AEROHIVE NETWORKS ax DAVID SIMON, SENIOR SYSTEMS ENGINEER Aerohive Networks. All Rights Reserved.

Size: px
Start display at page:

Download "AEROHIVE NETWORKS ax DAVID SIMON, SENIOR SYSTEMS ENGINEER Aerohive Networks. All Rights Reserved."

Transcription

1 AEROHIVE NETWORKS ax DAVID SIMON, SENIOR SYSTEMS ENGINEER Aerohive Networks. All Rights Reserved.

2 Aerohive Networks. All Rights Reserved ax

3 802.11n and ac n and ac technology introduced new PHY and MAC layer enhancements to achieve high data rates We built bigger highways and faster cars Aerohive Networks. All Rights Reserved.

4 But this is the problem: Aerohive Networks. All Rights Reserved.

5 THE SOLUTION: Aerohive Networks. All Rights Reserved.

6 AIRTIME CONSUMPTION RF is a half-duplex medium At any given time only one radio can transmit on a frequency domain (channel) Everybody takes turns Aerohive Networks. All Rights Reserved.

7 Data Rates versus Throughput Data rate is not TCP throughput Medium contention protocol of CSMA/CA consumes much of the available bandwidth Aggregate TCP throughput in a legacy a/b/g environment is 40% 50% of data rate in ideal conditions Aggregate TCP throughput in an n/ac environment is 60% 70% of data rate in ideal conditions Aerohive Networks. All Rights Reserved.

8 Traffic nightmare Efficiency at the MAC sublayer always drops as more clients stations join Increase in collisions and medium contention overhead Aerohive Networks. All Rights Reserved.

9 Traffic nightmare High density of clients The bulk of of data frames (75-80%) are small and under 256 bytes Aerohive Networks. All Rights Reserved. The result is overhead at the MAC layer and medium contention overhead for each small frame

10 The future: ax ax High Efficiency(HE) ax uses PHY and MAC layer enhancements for better traffic management The goal is to increase average throughput 4X per user in high-density scenarios Operates in both the 2.4 GHz and 5 GHz frequency bands Aerohive Networks. All Rights Reserved.

11 The future: ax What is new? OFDMA better use of the frequency space BSS Coloring Mitigate OBSS Uplink and Downlink MU-MIMO for up to 8 devices!!802.11ac only had DL MU-MIMO for up to 4 devices! 1024-QAM Higher data rates Target Wake Time (TWT) Great for IoT devices Aerohive Networks. All Rights Reserved.

12 802.11n vs ac vs ax n ac ax Channel Size (MHz) 20, 40 20, 40, 80, and , 40, 80, and 160 Subcarrier (KHz) Symbol time (µs) Frequency multiplexing OFDM OFDM OFDM and OFDMA Modulation BPSK, QPSK, 16-QAM, 64-QAM BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM 1024-QAM MU-MIMO N/A Downlink Downlink and Uplink Spectrum Bands 2.4GHz & 5GHZ 5GHZ 2.4GHz & 5GHZ Aerohive Networks. All Rights Reserved.

13 Multi-user (MU) What is the definition of Multi-User (MU)??? The term multi-user (MU) simply means that transmissions between an AP and multiple clients can occur at the same time dependent on the supported technology. However, the MU terminology can be very confusing when discussing ax. MU capabilities exist for both OFDMA and MU-MIMO. Please understand the differences as explained further in this field note Aerohive Networks. All Rights Reserved.

14 Aerohive Networks. All Rights Reserved. OFDMA

15 OFDM subcarriers OFDM divides bandwidth into subcarriers: Data subcarriers Carry modulated data Management Subcarriers Don t carry data, they are used for synch and interference protection purposes Aerohive Networks. All Rights Reserved.

16 OFDM subcarriers (20 MHz) 64 subcarriers (312.5 khz) 56 subcarriers (4 pilot and 52 data) Null Pilot Data 20 MHz Channel Aerohive Networks. All Rights Reserved.

17 OFDM A/G/N/AC Client 1 Client 2 Subcarriers Channel width Client 3 Client 4 Client 5 Client 6 Time Aerohive Networks. All Rights Reserved.

18 OFDMA Orthogonal Frequency-Division Multiple Access (OFDMA) Multi-user version of the popular orthogonal frequency-division multiplexing (OFDM) digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual clients. This allows simultaneous low data rate transmission to/from multiple users. - From Wikipedia Aerohive Networks. All Rights Reserved.

19 802.11a/n/ac vs ax subcarriers khz a/n/ac subcarrier spacing khz ax subcarrier spacing 256 subcarriers (tones) in 20 MHz, (40MHz/512, 80MHz/1024, 160MHz/2048)!Data subcarriers: 234 / 468 / 980 / 1960!Pilot subcarriers: 8 / 16 / 16 / 32!Unused subcarriers 11/ 23 / Aerohive Networks. All Rights Reserved.

20 OFDMA AX Client 1 Resource Unit (RU) Client 2 Subcarriers Channel width Client 3 Client 4 Client 5 Client 6 Time Aerohive Networks. All Rights Reserved.

21 OFDMA Resource Units Frequency allocations for both uplink and downlink OFMDA define resource units(ru) with 26, 52, 106, 242, 484 or 996 subcarriers (tones) MHz The subcarriers (tones) are in fixed locations of each 20, 40 or 80 MHz channel Aerohive Networks. All Rights Reserved.

22 OFDMA Resource Units users users 2 users 1 user Aerohive Networks. All Rights Reserved. 20 MHz Based on multi-user traffic needs, the AP decides how to allocate the channel

23 OFDMA Resource Units users users 2 users 1 user Aerohive Networks. All Rights Reserved. 20 MHz AP may allocate the whole channel to only one user at a time or it may partition it to serve multiple users simultaneously

24 OFDMA The AP is in charge! AP controls the medium both downlink and uplink frame by frame AP transmit power can be adjusted per resource unit (RU) Number of sub-channels and users can vary packet per packet Aerohive Networks. All Rights Reserved. The AP decides how the client transmits on the UPLINK

25 DOWNLINK MU-OFDMA OVERVIEW AP controls the medium Process Overview:!MU-RTS (An extended trigger frame from AP to sync upstream CTS client response)!mu-rts sent across whole 20 MHz so legacy clients understand.!txop is for entire exchange,!cts responses from the clients in parallel (Resource Units)!DL MU-PPDU data transmissions from the AP to the OFDMA clients!block ACK Auto BlockACK or BAR/BA AP transmit power can be adjusted per resource unit (RU) Aerohive Networks. All Rights Reserved.

26 Downlink MU-OFDMA AP AIFS Trigger MU-RTS STA 4 RU 3 : 52 tones STA 3 RU 3 : 52 tones STA 2 RU 2 : 52 tones STA 1 RU 1 : 52 tones BAR STA 4 STA 3 STA 2 STA 1 CTS CTS CTS CTS BlockACK BlockACK BlockACK BlockACK Aerohive Networks. All Rights Reserved.

27 UPLINK MU-OFDMA OVERVIEW AP still controls the medium Process Overview:!AP sends a Buffer Status Report Poll (BSRP)!Clients reply with synchronized Buffer Status Report (BSR) frames Information about their AID, data length, type of data (QoS), etc.!ap builds RU schedule with following information: Start, Stop times / Client RU mapping / RUs per clients / MCS setting/ Power levels per RU!AP may send a trigger frame variant: MU-RTS (An extended trigger frame from AP to sync upstream CTS client response)!cts responses from the clients in parallel (RU)!AP sends a basic Trigger frame to allocate the RUs and time-sync!clients send UL-DATA via their assigned RUs!Multi-User Block ACK from the AP Aerohive Networks. All Rights Reserved.

28 Uplink MU-OFDMA AP AIFS Trigger BSRP Trigger MU-RTS MU-ACK STA 4 STA 3 CBSR CSSR CTS CTS UL-MU-PPDU UL-MU-PPDU PAD STA 2 CBSR CTS UL-MU-PPDU STA 1 CSBR CTS UL-MU-PPDU Aerohive Networks. All Rights Reserved.

29 802.11AX MU-OFDMA: UPLINK TRAFFIC AP sends Trigger to alert clients when to transmit Client 1 Client 2 Subcarriers Client 3 Client 4 Client 5 Client Aerohive Networks. All Rights Reserved. Time

30 MU-OFDMA summary Ideal for low bandwidth application Better frequency reuse Reduced latency Increased efficiency Remember ax is about High Efficiency Aerohive Networks. All Rights Reserved.

31 Aerohive Networks. All Rights Reserved. MU-MIMO

32 MU-MIMO User1 AP User2 AP use DL MU-MIMO to serve multiple clients requires spatially diverse position. AP can specify multiple STA to simultaneously send uplink frames via trigger frames Aerohive Networks. All Rights Reserved. 34

33 Aerohive Networks. All Rights Reserved. BSS COLORING

34 CCA 20 MHz Clear Channel Assessment (CCA): CCA: SD = 4 db SNR ED = SD + 20 dbm Signal Detect (SD) threshold is statistically a 4 db signal-to-noise ratio (SNR) to detect preamble Energy Detect (ED) is 20 db above the signal detect threshold Aerohive Networks. All Rights Reserved.

35 CCA 20 MHz Clear Channel Assessment (CCA): Think of the preamble carrier sense as a method of detecting and deferring for radio transmissions CCA example: SD = -95 dbm ED = -75 dbm Think of the energy detect as a method of detecting and deferring for any RF transmissions Aerohive Networks. All Rights Reserved.

36 Co-Channel Interference (CCI) Does RF just stop? Channel 11 Almost impossible to prevent CCI at 2.4 GHz Channel 1 Channel 1 Channel Aerohive Networks. All Rights Reserved.

37 Holder CCI is not static and always changing Client transmissions cause CCI Channel 11 Channel 1 Channel 1 Channel Aerohive Networks. All Rights Reserved.

38 BSS Coloring PHY header creates a color bit Channel access behavior will be dependent on the color detected AP radios and client radios will be able to apply adaptive CCA thresholds 40

39 BSS Coloring ax solution to deal with overlapping basic service sets (OBSS): BSS Coloring Differentiate between BSS s by adding a number(color) Aerohive Networks. All Rights Reserved.

40 BSS Coloring BSS Coloring potentially solves the CCI problem that is a result of the current 4 db carrier sense threshold BSS coloring adds a number to different BSSs on the same channel Aerohive Networks. All Rights Reserved.

41 BSS Coloring PHY header creates a color bit Channel access behavior will be dependent on the color detected AP radios and client radios will be able to apply adaptive CCA thresholds Aerohive Networks. All Rights Reserved.

42 BSS Coloring Adaptive CCAs with Dual NAV timers Same color bit = Intra-BSS Different color bit = Inter-BSS Inter-BSS detection means that a listening radio treats the medium as BUSY and will defer The Signal Detect(SD) threshold can be dynamic The Energy Detect (ED) thresholds may remain static Aerohive Networks. All Rights Reserved.

43 BSS Coloring -62 dbm CCA Energy Detect threshold intra-bss inter-bss + 4 dbm CCA Signal Detect threshold Adaptive CCA implementation could raising Signal Detect threshold for inter-bss frames, while maintaining a lower threshold for intra-bss traffic Aerohive Networks. All Rights Reserved.

44 BSS Coloring If BSS Coloring works as described. Will 80 MHz channels in the enterprise be okay? Will protocol analyzers and Wi-Fi scanners be able to decode the BSS color bit in the Radiotap header? Will RRM and ACSP algorithms be able to perform auto-coloring to prevent contention overhead? 46

45 TARGET WAKE TIME

46 Target Wake Time Target Wake Time (TWT) is a power saving mechanism in ah, negotiated between a STA and its AP, which allows the STA to sleep for periods of time, and wake up in pre-scheduled (target) times to exchange information with its AP This allows the station to sleep longer and reducing energy consumption. Key feature for IoT type sensors Aerohive Networks. All Rights Reserved.

47 Target Wake Time Devices can sleep for longer periods Saves battery life Ideal for IoT devices Aerohive Networks. All Rights Reserved.

48 Aerohive Networks. All Rights Reserved. Additional ax capabilities

49 1024-QAM modulation Much like 256-QAM, we anticipate that very high SNR thresholds (~ 37dB) will be needed in order for ax radios to use 1024-QAM modulation Aerohive Networks. All Rights Reserved.

50 Longer Symbol Time The increase in the number of subcarriers (tones) also increases in the OFDM symbol duration (from the maximum of 4 µs used in IEEE ac to the maximum of 16 µs used in ax) and additional guard interval (GI) durations (legacy 0.8 µs and new 1.6 µs and 3.2 µs) are supported. The use of longer OFDM symbols allows for larger coverage areas as the system becomes more robust to propagation delays, and longer GIs decrease inter-symbol interference Aerohive Networks. All Rights Reserved.

51 802.11ax preambles PHY headers provide backward compatibility with a/b/g/n/ac Aerohive Networks. All Rights Reserved.

52 Aerohive Networks. All Rights Reserved ax design considerations

53 AP uplink Some of our competitors are claiming we will need 10 Gbps uplinks from ax APs. Is this true? Will we at least need 2.5 MultiGig (802.3bz) Ethernet ports? Bandwidth bottlenecks are almost always the WAN uplink Aerohive Networks. All Rights Reserved.

54 Power considerations Aerohive ax APs will be dual-band 4x4:4 Some vendors will have 8x8:8 APs 802.3at power of 25 watts will be a requirement Aerohive Networks. All Rights Reserved.

55 802.11ax Next generation Wi-Fi coming soon! Holder Holder ax Aerohive Networks. All Rights Reserved.

56 AP630 Features: Internal antennas 4x4 + 4x4 11ax Dual band radio 1G + 1G ports BLE/USB POE+/DC Power Aerohive Networks. All Rights Reserved.

57 AP650 Features: Internal antennas 4x4 + 4x4 11ax Dual 5 GHz radio 2.5G + 1G ports BLE / USB POE+/DC Power Aerohive Networks. All Rights Reserved.

58 AP650X Features: External antennas 4x4 + 4x4 11ax Dual 5 GHz radio 2.5G + 1G ports BLE / USB Outdoor mode Industrial Temp Range (-20C to +55C) POE+/DC Power Aerohive Networks. All Rights Reserved.

59 Questions Aerohive Networks. All Rights Reserved.

60 Aerohive Networks. All Rights Reserved. THANK YOU

IEEE ax / OFDMA

IEEE ax / OFDMA #WLPC 2018 PRAGUE CZECH REPUBLIC IEEE 802.11ax / OFDMA WFA CERTIFIED Wi-Fi 6 PERRY CORRELL DIR. PRODUCT MANAGEMENT 1 2018 Aerohive Networks. All Rights Reserved. IEEE 802.11ax Timeline IEEE 802.11ax Passed

More information

802.11ax and ad Sneak Peek

802.11ax and ad Sneak Peek 802.11ax and 802.11ad Sneak Peek Technology overview and Aruba s early products Onno Harms, onno@hpe.com Aruba WLAN Product Management 802.11ax : High Efficiency Wi-Fi Overview & Aruba roadmap 2 GOALS

More information

802.11ax Design Challenges. Mani Krishnan Venkatachari

802.11ax Design Challenges. Mani Krishnan Venkatachari 802.11ax Design Challenges Mani Krishnan Venkatachari Wi-Fi: An integral part of the wireless landscape At the center of connected home Opening new frontiers for wireless connectivity Wireless Display

More information

802.11ax introduction and measurement solution

802.11ax introduction and measurement solution 802.11ax introduction and measurement solution Agenda IEEE 802.11ax 802.11ax overview & market 802.11ax technique / specification 802.11ax test items Keysight Product / Solution Demo M9421A VXT for 802.11ax

More information

These materials are 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

These materials are 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited. 802.11ax Aerohive Special Edition by David Coleman CWNE #4 and Lawrence C. Miller 802.11ax For Dummies, Aerohive Special Edition Published by John Wiley & Sons, Inc. 111 River St. Hoboken, NJ 07030-5774

More information

Waveform Generation and Link-level Simulation in MATLAB with WLAN System Toolbox

Waveform Generation and Link-level Simulation in MATLAB with WLAN System Toolbox IEEE 802.11ax Waveform Generation and Link-level Simulation in MATLAB with WLAN System Toolbox Houman Zarrinkoub, PhD. Product Manager Communications, LTE and WLAN System Toolboxes houmanz@mathworks.com

More information

Contents. IEEE family of standards Protocol layering TDD frame structure MAC PDU structure

Contents. IEEE family of standards Protocol layering TDD frame structure MAC PDU structure Contents Part 1: Part 2: IEEE 802.16 family of standards Protocol layering TDD frame structure MAC PDU structure Dynamic QoS management OFDM PHY layer S-72.3240 Wireless Personal, Local, Metropolitan,

More information

IT Professional Wi-Fi Trek 2015 #wifitrek ax: A Primer GT Hill

IT Professional Wi-Fi Trek 2015 #wifitrek ax: A Primer GT Hill IT Professional Wi-Fi Trek 2015 802.11ax: A Primer GT Hill IT Professional Wi-Fi Trek 2015 IT Professional Wi-Fi Trek 2015 IT Professional Wi-Fi Trek 2015 What s up with 802.11ax? Residential Enterprise

More information

Next Generation Wireless LANs

Next Generation Wireless LANs Next Generation Wireless LANs 802.11n and 802.11ac ELDAD PERAHIA Intel Corporation ROBERTSTACEY Apple Inc. и CAMBRIDGE UNIVERSITY PRESS Contents Foreword by Dr. Andrew Myles Preface to the first edition

More information

Major Leaps in Evolution of IEEE WLAN Technologies

Major Leaps in Evolution of IEEE WLAN Technologies Major Leaps in Evolution of IEEE 802.11 WLAN Technologies Thomas A. KNEIDEL Rohde & Schwarz Product Management Mobile Radio Tester WLAN Mayor Player in Wireless Communications Wearables Smart Homes Smart

More information

HOW DO MIMO RADIOS WORK? Adaptability of Modern and LTE Technology. By Fanny Mlinarsky 1/12/2014

HOW DO MIMO RADIOS WORK? Adaptability of Modern and LTE Technology. By Fanny Mlinarsky 1/12/2014 By Fanny Mlinarsky 1/12/2014 Rev. A 1/2014 Wireless technology has come a long way since mobile phones first emerged in the 1970s. Early radios were all analog. Modern radios include digital signal processing

More information

Wireless Intro : Computer Networking. Wireless Challenges. Overview

Wireless Intro : Computer Networking. Wireless Challenges. Overview Wireless Intro 15-744: Computer Networking L-17 Wireless Overview TCP on wireless links Wireless MAC Assigned reading [BM09] In Defense of Wireless Carrier Sense [BAB+05] Roofnet (2 sections) Optional

More information

Fine-grained Channel Access in Wireless LAN. Cristian Petrescu Arvind Jadoo UCL Computer Science 20 th March 2012

Fine-grained Channel Access in Wireless LAN. Cristian Petrescu Arvind Jadoo UCL Computer Science 20 th March 2012 Fine-grained Channel Access in Wireless LAN Cristian Petrescu Arvind Jadoo UCL Computer Science 20 th March 2012 Physical-layer data rate PHY layer data rate in WLANs is increasing rapidly Wider channel

More information

Outline / Wireless Networks and Applications Lecture 14: Wireless LANs * IEEE Family. Some IEEE Standards.

Outline / Wireless Networks and Applications Lecture 14: Wireless LANs * IEEE Family. Some IEEE Standards. Page 1 Outline 18-452/18-750 Wireless Networks and Applications Lecture 14: Wireless LANs 802.11* Peter Steenkiste Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17/ Brief history 802 protocol

More information

Keysight Technologies Testing WLAN Devices According to IEEE Standards. Application Note

Keysight Technologies Testing WLAN Devices According to IEEE Standards. Application Note Keysight Technologies Testing WLAN Devices According to IEEE 802.11 Standards Application Note Table of Contents The Evolution of IEEE 802.11...04 Frequency Channels and Frame Structures... 05 Frame structure:

More information

802.16s SOFTWARE PLATFORM

802.16s SOFTWARE PLATFORM General Software s 802.16s SOFTWARE PLATFORM Architecture Operation system Embedded Linux 1. MAC layer application running on ARM processor 2. PHY layer application running on DSP Application software

More information

Improving ax Performance in Real World by Comprehensive Test Solution

Improving ax Performance in Real World by Comprehensive Test Solution Improving 802.11ax Performance in Real World by Comprehensive Test Solution Brian Su, Sr. Project Manager Ben Ling, Business Development, Keysight Dense Wi-Fi deployments Public access & offloading Outdoor

More information

Wireless LAN Applications LAN Extension Cross building interconnection Nomadic access Ad hoc networks Single Cell Wireless LAN

Wireless LAN Applications LAN Extension Cross building interconnection Nomadic access Ad hoc networks Single Cell Wireless LAN Wireless LANs Mobility Flexibility Hard to wire areas Reduced cost of wireless systems Improved performance of wireless systems Wireless LAN Applications LAN Extension Cross building interconnection Nomadic

More information

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE Overview 18-759: Wireless Networks Lecture 9: OFDM, WiMAX, LTE Dina Papagiannaki & Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2009 http://www.cs.cmu.edu/~prs/wireless09/

More information

802.11n. Suebpong Nitichai

802.11n. Suebpong Nitichai 802.11n Suebpong Nitichai Email: sniticha@cisco.com 1 Agenda 802.11n Technology Fundamentals 802.11n Access Points Design and Deployment Planning and Design for 802.11n in Unified Environment Key Steps

More information

Wireless Communication

Wireless Communication Wireless Communication Systems @CS.NCTU Lecture 9: MAC Protocols for WLANs Fine-Grained Channel Access in Wireless LAN (SIGCOMM 10) Instructor: Kate Ching-Ju Lin ( 林靖茹 ) 1 Physical-Layer Data Rate PHY

More information

Road to High Speed WLAN. Xiaowen Wang

Road to High Speed WLAN. Xiaowen Wang Road to High Speed WLAN Xiaowen Wang Introduction 802.11n standardization process. Technologies enhanced throughput Raw data rate enhancement Overhead management Final remarks LSI Confidential 2 Background

More information

OFDMA PHY for EPoC: a Baseline Proposal. Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1

OFDMA PHY for EPoC: a Baseline Proposal. Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1 OFDMA PHY for EPoC: a Baseline Proposal Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1 Supported by Jorge Salinger (Comcast) Rick Li (Cortina) Lup Ng (Cortina) PAGE 2 Outline OFDM: motivation

More information

Going Beyond RF Coverage: Designing for Capacity

Going Beyond RF Coverage: Designing for Capacity Going Beyond RF Coverage: Designing for Capacity Andrew von Nagy 5 GHz 2.4 GHz 1997 1999 2003 2009 2011 2013 Revolution Wi-Fi Have you experienced this? + Hint: It s NOT an RF coverage issue How Many AP

More information

Jeffrey M. Gilbert, Ph.D. Manager of Advanced Technology Atheros Communications

Jeffrey M. Gilbert, Ph.D. Manager of Advanced Technology Atheros Communications 802.11a Wireless Networks: Principles and Performance Jeffrey M. Gilbert, Ph.D. Manager of Advanced Technology Atheros Communications May 8, 2002 IEEE Santa Clara Valley Comm Soc Atheros Communications,

More information

On the Coexistence of Overlapping BSSs in WLANs

On the Coexistence of Overlapping BSSs in WLANs On the Coexistence of Overlapping BSSs in WLANs Ariton E. Xhafa, Anuj Batra Texas Instruments, Inc. 12500 TI Boulevard Dallas, TX 75243, USA Email:{axhafa, batra}@ti.com Artur Zaks Texas Instruments, Inc.

More information

Introduction to WiMAX Dr. Piraporn Limpaphayom

Introduction to WiMAX Dr. Piraporn Limpaphayom Introduction to WiMAX Dr. Piraporn Limpaphayom 1 WiMAX : Broadband Wireless 2 1 Agenda Introduction to Broadband Wireless Overview of WiMAX and Application WiMAX: PHY layer Broadband Wireless Channel OFDM

More information

Test Range Spectrum Management with LTE-A

Test Range Spectrum Management with LTE-A Test Resource Management Center (TRMC) National Spectrum Consortium (NSC) / Spectrum Access R&D Program Test Range Spectrum Management with LTE-A Bob Picha, Nokia Corporation of America DISTRIBUTION STATEMENT

More information

Baseline Proposal for EPoC PHY Layer IEEE 802.3bn EPoC September 2012 AVI KLIGER, BROADCOM LEO MONTREUIL, BROADCOM ED BOYD, BROADCOM

Baseline Proposal for EPoC PHY Layer IEEE 802.3bn EPoC September 2012 AVI KLIGER, BROADCOM LEO MONTREUIL, BROADCOM ED BOYD, BROADCOM Baseline Proposal for EPoC PHY Layer IEEE 802.3bn EPoC September 2012 AVI KLIGER, BROADCOM LEO MONTREUIL, BROADCOM ED BOYD, BROADCOM NOTE This presentation includes results based on an inhouse Channel

More information

OFDMA and MIMO Notes

OFDMA and MIMO Notes OFDMA and MIMO Notes EE 442 Spring Semester Lecture 14 Orthogonal Frequency Division Multiplexing (OFDM) is a digital multi-carrier modulation technique extending the concept of single subcarrier modulation

More information

Baseline Proposal for EPoC PHY Layer

Baseline Proposal for EPoC PHY Layer Baseline Proposal for EPoC PHY Layer AVI KLIGER, BROADCOM LEO MONTREUIL, BROADCOM ED BOYD, BROADCOM NOTE This presentation includes results based on an in house Channel Models When an approved Task Force

More information

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) Long Term Evolution (LTE) What is LTE? LTE is the next generation of Mobile broadband technology Data Rates up to 100Mbps Next level of

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved.

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved. LTE TDD What to Test and Why 2012 LitePoint Corp. 2012 LitePoint, A Teradyne Company. All rights reserved. Agenda LTE Overview LTE Measurements Testing LTE TDD Where to Begin? Building a LTE TDD Verification

More information

Chapter 2 Overview. Duplexing, Multiple Access - 1 -

Chapter 2 Overview. Duplexing, Multiple Access - 1 - Chapter 2 Overview Part 1 (2 weeks ago) Digital Transmission System Frequencies, Spectrum Allocation Radio Propagation and Radio Channels Part 2 (last week) Modulation, Coding, Error Correction Part 3

More information

ETSI Standards and the Measurement of RF Conducted Output Power of Wi-Fi ac Signals

ETSI Standards and the Measurement of RF Conducted Output Power of Wi-Fi ac Signals ETSI Standards and the Measurement of RF Conducted Output Power of Wi-Fi 802.11ac Signals Introduction The European Telecommunications Standards Institute (ETSI) have recently introduced a revised set

More information

FAQs about OFDMA-Enabled Wi-Fi backscatter

FAQs about OFDMA-Enabled Wi-Fi backscatter FAQs about OFDMA-Enabled Wi-Fi backscatter We categorize frequently asked questions (FAQs) about OFDMA Wi-Fi backscatter into the following classes for the convenience of readers: 1) What is the motivation

More information

One Cell Reuse OFDM/TDMA using. broadband wireless access systems

One Cell Reuse OFDM/TDMA using. broadband wireless access systems One Cell Reuse OFDM/TDMA using subcarrier level adaptive modulation for broadband wireless access systems Seiichi Sampei Department of Information and Communications Technology, Osaka University Outlines

More information

Medium Access Control. Wireless Networks: Guevara Noubir. Slides adapted from Mobile Communications by J. Schiller

Medium Access Control. Wireless Networks: Guevara Noubir. Slides adapted from Mobile Communications by J. Schiller Wireless Networks: Medium Access Control Guevara Noubir Slides adapted from Mobile Communications by J. Schiller S200, COM3525 Wireless Networks Lecture 4, Motivation Can we apply media access methods

More information

Wireless Networks: An Introduction

Wireless Networks: An Introduction Wireless Networks: An Introduction Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Cellular Networks WLAN WPAN Conclusions Wireless Networks:

More information

The Evolution of WiFi

The Evolution of WiFi The Verification Experts Air Expert Series The Evolution of WiFi By Eve Danel Senior Product Manager, WiFi Products August 2016 VeEX Inc. 2827 Lakeview Court, Fremont, CA 94538 USA Tel: +1.510.651.0500

More information

Using the epmp Link Budget Tool

Using the epmp Link Budget Tool Using the epmp Link Budget Tool The epmp Series Link Budget Tool can offer a help to determine the expected performances in terms of distances of a epmp Series system operating in line-of-sight (LOS) propagation

More information

Nomadic Communications n/ac: MIMO and Space Diversity

Nomadic Communications n/ac: MIMO and Space Diversity Nomadic Communications 802.11n/ac: MIMO and Space Diversity Renato Lo Cigno ANS Group locigno@disi.unitn.it http://disi.unitn.it/locigno/teaching-duties/nomadic-communications CopyRight Quest opera è protetta

More information

Enhancement of Wide Bandwidth Operation in IEEE ac Networks

Enhancement of Wide Bandwidth Operation in IEEE ac Networks Enhancement of Wide Bandwidth Operation in IEEE 82.11ac Networks Seongho Byeon, Changmok Yang, Okhwan Lee, Kangjin Yoon and Sunghyun Choi Department of ECE and INMC, Seoul National University, Seoul, Korea

More information

IEEE ax: Highly Efficient WLANs for Intelligent Information Infrastructure

IEEE ax: Highly Efficient WLANs for Intelligent Information Infrastructure Emerging Trends, Issues, and Challenges in Big Data and Its Implementation toward Future Smart Cities IEEE 80.ax: Highly Efficient WLANs for Intelligent Information Infrastructure Der-Jiunn Deng, Ying-Pei

More information

Background: Cellular network technology

Background: Cellular network technology Background: Cellular network technology Overview 1G: Analog voice (no global standard ) 2G: Digital voice (again GSM vs. CDMA) 3G: Digital voice and data Again... UMTS (WCDMA) vs. CDMA2000 (both CDMA-based)

More information

Planning of LTE Radio Networks in WinProp

Planning of LTE Radio Networks in WinProp Planning of LTE Radio Networks in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen mail@awe-communications.com Issue Date Changes V1.0 Nov. 2010 First version of document V2.0

More information

UNDERSTANDING AND MITIGATING

UNDERSTANDING AND MITIGATING UNDERSTANDING AND MITIGATING THE IMPACT OF RF INTERFERENCE ON 802.11 NETWORKS RAMAKRISHNA GUMMADI UCS DAVID WETHERALL INTEL RESEARCH BEN GREENSTEIN UNIVERSITY OF WASHINGTON SRINIVASAN SESHAN CMU 1 Presented

More information

WiMAX/ Wireless WAN Case Study: WiMAX/ W.wan.6. IEEE 802 suite. IEEE802 suite. IEEE 802 suite WiMAX/802.16

WiMAX/ Wireless WAN Case Study: WiMAX/ W.wan.6. IEEE 802 suite. IEEE802 suite. IEEE 802 suite WiMAX/802.16 W.wan.6-2 Wireless WAN Case Study: WiMAX/802.16 W.wan.6 WiMAX/802.16 IEEE 802 suite WiMAX/802.16 PHY Dr.M.Y.Wu@CSE Shanghai Jiaotong University Shanghai, China Dr.W.Shu@ECE University of New Mexico Albuquerque,

More information

Addressing Future Wireless Demand

Addressing Future Wireless Demand Addressing Future Wireless Demand Dave Wolter Assistant Vice President Radio Technology and Strategy 1 Building Blocks of Capacity Core Network & Transport # Sectors/Sites Efficiency Spectrum 2 How Do

More information

Wireless WAN Case Study: WiMAX/ W.wan.6

Wireless WAN Case Study: WiMAX/ W.wan.6 Wireless WAN Case Study: WiMAX/802.16 W.wan.6 Dr.M.Y.Wu@CSE Shanghai Jiaotong University Shanghai, China Dr.W.Shu@ECE University of New Mexico Albuquerque, NM, USA W.wan.6-2 WiMAX/802.16 IEEE 802 suite

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ICCE.2012.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ICCE.2012. Zhu, X., Doufexi, A., & Koçak, T. (2012). A performance enhancement for 60 GHz wireless indoor applications. In ICCE 2012, Las Vegas Institute of Electrical and Electronics Engineers (IEEE). DOI: 10.1109/ICCE.2012.6161865

More information

Considerations about Wideband Data Transmission at 4.9 GHz for an hypothetical city wide deployment

Considerations about Wideband Data Transmission at 4.9 GHz for an hypothetical city wide deployment Considerations about Wideband Data Transmission at 4.9 GHz for an hypothetical city wide deployment Leonhard Korowajczuk CEO, CelPlan Technologies, Inc. WCA Public Safety Task Force 11/18/2004 Copyright

More information

All Beamforming Solutions Are Not Equal

All Beamforming Solutions Are Not Equal White Paper All Beamforming Solutions Are Not Equal Executive Summary This white paper compares and contrasts the two major implementations of beamforming found in the market today: Switched array beamforming

More information

Radio Performance of 4G-LTE Terminal. Daiwei Zhou

Radio Performance of 4G-LTE Terminal. Daiwei Zhou Radio Performance of 4G-LTE Terminal Daiwei Zhou Course Objectives: Throughout the course the trainee should be able to: 1. get a clear overview of the system architecture of LTE; 2. have a logical understanding

More information

Wireless Broadband Networks

Wireless Broadband Networks Wireless Broadband Networks WLAN: Support of mobile devices, but low data rate for higher number of users What to do for a high number of users or even needed QoS support? Problem of the last mile Provide

More information

Wireless Networked Systems

Wireless Networked Systems Wireless Networked Systems CS 795/895 - Spring 2013 Lec #4: Medium Access Control Power/CarrierSense Control, Multi-Channel, Directional Antenna Tamer Nadeem Dept. of Computer Science Power & Carrier Sense

More information

3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li

3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li 3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li Mar. 4, 2016 1 Agenda Status Overview of RAN1 Working/Study Items Narrowband Internet of Things (NB-IoT) (Rel-13)

More information

IEEE C802.16a-02/94r1. IEEE Broadband Wireless Access Working Group <

IEEE C802.16a-02/94r1. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group OFDM sub-channelization improvement and system performance selected topics 2002-11-14 Source(s)

More information

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany 3G/4G Mobile Communications Systems Dr. Stefan Brück Qualcomm Corporate R&D Center Germany Chapter VI: Physical Layer of LTE 2 Slide 2 Physical Layer of LTE OFDM and SC-FDMA Basics DL/UL Resource Grid

More information

Family. Enterprise-grade 2x2, 2-stream, n/ac access points for medium-density environments, as well as IoT and location-based services

Family. Enterprise-grade 2x2, 2-stream, n/ac access points for medium-density environments, as well as IoT and location-based services Family Enterprise-grade 2x2, 2-stream, 82.11n/ac access points for medium-density environments, as well as IoT and location-based services DATASHEET Aerohive AP122 Family Family AP122 and AP122X provide

More information

Medium Access Control Protocol for WBANS

Medium Access Control Protocol for WBANS Medium Access Control Protocol for WBANS Using the slides presented by the following group: An Efficient Multi-channel Management Protocol for Wireless Body Area Networks Wangjong Lee *, Seung Hyong Rhee

More information

IEEE g,n Multi-Network Jamming Attacks - A Cognitive Radio Based Approach. by Sudarshan Prasad

IEEE g,n Multi-Network Jamming Attacks - A Cognitive Radio Based Approach. by Sudarshan Prasad ABSTRACT PRASAD, SUDARSHAN. IEEE 802.11g,n Multi-Network Jamming Attacks - A Cognitive Radio Based Approach. (Under the direction of Dr. David Thuente.) Wireless networks are susceptible to jamming attacks,

More information

Mobile Computing. Chapter 3: Medium Access Control

Mobile Computing. Chapter 3: Medium Access Control Mobile Computing Chapter 3: Medium Access Control Prof. Sang-Jo Yoo Contents Motivation Access methods SDMA/FDMA/TDMA Aloha Other access methods Access method CDMA 2 1. Motivation Can we apply media access

More information

LTE-Advanced and Release 10

LTE-Advanced and Release 10 LTE-Advanced and Release 10 1. Carrier Aggregation 2. Enhanced Downlink MIMO 3. Enhanced Uplink MIMO 4. Relays 5. Release 11 and Beyond Release 10 enhances the capabilities of LTE, to make the technology

More information

Radio Interface and Radio Access Techniques for LTE-Advanced

Radio Interface and Radio Access Techniques for LTE-Advanced TTA IMT-Advanced Workshop Radio Interface and Radio Access Techniques for LTE-Advanced Motohiro Tanno Radio Access Network Development Department NTT DoCoMo, Inc. June 11, 2008 Targets for for IMT-Advanced

More information

Wireless LANs IEEE

Wireless LANs IEEE Chapter 29 Wireless LANs IEEE 802.11 686 History Wireless LANs became of interest in late 1990s For laptops For desktops when costs for laying cables should be saved Two competing standards IEEE 802.11

More information

Increasing Broadcast Reliability for Vehicular Ad Hoc Networks. Nathan Balon and Jinhua Guo University of Michigan - Dearborn

Increasing Broadcast Reliability for Vehicular Ad Hoc Networks. Nathan Balon and Jinhua Guo University of Michigan - Dearborn Increasing Broadcast Reliability for Vehicular Ad Hoc Networks Nathan Balon and Jinhua Guo University of Michigan - Dearborn I n t r o d u c t i o n General Information on VANETs Background on 802.11 Background

More information

Interference management Within 3GPP LTE advanced

Interference management Within 3GPP LTE advanced Interference management Within 3GPP LTE advanced Konstantinos Dimou, PhD Senior Research Engineer, Wireless Access Networks, Ericsson research konstantinos.dimou@ericsson.com 2013-02-20 Outline Introduction

More information

Cognitive Wireless Network : Computer Networking. Overview. Cognitive Wireless Networks

Cognitive Wireless Network : Computer Networking. Overview. Cognitive Wireless Networks Cognitive Wireless Network 15-744: Computer Networking L-19 Cognitive Wireless Networks Optimize wireless networks based context information Assigned reading White spaces Online Estimation of Interference

More information

G.T. Hill.

G.T. Hill. Making Wi-Fi Suck Less with Dynamic Beamforming G.T. Hill Director, Technical Marketing www.ruckuswireless.com What We ll Cover 802.11n overview and primer Beamforming basics Implementation Lot of Questions

More information

RADWIN 2000 PORTFOLIO

RADWIN 2000 PORTFOLIO RADWIN 2000 PORTFOLIO Carrier-class point-to-point solutions The RADWIN 2000 portfolio offers sub-6 GHz licensed and unlicensed wireless broadband solutions that deliver from 25 Mbps and up to 750 Mbps

More information

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates?

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates? Page 1 Outline 18-452/18-750 Wireless Networks and Applications Lecture 7: Physical Layer OFDM Peter Steenkiste Carnegie Mellon University RF introduction Modulation and multiplexing Channel capacity Antennas

More information

Chapter 5: WMAN - IEEE / WiMax. 5.1 Introduction and Overview 5.2 Deployment 5.3 PHY layer 5.4 MAC layer 5.5 Network Entry 5.

Chapter 5: WMAN - IEEE / WiMax. 5.1 Introduction and Overview 5.2 Deployment 5.3 PHY layer 5.4 MAC layer 5.5 Network Entry 5. Chapter 5: WMAN - IEEE 802.16 / WiMax 5.1 Introduction and Overview 5.2 Deployment 5.3 PHY layer 5.4 MAC layer 5.5 Network Entry 5.6 Mobile WiMAX 5.1 Introduction and Overview IEEE 802.16 and WiMAX IEEE

More information

FANTASTIC-5G: Novel, flexible air interface for enabling efficient multiservice coexistence for 5G below 6GHz

FANTASTIC-5G: Novel, flexible air interface for enabling efficient multiservice coexistence for 5G below 6GHz FANTASTIC-5G: Novel, flexible air interface for enabling efficient multiservice coexistence for 5G below 6GHz Frank Schaich with support from the whole consortium January 28. 2016 1 Agenda Introduction

More information

3710i/e Indoor Access Point High Performance, Enterprise-Grade for High-Density Deployments

3710i/e Indoor Access Point High Performance, Enterprise-Grade for High-Density Deployments DATASHEET 3710i/e Indoor Access Point High Performance, Enterprise-Grade for High-Density Deployments Product Overview The AP3710 is a high-performance 802.11abgn indoor access point purposed built for

More information

CROSS-LAYER DESIGN FOR QoS WIRELESS COMMUNICATIONS

CROSS-LAYER DESIGN FOR QoS WIRELESS COMMUNICATIONS CROSS-LAYER DESIGN FOR QoS WIRELESS COMMUNICATIONS Jie Chen, Tiejun Lv and Haitao Zheng Prepared by Cenker Demir The purpose of the authors To propose a Joint cross-layer design between MAC layer and Physical

More information

CIS 632 / EEC 687 Mobile Computing. Mobile Communications (for Dummies) Chansu Yu. Contents. Modulation Propagation Spread spectrum

CIS 632 / EEC 687 Mobile Computing. Mobile Communications (for Dummies) Chansu Yu. Contents. Modulation Propagation Spread spectrum CIS 632 / EEC 687 Mobile Computing Mobile Communications (for Dummies) Chansu Yu Contents Modulation Propagation Spread spectrum 2 1 Digital Communication 1 0 digital signal t Want to transform to since

More information

Millimeter wave opportunities & challenges: an industry perspective. Carlos Cordeiro Senior Director/Senior Principle Engineer Intel Corporation

Millimeter wave opportunities & challenges: an industry perspective. Carlos Cordeiro Senior Director/Senior Principle Engineer Intel Corporation Millimeter wave opportunities & challenges: an industry perspective Carlos Cordeiro Senior Director/Senior Principle Engineer Intel Corporation Data demand 2021 data demand forecast Source: Cisco VNI

More information

Ten Things You Should Know About MIMO

Ten Things You Should Know About MIMO Ten Things You Should Know About MIMO 4G World 2009 presented by: David L. Barner www/agilent.com/find/4gworld Copyright 2009 Agilent Technologies, Inc. The Full Agenda Intro System Operation 1: Cellular

More information

Ilenia Tinnirello. Giuseppe Bianchi, Ilenia Tinnirello

Ilenia Tinnirello. Giuseppe Bianchi, Ilenia Tinnirello Ilenia Tinnirello Ilenia.tinnirello@tti.unipa.it WaveLAN (AT&T)) HomeRF (Proxim)!" # $ $% & ' (!! ) & " *" *+ ), -. */ 0 1 &! ( 2 1 and 2 Mbps operation 3 * " & ( Multiple Physical Layers Two operative

More information

LTE systems: overview

LTE systems: overview LTE systems: overview Luca Reggiani LTE overview 1 Outline 1. Standard status 2. Signal structure 3. Signal generation 4. Physical layer procedures 5. System architecture 6. References LTE overview 2 Standard

More information

Building versatile network upon new waveforms

Building versatile network upon new waveforms Security Level: Building versatile network upon new waveforms Chan Zhou, Malte Schellmann, Egon Schulz, Alexandros Kaloxylos Huawei Technologies Duesseldorf GmbH 5G networks: A complex ecosystem 5G service

More information

MIMO RFIC Test Architectures

MIMO RFIC Test Architectures MIMO RFIC Test Architectures Christopher D. Ziomek and Matthew T. Hunter ZTEC Instruments, Inc. Abstract This paper discusses the practical constraints of testing Radio Frequency Integrated Circuit (RFIC)

More information

High Density Experience (HDX) Deployment Guide

High Density Experience (HDX) Deployment Guide Last Modified: May 07, 2015 Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 2015

More information

Overview of Mobile WiMAX Technology

Overview of Mobile WiMAX Technology Overview of Mobile WiMAX Technology Esmael Dinan, Ph.D. April 17, 2009 1 Outline Part 1: Introduction to Mobile WiMAX Part 2: Mobile WiMAX Architecture Part 3: MAC Layer Technical Features Part 4: Physical

More information

SourceSync. Exploiting Sender Diversity

SourceSync. Exploiting Sender Diversity SourceSync Exploiting Sender Diversity Why Develop SourceSync? Wireless diversity is intrinsic to wireless networks Many distributed protocols exploit receiver diversity Sender diversity is a largely unexplored

More information

LTE-U Forum: Alcatel-Lucent, Ericsson, Qualcomm Technologies Inc., Samsung Electronics & Verizon. LTE-U SDL Coexistence Specifications V1.

LTE-U Forum: Alcatel-Lucent, Ericsson, Qualcomm Technologies Inc., Samsung Electronics & Verizon. LTE-U SDL Coexistence Specifications V1. LTE-U Forum LTE-U Forum: Alcatel-Lucent, Ericsson, Qualcomm Technologies Inc., Samsung Electronics & Verizon LTE-U SDL Coexistence Specifications V1.0 (2015-02) Disclaimer and Copyright Notification Copyright

More information

Wireless Physical Layer Concepts: Part III

Wireless Physical Layer Concepts: Part III Wireless Physical Layer Concepts: Part III Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

NOISE, INTERFERENCE, & DATA RATES

NOISE, INTERFERENCE, & DATA RATES COMP 635: WIRELESS NETWORKS NOISE, INTERFERENCE, & DATA RATES Jasleen Kaur Fall 2015 1 Power Terminology db Power expressed relative to reference level (P 0 ) = 10 log 10 (P signal / P 0 ) J : Can conveniently

More information

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 10 - LTE (4G) -Technologies used in 4G and 5G The Need for LTE Long Term Evolution (LTE) With the growth of mobile data and mobile users, it becomes essential

More information

Overview of IEEE Broadband Wireless Access Standards. Timo Smura Contents. Network topologies, frequency bands

Overview of IEEE Broadband Wireless Access Standards. Timo Smura Contents. Network topologies, frequency bands Overview of IEEE 802.16 Broadband Wireless Access Standards Timo Smura 24.02.2004 Contents Fixed Wireless Access networks Network topologies, frequency bands IEEE 802.16 standards Air interface: MAC +

More information

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

LTE Aida Botonjić. Aida Botonjić Tieto 1

LTE Aida Botonjić. Aida Botonjić Tieto 1 LTE Aida Botonjić Aida Botonjić Tieto 1 Why LTE? Applications: Interactive gaming DVD quality video Data download/upload Targets: High data rates at high speed Low latency Packet optimized radio access

More information

2-2 Advanced Wireless Packet Cellular System using Multi User OFDM- SDMA/Inter-BTS Cooperation with 1.3 Gbit/s Downlink Capacity

2-2 Advanced Wireless Packet Cellular System using Multi User OFDM- SDMA/Inter-BTS Cooperation with 1.3 Gbit/s Downlink Capacity 2-2 Advanced Wireless Packet Cellular System using Multi User OFDM- SDMA/Inter-BTS Cooperation with 1.3 Gbit/s Downlink Capacity KAWAZAWA Toshio, INOUE Takashi, FUJISHIMA Kenzaburo, TAIRA Masanori, YOSHIDA

More information

Automatic power/channel management in Wi-Fi networks

Automatic power/channel management in Wi-Fi networks Automatic power/channel management in Wi-Fi networks Jan Kruys Februari, 2016 This paper was sponsored by Lumiad BV Executive Summary The holy grail of Wi-Fi network management is to assure maximum performance

More information

Further Vision on TD-SCDMA Evolution

Further Vision on TD-SCDMA Evolution Further Vision on TD-SCDMA Evolution LIU Guangyi, ZHANG Jianhua, ZHANG Ping WTI Institute, Beijing University of Posts&Telecommunications, P.O. Box 92, No. 10, XiTuCheng Road, HaiDian District, Beijing,

More information

Chapter 3 : Media Access. Mobile Communications. Collision avoidance, MACA

Chapter 3 : Media Access. Mobile Communications. Collision avoidance, MACA Mobile Communications Chapter 3 : Media Access Motivation Collision avoidance, MACA SDMA, FDMA, TDMA Polling Aloha CDMA Reservation schemes SAMA Comparison Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/

More information

LTE-Advanced research in 3GPP

LTE-Advanced research in 3GPP LTE-Advanced research in 3GPP GIGA seminar 8 4.12.28 Tommi Koivisto tommi.koivisto@nokia.com Outline Background and LTE-Advanced schedule LTE-Advanced requirements set by 3GPP Technologies under investigation

More information

Real-time Distributed MIMO Systems. Hariharan Rahul Ezzeldin Hamed, Mohammed A. Abdelghany, Dina Katabi

Real-time Distributed MIMO Systems. Hariharan Rahul Ezzeldin Hamed, Mohammed A. Abdelghany, Dina Katabi Real-time Distributed MIMO Systems Hariharan Rahul Ezzeldin Hamed, Mohammed A. Abdelghany, Dina Katabi Dense Wireless Networks Stadiums Concerts Airports Malls Interference Limits Wireless Throughput APs

More information