EECS 473 Advanced Embedded Systems. Lecture 14 Wireless in the real world

Size: px
Start display at page:

Download "EECS 473 Advanced Embedded Systems. Lecture 14 Wireless in the real world"

Transcription

1 EECS 473 Advanced Embedded Systems Lecture 14 Wireless in the real world

2 Team status updates Team Alert (Home Alert) Team Fitness (Fitness watch) Team Glasses Team Mouse (Control in hand) Team WiFi (WiFi localization)

3 Guest talks One this Thursday 11/12 Senior engineer who builds all kinds of things including power supplies One on 11/24 National Instruments, board-level issues One TBA, but more on software side. Recall part of homework score is attendance at guest talks. If you have a conflict, let me know and I ll find makeup something you can do

4 Last time Covered: Messages Source encoding (compression) Channel encoding (error correction) Modulation Medium A bit on the FCC

5 Today Review last time Wireless range Antennas Broadcast and receive power FCC (again) Bandwidth and Shannon s limit A quick overview of packets and bandwidth

6 Review: Communication theory What are each of these boxes? Source Encoder Channel Encoder Modulator Channel Source Decoder Channel Decoder Demodulator

7 Review: Channel encoding/decoding What is a block code? What is a Hamming(7,4) code? How does this figure relate? What is a convolutional code? What makes it different than a block code? Channel encoding (error correction) involves sending a lot of extra bits along with the useful data (maybe 2x or 3x total!). Why is this helpful when trying to send a lot of data quickly?

8 Review: Modulation

9 Review: Modulation Draw the message 0110 using the following constellations:

10 So, who cares? Noise immunity Looking at signalto-noise ratio needed to maintain a low bit error rate. Notice BPSK and QPSK are least noise-sensitive. And as M goes up, we get more noise sensitive. Easier to confuse symbols!

11 On to Antennas and transmission power Antennas receive power differently depending on where the power is coming from. An isotropic antenna is one that receives power equally well from all directions. These don t exist. Real antennas focus their effort more in some directions than others. A narrow antenna, like a dish, will be focused in a very narrow range (radiation angle) Others, like a traditional dipole (the most common antenna) tend to have less narrow of a range.

12 Antennas Nothing is free here. If you have a narrow beam, you get some great gain in that beam but get loss in the other directions. This can be good. Think about body-area networks or Bluetooth headphones Toroidal radiation pattern Figures from antenna-theory.com (if you couldn t tell ) Dish antenna radiation pattern

13 Radio power Radio signals are generally measured in Watts However embedded systems generally measure power in mw Typically mW for WiFi It is often easiest to deal with power on a log scale. So we use dbm where Basically just db but scaled to mw. Much of this (including graphics) from

14 Aside: db, dbm, dbi db itself is a unit-less value Generally a ratio between two thing On a log scale. dbm a single value where the ratio is to 1mW. So 20dB means a 100 to 1 ratio 20dBm means 100mW (100 times 1mW) We ll also see dbi when looking at antennas. That s the power ratio of an antenna to an isotropic antenna (that completely non-directional antenna) You might see dbd, which is compared to a lossless dipole antenna. It s 2.15dB lower than dbi. Vendors generally use dbi ( cause it s bigger) and thus so will we.

15 Power received vs. power sent. The Friis Transmission Formula tells us how much power we ll receive. It is: Where: P t is the radiated power P r is the received power G t is the gain of the transmitting antenna G r is the gain of the receiving antenna λ is the wavelength R is the distance between antennas However, many of those terms aren t easily available from real spec. sheets. Instead we do some algebra and get the following equation for range in km: Where f is the frequency in MHz, p t and p r are in dbm and g t and g r are in dbi.

16 Example You are running an IEEE b network and you are currently using wireless devices with the following specifications: Tx power: Mbps Rx sensitivity: 11 Mbps Antenna gain: 2 dbi (both) b is at 2.4GHz. Notes: We are looking at 63mW of broadcast power. If we had dish antennas pointed at each other with a gain of 25dBi, we d have ( )/20=275km! Note that this assumes an unobstructed line-of-sight signal with no significant interference. Sometimes realistic, often not.

17 Looking at a real antenna (ANT-WSB-ANF-09) 9dBi Gets there by radiating in a toroid Spread evenly along the ground (half power bandwidth is 360 ) Doesn t go up or down at all. Half power BW is at 10

18 Image taken from: en.wikipedia.org/wiki/file:united_states_frequency_allocations_chart_2003_-_the_radio_spectrum.jpg

19 United States Partial Frequency Spectrum Image taken from: en.wikipedia.org/wiki/file:united_states_frequency_allocations_chart_2003_-_the_radio_spectrum.jpg

20

21 OK, so all 2.4 GHz things have on 50MHz of bandwidth What does that mean? It limits how much data we can send. To really understand that in a meaningful way, let s look at the theoretic limitations. Shannon s limit.

22 Shannon s limit First question about the medium: How fast can we hope to send data? Answered by Claude Shannon (given some reasonable assumptions) Assuming we have only Gaussian noise, provides a bound on the rate of information that can be reliably moved over a channel. That includes error correction and whatever other games you care to play.

23 Taken from a slide by Dr. Stark

24 Shannon Hartley theorem We ll use a different version of this called the Shannon-Hartley theorem. C is the channel capacity in bits per second; B is the bandwidth of the channel in hertz S is the total received signal power measured in Watts or Volts 2 N is the total noise, measured in Watts or Volts 2 Adapted from Wikipedia.

25 Comments (1/2) This is a limit. It says that you can, in theory, communicate that much data with an arbitrarily tight bound on error. Not that you won t get errors at that data rate. Rather that it s possible you can find an error correction scheme that can fix things up. Such schemes may require really really long block sizes and so may be computationally intractable. There are a number of proofs. IEEE reprinted the original paper in More than we are going to do. Let s just be sure we can A) understand it and B) use it.

26 Comments (2/2) What are the assumptions made in the proof? All noise is Gaussian in distribution. This not only makes the math easier, it means that because the addition of Gaussians is a Gaussian, all noise sources can be modeled as a single source. Also note, this includes our inability to distinguish different voltages. Effectively quantization noise and also treated as a Gaussian (though it ain t) Can people actually do this? They can get really close. Turbo codes, Low density parity check codes.

27 Examples (1/2) C is the channel capacity in bits per second; B is the bandwidth of the channel in Hertz S is the total received signal power measured in Watts or Volts 2 N is the total noise, measured in Watts or Volts 2 If the SNR is 20 db, and the bandwidth available is 4 khz what is the channel capacity? Part 1: convert db to a ratio (it s power so it s base 10) Part 2: Plug and chug. Adapted from Wikipedia.

28 Examples (2/2) C is the channel capacity in bits per second; B is the bandwidth of the channel in Hertz S is the total received signal power measured in Watts or Volts 2 N is the total noise, measured in Watts or Volts 2 If you wish to transmit at 50,000 bits/s, and a bandwidth of 1 MHz is available, what S/R ration can you accept? Adapted from Wikipedia.

29 Summary of Shannon s limit Provides an upper-bound on information over a channel Makes assumptions about the nature of the noise. To approach this bound, need to use channel encoding and modulation. Some schemes (Turbo codes, Low density parity check codes) can get very close.

30 IEEE is a standard which specifies the physical layer and media access control for low-rate wireless personal area networks (LR-WPANs). Many embedded wireless protocols are built on top of this (including Zigbee)

31 The Synchronization header (SHR) contains a preamble sequence (32 bits, or 4 octets) to allow the receiver to acquire and synchronize to the incoming signal and a start of frame delimiter that signals the end of the preamble. The PHY header (PHR) carries the frame length byte, which indicates the length of the PHY Service Data Unit (PSDU). The SHR, PHR and PSDU make up the PHY Protocol Data Unit (PPDU). The PSDU contains the MAC Header (MHR), which has two frame control octets, a single octet Data Sequence Number, good for reassembling packets received out of sequence, and 4 to 20 octets of address data. The MAC Service Data Unit (MSDU) carries the frame s payload and has a maximum capacity of 104 octets of data. Finally, the MPDU ends with the MAC Footer (MFR), which contains a 16-bit Frame Check Sequence. From: An Introduction to IEEE STD by Jon T. Adams

32 Putting it all together

33 Acknowledgments and sources A 9 hour talk by David Tse has been extremely useful and is a basis for me actually understanding anything (though I m by no means through it all) A talk given by Mike Denko, Alex Motalleb, and Tony Qian two years ago for this class proved useful and I took a number of slides from their talk. An hour long talk with Prabal Dutta formed the basis for the coverage of this talk. Some other sources: -- A nice set of questions that get at some useful calculations. all the path loss/propagation models in one place df very nice modulation overview. A very nice overview of everything wireless for the applied engineer. Wish I d found it sooner! I m grateful for the above sources. All mistakes are my own.

34 Additional sources/references General Modulation (ASK) Other: An Introduction to IEEE STD by Jon T. Adams

EECS 473 Advanced Embedded Systems. Lecture 13 Start on Wireless

EECS 473 Advanced Embedded Systems. Lecture 13 Start on Wireless EECS 473 Advanced Embedded Systems Lecture 13 Start on Wireless Team status updates Losing track of who went last. Cyberspeaker VisibleLight Elevate Checkout SmartHaus Upcoming Last lecture this Thursday

More information

EECS 473 Advanced Embedded Systems. Lecture 13 Start on Wireless

EECS 473 Advanced Embedded Systems. Lecture 13 Start on Wireless EECS 473 Advanced Embedded Systems Lecture 13 Start on Wireless Upcoming MS2 due on 11/10 Guest speakers coming Fitbit on 11/10 Others still scheduling, should know by this time next week. Introduction

More information

EECS 473 Advanced Embedded Systems. Lecture 13 Start on Wireless

EECS 473 Advanced Embedded Systems. Lecture 13 Start on Wireless EECS 473 Advanced Embedded Systems Lecture 13 Start on Wireless Upcoming MS2 due on 11/9 Guest speakers: 11/21: Mark Schulte of Fitbit. (IoT stuff). 11/28: Matthias Ochs of Bosch. (Cyber security for embedded).

More information

The LoRa Protocol. Overview. Interference Immunity. Technical Brief AN205 Rev A0

The LoRa Protocol. Overview. Interference Immunity. Technical Brief AN205 Rev A0 Technical Brief AN205 Rev A0 The LoRa Protocol By John Sonnenberg Raveon Technologies Corp Overview The LoRa (short for Long Range) modulation scheme is a modulation technique combined with a data encoding

More information

EECS 473. Review etc.

EECS 473. Review etc. EECS 473 Review etc. Nice job folks Projects went well. Last groups demoed on Sunday. Due date issues Assignment 2 and the Final Report are both due today. There was some communication issues with due

More information

CIS 632 / EEC 687 Mobile Computing. Mobile Communications (for Dummies) Chansu Yu. Contents. Modulation Propagation Spread spectrum

CIS 632 / EEC 687 Mobile Computing. Mobile Communications (for Dummies) Chansu Yu. Contents. Modulation Propagation Spread spectrum CIS 632 / EEC 687 Mobile Computing Mobile Communications (for Dummies) Chansu Yu Contents Modulation Propagation Spread spectrum 2 1 Digital Communication 1 0 digital signal t Want to transform to since

More information

EECS 473. Review etc.

EECS 473. Review etc. EECS 473 Review etc. Nice job folks Projects went well. Was nervous until the last minute, but things came out well. Same thing in 470 btw. Still have a demo to do due to snow delay, but otherwise all

More information

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Vehicle Networks Wireless communication basics Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Outline Wireless Signal Propagation Electro-magnetic waves Signal impairments Attenuation Distortion

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANS)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANS) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Title: [General Atomics Call For Proposals Presentation] Date Submitted: [4 ] Source: Naiel Askar, Susan Lin, General Atomics-

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [IMEC UWB PHY Proposal] Date Submitted: [4 May, 2009] Source: Dries Neirynck, Olivier Rousseaux (Stichting

More information

Wireless LAN Consortium

Wireless LAN Consortium Wireless LAN Consortium Clause 18 OFDM Physical Layer Test Suite Version 1.8 Technical Document Last Updated: July 11, 2013 2:44 PM Wireless LAN Consortium 121 Technology Drive, Suite 2 Durham, NH 03824

More information

Digital Communications Theory. Phil Horkin/AF7GY Satellite Communications Consultant

Digital Communications Theory. Phil Horkin/AF7GY Satellite Communications Consultant Digital Communications Theory Phil Horkin/AF7GY Satellite Communications Consultant AF7GY@arrl.net Overview Sending voice or data over a constrained channel is a balancing act trading many communication

More information

Wireless Networks: An Introduction

Wireless Networks: An Introduction Wireless Networks: An Introduction Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Cellular Networks WLAN WPAN Conclusions Wireless Networks:

More information

Improved PHR coding of the MR-O-QPSK PHY

Improved PHR coding of the MR-O-QPSK PHY Improved PHR coding of the MR-O-QPSK PHY Michael Schmidt- ATMEL July 12, 2010 1/ 48 IEEE P802.15 Wireless Personal Area Networks Title: Improved PHR coding of the MR-O-QPSK PHY Date Submitted: July 12,

More information

Using the epmp Link Budget Tool

Using the epmp Link Budget Tool Using the epmp Link Budget Tool The epmp Series Link Budget Tool can offer a help to determine the expected performances in terms of distances of a epmp Series system operating in line-of-sight (LOS) propagation

More information

peculiarities of radio devices

peculiarities of radio devices Rudi van Drunen peculiarities of radio devices Rudi van Drunen is a senior UNIX systems consultant with Competa IT B.V. in The Netherlands. He also has his own consulting company, Xlexit Technology, doing

More information

TSEK02: Radio Electronics Lecture 6: Propagation and Noise. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 6: Propagation and Noise. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 6: Propagation and Noise Ted Johansson, EKS, ISY 2 Propagation and Noise - Channel and antenna: not in the Razavi book - Noise: 2.3 The wireless channel The antenna Signal

More information

5.9 GHz V2X Modem Performance Challenges with Vehicle Integration

5.9 GHz V2X Modem Performance Challenges with Vehicle Integration 5.9 GHz V2X Modem Performance Challenges with Vehicle Integration October 15th, 2014 Background V2V DSRC Why do the research? Based on 802.11p MAC PHY ad-hoc network topology at 5.9 GHz. Effective Isotropic

More information

IEEE P Wireless Personal Area Networks

IEEE P Wireless Personal Area Networks IEEE P802.15 Wireless Personal Area Networks Project Title Date Submitted IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Technical Specification Draft for PSSS 250-2000 scheme 915

More information

Comment Resolution for the MR-O-QPSK PHY

Comment Resolution for the MR-O-QPSK PHY Comment Resolution for the MR-O-QPSK PHY July 14, 2010 1/ 19 IEEE P802.15 Wireless Personal Area Networks Title: Proposed Comment Resolution of the MR-O-QPSK PHY Date Submitted: July 14, 2010 Source: Michael

More information

Quick Introduction to Communication Systems

Quick Introduction to Communication Systems Quick Introduction to Communication Systems p. 1/26 Quick Introduction to Communication Systems Aly I. El-Osery, Ph.D. elosery@ee.nmt.edu Department of Electrical Engineering New Mexico Institute of Mining

More information

Outline / Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing. Cartoon View 1 A Wave of Energy

Outline / Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing. Cartoon View 1 A Wave of Energy Outline 18-452/18-750 Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing Peter Steenkiste Carnegie Mellon University Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17/

More information

Wireless LAN Consortium OFDM Physical Layer Test Suite v1.6 Report

Wireless LAN Consortium OFDM Physical Layer Test Suite v1.6 Report Wireless LAN Consortium OFDM Physical Layer Test Suite v1.6 Report UNH InterOperability Laboratory 121 Technology Drive, Suite 2 Durham, NH 03824 (603) 862-0090 Jason Contact Network Switch, Inc 3245 Fantasy

More information

Wireless Personal Area Networks

Wireless Personal Area Networks 1 IEEE P802.15 Wireless Personal Area Networks Project Title IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Samsung physical layer proposal Date Submitted Source Re: 31 Kiran Bynam,

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 1 FHSS, IR, and Data Modulations 2 IEEE 802.11b with FHSS IEEE 802.11b with IR Available Modulations and their Performance DBPSK DQPSK CCK: Complementary

More information

802.11n. Suebpong Nitichai

802.11n. Suebpong Nitichai 802.11n Suebpong Nitichai Email: sniticha@cisco.com 1 Agenda 802.11n Technology Fundamentals 802.11n Access Points Design and Deployment Planning and Design for 802.11n in Unified Environment Key Steps

More information

CT-516 Advanced Digital Communications

CT-516 Advanced Digital Communications CT-516 Advanced Digital Communications Yash Vasavada Winter 2017 DA-IICT Lecture 17 Channel Coding and Power/Bandwidth Tradeoff 20 th April 2017 Power and Bandwidth Tradeoff (for achieving a particular

More information

Abstract: [Final proposal for d, that is for the low cost and low power consumption WPAN.]

Abstract: [Final proposal for d, that is for the low cost and low power consumption WPAN.] Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Final Proposal for 802.15.4d from OKI] Date Submitted: [17-March-2008] Source: [Kiyoshi Fukui, Yasutaka

More information

CS263: Wireless Communications and Sensor Networks

CS263: Wireless Communications and Sensor Networks CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 3: Antennas, Propagation, and Spread Spectrum September 30, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Antennas and

More information

BSc (Hons) Computer Science with Network Security. Examinations for Semester 1

BSc (Hons) Computer Science with Network Security. Examinations for Semester 1 BSc (Hons) Computer Science with Network Security Cohort: BCNS/15B/FT Examinations for 2015-2016 Semester 1 MODULE: DATA COMMUNICATIONS MODULE CODE: CAN1101C Duration: 2 Hours Instructions to Candidates:

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 1 PLCP format, Data Rates, OFDM, Modulations, 2 IEEE 802.11a: Transmit and Receive Procedure 802.11a Modulations BPSK Performance Analysis Convolutional

More information

Announcement : Wireless Networks Lecture 3: Physical Layer. A Reminder about Prerequisites. Outline. Page 1

Announcement : Wireless Networks Lecture 3: Physical Layer. A Reminder about Prerequisites. Outline. Page 1 Announcement 18-759: Wireless Networks Lecture 3: Physical Layer Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2010 http://www.cs.cmu.edu/~prs/wirelesss10/

More information

ETSI TS V1.1.1 ( )

ETSI TS V1.1.1 ( ) TS 102 887-1 V1.1.1 (2013-07) Technical Specification Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices; Smart Metering Wireless Access Protocol; Part 1: PHY layer 2 TS

More information

Simple Algorithm in (older) Selection Diversity. Receiver Diversity Can we Do Better? Receiver Diversity Optimization.

Simple Algorithm in (older) Selection Diversity. Receiver Diversity Can we Do Better? Receiver Diversity Optimization. 18-452/18-750 Wireless Networks and Applications Lecture 6: Physical Layer Diversity and Coding Peter Steenkiste Carnegie Mellon University Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17/

More information

Link Budget Calculation

Link Budget Calculation Link Budget Calculation Training materials for wireless trainers This 60 minute talk is about estimating wireless link performance by using link budget calculations. It also introduces the Radio Mobile

More information

Wireless Technology for Aerospace Applications. June 3 rd, 2012

Wireless Technology for Aerospace Applications. June 3 rd, 2012 Wireless Technology for Aerospace Applications June 3 rd, 2012 OUTLINE The case for wireless in aircraft and aerospace applications System level limits of wireless technology Security Power (self powered,

More information

Lecture #2. EE 471C / EE 381K-17 Wireless Communication Lab. Professor Robert W. Heath Jr.

Lecture #2. EE 471C / EE 381K-17 Wireless Communication Lab. Professor Robert W. Heath Jr. Lecture #2 EE 471C / EE 381K-17 Wireless Communication Lab Professor Robert W. Heath Jr. Preview of today s lecture u Introduction to digital communication u Components of a digital communication system

More information

Signal Studio for IoT

Signal Studio for IoT Signal Studio for IoT N7610C TECHNICAL OVERVIEW Create Keysight validated and performance-optimized reference signals compliant to IEEE 802.15.4 (for ZigBee), 802.15.4g (for Wi-SUN), LoRa CSS and ITU-T

More information

IEEE P Wireless Personal Area Networks. LB34 Ranging comment resolution

IEEE P Wireless Personal Area Networks. LB34 Ranging comment resolution 0 0 0 0 0 0 Project Title Date Submitted Source Re: [] Abstract Purpose Notice Release P0. Wireless Personal Area Networks P0. Working Group for Wireless Personal Area Networks (WPANs) LB Ranging comment

More information

Comment Resolution for the MR-O-QPSK PHY

Comment Resolution for the MR-O-QPSK PHY Comment Resolution for the MR-O-QPSK PHY July 15, 2010 1/ 19 IEEE P802.15 Wireless Personal Area Networks Title: Comment Resolution for the MR-O-QPSK PHY Date Submitted: July 15, 2010 Source: Michael Schmidt

More information

Wireless Networked Systems. Lec #1b: PHY Basics

Wireless Networked Systems. Lec #1b: PHY Basics Wireless Networked Systems CS 795/895 - Spring 2013 Lec #1b: PHY Basics Tamer Nadeem Dept. of Computer Science Wireless Communication Page 2 Spring 2013 CS 795/895 - Wireless Networked Systems Radio Signal

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P82.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: Texas Instruments Impulse Radio UWB Physical Layer Proposal Date Submitted: 4 May, 29 Source: June Chul Roh,

More information

EECS 380: Wireless Technologies Week 7-8

EECS 380: Wireless Technologies Week 7-8 EECS 380: Wireless Technologies Week 7-8 Michael L. Honig Northwestern University May 2018 Outline Diversity, MIMO Multiple Access techniques FDMA, TDMA OFDMA (LTE) CDMA (3G, 802.11b, Bluetooth) Random

More information

Sirindhorn International Institute of Technology Thammasat University

Sirindhorn International Institute of Technology Thammasat University Name...ID... Section...Seat No... Sirindhorn International Institute of Technology Thammasat University Midterm Examination: Semester 1/2009 Course Title Instructor : ITS323 Introduction to Data Communications

More information

Noise and Interference Limited Systems

Noise and Interference Limited Systems Chapter 3 Noise and Interference Limited Systems 47 Basics of link budgets Link budgets show how different components and propagation processes influence the available SNR Link budgets can be used to compute

More information

September, Submission. September, 1998

September, Submission. September, 1998 Summary The CCK MBps Modulation for IEEE 802. 2.4 GHz WLANs Mark Webster and Carl Andren Harris Semiconductor CCK modulation will enable MBps operation in the 2.4 GHz ISM band An interoperable preamble

More information

TSEK02: Radio Electronics Lecture 6: Propagation and Noise. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 6: Propagation and Noise. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 6: Propagation and Noise Ted Johansson, EKS, ISY 2 Propagation and Noise - Channel and antenna: not in the Razavi book - Noise: 2.3 The wireless channel The antenna Signal

More information

Lower Layers PART1: IEEE and the ZOLERTIA Z1 Radio

Lower Layers PART1: IEEE and the ZOLERTIA Z1 Radio Slide 1 Lower Layers PART1: IEEE 802.15.4 and the ZOLERTIA Z1 Radio Jacques Tiberghien Kris Steenhaut Remark: all numerical data refer to the parameters defined in IEEE802.15.4 for 32.5 Kbytes/s transmission

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [A Modified Performance Evaluation Scheme for Computer Simulation ] Date Submitted: [November 15,

More information

Submission to IEEE P Wireless LANs. Code Separation vs. Frequency Reuse

Submission to IEEE P Wireless LANs. Code Separation vs. Frequency Reuse Submission to IEEE P802.11 Wireless LANs Title: Code Separation vs. Frequency Reuse Date: May 1998 Author: K. W. Halford, Ph.D. and Mark Webster Harris Corporation mwebster@harris.com Abstract This submission

More information

Lecture 3: Modulation & Clock Recovery. CSE 123: Computer Networks Stefan Savage

Lecture 3: Modulation & Clock Recovery. CSE 123: Computer Networks Stefan Savage Lecture 3: Modulation & Clock Recovery CSE 123: Computer Networks Stefan Savage Lecture 3 Overview Signaling constraints Shannon s Law Nyquist Limit Encoding schemes Clock recovery Manchester, NRZ, NRZI,

More information

IEEE SUPPLEMENT TO IEEE STANDARD FOR INFORMATION TECHNOLOGY

IEEE SUPPLEMENT TO IEEE STANDARD FOR INFORMATION TECHNOLOGY 18.4.6.11 Slot time The slot time for the High Rate PHY shall be the sum of the RX-to-TX turnaround time (5 µs) and the energy detect time (15 µs specified in 18.4.8.4). The propagation delay shall be

More information

THE BASICS OF RADIO SYSTEM DESIGN

THE BASICS OF RADIO SYSTEM DESIGN THE BASICS OF RADIO SYSTEM DESIGN Mark Hunter * Abstract This paper is intended to give an overview of the design of radio transceivers to the engineer new to the field. It is shown how the requirements

More information

Announcements : Wireless Networks Lecture 3: Physical Layer. Bird s Eye View. Outline. Page 1

Announcements : Wireless Networks Lecture 3: Physical Layer. Bird s Eye View. Outline. Page 1 Announcements 18-759: Wireless Networks Lecture 3: Physical Layer Please start to form project teams» Updated project handout is available on the web site Also start to form teams for surveys» Send mail

More information

Range Considerations for RF Networks

Range Considerations for RF Networks TI Technology Days 2010 Range Considerations for RF Networks Richard Wallace Abstract The antenna can be one of the most daunting components of wireless designs. Most information available relates to large

More information

Lecture 3: Modulation & Clock Recovery. CSE 123: Computer Networks Alex C. Snoeren

Lecture 3: Modulation & Clock Recovery. CSE 123: Computer Networks Alex C. Snoeren Lecture 3: Modulation & Clock Recovery CSE 123: Computer Networks Alex C. Snoeren Lecture 3 Overview Signaling constraints Shannon s Law Nyquist Limit Encoding schemes Clock recovery Manchester, NRZ, NRZI,

More information

Unit 3 - Wireless Propagation and Cellular Concepts

Unit 3 - Wireless Propagation and Cellular Concepts X Courses» Introduction to Wireless and Cellular Communications Unit 3 - Wireless Propagation and Cellular Concepts Course outline How to access the portal Assignment 2. Overview of Cellular Evolution

More information

The Wireless Data Crunch: Motivating Research in Wireless Communications

The Wireless Data Crunch: Motivating Research in Wireless Communications The Wireless Data Crunch: Motivating Research in Wireless Communications Stephen Hanly CSIRO-Macquarie University Chair in Wireless Communications stephen.hanly@mq.edu.au Wireless Growth Rate Cooper s

More information

Experimental Evaluation Scheme of UWB Antenna Performance

Experimental Evaluation Scheme of UWB Antenna Performance Tokyo Tech. Experimental Evaluation Scheme of UWB Antenna Performance Sathaporn PROMWONG Wataru HACHITANI Jun-ichi TAKADA TAKADA-Laboratory Mobile Communication Research Group Graduate School of Science

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Pulsed DS-UWB with optional CS-UWB for Various Applications] Date Submitted: [January 2005] Source: [Huan-Bang

More information

AEROHIVE NETWORKS ax DAVID SIMON, SENIOR SYSTEMS ENGINEER Aerohive Networks. All Rights Reserved.

AEROHIVE NETWORKS ax DAVID SIMON, SENIOR SYSTEMS ENGINEER Aerohive Networks. All Rights Reserved. AEROHIVE NETWORKS 802.11ax DAVID SIMON, SENIOR SYSTEMS ENGINEER 1 2018 Aerohive Networks. All Rights Reserved. 2 2018 Aerohive Networks. All Rights Reserved. 8802.11ax 802.11n and 802.11ac 802.11n and

More information

Digital Transmission using SECC Spring 2010 Lecture #7. (n,k,d) Systematic Block Codes. How many parity bits to use?

Digital Transmission using SECC Spring 2010 Lecture #7. (n,k,d) Systematic Block Codes. How many parity bits to use? Digital Transmission using SECC 6.02 Spring 2010 Lecture #7 How many parity bits? Dealing with burst errors Reed-Solomon codes message Compute Checksum # message chk Partition Apply SECC Transmit errors

More information

Chapter 4 Radio Communication Basics

Chapter 4 Radio Communication Basics Chapter 4 Radio Communication Basics Chapter 4 Radio Communication Basics RF Signal Propagation and Reception Basics and Keywords Transmitter Power and Receiver Sensitivity Power - antenna gain: G TX,

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 9: Multiple Access, GSM, and IS-95

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 9: Multiple Access, GSM, and IS-95 ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2003 Lecture 9: Multiple Access, GSM, and IS-95 Outline: Two other important issues related to multiple access space division with smart

More information

IEEE ax / OFDMA

IEEE ax / OFDMA #WLPC 2018 PRAGUE CZECH REPUBLIC IEEE 802.11ax / OFDMA WFA CERTIFIED Wi-Fi 6 PERRY CORRELL DIR. PRODUCT MANAGEMENT 1 2018 Aerohive Networks. All Rights Reserved. IEEE 802.11ax Timeline IEEE 802.11ax Passed

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Samsung Electronics (SAIT) CFP Presentation] Date Submitted: [4 January, 2005] Source: [(1) Young-Hwan Kim,

More information

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth.

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth. UNIT- 7 Radio wave propagation and propagation models EM waves below 2Mhz tend to travel as ground waves, These wave tend to follow the curvature of the earth and lose strength rapidly as they travel away

More information

Physical Layer. Transfers bits through signals overs links Wires etc. carry analog signals We want to send digital bits. Signal

Physical Layer. Transfers bits through signals overs links Wires etc. carry analog signals We want to send digital bits. Signal Physical Layer Physical Layer Transfers bits through signals overs links Wires etc. carry analog signals We want to send digital bits 10110 10110 Signal CSE 461 University of Washington 2 Topics 1. Coding

More information

Industrial Wireless Systems

Industrial Wireless Systems Application Considerations Don Pretty Principal Engineer Geometric Controls Inc Bethlehem, PA Sheet 1 Ethernet Dominates on the Plant Floor Sheet 2 Recognize Any of These? Sheet 3 Answers: 10 BASE 2 RG

More information

1) Fixed point [15 points] a) What are the primary reasons we might use fixed point rather than floating point? [2]

1) Fixed point [15 points] a) What are the primary reasons we might use fixed point rather than floating point? [2] 473 Fall 2018 Homework 2 Answers Due on Gradescope by 5pm on December 11 th. 165 points. Notice that the last problem is a group assignment (groups of 2 or 3). Digital Signal Processing and other specialized

More information

Wireless Point to Point Quick Reference Sheet

Wireless Point to Point Quick Reference Sheet Wireless Point to Point Quick Reference Sheet Document ID: 98 Contents Introduction Prerequisites Requirements Components Used Conventions Formulas Frequency Bands Antenna Gain Receiver Sensitivity Some

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ICCE.2012.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ICCE.2012. Zhu, X., Doufexi, A., & Koçak, T. (2012). A performance enhancement for 60 GHz wireless indoor applications. In ICCE 2012, Las Vegas Institute of Electrical and Electronics Engineers (IEEE). DOI: 10.1109/ICCE.2012.6161865

More information

Chapter 3 Digital Transmission Fundamentals

Chapter 3 Digital Transmission Fundamentals Chapter 3 Digital Transmission Fundamentals Digital Representation of Information Why Digital Communications? Digital Representation of Analog Signals Characterization of Communication Channels Fundamental

More information

Nomadic Communications n/ac: MIMO and Space Diversity

Nomadic Communications n/ac: MIMO and Space Diversity Nomadic Communications 802.11n/ac: MIMO and Space Diversity Renato Lo Cigno ANS Group locigno@disi.unitn.it http://disi.unitn.it/locigno/teaching-duties/nomadic-communications CopyRight Quest opera è protetta

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Link Level Simulations of THz-Communications Date Submitted: 15 July, 2013 Source: Sebastian Rey, Technische Universität

More information

Lecture Progression. Followed by more detail on: Quality of service, Security (VPN, SSL) Computer Networks 2

Lecture Progression. Followed by more detail on: Quality of service, Security (VPN, SSL) Computer Networks 2 Physical Layer Lecture Progression Bottom-up through the layers: Application - HTTP, DNS, CDNs Transport - TCP, UDP Network - IP, NAT, BGP Link - Ethernet, 802.11 Physical - wires, fiber, wireless Followed

More information

RRC Vehicular Communications Part II Radio Channel Characterisation

RRC Vehicular Communications Part II Radio Channel Characterisation RRC Vehicular Communications Part II Radio Channel Characterisation Roberto Verdone Slides are provided as supporting tool, they are not a textbook! Outline 1. Fundamentals of Radio Propagation 2. Large

More information

Wireless Networks (PHY): Design for Diversity

Wireless Networks (PHY): Design for Diversity Wireless Networks (PHY): Design for Diversity Y. Richard Yang 9/20/2012 Outline Admin and recap Design for diversity 2 Admin Assignment 1 questions Assignment 1 office hours Thursday 3-4 @ AKW 307A 3 Recap:

More information

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P.

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. The Radio Channel COS 463: Wireless Networks Lecture 14 Kyle Jamieson [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. Steenkiste] Motivation The radio channel is what limits most radio

More information

Propagation mechanisms

Propagation mechanisms RADIO SYSTEMS ETIN15 Lecture no: 2 Propagation mechanisms Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se Contents Short on db calculations Basics about antennas Propagation

More information

You may use a calculator, but you may not use a computer during the test or have any wireless device with you.

You may use a calculator, but you may not use a computer during the test or have any wireless device with you. Department of Electrical Engineering and Computer Science LE/CSE 3213 Z: Communication Networks Winter 2014 FINAL EXAMINATION Saturday, April 12 2 to 4 PM CB 129 SURNAME (printed): FIRST NAME and INITIALS

More information

The Physics of Radio By John White

The Physics of Radio By John White The Physics of Radio By John White Radio Bands and Channels The use of wireless devices is heavily regulated throughout the world. Each country has a government department responsible for deciding where

More information

August, Antennas 101: A Course in RF Basics

August, Antennas 101: A Course in RF Basics August, 2012 Antennas 101: A Course in RF Basics Antenna Basics Agenda: In today s training, we will go over a brief summary of the following topics at a basic level: Electromagnetic Waves Frequency and

More information

PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands

PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands Project: IEEE P802.15 Study Group for Wireless Personal Area Networks (WPANs( WPANs) Title: Date Submitted: 15th April 2005 Source: Re: Abstract: Purpose: PSSS proposal Parallel reuse of 2.4 GHz PHY for

More information

Project: IEEE P Working Group for Wireless Personal Area Networks(WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks(WPANs) Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks(WPANs) Title: OFDM PHY Merge Proposal for TG4m Date Submitted: September 13, 2012 Source:, Cheol-ho Shin, Mi-Kyung Oh and

More information

Planning a Microwave Radio Link

Planning a Microwave Radio Link 8000 Lee Highway Falls Church, VA 22042 703-205-0600 www.ydi.com Planning a Microwave Radio Link By Michael F. Young President and CTO YDI Wireless Background Most installers know that clear line of sight

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Samsung Electronics (SAIT) CFP Presentation] Date Submitted: [January, 2005] Source: [(1) Chia-Chin Chong,

More information

September, doc.: IEEE k

September, doc.: IEEE k Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: [Legacy based PHY Design for LECIM] Date Submitted: [September, 2011] Source: [Kyung Sup Kwak, Bin Shen, Yongnu Jin,

More information

IEEE g

IEEE g IEEE P802.15 Wireless Personal Area Networks Project Title IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) TG4g Coexistence Assurance Document Date Submitted April 2011 Source Re:

More information

Error Control Coding. Aaron Gulliver Dept. of Electrical and Computer Engineering University of Victoria

Error Control Coding. Aaron Gulliver Dept. of Electrical and Computer Engineering University of Victoria Error Control Coding Aaron Gulliver Dept. of Electrical and Computer Engineering University of Victoria Topics Introduction The Channel Coding Problem Linear Block Codes Cyclic Codes BCH and Reed-Solomon

More information

CSNT 180 Wireless Networking. Chapter 4 Radio Frequency (RF) Fundamentals for Wireless LAN Technology

CSNT 180 Wireless Networking. Chapter 4 Radio Frequency (RF) Fundamentals for Wireless LAN Technology CSNT 180 Wireless Networking Chapter 4 Radio Frequency (RF) Fundamentals for Wireless LAN Technology Norman McEntire norman.mcentire@servin.com Founder, Servin Corporation, http://servin.com Technology

More information

5 GHz, U-NII Band, L-PPM. Physical Layer Specification

5 GHz, U-NII Band, L-PPM. Physical Layer Specification 5 GHz, U-NII Band, L-PPM Physical Layer Specification 1.1 Introduction This document describes the physical layer proposed by RadioLAN Inc. for the 5 GHz, U-NII, L-PPM wireless LAN system. 1.1.1 Physical

More information

Application Note AN041

Application Note AN041 CC24 Coexistence By G. E. Jonsrud 1 KEYWORDS CC24 Coexistence ZigBee Bluetooth IEEE 82.15.4 IEEE 82.11b WLAN 2 INTRODUCTION This application note describes the coexistence performance of the CC24 2.4 GHz

More information

Reading and working through Learn Networking Basics before this document will help you with some of the concepts used in wireless networks.

Reading and working through Learn Networking Basics before this document will help you with some of the concepts used in wireless networks. Networking Learn Wireless Basics Introduction This document covers the basics of how wireless technology works, and how it is used to create networks. Wireless technology is used in many types of communication.

More information

High Speed Data Downlink for NSF Space Weather CubeSats

High Speed Data Downlink for NSF Space Weather CubeSats High Speed Data Downlink for NSF Space Weather CubeSats National Science Foundation Meeting Monday August 31, 2009 Charles Swenson Satellite Data Flow Onboard Instruments R collected Spacecraft Memory

More information

BSc (Hons) Computer Science with Network Security, BEng (Hons) Electronic Engineering. Cohorts: BCNS/17A/FT & BEE/16B/FT

BSc (Hons) Computer Science with Network Security, BEng (Hons) Electronic Engineering. Cohorts: BCNS/17A/FT & BEE/16B/FT BSc (Hons) Computer Science with Network Security, BEng (Hons) Electronic Engineering Cohorts: BCNS/17A/FT & BEE/16B/FT Examinations for 2016-2017 Semester 2 & 2017 Semester 1 Resit Examinations for BEE/12/FT

More information

Introduction to Global Navigation Satellite System (GNSS) Signal Structure

Introduction to Global Navigation Satellite System (GNSS) Signal Structure Introduction to Global Navigation Satellite System (GNSS) Signal Structure Dinesh Manandhar Center for Spatial Information Science The University of Tokyo Contact Information: dinesh@iis.u-tokyo.ac.jp

More information

Chapter XIII Short Range Wireless Devices - Building a global license-free system at frequencies below 1GHz By Austin Harney and Conor O Mahony

Chapter XIII Short Range Wireless Devices - Building a global license-free system at frequencies below 1GHz By Austin Harney and Conor O Mahony Chapter XIII Short Range Wireless Devices - Building a global license-free system at frequencies below 1GHz By Austin Harney and Conor O Mahony Introduction: The term Short Range Device (SRD) is intended

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to publication record in Explore Bristol Research PDF-document

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to publication record in Explore Bristol Research PDF-document Abdullah, NF., Piechocki, RJ., & Doufexi, A. (2010). Spatial diversity for IEEE 802.11p V2V safety broadcast in a highway environment. In ITU Workshop on Fully Networked Car, Geneva International Telecommunication

More information

Written Exam Information Transmission - EIT100

Written Exam Information Transmission - EIT100 Written Exam Information Transmission - EIT00 Department of Electrical and Information Technology Lund University 204-05-27 4.00 9.00 *** SOLUTION *** The exam consists of five problems. 20 of 50 points

More information