction Bearing Fault Detection Machinery Health PeakVue Analysis for Antifriction Bearing Fault Detection Peak values (PeakVue) are observed over sequential discrete time intervals, captured, and analyzed. The analyses are the (a) peak

More information

Development and Field Testing of a Seismic System for Locating Trapped Miners - Progress Report. Yi Luo, Keith A. Heasley and Syd S.

Development and Field Testing of a Seismic System for Locating Trapped Miners - Progress Report. Yi Luo, Keith A. Heasley and Syd S. Development and Field Testing of a Seismic System for Locating Trapped Miners - Progress Report Yi Luo, Keith A. Heasley and Syd S. Peng Department of Mining Engineering West Virginia University Acknowledgements

More information

SHAKER TABLE SEISMIC TESTING OF EQUIPMENT USING HISTORICAL STRONG MOTION DATA SCALED TO SATISFY A SHOCK RESPONSE SPECTRUM Revision C

SHAKER TABLE SEISMIC TESTING OF EQUIPMENT USING HISTORICAL STRONG MOTION DATA SCALED TO SATISFY A SHOCK RESPONSE SPECTRUM Revision C SHAKER TABLE SEISMIC TESTING OF EQUIPMENT USING HISTORICAL STRONG MOTION DATA SCALED TO SATISFY A SHOCK RESPONSE SPECTRUM Revision C By Tom Irvine Email: tom@vibrationdata.com March 12, 2015 The purpose

More information

Multicomponent seismic polarization analysis

Multicomponent seismic polarization analysis Saul E. Guevara and Robert R. Stewart ABSTRACT In the 3-C seismic method, the plant orientation and polarity of geophones should be previously known to provide correct amplitude information. In principle

More information

Precision of Geomagnetic Field Measurements in a Tectonically Active Region

Precision of Geomagnetic Field Measurements in a Tectonically Active Region J. Geomag. Geoelectr., 36, 83-95, 1984 Precision of Geomagnetic Field Measurements in a Tectonically Active Region M.J.S. JOHNSTON,* R.J. MUELLER,* R.H. WARE,** and P.M. DAVIS*** * U.S. Geological Survey,

More information

INFLUENCE OF STATIC DISPLACEMENT ON PEAK GROUND VELOCITY AT SITES THAT EXPERIENCED FORWARD-RUPTURE DIRECTIVITY

INFLUENCE OF STATIC DISPLACEMENT ON PEAK GROUND VELOCITY AT SITES THAT EXPERIENCED FORWARD-RUPTURE DIRECTIVITY Seismic Fault-induced Failures, 115-1, 1 January INFLUENCE OF STATIC DISPLACEMENT ON PEAK GROUND VELOCITY AT SITES THAT EXPERIENCED FORWARD-RUPTURE DIRECTIVITY Mladen V. Kostadinov 1 and Fumio Yamazaki

More information

Identification of High Frequency pulse from Earthquake asperities along Chilean subduction zone using strong motion

Identification of High Frequency pulse from Earthquake asperities along Chilean subduction zone using strong motion Identification of High Frequency pulse from Earthquake asperities along Chilean subduction zone using strong motion S. Ruiz 1,2, E. Kausel 1, J. Campos 1, R. Saragoni 1 and R. Madariaga 2. 1 University

More information

3-DEMON MONITORING PLATFORM: EXAMPLES OF APPLICATIONS IN STRUCTURAL AND GEOTECHNICAL MONITORING PROJECTS

3-DEMON MONITORING PLATFORM: EXAMPLES OF APPLICATIONS IN STRUCTURAL AND GEOTECHNICAL MONITORING PROJECTS 3-DEMON MONITORING PLATFORM: EXAMPLES OF APPLICATIONS IN STRUCTURAL AND GEOTECHNICAL MONITORING PROJECTS Luca MANETTI, Daniele INAUDI and Branko GLISIC Smartec SA, Switzerland Abstract: The 3DeMoN (3-Dimentional

More information

Chapter 2 Real-Time Structural Health Monitoring and Damage Detection

Chapter 2 Real-Time Structural Health Monitoring and Damage Detection Chapter 2 Real-Time Structural Health Monitoring and Damage Detection Yavuz Kaya and Erdal Safak Abstract Structural health monitoring (SHM) contains continuous structural vibration monitoring, extraction

More information

3.0 Apparatus. 3.1 Excitation System

3.0 Apparatus. 3.1 Excitation System 3.0 Apparatus The individual hardware components required for the GVT (Ground Vibration Test) are broken into four categories: excitation system, test-structure system, measurement system, and data acquisition

More information

Wind-Induced Response Characteristics of a Tall Building from GPS and Accelerometer Measurements

Wind-Induced Response Characteristics of a Tall Building from GPS and Accelerometer Measurements Positioning, 2011, 2, 1-13 doi:10.4236/pos.2011.21001 Published Online February 2011 (http://www.scirp.org/journal/pos) Wind-Induced Response Characteristics of a Tall Building from GPS and Accelerometer

More information

Seismicity and Strong Motion Stations in Euro-Mediterranean Region

Seismicity and Strong Motion Stations in Euro-Mediterranean Region STRONG-MOTION DATA ACQUISITION, PROCESSING AND UTILIZATION IN TURKEY M.Erdik, Y.Fahjan and E.Durukal Bogazici University, Istanbul, Turkey Seismicity and Strong Motion Stations in Euro-Mediterranean Region

More information

Athanassios Ganas, Research Director, NOA

Athanassios Ganas, Research Director, NOA Advanced GNSS techniques for earthquake assessment and monitoring Athanassios Ganas, aganas@noa.gr Research Director, NOA NOA GPS Project http://www.gein.noa.gr/gps.html Hemus NET Project http://www.hemus-net.org/

More information

REAL TIME VISUALIZATION OF STRUCTURAL RESPONSE WITH WIRELESS MEMS SENSORS

REAL TIME VISUALIZATION OF STRUCTURAL RESPONSE WITH WIRELESS MEMS SENSORS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 121 REAL TIME VISUALIZATION OF STRUCTURAL RESPONSE WITH WIRELESS MEMS SENSORS Hung-Chi Chung 1, Tomoyuki

More information

Establishment of New Low-Cost and High-Resolution Real-Time Continuous Strong Motion Observation Network by CEORKA

Establishment of New Low-Cost and High-Resolution Real-Time Continuous Strong Motion Observation Network by CEORKA Establishment of New Low-Cost and High-Resolution Real-Time Continuous Strong Motion Observation Network by CEORKA T. Akazawa Geo-Research Institute, Japan M. Araki alab Inc., Japan S. Sawada & Y. Hayashi

More information

Dynamic Event Observations from the Orion Exploration Flight Test 1 (EFT-1) Mission

Dynamic Event Observations from the Orion Exploration Flight Test 1 (EFT-1) Mission Dynamic Event Observations from the Orion Exploration Flight Test 1 (EFT-1) Mission Adam Wigdalski Orion Loads and Dynamics SCLV 2015 The Aerospace Corporation, El Segundo, CA 2015 Lockheed Martin Corporation.

More information

IBIS range. GeoRadar Division. GeoRadar Division. Static and Dynamic Monitoring of Civil Engineering Structures by Microwave Interferometry

IBIS range. GeoRadar Division. GeoRadar Division. Static and Dynamic Monitoring of Civil Engineering Structures by Microwave Interferometry Static and Dynamic Monitoring of Civil Engineering Structures by Microwave Interferometry Garry Spencer and Mark Bell 1 PRODUCTS IBIS range APPLICATIONS IBIS - FL LANDSLIDE & DAM MONITORING IBIS - FM SLOPE

More information

KEYWORDS Earthquakes; MEMS seismic stations; trigger data; warning time delays. Page 144

KEYWORDS Earthquakes; MEMS seismic stations; trigger data; warning time delays.   Page 144 Event Detection Time Delays from Community Earthquake Early Warning System Experimental Seismic Stations implemented in South Western Tanzania Between August 2012 and December 2013 Asinta Manyele 1, Alfred

More information

DTT COVERAGE PREDICTIONS AND MEASUREMENT

DTT COVERAGE PREDICTIONS AND MEASUREMENT DTT COVERAGE PREDICTIONS AND MEASUREMENT I. R. Pullen Introduction Digital terrestrial television services began in the UK in November 1998. Unlike previous analogue services, the planning of digital television

More information

LIQUID SLOSHING IN FLEXIBLE CONTAINERS, PART 1: TUNING CONTAINER FLEXIBILITY FOR SLOSHING CONTROL

LIQUID SLOSHING IN FLEXIBLE CONTAINERS, PART 1: TUNING CONTAINER FLEXIBILITY FOR SLOSHING CONTROL Fifth International Conference on CFD in the Process Industries CSIRO, Melbourne, Australia 13-15 December 26 LIQUID SLOSHING IN FLEXIBLE CONTAINERS, PART 1: TUNING CONTAINER FLEXIBILITY FOR SLOSHING CONTROL

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.2 MICROPHONE ARRAY

More information

PROJECT DESCRIPTION AT&T Proposed Telecommunications Facility 2700 Watt Avenue APN#

PROJECT DESCRIPTION AT&T Proposed Telecommunications Facility 2700 Watt Avenue APN# PROJECT DESCRIPTION AT&T Proposed Telecommunications Facility 2700 Watt Avenue APN# 269-0090-051 Proposed Use AT&T is currently deploying the infrastructure of its wireless communications network in California.

More information

Identification of dynamic response parameters of a concrete building during recent earthquakes by using structural vibration monitoring

Identification of dynamic response parameters of a concrete building during recent earthquakes by using structural vibration monitoring PROCEEDINGS of the 22 nd International Congress on Acoustics Structural Health Monitoring and Sensor Networks: Paper ICA2016-857 Identification of dynamic response parameters of a concrete building during

More information

FINAL REPORT EL# RS. C. A. Hurich & MUN Seismic Team Earth Sciences Dept. Memorial University Sept. 2009

FINAL REPORT EL# RS. C. A. Hurich & MUN Seismic Team Earth Sciences Dept. Memorial University Sept. 2009 FINAL REPORT EL# 09-101-01-RS MUNSIST Seismic Source Test - Five Mile Road C. A. Hurich & MUN Seismic Team Earth Sciences Dept. Memorial University Sept. 2009 1 EL# 09-101-01-RS Five-Mile Road Memorial

More information

Copyright 2017 by Turbomachinery Laboratory, Texas A&M Engineering Experiment Station

Copyright 2017 by Turbomachinery Laboratory, Texas A&M Engineering Experiment Station HIGH FREQUENCY VIBRATIONS ON GEARS 46 TH TURBOMACHINERY & 33 RD PUMP SYMPOSIA Dietmar Sterns Head of Engineering, High Speed Gears RENK Aktiengesellschaft Augsburg, Germany Dr. Michael Elbs Manager of

More information

Earthquake Monitoring System Using Ranger Seismometer Sensor

Earthquake Monitoring System Using Ranger Seismometer Sensor INTERNATIONAL JOURNAL OF GEOLOGY Issue, Volume, Earthquake Monitoring System Using Ranger Seismometer Sensor Iyad Aldasouqi and Adnan Shaout Abstract--As cities become larger and larger worldwide, earthquakes

More information

COMPARISON OF FIBER OPTIC MONITORING AT AQUISTORE WITH CONVENTIONAL GEOPHONE SYSTEM. Tom Daley Lawrence Berkeley National Laboratory

COMPARISON OF FIBER OPTIC MONITORING AT AQUISTORE WITH CONVENTIONAL GEOPHONE SYSTEM. Tom Daley Lawrence Berkeley National Laboratory IEAGHG 10 th Monitoring Network Meeting Berkeley, California June 10-12, 2015 COMPARISON OF FIBER OPTIC MONITORING WITH CONVENTIONAL GEOPHONE SYSTEM AT AQUISTORE Tom Daley Lawrence Berkeley National Laboratory

More information

Chapter 4 Results. 4.1 Pattern recognition algorithm performance

Chapter 4 Results. 4.1 Pattern recognition algorithm performance 94 Chapter 4 Results 4.1 Pattern recognition algorithm performance The results of analyzing PERES data using the pattern recognition algorithm described in Chapter 3 are presented here in Chapter 4 to

More information

Air-noise reduction on geophone data using microphone records

Air-noise reduction on geophone data using microphone records Air-noise reduction on geophone data using microphone records Air-noise reduction on geophone data using microphone records Robert R. Stewart ABSTRACT This paper proposes using microphone recordings of

More information

POST-SEISMIC DAMAGE ASSESSMENT OF STEEL STRUCTURES INSTRUMENTED WITH SELF-INTERROGATING WIRELESS SENSORS ABSTRACT

POST-SEISMIC DAMAGE ASSESSMENT OF STEEL STRUCTURES INSTRUMENTED WITH SELF-INTERROGATING WIRELESS SENSORS ABSTRACT Source: Proceedings of the 8th National Conference on Earthquake Engineering (8NCEE, San Francisco, CA, April 18-21, 26. POST-SEISMIC DAMAGE ASSESSMENT OF STEEL STRUCTURES INSTRUMENTED WITH SELF-INTERROGATING

More information

Nonlinear Analysis of Pacoima Dam with Spatially Nonuniform Ground Motion

Nonlinear Analysis of Pacoima Dam with Spatially Nonuniform Ground Motion Nonlinear Analysis of Pacoima Dam with Spatially Nonuniform Ground Motion Thesis by Steven W. Alves In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute

More information

Magnitude & Intensity

Magnitude & Intensity Magnitude & Intensity Lecture 7 Seismometer, Magnitude & Intensity Vibrations: Simple Harmonic Motion Simplest vibrating system: 2 u( x) 2 + ω u( x) = 0 2 t x Displacement u ω is the angular frequency,

More information

Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas

Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas Pedestal Turbulence Dynamics in ELMing and ELM-free H-mode Plasmas Z. Yan1, G.R. McKee1, R.J. Groebner2, P.B. Snyder2, T.H. Osborne2, M.N.A. Beurskens3, K.H. Burrell2, T.E. Evans2, R.A. Moyer4, H. Reimerdes5

More information

Ambient and Forced Vibration Testing of a 13-Story Reinforced Concrete Building

Ambient and Forced Vibration Testing of a 13-Story Reinforced Concrete Building Ambient and Forced Vibration Testing of a 3-Story Reinforced Concrete Building S. Beskhyroun, L. Wotherspoon, Q. T. Ma & B. Popli Department of Civil and Environmental Engineering, The University of Auckland,

More information

Short Note Orientation-Independent, Nongeometric-Mean Measures of Seismic Intensity from Two Horizontal Components of Motion

Short Note Orientation-Independent, Nongeometric-Mean Measures of Seismic Intensity from Two Horizontal Components of Motion Bulletin of the Seismological Society of America, Vol. 100, No. 4, pp. 1830 1835, August 2010, doi: 10.1785/0120090400 Short Note Orientation-Independent, Nongeometric-Mean Measures of Seismic Intensity

More information

ST6911 IPT ACCELERATION VIBRATION TRANSDUCER ST6917 IPT VELOCITY VIBRATION TRANSDUCER Installation Manual

ST6911 IPT ACCELERATION VIBRATION TRANSDUCER ST6917 IPT VELOCITY VIBRATION TRANSDUCER Installation Manual ST6911 IPT ACCELERATION VIBRATION TRANSDUCER IPT VELOCITY VIBRATION TRANSDUCER Installation Manual OVERVIEW Capable of sensing a wide range of vibration frequencies, the ST6911 and are ideal for a variety

More information

SDOF System: Obtaining the Frequency Response Function

SDOF System: Obtaining the Frequency Response Function University Consortium on Instructional Shake Tables SDOF System: Obtaining the Frequency Response Function Developed By: Dr. Shirley Dyke and Xiuyu Gao Purdue University [updated July 6, 2010] SDOF System:

More information

ANALYSIS OF 3RD OCTAVE BAND GROUND MOTIONS TRANSMISSION IN SYNCHROTRON RADIATION FACILITY SOLARIS Daniel Ziemianski, Marek Kozien

ANALYSIS OF 3RD OCTAVE BAND GROUND MOTIONS TRANSMISSION IN SYNCHROTRON RADIATION FACILITY SOLARIS Daniel Ziemianski, Marek Kozien ANALYSIS OF 3RD OCTAVE BAND GROUND MOTIONS TRANSMISSION IN SYNCHROTRON RADIATION FACILITY SOLARIS Daniel Ziemianski, Marek Kozien Cracow University of Technology, Institute of Applied Mechanics, al. Jana

More information

INFORMATION SHEET. : Properties Subject to the Slope and Seismic Hazard Zone Protection Act (SSPA) Ordinance

INFORMATION SHEET. : Properties Subject to the Slope and Seismic Hazard Zone Protection Act (SSPA) Ordinance City and County of San Francisco Department of Building Inspection London N. Breed, Mayor Tom C. Hui, S.E., C.B.O., Director INFORMATION SHEET. S-19 DATE : October 2, 2018 CATEGORY SUBJECT : Structural

More information

Accuracy Estimation of Microwave Holography from Planar Near-Field Measurements

Accuracy Estimation of Microwave Holography from Planar Near-Field Measurements Accuracy Estimation of Microwave Holography from Planar Near-Field Measurements Christopher A. Rose Microwave Instrumentation Technologies River Green Parkway, Suite Duluth, GA 9 Abstract Microwave holography

More information

THE INVESTIGATION OF VIBRATION OF LINAC AT KEK

THE INVESTIGATION OF VIBRATION OF LINAC AT KEK 333 THE INVESTIGATION OF VIBRATION OF LINAC AT KEK Kazuyoshi Katayama, Yoshinori Takahashi, Tamio Imazawa and Nobuyoshi Murai TAKENAKA Corporation, Technical Research Laboratory, Osaka, Japan Tsunehiro

More information

SHAKER TABLE SEISMIC TESTING OF EQUIPMENT USING HISTORICAL STRONG MOTION DATA SCALED TO SATISFY A SHOCK RESPONSE SPECTRUM

SHAKER TABLE SEISMIC TESTING OF EQUIPMENT USING HISTORICAL STRONG MOTION DATA SCALED TO SATISFY A SHOCK RESPONSE SPECTRUM SHAKER TABLE SEISMIC TESTING OF EQUIPMENT USING HISTORICAL STRONG MOTION DATA SCALED TO SATISFY A SHOCK RESPONSE SPECTRUM By Tom Irvine Email: tomirvine@aol.com May 6, 29. The purpose of this paper is

More information

Bridge Vibrations Excited Through Vibro-Compaction of Bituminous Deck Pavement

Bridge Vibrations Excited Through Vibro-Compaction of Bituminous Deck Pavement Bridge Vibrations Excited Through Vibro-Compaction of Bituminous Deck Pavement Reto Cantieni rci dynamics, Structural Dynamics Consultants Raubbuehlstr. 21B, CH-8600 Duebendorf, Switzerland Marc Langenegger

More information

Wave Sensing Radar and Wave Reconstruction

Wave Sensing Radar and Wave Reconstruction Applied Physical Sciences Corp. 475 Bridge Street, Suite 100, Groton, CT 06340 (860) 448-3253 www.aphysci.com Wave Sensing Radar and Wave Reconstruction Gordon Farquharson, John Mower, and Bill Plant (APL-UW)

More information

Full-scale experiment using GPS sensors for dynamic tests

Full-scale experiment using GPS sensors for dynamic tests Full-scale experiment using GPS sensors for dynamic tests Lucia Faravelli 1, Sara Casciati 2, Clemente Fuggini 1 1 Department of Structural Mechanics, University of Pavia, Italy E-mail: lucia@dipmec.unipv.it,

More information

A Study of undulator magnets characterization using the Vibrating Wire technique

A Study of undulator magnets characterization using the Vibrating Wire technique A Study of undulator magnets characterization using the Vibrating Wire technique Alexander. Temnykh a, Yurii Levashov b and Zachary Wolf b a Cornell University, Laboratory for Elem-Particle Physics, Ithaca,

More information

Letter Report to Alexander Avenue Overhead (Bridge No. 27C-0150) Retrofit Project, City of Larkspur, Marin County, California 1.

Letter Report to Alexander Avenue Overhead (Bridge No. 27C-0150) Retrofit Project, City of Larkspur, Marin County, California 1. Parsons Brinckerhoff 303 Second Street Suite 700 North San Francisco, CA 94107-1317 415-243-4600 Fax: 415-243-9501 July 06, 2011 PB Project No. 12399A PARSONS BRINCKERHOFF 2329 Gateway Oaks Drive, Suite

More information

Presented on. Mehul Supawala Marine Energy Sources Product Champion, WesternGeco

Presented on. Mehul Supawala Marine Energy Sources Product Champion, WesternGeco Presented on Marine seismic acquisition and its potential impact on marine life has been a widely discussed topic and of interest to many. As scientific knowledge improves and operational criteria evolve,

More information

Repeatability Measure for Broadband 4D Seismic

Repeatability Measure for Broadband 4D Seismic Repeatability Measure for Broadband 4D Seismic J. Burren (Petroleum Geo-Services) & D. Lecerf* (Petroleum Geo-Services) SUMMARY Future time-lapse broadband surveys should provide better reservoir monitoring

More information

New Standards for Test and Calibration of Phasor Measurement Units

New Standards for Test and Calibration of Phasor Measurement Units New Standards for Test and Calibration of Phasor Measurement Units Jack Somppi Fluke Calibration NCSLI Conference Sacramento, CA August 2, 2012 2012 Fluke Corporation NCSLI PMU 20120802 1 Stability of

More information

COMPARISON OF STRUCTURAL SEISMIC RESPONSE BASED ON REAL AND SPECTRUM COMPATIBLE NEAR-SOURCE GROUND MOTION RECORDS

COMPARISON OF STRUCTURAL SEISMIC RESPONSE BASED ON REAL AND SPECTRUM COMPATIBLE NEAR-SOURCE GROUND MOTION RECORDS COMPDYN 2009 ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, N.D. Lagaros, M. Fragiadakis (eds.) Rhodes, Greece, 22 24 June 2009

More information

INDUSTRIAL VIBRATION SENSOR SELECTION MADE EASY

INDUSTRIAL VIBRATION SENSOR SELECTION MADE EASY SENSORS FOR RESEARCH & DEVELOPMENT WHITE PAPER #28 INDUSTRIAL VIBRATION SENSOR SELECTION MADE EASY NINE QUESTIONS TO SUCCESSFULLY IDENTIFY THE SOLUTION TO YOUR APPLICATION www.pcb.com info@pcb.com 800.828.8840

More information

MODAL IDENTIFICATION OF BILL EMERSON BRIDGE

MODAL IDENTIFICATION OF BILL EMERSON BRIDGE The 4 th World Conference on Earthquake Engineering October -7, 8, Beijing, China MODAL IDENTIFICATION OF BILL EMERSON BRIDGE Y.. hang, J.M. Caicedo, S.H. SIM 3, C.M. Chang 3, B.F. Spencer 4, Jr and. Guo

More information

Vibration based condition monitoring of rotating machinery

Vibration based condition monitoring of rotating machinery Vibration based condition monitoring of rotating machinery Goutam Senapaty 1* and Sathish Rao U. 1 1 Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy

More information

Using long sweep in land vibroseis acquisition

Using long sweep in land vibroseis acquisition Using long sweep in land vibroseis acquisition Authors: Alexandre Egreteau, John Gibson, Forest Lin and Julien Meunier (CGGVeritas) Main objectives: Promote the use of long sweeps to compensate for the

More information

LNEC EXPERIENCES AND STRATEGIES IN EARTHQUAKE SIMULATION. RECENT DEVELOPMENTS

LNEC EXPERIENCES AND STRATEGIES IN EARTHQUAKE SIMULATION. RECENT DEVELOPMENTS LNEC EXPERIENCES AND STRATEGIES IN EARTHQUAKE SIMULATION. RECENT DEVELOPMENTS Joaquim DUQUE 1 And Rogerio BAIRRAO 2 SUMMARY Earthquake simulation is a growing area of testing. On the recent past, specific

More information

AUTOMATED BEARING WEAR DETECTION. Alan Friedman

AUTOMATED BEARING WEAR DETECTION. Alan Friedman AUTOMATED BEARING WEAR DETECTION Alan Friedman DLI Engineering 253 Winslow Way W Bainbridge Island, WA 98110 PH (206)-842-7656 - FAX (206)-842-7667 info@dliengineering.com Published in Vibration Institute

More information

Proceedings of Al-Azhar Engineering 7 th International Conference Cairo, April 7-10, 2003.

Proceedings of Al-Azhar Engineering 7 th International Conference Cairo, April 7-10, 2003. Proceedings of Al-Azhar Engineering 7 th International Conference Cairo, April 7-10, 2003. MODERNIZATION PLAN OF GPS IN 21 st CENTURY AND ITS IMPACTS ON SURVEYING APPLICATIONS G. M. Dawod Survey Research

More information

Bridge Scour Detection of the Feather River Bridge in Yuba City, CA through the use of Finite Element Modeling and Infrasound

Bridge Scour Detection of the Feather River Bridge in Yuba City, CA through the use of Finite Element Modeling and Infrasound Bridge Scour Detection of the Feather River Bridge in Yuba City, CA through the use of Finite Element Modeling and Infrasound A. Jordan 1, D. Whitlow *1, S. McComas 1 and M. McKenna 1 1 U.S. Army Engineer

More information

Quantitative Identification of Near-Fault Ground Motion using Baker s Method; an Application for March 2011 Japan M9.0 Earthquake

Quantitative Identification of Near-Fault Ground Motion using Baker s Method; an Application for March 2011 Japan M9.0 Earthquake Cite as: Tazarv, M., Quantitative Identification of Near-Fault Ground Motion using Baker s Method; an Application for March 2011 Japan M9.0 Earthquake, Available at: http://alum.sharif.ir/~tazarv/ Quantitative

More information

28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies SEISMIC SOURCE LOCATIONS AND PARAMETERS FOR SPARSE NETWORKS BY MATCHING OBSERVED SEISMOGRAMS TO SEMI-EMPIRICAL SYNTHETIC SEISMOGRAMS: IMPROVEMENTS TO THE PHASE SPECTRUM PARAMETERIZATION David. Salzberg

More information

Evaluation Methodology on Vibration Serviceability of Bridge by using Non-Contact Vibration Measurement Method

Evaluation Methodology on Vibration Serviceability of Bridge by using Non-Contact Vibration Measurement Method Evaluation Methodology on Vibration Serviceability of Bridge by using Non-Contact Vibration Measurement Method Ki-Tae Park 1, Hyun-Seop Shin 2 1 Korea Institute of Construction Technology 2311, Daehwa-Dong,

More information

Vibration and air pressure monitoring of seismic sources

Vibration and air pressure monitoring of seismic sources Vibration monitoring of seismic sources Vibration and air pressure monitoring of seismic sources Alejandro D. Alcudia, Robert R. Stewart, Nanna Eliuk* and Rick Espersen** ABSTRACT Vibration monitoring

More information

GPR ANTENNA ARRAY FOR THE INSPECTION OF RAILWAY BALLAST

GPR ANTENNA ARRAY FOR THE INSPECTION OF RAILWAY BALLAST Proceedings of the National Seminar & Exhibition on Non-Destructive Evaluation NDE 2011, December 8-10, 2011 GPR ANTENNA ARRAY FOR THE INSPECTION OF RAILWAY BALLAST Th. Kind BAM Federal Institute for Materials

More information

TitleApplication of MEMS accelerometer t. AIZAWA, Takao; KIMURA, Toshinori; M Toshifumi; TAKEDA, Tetsuya; ASANO,

TitleApplication of MEMS accelerometer t. AIZAWA, Takao; KIMURA, Toshinori; M Toshifumi; TAKEDA, Tetsuya; ASANO, TitleApplication of MEMS accelerometer t Author(s) AIZAWA, Takao; KIMURA, Toshinori; M Toshifumi; TAKEDA, Tetsuya; ASANO, Citation International Journal of the JCRM ( Issue Date 2008-12 URL http://hdl.handle.net/2433/85166

More information

Structural Health Monitoring of bridges using accelerometers a case study at Apollo Bridge in Bratislava

Structural Health Monitoring of bridges using accelerometers a case study at Apollo Bridge in Bratislava UDC: 531.768 539.38 543.382.42 DOI: 10.14438/gn.2015.03 Typology: 1.01 Original Scientific Article Article info: Received 2015-03-08, Accepted 2015-03-19, Published 2015-04-10 Structural Health Monitoring

More information

(i) Sine sweep (ii) Sine beat (iii) Time history (iv) Continuous sine

(i) Sine sweep (ii) Sine beat (iii) Time history (iv) Continuous sine A description is given of one way to implement an earthquake test where the test severities are specified by the sine-beat method. The test is done by using a biaxial computer aided servohydraulic test

More information

Here I briefly describe the daily seismicity analysis procedure: Table 1

Here I briefly describe the daily seismicity analysis procedure: Table 1 A: More on Daily Seismicity Analysis Here I briefly describe the daily seismicity analysis procedure: Table 1 The broadband continuous data set was acquired as hour-long files. For this purpose I wrote

More information

Wireless Monitoring Techniques for Structural Health Monitoring

Wireless Monitoring Techniques for Structural Health Monitoring SOURCE: Proceedings of the International Symposium of Applied Electromagnetics & Mechanics, Lansing, MI, September 9-, 7. Monitoring Techniques for Structural Health Monitoring Kenneth J Loh and Andrew

More information

Control and Signal Processing in a Structural Laboratory

Control and Signal Processing in a Structural Laboratory Control and Signal Processing in a Structural Laboratory Authors: Weining Feng, University of Houston-Downtown, Houston, Houston, TX 7700 FengW@uhd.edu Alberto Gomez-Rivas, University of Houston-Downtown,

More information

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies SOURCE AND PATH EFFECTS ON REGIONAL PHASES IN INDIA FROM AFTERSHOCKS OF THE JANUARY 26, 2001, BHUJ EARTHQUAKE Arthur Rodgers 1, Paul Bodin 2, Luca Malagnini 3, Kevin Mayeda 1, and Aybige Akinci 3 Lawrence

More information

IDENTIFICATION OF NONLINEAR SITE RESPONSE FROM TIME VARIATIONS OF THE PREDOMINANT FREQUENCY

IDENTIFICATION OF NONLINEAR SITE RESPONSE FROM TIME VARIATIONS OF THE PREDOMINANT FREQUENCY IDENTIFICATION OF NONLINEAR SITE RESPONSE FROM TIME VARIATIONS OF THE PREDOMINANT FREQUENCY K.L. Wen 1, C.W. Chang 2, and C.M. Lin 3 1 Professor, Institute of Geophysics, Central University (NCU), Taoyuan,

More information

A New Wave Directional Spectrum Measurement Instrument

A New Wave Directional Spectrum Measurement Instrument A New Wave Directional Spectrum Measurement Instrument Andrew Kun ) Alan Fougere ) Peter McComb 2) ) Falmouth Scientific Inc, Cataumet, MA 234 2) Centre of Excellence in Coastal Oceanography and Marine

More information

STEREO IMPACT Solar Energetic Particles Package (SEP) Dynamic Test Plan

STEREO IMPACT Solar Energetic Particles Package (SEP) Dynamic Test Plan 1 2 Jet Propulsion Laboratory 352G-WBT-0507 Interoffice Memorandum January 13, 2005 To: From: Subject: References: Distribution W. B. Tsoi STEREO IMPACT Solar Energetic Particles Package (SEP) Dynamic

More information

Wireless Facility Peer Engineering Review

Wireless Facility Peer Engineering Review Page 1 of 11 Wireless Facility Peer Engineering Review Regarding Verizon Wireless Application 2750 Dwight Way, Berkeley, CA August 10, 2015 Page 2 of 11 Introduction RCC Consultants, Inc. has been engaged

More information

GLOBAL POSITIONING SYSTEM SHIPBORNE REFERENCE SYSTEM

GLOBAL POSITIONING SYSTEM SHIPBORNE REFERENCE SYSTEM GLOBAL POSITIONING SYSTEM SHIPBORNE REFERENCE SYSTEM James R. Clynch Department of Oceanography Naval Postgraduate School Monterey, CA 93943 phone: (408) 656-3268, voice-mail: (408) 656-2712, e-mail: clynch@nps.navy.mil

More information