Magnitude & Intensity

Size: px
Start display at page:

Download "Magnitude & Intensity"

Transcription

1 Magnitude & Intensity Lecture 7 Seismometer, Magnitude & Intensity

2 Vibrations: Simple Harmonic Motion Simplest vibrating system: 2 u( x) 2 + ω u( x) = 0 2 t x Displacement u ω is the angular frequency, f = ω / π There are two solutions: u(x)= A sin (ωt) and u(x) = B cos (ωt) A and B are amplitude, or in exponential form: u( t) = U ( ω)exp[ iωt]

3 The Seismometer Basic principle mass attached to a moveable frame when frame is shaken by seismic waves the inertia of the mass causes it s motion to lag behind relative motion recorded on rotating drum, on magnetic tape or digitally Mass is damped to prevent continued oscillation This limits the frequency response of the seismometer Relative motion amplified up to 100s of thousands of times Schematic of a horizontal motion mechanical seismometer

4 Modern seismometers Güralp Systems Ltd Earthscope array - 250

5 Review: Earthquake magnitude Richter magnitude scale M = log A( ) - log A 0 ( ) where A is max trace amplitude at distance and A 0 is at 100 km Surface wave magnitude M S M S = log A + α log + β where A is max amp of 20s period surface waves Magnitude and energy log E s = M s (ergs)

6 z(t) Displacement of m relative to Earth The Inertial Seismometer Mass m Spring stiffness k Damping η F s = - k z Equating the resistive forces on the mass to the inertial forces: 2 dz( t) d k z( t) η = m + 2 dt dt Damping parameter ζ=η/m [ u( t) z( t) ] Resonant undamped angular frequency ω 02 = k/m F d = - η dz/dt u(t) Displacement of Earth

7 Earth noise Individual acceleration spectra at over 100 stations showing Earth noise. Note the microseism peak at 5 to 8s period and the relatively low noise levels at 20 to 200s period.

8 Response of 4 different seismometers Velocity response functions for four different verticalcomponent instruments

9 Strong motion seismometers Designed to pickup strong, high-amplitude shaking close to quake source Insensitive to weak shaking Most common type is the accelerometer Directly records ground acceleration Not continuously recording - triggered by first waves Difficult to differentiate different earthquake waves Standard seismographs go off scale (clipped) by strong ground motions Most useful for understanding response of buildings to earthquakes

10 Strong motion record Acceleration Velocity Displacement Remember the acceleration of the Earth is determined by measuring the acceleration, velocity and displacement

11 Response Spectrum 15 5% damping Spectral acceleration (m/sec 2 ) ,000 year 1,000 year 100,000 year return period Fundamental period (seconds) Arup

12 World seismic hazard maps Accelerations

13 Attenuation of seismic waves: reduction in amplitude / loss of energy a) Elastic attenuation: geometric spreading Spherical body waves spread in 3D Surface waves spread in 2D f(t,r) But even after correcting for geometric spreading there is still attenuation: R.f(t) Elastic Elastic attenuation R Anelastic R b) Anelastic attenuation Permanent rock deformation: close to earthquake source Heat loss due to internal friction e.g. between pore fluids and rock motion

14 Elastic attenuation: geometric spreading Body waves (P, S etc.): As a spherical wave front grows the energy of the source is spread out over a wider and wider area leading to a reduction of amplitude with distance Amplitude Energy: area under the curve Amp 2 solid angle A 1 -area A 2 -area r Energy is proportional to: r 2 1 (i) square of amplitude R 1 R 2 (ii) area of wavefront Find A 2 / A 1 = r 2 2 / r 12 = R 22 / R 1 2 So the wave energy of body waves diminishes as 1/R 2 and the body wave amplitude diminishes as 1/R

15 Elastic attenuation: geometric spreading Surface waves (LR, LQ etc.): Surface wave are consigned to the surface Energy of surface waves falls off as 1/R Energy of body waves falls of as 1/R 2 The spreading of surface wave energy does not translate directly into wave amplitudes, because surface waves are strongly dispersive, and the waveform changes shape Earthquake source R But we can see the dominance of surface waves on teleseismic records is due to the geometric spreading of the wavefront has different dependence on R

16 Anelastic attenuation Anelastic attenuation E f ( t) dt E energy per cycle δe energy lost per cycle t δ E 2 = ( f f dt 1 2) Definition: Quality factor Q = 2 π E / δe Q is dimensionless Q 2π ~ 6 High quality Good transmission Low attenuation Low quality Poor transmission High attenuation

17 Anelastic attenuation There is an exponential decay of amplitude with distance due to anelastic attenuation Amp/Amp 0 long wavelength, low frequency short wavelength high frequency Distance R Short wavelength, high frequency waves are attenuated more than long wavelength, low frequency waves This is why if your upstairs neighbour is playing music, it is the bass which comes through the ceiling

18 In the frequency domain F F Anelastic attenuation ( 0 ω) = F ( ω) exp ( bω ) exp -bω low freq, low energy loss, few cycles ω high freq, high loss, many cycles wave distortion as well as amplitude reduction i.e. change in shape of the wavelet loss of resolution down seismogram c.f. someone playing a stereo in the next room get distortion

19 Attenuation of ground acceleration The range of published average attenuation relationships for acceleration with distance from an earthquake magnitude 6.5 in western North American (after Atkinson and Boore, 1990)

20 Intensity attenuation Average EMS intensity attenuation relationships from analysis of isoseismals of 53 earthquakes, southern Italy (after Coburn et al., 1988).

The units of vibration depend on the vibrational parameter, as follows:

The units of vibration depend on the vibrational parameter, as follows: Vibration Measurement Vibration Definition Basically, vibration is oscillating motion of a particle or body about a fixed reference point. Such motion may be simple harmonic (sinusoidal) or complex (non-sinusoidal).

More information

Geophysical Applications Seismic Reflection Surveying

Geophysical Applications Seismic Reflection Surveying Seismic sources and receivers Basic requirements for a seismic source Typical sources on land and on water Basic impact assessment environmental and social concerns EPS435-Potential-08-01 Basic requirements

More information

Response spectrum Time history Power Spectral Density, PSD

Response spectrum Time history Power Spectral Density, PSD A description is given of one way to implement an earthquake test where the test severities are specified by time histories. The test is done by using a biaxial computer aided servohydraulic test rig.

More information

Module 7 : Design of Machine Foundations. Lecture 31 : Basics of soil dynamics [ Section 31.1: Introduction ]

Module 7 : Design of Machine Foundations. Lecture 31 : Basics of soil dynamics [ Section 31.1: Introduction ] Lecture 31 : Basics of soil dynamics [ Section 31.1: Introduction ] Objectives In this section you will learn the following Dynamic loads Degrees of freedom Lecture 31 : Basics of soil dynamics [ Section

More information

GEOPIC, Oil & Natural Gas Corporation Ltd, Dehradun ,India b

GEOPIC, Oil & Natural Gas Corporation Ltd, Dehradun ,India b Estimation of Seismic Q Using a Non-Linear (Gauss-Newton) Regression Parul Pandit * a, Dinesh Kumar b, T. R. Muralimohan a, Kunal Niyogi a,s.k. Das a a GEOPIC, Oil & Natural Gas Corporation Ltd, Dehradun

More information

Strong Motion Data: Structures

Strong Motion Data: Structures Strong Motion Data: Structures Adam Pascale Chief Technology Officer, Seismology Research Centre a division of ESS Earth Sciences Treasurer, Australian Earthquake Engineering Society Why monitor buildings?

More information

The period is the time required for one complete oscillation of the function.

The period is the time required for one complete oscillation of the function. Trigonometric Curves with Sines & Cosines + Envelopes Terminology: AMPLITUDE the maximum height of the curve For any periodic function, the amplitude is defined as M m /2 where M is the maximum value and

More information

Experiment VI: The LRC Circuit and Resonance

Experiment VI: The LRC Circuit and Resonance Experiment VI: The ircuit and esonance I. eferences Halliday, esnick and Krane, Physics, Vol., 4th Ed., hapters 38,39 Purcell, Electricity and Magnetism, hapter 7,8 II. Equipment Digital Oscilloscope Digital

More information

Module 2 WAVE PROPAGATION (Lectures 7 to 9)

Module 2 WAVE PROPAGATION (Lectures 7 to 9) Module 2 WAVE PROPAGATION (Lectures 7 to 9) Lecture 9 Topics 2.4 WAVES IN A LAYERED BODY 2.4.1 One-dimensional case: material boundary in an infinite rod 2.4.2 Three dimensional case: inclined waves 2.5

More information

Physics 132 Quiz # 23

Physics 132 Quiz # 23 Name (please (please print) print) Physics 132 Quiz # 23 I. I. The The current in in an an ac ac circuit is is represented by by a phasor.the value of of the the current at at some time time t t is is

More information

Lab 4: Transmission Line

Lab 4: Transmission Line 1 Introduction Lab 4: Transmission Line In this experiment we will study the properties of a wave propagating in a periodic medium. Usually this takes the form of an array of masses and springs of the

More information

Experiment 1 LRC Transients

Experiment 1 LRC Transients Physics 263 Experiment 1 LRC Transients 1 Introduction In this experiment we will study the damped oscillations and other transient waveforms produced in a circuit containing an inductor, a capacitor,

More information

Sound, acoustics Slides based on: Rossing, The science of sound, 1990.

Sound, acoustics Slides based on: Rossing, The science of sound, 1990. Sound, acoustics Slides based on: Rossing, The science of sound, 1990. Acoustics 1 1 Introduction Acoustics 2! The word acoustics refers to the science of sound and is a subcategory of physics! Room acoustics

More information

Simulated Strong Ground Motion in Southern China based on Regional Seismographic Data and Stochastic Finite-Fault Model

Simulated Strong Ground Motion in Southern China based on Regional Seismographic Data and Stochastic Finite-Fault Model Simulated Strong Ground Motion in Southern China based on Regional Seismographic Data and Stochastic Finite-Fault Model Yuk Lung WONG and Sihua ZHENG ABSTRACT The acceleration time histories of the horizontal

More information

3/23/2015. Chapter 11 Oscillations and Waves. Contents of Chapter 11. Contents of Chapter Simple Harmonic Motion Spring Oscillations

3/23/2015. Chapter 11 Oscillations and Waves. Contents of Chapter 11. Contents of Chapter Simple Harmonic Motion Spring Oscillations Lecture PowerPoints Chapter 11 Physics: Principles with Applications, 7 th edition Giancoli Chapter 11 and Waves This work is protected by United States copyright laws and is provided solely for the use

More information

OSCILLATIONS and WAVES

OSCILLATIONS and WAVES OSCILLATIONS and WAVES Oscillations Oscillations are vibrations which repeat themselves. EXAMPLE: Oscillations can be driven externally, like a pendulum in a gravitational field EXAMPLE: Oscillations can

More information

D102. Damped Mechanical Oscillator

D102. Damped Mechanical Oscillator D10. Damped Mechanical Oscillator Aim: design and writing an application for investigation of a damped mechanical oscillator Measurements of free oscillations of a damped oscillator Measurements of forced

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations 14-7 Damped Harmonic Motion Damped harmonic motion is harmonic motion with a frictional or drag force. If the damping is small, we can treat it as an envelope that modifies the

More information

The Principle and Simulation of Moving-coil Velocity Detector. Yong-hui ZHAO, Li-ming WANG and Xiao-ling YAN

The Principle and Simulation of Moving-coil Velocity Detector. Yong-hui ZHAO, Li-ming WANG and Xiao-ling YAN 17 nd International Conference on Electrical and Electronics: Techniques and Applications (EETA 17) ISBN: 978-1-6595-416-5 The Principle and Simulation of Moving-coil Velocity Detector Yong-hui ZHAO, Li-ming

More information

Oscillations II: Damped and/or Driven Oscillations

Oscillations II: Damped and/or Driven Oscillations Oscillations II: Damped and/or Driven Oscillations Michael Fowler 3/4/9 Introducing Damping We ll assume the damping force is proportional to the velocity, and, of course, in the opposite direction. Then

More information

The VIRGO suspensions

The VIRGO suspensions INSTITUTE OF PHYSICSPUBLISHING Class. Quantum Grav. 19 (2002) 1623 1629 CLASSICAL ANDQUANTUM GRAVITY PII: S0264-9381(02)30082-0 The VIRGO suspensions The VIRGO Collaboration (presented by S Braccini) INFN,

More information

Dynamic Vibration Absorber

Dynamic Vibration Absorber Part 1B Experimental Engineering Integrated Coursework Location: DPO Experiment A1 (Short) Dynamic Vibration Absorber Please bring your mechanics data book and your results from first year experiment 7

More information

(i) Sine sweep (ii) Sine beat (iii) Time history (iv) Continuous sine

(i) Sine sweep (ii) Sine beat (iii) Time history (iv) Continuous sine A description is given of one way to implement an earthquake test where the test severities are specified by the sine-beat method. The test is done by using a biaxial computer aided servohydraulic test

More information

Preliminary study of the vibration displacement measurement by using strain gauge

Preliminary study of the vibration displacement measurement by using strain gauge Songklanakarin J. Sci. Technol. 32 (5), 453-459, Sep. - Oct. 2010 Original Article Preliminary study of the vibration displacement measurement by using strain gauge Siripong Eamchaimongkol* Department

More information

Natural Frequencies and Resonance

Natural Frequencies and Resonance Natural Frequencies and Resonance A description and applications of natural frequencies and resonance commonly found in industrial applications Beaumont Vibration Institute Annual Seminar Beaumont, TX

More information

Intermediate and Advanced Labs PHY3802L/PHY4822L

Intermediate and Advanced Labs PHY3802L/PHY4822L Intermediate and Advanced Labs PHY3802L/PHY4822L Torsional Oscillator and Torque Magnetometry Lab manual and related literature The torsional oscillator and torque magnetometry 1. Purpose Study the torsional

More information

Photonic time-stretching of 102 GHz millimeter waves using 1.55 µm nonlinear optic polymer EO modulators

Photonic time-stretching of 102 GHz millimeter waves using 1.55 µm nonlinear optic polymer EO modulators Photonic time-stretching of 10 GHz millimeter waves using 1.55 µm nonlinear optic polymer EO modulators H. Erlig Pacific Wave Industries H. R. Fetterman and D. Chang University of California Los Angeles

More information

Lab 9 AC FILTERS AND RESONANCE

Lab 9 AC FILTERS AND RESONANCE 151 Name Date Partners ab 9 A FITES AND ESONANE OBJETIES OEIEW To understand the design of capacitive and inductive filters To understand resonance in circuits driven by A signals In a previous lab, you

More information

Electronics and Instrumentation Name ENGR-4220 Fall 1999 Section Modeling the Cantilever Beam Supplemental Info for Project 1.

Electronics and Instrumentation Name ENGR-4220 Fall 1999 Section Modeling the Cantilever Beam Supplemental Info for Project 1. Name ENGR-40 Fall 1999 Section Modeling the Cantilever Beam Supplemental Info for Project 1 The cantilever beam has a simple equation of motion. If we assume that the mass is located at the end of the

More information

A COMPARISON OF SITE-AMPLIFICATION ESTIMATED FROM DIFFERENT METHODS USING A STRONG MOTION OBSERVATION ARRAY IN TANGSHAN, CHINA

A COMPARISON OF SITE-AMPLIFICATION ESTIMATED FROM DIFFERENT METHODS USING A STRONG MOTION OBSERVATION ARRAY IN TANGSHAN, CHINA A COMPARISON OF SITE-AMPLIFICATION ESTIMATED FROM DIFFERENT METHODS USING A STRONG MOTION OBSERVATION ARRAY IN TANGSHAN, CHINA Wenbo ZHANG 1 And Koji MATSUNAMI 2 SUMMARY A seismic observation array for

More information

PEAT SEISMOLOGY Lecture 6: Ray theory

PEAT SEISMOLOGY Lecture 6: Ray theory PEAT8002 - SEISMOLOGY Lecture 6: Ray theory Nick Rawlinson Research School of Earth Sciences Australian National University Introduction Here, we consider the problem of how body waves (P and S) propagate

More information

#8A RLC Circuits: Free Oscillations

#8A RLC Circuits: Free Oscillations #8A RL ircuits: Free Oscillations Goals In this lab we investigate the properties of a series RL circuit. Such circuits are interesting, not only for there widespread application in electrical devices,

More information

Borehole vibration response to hydraulic fracture pressure

Borehole vibration response to hydraulic fracture pressure Borehole vibration response to hydraulic fracture pressure Andy St-Onge* 1a, David W. Eaton 1b, and Adam Pidlisecky 1c 1 Department of Geoscience, University of Calgary, 2500 University Drive NW Calgary,

More information

TitleApplication of MEMS accelerometer t. AIZAWA, Takao; KIMURA, Toshinori; M Toshifumi; TAKEDA, Tetsuya; ASANO,

TitleApplication of MEMS accelerometer t. AIZAWA, Takao; KIMURA, Toshinori; M Toshifumi; TAKEDA, Tetsuya; ASANO, TitleApplication of MEMS accelerometer t Author(s) AIZAWA, Takao; KIMURA, Toshinori; M Toshifumi; TAKEDA, Tetsuya; ASANO, Citation International Journal of the JCRM ( Issue Date 2008-12 URL http://hdl.handle.net/2433/85166

More information

(1.3.1) (1.3.2) It is the harmonic oscillator equation of motion, whose general solution is: (1.3.3)

(1.3.1) (1.3.2) It is the harmonic oscillator equation of motion, whose general solution is: (1.3.3) M22 - Study of a damped harmonic oscillator resonance curves The purpose of this exercise is to study the damped oscillations and forced harmonic oscillations. In particular, it must measure the decay

More information

Constructing response curves: Introduction to the BODE-diagram

Constructing response curves: Introduction to the BODE-diagram Topic Constructing response curves: Introduction to the BODE-diagram Author Jens Bribach, GFZ German Research Centre for Geosciences, Dept. 2: Physics of the Earth, Telegrafenberg, D-14473 Potsdam, Germany;

More information

Attenuation estimation with continuous wavelet transforms. Shenghong Tai*, De-hua Han, John P. Castagna, Rock Physics Lab, Univ. of Houston.

Attenuation estimation with continuous wavelet transforms. Shenghong Tai*, De-hua Han, John P. Castagna, Rock Physics Lab, Univ. of Houston. . Shenghong Tai*, De-hua Han, John P. Castagna, Rock Physics Lab, Univ. of Houston. SUMMARY Seismic attenuation measurements from surface seismic data using spectral ratios are particularly sensitive to

More information

EECS40 RLC Lab guide

EECS40 RLC Lab guide EECS40 RLC Lab guide Introduction Second-Order Circuits Second order circuits have both inductor and capacitor components, which produce one or more resonant frequencies, ω0. In general, a differential

More information

Theoretical Investigation of Optical Fiber-Length-Dependent Phase Noise in Opto-Electronic Oscillators

Theoretical Investigation of Optical Fiber-Length-Dependent Phase Noise in Opto-Electronic Oscillators Theoretical Investigation of Optical Fiber-Length-Dependent Phase Noise in Opto-Electronic Oscillators The effects of optical propagation on RF signal and noise Andrew Docherty, Olukayode Okusaga, Curtis

More information

HANDHELD SEISMOMETER. (L. Braile Ó, November, 2000)

HANDHELD SEISMOMETER. (L. Braile Ó, November, 2000) HANDHELD SEISMOMETER (L. Braile Ó, November, 2000) Introduction: The handheld seismometer is designed to illustrate concepts of seismometry (sensing and recording the vibration or shaking of the ground

More information

LAB 10: OSCILLATIONS AND SOUND

LAB 10: OSCILLATIONS AND SOUND 159 Name Date Partners LAB 10: OSCILLATIONS AND SOUND (Image from http://archive.museophile.org/sound/) OBJECTIVES To understand the effects of damping on oscillatory motion. To recognize the effects of

More information

Lab 9 AC FILTERS AND RESONANCE

Lab 9 AC FILTERS AND RESONANCE 09-1 Name Date Partners ab 9 A FITES AND ESONANE OBJETIES OEIEW To understand the design of capacitive and inductive filters To understand resonance in circuits driven by A signals In a previous lab, you

More information

Improving the Performance of a Geophone through Capacitive Position Sensing and Feedback. Aaron Barzilai. Stanford University

Improving the Performance of a Geophone through Capacitive Position Sensing and Feedback. Aaron Barzilai. Stanford University Improving the Performance of a Geophone through Capacitive Position Sensing and Feedback Stanford University Tom VanZandt, Steve Manion, Tom Pike Jet Propulsion Laboratory Tom Kenny Stanford University

More information

Short Notes Characterization of a Continuous, Very Narrowband Seismic Signal near 2.08 Hz

Short Notes Characterization of a Continuous, Very Narrowband Seismic Signal near 2.08 Hz Bulletin of the Seismological Society of America, 91, 6, pp. 1910 1916, December 2001 Short Notes Characterization of a Continuous, Very Narrowband Seismic Signal near 2.08 Hz by Kelly H. Liu and Stephen

More information

Characterizing the Frequency Response of a Damped, Forced Two-Mass Mechanical Oscillator

Characterizing the Frequency Response of a Damped, Forced Two-Mass Mechanical Oscillator Characterizing the Frequency Response of a Damped, Forced Two-Mass Mechanical Oscillator Shanel Wu Harvey Mudd College 3 November 013 Abstract A two-mass oscillator was constructed using two carts, springs,

More information

A study of Vibration Analysis for Gearbox Casing Using Finite Element Analysis

A study of Vibration Analysis for Gearbox Casing Using Finite Element Analysis A study of Vibration Analysis for Gearbox Casing Using Finite Element Analysis M. Sofian D. Hazry K. Saifullah M. Tasyrif K.Salleh I.Ishak Autonomous System and Machine Vision Laboratory, School of Mechatronic,

More information

VOLD-KALMAN ORDER TRACKING FILTERING IN ROTATING MACHINERY

VOLD-KALMAN ORDER TRACKING FILTERING IN ROTATING MACHINERY TŮMA, J. GEARBOX NOISE AND VIBRATION TESTING. IN 5 TH SCHOOL ON NOISE AND VIBRATION CONTROL METHODS, KRYNICA, POLAND. 1 ST ED. KRAKOW : AGH, MAY 23-26, 2001. PP. 143-146. ISBN 80-7099-510-6. VOLD-KALMAN

More information

Regional Spectral Analysis of Moderate Earthquakes in Northeastern North America: Resolving Attenuation!

Regional Spectral Analysis of Moderate Earthquakes in Northeastern North America: Resolving Attenuation! Regional Spectral Analysis of Moderate Earthquakes in Northeastern North America: Resolving Attenuation. John Boatwright and Linda Seekins 1997 M4.4 Cap-Rouge, Quebec 2002 M5.0 Ausable Forks, New York

More information

Practical Machinery Vibration Analysis and Predictive Maintenance

Practical Machinery Vibration Analysis and Predictive Maintenance Practical Machinery Vibration Analysis and Predictive Maintenance By Steve Mackay Dean of Engineering Engineering Institute of Technology EIT Micro-Course Series Every two weeks we present a 35 to 45 minute

More information

Fundamentals of Vibration Measurement and Analysis Explained

Fundamentals of Vibration Measurement and Analysis Explained Fundamentals of Vibration Measurement and Analysis Explained Thanks to Peter Brown for this article. 1. Introduction: The advent of the microprocessor has enormously advanced the process of vibration data

More information

WAVES. Chapter Fifteen MCQ I

WAVES. Chapter Fifteen MCQ I Chapter Fifteen WAVES MCQ I 15.1 Water waves produced by a motor boat sailing in water are (a) neither longitudinal nor transverse. (b) both longitudinal and transverse. (c) only longitudinal. (d) only

More information

Correction for Synchronization Errors in Dynamic Measurements

Correction for Synchronization Errors in Dynamic Measurements Correction for Synchronization Errors in Dynamic Measurements Vasishta Ganguly and Tony L. Schmitz Department of Mechanical Engineering and Engineering Science University of North Carolina at Charlotte

More information

Barrier. (a) State the conditions which must be met for an object to move with simple harmonic motion. (2)

Barrier. (a) State the conditions which must be met for an object to move with simple harmonic motion. (2) 1 In a television game show contestants have to pass under a barrier. The barrier has a vertical height of 0.70m and moves up and down with simple harmonic motion. 3.0m Barrier 0.70m (a) State the conditions

More information

Standing waves. Consider a string with 2 waves of equal amplitude moving in opposite directions. or, if you prefer cos T

Standing waves. Consider a string with 2 waves of equal amplitude moving in opposite directions. or, if you prefer cos T Waves 2 1. Standing waves 2. Transverse waves in nature: electromagnetic radiation 3. Polarisation 4. Dispersion 5. Information transfer and wave packets 6. Group velocity 1 Standing waves Consider a string

More information

WP 33 Geophysikalische Datenanalyse

WP 33 Geophysikalische Datenanalyse WP 33 Geophysikalische Datenanalyse Goals: Get a feel for information contained in seismograms Understand the concept of the spectral domain (frequency domain) See how the frequency representation can

More information

Improving seismic isolation in Advanced LIGO using a ground rotation sensor

Improving seismic isolation in Advanced LIGO using a ground rotation sensor Improving seismic isolation in Advanced LIGO using a ground rotation sensor 04/16/2016 Krishna Venkateswara for UW- Michael Ross, Charlie Hagedorn, and Jens Gundlach aligo SEI team LIGO-G1600083 1 Contents

More information

Channel. Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Multi-Path Fading. Dr. Noor M Khan EE, MAJU

Channel. Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Multi-Path Fading. Dr. Noor M Khan EE, MAJU Instructor: Prof. Dr. Noor M. Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office), 186 (Lab) Fax: +9

More information

Improved Low Frequency Performance of a Geophone. S32A-19 AGU Spring 98

Improved Low Frequency Performance of a Geophone. S32A-19 AGU Spring 98 Improved Low Frequency Performance of a Geophone S32A-19 1 Aaron Barzilai 1, Tom VanZandt 2, Tom Pike 2, Steve Manion 2, Tom Kenny 1 1 Dept. of Mechanical Engineering Stanford University 2 Center for Space

More information

Exam Signal Detection and Noise

Exam Signal Detection and Noise Exam Signal Detection and Noise Tuesday 27 January 2015 from 14:00 until 17:00 Lecturer: Sense Jan van der Molen Important: It is not allowed to use a calculator. Complete each question on a separate piece

More information

Resonance in Circuits

Resonance in Circuits Resonance in Circuits Purpose: To map out the analogy between mechanical and electronic resonant systems To discover how relative phase depends on driving frequency To gain experience setting up circuits

More information

SAT pickup arms - discussions on some design aspects

SAT pickup arms - discussions on some design aspects SAT pickup arms - discussions on some design aspects I have recently launched two new series of arms, each of them with a 9 inch and a 12 inch version. As there are an increasing number of discussions

More information

Standing Waves in Air

Standing Waves in Air Standing Waves in Air Objective Students will explore standing wave phenomena through sound waves in an air tube. Equipment List PASCO resonance tube with speaker and microphone, PASCO PI-9587B Digital

More information

From Last Time Wave Properties. Description of a Wave. Water waves? Water waves occur on the surface. They are a kind of transverse wave.

From Last Time Wave Properties. Description of a Wave. Water waves? Water waves occur on the surface. They are a kind of transverse wave. From Last Time Wave Properties Amplitude is the maximum displacement from the equilibrium position Wavelength,, is the distance between two successive points that behave identically Period: time required

More information

Linguistics 401 LECTURE #2. BASIC ACOUSTIC CONCEPTS (A review)

Linguistics 401 LECTURE #2. BASIC ACOUSTIC CONCEPTS (A review) Linguistics 401 LECTURE #2 BASIC ACOUSTIC CONCEPTS (A review) Unit of wave: CYCLE one complete wave (=one complete crest and trough) The number of cycles per second: FREQUENCY cycles per second (cps) =

More information

Lab 2A: Introduction to Sensing and Data Acquisition

Lab 2A: Introduction to Sensing and Data Acquisition Lab 2A: Introduction to Sensing and Data Acquisition Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin June 12, 2014 1 Lab 2A 2 Sensors 3 DAQ 4 Experimentation

More information

Mobile Radio Propagation: Small-Scale Fading and Multi-path

Mobile Radio Propagation: Small-Scale Fading and Multi-path Mobile Radio Propagation: Small-Scale Fading and Multi-path 1 EE/TE 4365, UT Dallas 2 Small-scale Fading Small-scale fading, or simply fading describes the rapid fluctuation of the amplitude of a radio

More information

Anisotropic Frequency-Dependent Spreading of Seismic Waves from VSP Data Analysis

Anisotropic Frequency-Dependent Spreading of Seismic Waves from VSP Data Analysis Anisotropic Frequency-Dependent Spreading of Seismic Waves from VSP Data Analysis Amin Baharvand Ahmadi* and Igor Morozov, University of Saskatchewan, Saskatoon, Saskatchewan amin.baharvand@usask.ca Summary

More information

ELECTROMAGNETIC MULTIFUNCTIONAL STAND FOR MEMS APPLICATIONS

ELECTROMAGNETIC MULTIFUNCTIONAL STAND FOR MEMS APPLICATIONS ELECTROMAGNETIC MULTIFUNCTIONAL STAND FOR MEMS APPLICATIONS 1 Cristian Necula, Gh. Gheorghe, 3 Viorel Gheorghe, 4 Daniel C. Comeaga, 5 Octavian Dontu 1,,3,4,5 Splaiul Independenței 313, Bucharest 06004,

More information

Standing Waves + Reflection

Standing Waves + Reflection Standing Waves + Reflection Announcements: Will discuss reflections of transverse waves, standing waves and speed of sound. We will be covering material in Chap. 16. Plan to review material on Wednesday

More information

LECTURE.3 : AC-DC CONVERSION

LECTURE.3 : AC-DC CONVERSION LECTURE.3 : AC-DC CONVERSION (RECTIFICATIONS) 3.1Basic Rectifier Circuits Several types of rectifier circuits are available: single-phase and three-phase half-wave and full-wave, controlled and uncontrolled,

More information

Chapter 13 Tuned-Mass Dampers. CIE Structural Control 1

Chapter 13 Tuned-Mass Dampers. CIE Structural Control 1 Chapter 13 Tuned-Mass Dampers 1 CONTENT 1. Introduction 2. Theory of Undamped Tuned-mass Dampers Under Harmonic Loading 3. Theory of Undamped Tuned-mass Dampers Under Harmonic Base Motion 4. Theory of

More information

LAB 12: OSCILLATIONS AND SOUND

LAB 12: OSCILLATIONS AND SOUND 193 Name Date Partners LAB 12: OSCILLATIONS AND SOUND Animals can hear over a wider frequency range of humans, but humans can hear over a wide frequency from 20 Hz to 20,000 Hz (Image from http://archive.museophile.org/sound/)

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 16 404 Signal Generators and Waveform-shaping Circuits Ch 17 405 Input summing, output sampling voltage amplifier Series

More information

Frequency Modulation of 0S2-E

Frequency Modulation of 0S2-E Frequency Modulation of 0S2-E Herbert Weidner a Abstract: Precision measurements of the 0S2 quintet after the 2004-12-26 earthquake show that the highest spectral line near 318.4 µhz is frequency modulated.

More information

Dynamics of Mobile Toroidal Transformer Cores

Dynamics of Mobile Toroidal Transformer Cores Dynamics of Mobile Toroidal Transformer Cores Matt Williams Math 164: Scientific Computing May 5, 2006 Abstract A simplistic model of a c-core transformer will not accurately predict the output voltage.

More information

New Long Stroke Vibration Shaker Design using Linear Motor Technology

New Long Stroke Vibration Shaker Design using Linear Motor Technology New Long Stroke Vibration Shaker Design using Linear Motor Technology The Modal Shop, Inc. A PCB Group Company Patrick Timmons Calibration Systems Engineer Mark Schiefer Senior Scientist Long Stroke Shaker

More information

Nonlinear Analysis of Pacoima Dam with Spatially Nonuniform Ground Motion

Nonlinear Analysis of Pacoima Dam with Spatially Nonuniform Ground Motion Nonlinear Analysis of Pacoima Dam with Spatially Nonuniform Ground Motion Thesis by Steven W. Alves In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute

More information

Outline. Noise and Distortion. Noise basics Component and system noise Distortion INF4420. Jørgen Andreas Michaelsen Spring / 45 2 / 45

Outline. Noise and Distortion. Noise basics Component and system noise Distortion INF4420. Jørgen Andreas Michaelsen Spring / 45 2 / 45 INF440 Noise and Distortion Jørgen Andreas Michaelsen Spring 013 1 / 45 Outline Noise basics Component and system noise Distortion Spring 013 Noise and distortion / 45 Introduction We have already considered

More information

(a) apparatus: cell with particles e.g. smoke (container must be closed) diagram showing suitable arrangement with light illumination and microscope

(a) apparatus: cell with particles e.g. smoke (container must be closed) diagram showing suitable arrangement with light illumination and microscope 4 Specimen 03 (a) apparatus: cell with particles e.g. smoke (container must be closed) diagram showing suitable arrangement with light illumination and microscope (b) specks / flashes of light in random

More information

CHAPTER 11 TEST REVIEW -- MARKSCHEME

CHAPTER 11 TEST REVIEW -- MARKSCHEME AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response MULTIPLE CHOICE DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM

More information

Mechanical Spectrum Analyzer in Silicon using Micromachined Accelerometers with Time-Varying Electrostatic Feedback

Mechanical Spectrum Analyzer in Silicon using Micromachined Accelerometers with Time-Varying Electrostatic Feedback IMTC 2003 Instrumentation and Measurement Technology Conference Vail, CO, USA, 20-22 May 2003 Mechanical Spectrum Analyzer in Silicon using Micromachined Accelerometers with Time-Varying Electrostatic

More information

Chapter 17 Waves in Two and Three Dimensions

Chapter 17 Waves in Two and Three Dimensions Chapter 17 Waves in Two and Three Dimensions Slide 17-1 Chapter 17: Waves in Two and Three Dimensions Concepts Slide 17-2 Section 17.1: Wavefronts The figure shows cutaway views of a periodic surface wave

More information

Experiment 18: Driven RLC Circuit

Experiment 18: Driven RLC Circuit MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Spring 3 Experiment 8: Driven LC Circuit OBJECTIVES To measure the resonance frequency and the quality factor of a driven LC circuit INTODUCTION

More information

Multi-Path Fading Channel

Multi-Path Fading Channel Instructor: Prof. Dr. Noor M. Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office), 186 (Lab) Fax: +9

More information

Seismic Reflection Method

Seismic Reflection Method 1 of 25 4/16/2009 11:41 AM Seismic Reflection Method Top: Monument unveiled in 1971 at Belle Isle (Oklahoma City) on 50th anniversary of first seismic reflection survey by J. C. Karcher. Middle: Two early

More information

Experiment 2: Transients and Oscillations in RLC Circuits

Experiment 2: Transients and Oscillations in RLC Circuits Experiment 2: Transients and Oscillations in RLC Circuits Will Chemelewski Partner: Brian Enders TA: Nielsen See laboratory book #1 pages 5-7, data taken September 1, 2009 September 7, 2009 Abstract Transient

More information

PYKC 7 Feb 2019 EA2.3 Electronics 2 Lecture 13-1

PYKC 7 Feb 2019 EA2.3 Electronics 2 Lecture 13-1 In this lecture, we will look back on all the materials we have covered to date. Instead of going through previous lecture materials, I will focus on what you have learned in the laboratory sessions, going

More information

HANDHELD SEISMOMETER (L. Braile, November, 2000)

HANDHELD SEISMOMETER (L. Braile, November, 2000) HANDHELD SEISMOMETER (L. Braile, November, 2000) Introduction: The handheld seismometer is designed to illustrate concepts of seismometry (sensing and recording the vibration or shaking of the ground generated

More information

The Air Bearing Throughput Edge By Kevin McCarthy, Chief Technology Officer

The Air Bearing Throughput Edge By Kevin McCarthy, Chief Technology Officer 159 Swanson Rd. Boxborough, MA 01719 Phone +1.508.475.3400 dovermotion.com The Air Bearing Throughput Edge By Kevin McCarthy, Chief Technology Officer In addition to the numerous advantages described in

More information

Ground-Motion Scaling in the Apennines (Italy)

Ground-Motion Scaling in the Apennines (Italy) Bulletin of the Seismological Society of America, 90, 4, pp. 1062 1081, August 2000 Ground-Motion Scaling in the Apennines (Italy) by Luca Malagnini, Robert B. Herrmann, and Massimo Di Bona Abstract Regressions

More information

Introduction*to*Machinery*Vibration*Sheet*Answer* Chapter*1:*Vibrations*Sources*and*Uses*

Introduction*to*Machinery*Vibration*Sheet*Answer* Chapter*1:*Vibrations*Sources*and*Uses* IntroductiontoMachineryVibrationSheetAnswer Chapter1:VibrationsSourcesandUses 1. 1. imposed motions related to the function - e.g. slider crank and earn 2. inadequate design - e.g. resonance 3. manufacturing

More information

Summary. Theory. Introduction

Summary. Theory. Introduction round motion through geophones and MEMS accelerometers: sensor comparison in theory modeling and field data Michael Hons* Robert Stewart Don Lawton and Malcolm Bertram CREWES ProjectUniversity of Calgary

More information

Summary of Geometrical Spreading and Q Models from Recent Events

Summary of Geometrical Spreading and Q Models from Recent Events Summary of Geometrical Spreading and Q Models from Recent Events Robert Graves, PhD Research Geophysicist US Geological Survey Pasadena, CA rwgraves@usgs.gov http://peer.berkeley.edu/ngaeast/ SMiRT-22:

More information

AC Theory and Electronics

AC Theory and Electronics AC Theory and Electronics An Alternating Current (AC) or Voltage is one whose amplitude is not constant, but varies with time about some mean position (value). Some examples of AC variation are shown below:

More information

A Dissertation Presented for the Doctor of Philosophy Degree. The University of Memphis

A Dissertation Presented for the Doctor of Philosophy Degree. The University of Memphis A NEW PROCEDURE FOR ESTIMATION OF SHEAR WAVE VELOCITY PROFILES USING MULTI STATION SPECTRAL ANALYSIS OF SURFACE WAVES, REGRESSION LINE SLOPE, AND GENETIC ALGORITHM METHODS A Dissertation Presented for

More information

Vibratory Feeder Bowl Analysis

Vibratory Feeder Bowl Analysis The Journal of Undergraduate Research Volume 7 Journal of Undergraduate Research, Volume 7: 2009 Article 7 2009 Vibratory Feeder Bowl Analysis Chris Green South Dakota State University Jeff Kreul South

More information

Application of MEMS accelerometers for modal analysis

Application of MEMS accelerometers for modal analysis Application of MEMS accelerometers for modal analysis Ronald Kok Cosme Furlong and Ryszard J. Pryputniewicz NEST NanoEngineering Science and Technology CHSLT Center for Holographic Studies and Laser micro-mechatronics

More information

Skoog Chapter 1 Introduction

Skoog Chapter 1 Introduction Skoog Chapter 1 Introduction Basics of Instrumental Analysis Properties Employed in Instrumental Methods Numerical Criteria Figures of Merit Skip the following chapters Chapter 2 Electrical Components

More information

Waves Q1. MockTime.com. (c) speed of propagation = 5 (d) period π/15 Ans: (c)

Waves Q1. MockTime.com. (c) speed of propagation = 5 (d) period π/15 Ans: (c) Waves Q1. (a) v = 5 cm (b) λ = 18 cm (c) a = 0.04 cm (d) f = 50 Hz Q2. The velocity of sound in any gas depends upon [1988] (a) wavelength of sound only (b) density and elasticity of gas (c) intensity

More information

v o v an i L v bn V d Load L v cn D 1 D 3 D 5 i a i b i c D 4 D 6 D 2 Lecture 7 - Uncontrolled Rectifier Circuits III

v o v an i L v bn V d Load L v cn D 1 D 3 D 5 i a i b i c D 4 D 6 D 2 Lecture 7 - Uncontrolled Rectifier Circuits III Lecture 7 - Uncontrolled Rectifier Circuits III Three-phase bridge rectifier (p = 6) v o n v an v bn v cn i a i b i c D 1 D 3 D 5 D 4 D 6 D d i L R Load L Figure 7.1 Three-phase diode bridge rectifier

More information