Abstract: [Final proposal for d, that is for the low cost and low power consumption WPAN.]

Size: px
Start display at page:

Download "Abstract: [Final proposal for d, that is for the low cost and low power consumption WPAN.]"

Transcription

1 Project: IEEE P Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Final Proposal for d from OKI] Date Submitted: [17-March-2008] Source: [Kiyoshi Fukui, Yasutaka Kawamoto] Company [Oki Electric Industry Co., Ltd.] Address [2-5-7 Hommachi, Chuo-ku, Osaka , Japan] Voice:[ ], FAX: [ ], [fukui535@oki.com kawamoto728@oki.com] Re: [ d] Abstract: [Final proposal for d, that is for the low cost and low power consumption WPAN.] Purpose: [To explain our proposal and discussion in d.] Notice: This document has been prepared to assist the IEEE P It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P Slide 1

2 Summary OKI proposes low cost and low power consumption PHY Modulation method: GFSK Number of channels 1mW: 10 channels + 2 optional channels 10mW: 2 channels Data rate: 100kbps GFSK specification and performance GFSK s CCA-SD Slide 2

3 OKI s proposal Slide 3

4 Modulation parameters Channel spacing 400kHz Bit Rate (kbit/s) 100 Modulation parameters Symbol Rate (k sym/s) 100 Modulation type* GFSK BT 0.5 Modulation Index (h) (*Our proposal does not use spread spectrum technology) Modulation polarity "1" is transmitted by shifting the frequency higher than the channel center, "0" is transmitted by shifting the frequency lower than the channel center. 1 Transmitter functions Bit in PPDU Bit Symbol data whitening (PN9) Gaussi an Fil tering FSK modulation Modulated signal 1bit=1symbol x 9 + x BT=0.5 h = 1 Slide 4

5 Channel plan Reader channel of Miller sub-carrier RFID Antenna power = 1mW Response channel of Miller sub-carrier RFID 0dBm -20dBm/10kHz -39dBm/100kHz -55dBm/10kHz 950MHz (ch1) (ch2) (ch3) (ch4) (ch5) (ch6) (ch7) (ch8) (ch9) (ch10) (ch11) (ch12) (ch13) (ch14) (ch15) (ch16) (ch17) (ch18) (ch19) (ch20) (ch21) (ch22) (ch23) (ch24) 956MHz 952MHz 954MHz 955MHz ch 1 ch 2 ch 3 ch 4 ch 5 ch6 ch 7 ch 8 ch 9 ch 10ch 11 ch 12 Antenna power = 10mW 10dBm When to use ch 5 and ch 8, it have to do additional carrier sense on ch 4 and ch 7 respectively. So, ch 5 and ch 8 should be made optional. -10dBm -39dBm/10kHz 給電点 送信電力 MHz (ch17) (ch18) (ch19) (ch20) 956MHz 950.8MHz 952MHz 954MHz 955MHz 955.8MHz Slide 5 ch 9 ch 10

6 Channel plan 0dBm -20dBm/10kHz -39dBm/100kHz Antenna power = 1mW -55dBm/10kHz 950MHz (ch1) (ch2) (ch3) (ch4) (ch5) (ch6) (ch7) (ch8) (ch9) (ch10) (ch11) (ch12) (ch13) (ch14) (ch15) (ch16) (ch17) (ch18) (ch19) (ch20) (ch21) (ch22) (ch23) (ch24) 956MHz 952MHz 954MHz 955MHz ch 1 ch 2 ch 3 ch 4 ch 5 ch6 ch 7 ch 8 ch 9 ch 10ch 11 ch 12 Antenna power = 10mW 10dBm -10dBm Same channel allocation can be used in both 1mW and 10mW. -39dBm/10kHz 給電点 送信電力 MHz (ch17) (ch18) (ch19) (ch20) 956MHz 950.8MHz 952MHz 954MHz 955MHz 955.8MHz Slide 6 ch 9 ch 10

7 Preamble&SFD Octets 1 variable Preamble SFD Frame length(7bit) Reserve (1bit) PSDU SHR PHR PHY payload No Data whitening Data Whitening Preamble length and SFD are compatible with b Preamble size; 4 bytes SFD; 1byte( b) Preamble character is modified from b Preamble character; 0xAA Slide 7

8 Data whitening Transmitter PHR PHY payload Data whitening Scrambled PHR and PHY paylolad PHR PHY payload Preamble SHR PHR PHY payload PN9 Receiver Descrambled PHR and PHY payload Data de-whitening PHR PHY payload PHR PHY payload PHR PHY payload PN9 Slide 8

9 Advantages of proposed GFSK PHY? Low current consumption A high efficient non-linear amplifier can be used Low complexity modem Low cost LSI Low complexity modem Small area of LSI Low emission outside the 400kHz channel Meets Japanese Regulations at both 10 and 0dBm output power Slide 9

10 Why 400kHz channel spacing? Two 10mW channels available Only one single channel available when 600kHz bandwidth is used Both 1mW and 10mW can use identical channel allocation Max data rate in 200kHz is too low When 200kHz channel spacing is used the Phase Noise of the LO needs to be very low in order to meet Japanese Regulations" Will increase power consumption of LSI Slide 10

11 Power spectrum Slide 11

12 Power emission In channel power is defined as integrated power over + and 200kHz around the channel center. Adjacent channel power is defined as integrated power over + and 100kHz around an offset of 300kHz away from the channel center. Out of channel power is defined as integrated power over + and 50kHz around an offset of 350kHz away from the channel center. Freq. Offset (khz) In channel power (dbm) Adj. channel power (dbm) Regulation limit adj. channel (dbm) Out of channel power (dbm) Regulation limit Out of channel (dbm) Slide 12

13 PER vs Eb/No in AWGN channel 1000 packets per data point GFSK, h=1, BT=0.5, Rb=100kbps frequency offset (0, 40 & 80ppm) Modem includes AFC (Automatic Frequency Control) Bit clock recovery Sync word detection Robust against frequency error Slide 13

14 PER vs Eb/No in Flat Fading channel 1000 packets per data point GFSK, h=1, BT=0.5, Rb=100kbps Flat fading according to: doc b No frequency error Modem includes AFC (Automatic Frequency Control) Bit clock recovery Sync word detection Slide 14

15 PER vs Eb/No in Delay Spread channel 1000 packets per data point GFSK, h=1, BT=0.5, Rb=100kbps Flat fading according to: doc b RMS delay spread = 250ns No frequency error Modem includes AFC (Automatic Frequency Control) Bit clock recovery Sync word detection Slide 15

16 PER vs Eb/No all cases Slide 16

17 Susceptibility for RFID interference Measurements and simulation show: CW co-channel immunity = -8.5dB It means that CW interferer needs to be at least 8.5dB below the desired channel power for BER < 1E-3. Slide 17

18 CCA-SD for GFSK Slide 18

19 GFSK s CCA-SD GFSK s Signal detection Example of implementation Mod Out CK Out Symbol Timing Recov. Phase Error Thresh Avg. CS From Doc:IEEE802.11/94-67 Slide 19

20 Backup slides Slide 20

21 Japanese regulation overview (1/3) Frequency band 950.8MHz-955.8MHz (5.0MHz) Channel bandwidth (200 x n) khz (n is integer from 1 to 3) Antenna power 1mW or less for all unit radio channel 10mW or less for unit radio channels from 954MHz to 955MHz Slide 21

22 Japanese regulation overview (2/3) PSD mask Level of channel edge: 20dBc Power of adjacent channel: less than -18dBm (10mW) less than -26dBm (1mW) 1mW 200kHz 200kHz 200kHz 10mW 200kHz 200kHz 200kHz 10dBm 0dBm -20dBm -20dBc -10dBm -20dBc -39dBm/100kHz -39dBm/100kHz -26dBm/200kHz fc-200khz fc fc+200khz -18dBm/200kHz fc-200khz fc fc+200khz Slide 22

23 Japanese regulation overview (3/3) Channel allocation Antenna power = 1mW (It is 200kHz channel allocation) 0dBm -20dBm/10kHz -39dBm/10kHz -55dBm/10kHz 950MHz (ch1) (ch2) (ch3) (ch4) 950.8MHz (ch5) (ch6) 952MHz (ch7) (ch8) (ch9) (ch10) (ch11) (ch12) (ch13) (ch14) (ch15) (ch16) (ch17) 954MHz (ch18) (ch19) (ch20) (ch21) 955MHz (ch22) (ch23) (ch24) 956MHz 955.8MHz Antenna power = 10mW 10dBm 0dBm -10dBm/100kHz -39dBm/100kHz -55dBm/100kHz 950MHz 950.8MHz 952MHz (ch1) (ch2) (ch3) (ch4) (ch5) (ch6) (ch7) (ch8) (ch9) (ch10) (ch11) (ch12) (ch13) (ch14) 954MHz 955MHz 955.8MHz 956MHz Slide 23

24 Power spectrum Slide 24

25 Comparison between GFSK and BPSK-DSSS Data rate Frequency efficiency Complexity Power consumption CCA-CS Market GFSK High (100kbps) 1/4 Low Low Easy signal detection Only JP BPSK-DSSS Low (20kbps) 1/30 High High Easy signal detection JP and EU Slide 25

Abstract: [Response to Call for Preliminary proposal in IEEE d Task Group. Our proposal focuses on low cost and low power consumption.

Abstract: [Response to Call for Preliminary proposal in IEEE d Task Group. Our proposal focuses on low cost and low power consumption. Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Response to Call for Preliminary Proposal in IEEE802.15.4d Task Group] Date Submitted: [14-Jan-2008] Source:

More information

Abstract: [Response to Call for Preliminary proposal in IEEE d Task Group. Our proposal focuses on low cost and low power consumption.

Abstract: [Response to Call for Preliminary proposal in IEEE d Task Group. Our proposal focuses on low cost and low power consumption. Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Response to Call for Preliminary Proposal in IEEE802.15.4d Task Group] Date Submitted: [6-Jan-2008] Source:

More information

IEEE P Wireless Personal Area Networks

IEEE P Wireless Personal Area Networks IEEE P802.15 Wireless Personal Area Networks Project Title Date Submitted IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Technical Specification Draft for PSSS 250-2000 scheme 915

More information

doc.: IEEE d IEEE P Wireless Personal Area Networks

doc.: IEEE d IEEE P Wireless Personal Area Networks August, 2008 doc.: IEEE 802. 15-08-0578-00-004d IEEE P802.15 Wireless Personal Area Networks Project Title IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) English transl ation ofarib

More information

Project: IEEE P Working Group for Wireless Personal Area Networks(WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks(WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks(WPANs) Title: Supporting document for FSK-based ranging in TG4m Date Submitted: Sept. 2012 Source: Mi-Kyung Oh, Jae-Hwan Kim, Jae-Young

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [IMEC UWB PHY Proposal] Date Submitted: [4 May, 2009] Source: Dries Neirynck, Olivier Rousseaux (Stichting

More information

Comment Resolution for the MR-O-QPSK PHY

Comment Resolution for the MR-O-QPSK PHY Comment Resolution for the MR-O-QPSK PHY July 14, 2010 1/ 19 IEEE P802.15 Wireless Personal Area Networks Title: Proposed Comment Resolution of the MR-O-QPSK PHY Date Submitted: July 14, 2010 Source: Michael

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANS)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANS) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Title: [General Atomics Call For Proposals Presentation] Date Submitted: [4 ] Source: Naiel Askar, Susan Lin, General Atomics-

More information

Comment Resolution for the MR-O-QPSK PHY

Comment Resolution for the MR-O-QPSK PHY Comment Resolution for the MR-O-QPSK PHY July 15, 2010 1/ 19 IEEE P802.15 Wireless Personal Area Networks Title: Comment Resolution for the MR-O-QPSK PHY Date Submitted: July 15, 2010 Source: Michael Schmidt

More information

IEEE P Wireless Personal Area Networks. LB34 Ranging comment resolution

IEEE P Wireless Personal Area Networks. LB34 Ranging comment resolution 0 0 0 0 0 0 Project Title Date Submitted Source Re: [] Abstract Purpose Notice Release P0. Wireless Personal Area Networks P0. Working Group for Wireless Personal Area Networks (WPANs) LB Ranging comment

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Sep 9 doc.: IEEE 8.5 9 645 6 Project: IEEE P8.5 Working Group for Wireless Personal Area Networks (WPANs) Title: [Common Coherent and Non-Coherent Modulation Proposal] Date Submitted: [-Sep-9] Source:

More information

ETSI TS V1.1.1 ( )

ETSI TS V1.1.1 ( ) TS 102 887-1 V1.1.1 (2013-07) Technical Specification Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices; Smart Metering Wireless Access Protocol; Part 1: PHY layer 2 TS

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P82.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: Texas Instruments Impulse Radio UWB Physical Layer Proposal Date Submitted: 4 May, 29 Source: June Chul Roh,

More information

PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands. DWA Wireless GmbH, Germany Tel.: +49 (0)

PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands. DWA Wireless GmbH, Germany Tel.: +49 (0) Project: IEEE P802.15 Study Group for Wireless Personal Area Networks (WPANs( WPANs) Title: Date Submitted: 14th April 2005 Source: PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands GmbH

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P80.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [UWB Direct Chaotic Communications Technology] Date Submitted: [15 November, 004] Source: [(1) Y. Kim, C.

More information

PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands

PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands Project: IEEE P802.15 Study Group for Wireless Personal Area Networks (WPANs( WPANs) Title: Date Submitted: 15th April 2005 Source: Re: Abstract: Purpose: PSSS proposal Parallel reuse of 2.4 GHz PHY for

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [A Modified Performance Evaluation Scheme for Computer Simulation ] Date Submitted: [November 15,

More information

Frequency Hopping Spread Spectrum PHY of the Wireless LAN Standard. Why Frequency Hopping?

Frequency Hopping Spread Spectrum PHY of the Wireless LAN Standard. Why Frequency Hopping? Frequency Hopping Spread Spectrum PHY of the 802.11 Wireless LAN Standard Presentation to IEEE 802 March 11, 1996 Naftali Chayat BreezeCom Copyright 1996 IEEE, All rights reserved. This contains parts

More information

doc.: IEEE September, 2009

doc.: IEEE September, 2009 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: [Samsung/ETRI's EFC: HBC PHY proposal] Date Submitted: [24 September, 2009] Source: [Jahng Sun Park, SangYun Hwang,

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: [Proposals for Amendments to the FSK PHY of LECIM draft 15-12-0089-02-004k ] Date Submitted: [14 March 2012] Source:

More information

PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands. PSSS mode for more even chiprates, simpler filter, and 250 kbit/s in 868 MHz

PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands. PSSS mode for more even chiprates, simpler filter, and 250 kbit/s in 868 MHz Project: IEEE P802.15 Study Group for Wireless Personal Area Networks (WPANs( WPANs) Title: Date Submitted: 7th April 2005 Source: PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands Andreas

More information

Adoption of this document as basis for broadband wireless access PHY

Adoption of this document as basis for broadband wireless access PHY Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Proposal on modulation methods for PHY of FWA 1999-10-29 Source Jay Bao and Partha De Mitsubishi Electric ITA 571 Central

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Samsung Electronics (SAIT) CFP Presentation] Date Submitted: [4 January, 2005] Source: [(1) Young-Hwan Kim,

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Purpose: Comment Resolution for CID 7024, 7030, 7037 and 7127

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Purpose: Comment Resolution for CID 7024, 7030, 7037 and 7127 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: Comment Resolution related to TPC and CID-7127 Date Submitted: August 7, 2015 Source: Abstract: Henk de

More information

Project: IEEE P Study Group for Wireless Personal Area Networks (WPANs(

Project: IEEE P Study Group for Wireless Personal Area Networks (WPANs( Project: IEEE P802.15 Study Group for Wireless Personal Area Networks (WPANs( WPANs) Title: Alternatives for Lower Frequency Band Extension Date Submitted: July 12, 2004 Source: Andreas Wolf, Dr. Wolf

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Introduction of vertically connected wireless system] Date Submitted: [ 14 JAN, 2004] Source: [Ami Kanazawa

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Pulsed DS-UWB with optional CS-UWB for Various Applications] Date Submitted: [January 2005] Source: [Huan-Bang

More information

AN-1285 APPLICATION NOTE

AN-1285 APPLICATION NOTE APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 www.analog.com ADF7021-N Radio Performance for Wireless Meter-Bus (WM-Bus), Mode N by

More information

Common Platform for narrow band frequency hopping PHY

Common Platform for narrow band frequency hopping PHY Project Title IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Common Platform for narrow band frequency hopping PHY Date Submitted Source [01 May, 2009] [Benjamin Rolfe] [Jean Schwoerer]

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Samsung Electronics (SAIT) CFP Presentation] Date Submitted: [January, 2005] Source: [(1) Chia-Chin Chong,

More information

Wireless Personal Area Networks

Wireless Personal Area Networks 1 IEEE P802.15 Wireless Personal Area Networks Project Title IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Samsung physical layer proposal Date Submitted Source Re: 31 Kiran Bynam,

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.5 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Two Hopeful Technologies for TG4a --- DS-UWB and CS-UWB] Date Submitted: [05, November, 2004] Source: [Huan-Bang

More information

Signal Studio for IoT

Signal Studio for IoT Signal Studio for IoT N7610C TECHNICAL OVERVIEW Create Keysight validated and performance-optimized reference signals compliant to IEEE 802.15.4 (for ZigBee), 802.15.4g (for Wi-SUN), LoRa CSS and ITU-T

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N doc.: IEEE 802.15-03101r0 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Submission Title: [Channel ized, Optimum Pulse Shaped UWB PHY Proposal] Date Submitted:

More information

September, Submission. September, 1998

September, Submission. September, 1998 Summary The CCK MBps Modulation for IEEE 802. 2.4 GHz WLANs Mark Webster and Carl Andren Harris Semiconductor CCK modulation will enable MBps operation in the 2.4 GHz ISM band An interoperable preamble

More information

IEEE P Wireless Personal Area Networks

IEEE P Wireless Personal Area Networks IEEE P802.15 Wireless Personal Area Networks Project Title IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) TVWS-NB-OFDM Merged Proposal to TG4m Date Submitted Sept. 18, 2009 Source

More information

TETRA Tx Test Solution

TETRA Tx Test Solution Product Introduction TETRA Tx Test Solution Signal Analyzer Reference Specifications ETSI EN 300 394-1 V3.3.1(2015-04) / Part1: Radio ETSI TS 100 392-2 V3.6.1(2013-05) / Part2: Air Interface May. 2016

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: [UWB Regulation and Consideration on UWB Channelization] Date Submitted: [September 2012] Source: [Huan-Bang Li, Marco

More information

RF Basics June 2010 WLS 04

RF Basics June 2010 WLS 04 www.silabs.com RF Basics June 2010 WLS 04 Agenda Basic link parameters Modulation Types Datarate Deviation RX Baseband BW Crystal selection Frequency error compensation Important t radio parameters Regulatory

More information

Improved PHR coding of the MR-O-QPSK PHY

Improved PHR coding of the MR-O-QPSK PHY Improved PHR coding of the MR-O-QPSK PHY Michael Schmidt- ATMEL July 12, 2010 1/ 48 IEEE P802.15 Wireless Personal Area Networks Title: Improved PHR coding of the MR-O-QPSK PHY Date Submitted: July 12,

More information

IEEE SUPPLEMENT TO IEEE STANDARD FOR INFORMATION TECHNOLOGY

IEEE SUPPLEMENT TO IEEE STANDARD FOR INFORMATION TECHNOLOGY 18.4.6.11 Slot time The slot time for the High Rate PHY shall be the sum of the RX-to-TX turnaround time (5 µs) and the energy detect time (15 µs specified in 18.4.8.4). The propagation delay shall be

More information

IEEE P < p>

IEEE P < p> January P0.- P0. Wireless Personal Area Networks Project Title Date Submitted Source Re: Abstract Purpose Notice Release P0. Working Group for Wireless Personal Area Networks (WPANs) Preliminary

More information

5 GHz, U-NII Band, L-PPM. Physical Layer Specification

5 GHz, U-NII Band, L-PPM. Physical Layer Specification 5 GHz, U-NII Band, L-PPM Physical Layer Specification 1.1 Introduction This document describes the physical layer proposed by RadioLAN Inc. for the 5 GHz, U-NII, L-PPM wireless LAN system. 1.1.1 Physical

More information

Project: IEEE P Working Group for Wireless Personal Area Networks(WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks(WPANs) Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks(WPANs) Title: OFDM PHY Merge Proposal for TG4m Date Submitted: September 13, 2012 Source:, Cheol-ho Shin, Mi-Kyung Oh and

More information

November doc.: IEEE dep Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

November doc.: IEEE dep Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title:[ Update of UWB Radio Regulation in Japan] Date Submitted: [13 November 2018] Source: [Ryuji Kohno1,2,3] [1;Yokohama

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [MSK-based 60GHz PHY Proposal] Date Submitted: [7 May, 2007] Source: [Troy Beukema, Brian Floyd, Brian Gaucher,

More information

IEEE g

IEEE g IEEE P802.15 Wireless Personal Area Networks Project Title IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) TG4g Coexistence Assurance Document Date Submitted April 2011 Source Re:

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs) Title: [The Scalability of UWB PHY Proposals] Date Submitted: [July 13, 2004] Source: [Matthew Welborn] Company [Freescale

More information

WPANs) Project: IEEE P Working Group for Wireless Personal Area Networks N. (WPANs(

WPANs) Project: IEEE P Working Group for Wireless Personal Area Networks N. (WPANs( Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Summary of NICTA channel measurement results] Date Submitted: [16 July, 2008] Source: [Dino Miniutti 12,

More information

Project: IEEE P Study Group for Wireless Personal Area Networks (WPANs(

Project: IEEE P Study Group for Wireless Personal Area Networks (WPANs( Project: IEEE P802.15 Study Group for Wireless Personal Area Networks (WPANs( WPANs) Title: PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands Date Submitted: 11 November 2004 Source:

More information

September, doc.: IEEE k

September, doc.: IEEE k Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: [Legacy based PHY Design for LECIM] Date Submitted: [September, 2011] Source: [Kyung Sup Kwak, Bin Shen, Yongnu Jin,

More information

PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands

PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands Project: IEEE P802.15 Study Group for Wireless Personal Area Networks (WPANs( WPANs) Title: Date Submitted: 17 November 2004 Source: PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands

More information

IEEE g MR-FSK Measurement Solution

IEEE g MR-FSK Measurement Solution Product Introduction IEEE802.15.4g MR-FSK Measurement Solution MS2830A Signal Analyzer MS2830A Signal Analyzer Product Introduction IEEE802.15.4g MR-FSK Measurement Solution IEEE Std 802.15.4g TM - 2012

More information

I-NUCLEO-SX1272D. SX1272 LoRa technology and high-performance FSK/OOK RF transceiver modem. Features

I-NUCLEO-SX1272D. SX1272 LoRa technology and high-performance FSK/OOK RF transceiver modem. Features SX1272 LoRa technology and high-performance FSK/OOK RF transceiver modem Data brief Features 157 db maximum link budget +20 dbm, 100 mw constant RF output versus Vsupply +14 dbm high efficiency PA Programmable

More information

Direct Sequence Spread Spectrum Physical Layer Specification IEEE Prepared by Jan Boer, Chair DS PRY Lucent Technologies WCND Utrecht

Direct Sequence Spread Spectrum Physical Layer Specification IEEE Prepared by Jan Boer, Chair DS PRY Lucent Technologies WCND Utrecht Direct Sequence Spread Spectrum Physical Layer Specification IEEE 802.11 Prepared by Jan Boer, Chair DS PRY Lucent Technologies WCND Utrecht Copyright 1996 IEEE, All rights reserved, This contains parts

More information

Wireless LAN Consortium OFDM Physical Layer Test Suite v1.6 Report

Wireless LAN Consortium OFDM Physical Layer Test Suite v1.6 Report Wireless LAN Consortium OFDM Physical Layer Test Suite v1.6 Report UNH InterOperability Laboratory 121 Technology Drive, Suite 2 Durham, NH 03824 (603) 862-0090 Jason Contact Network Switch, Inc 3245 Fantasy

More information

PXI WLAN Measurement Suite Data Sheet

PXI WLAN Measurement Suite Data Sheet PXI WLAN Measurement Suite Data Sheet The most important thing we build is trust Bench-top R&D and production ready ATE RF performance verification tools Multi device parallel testing for higher production

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [UWB Interference Comparison] Date Submitted: [13 November, 2003] Source: [Gadi Shor] Company [Wisair]

More information

Doodle Labs WiFi Frequency Shifter xm-3600

Doodle Labs WiFi Frequency Shifter xm-3600 Doodle Labs WiFi Frequency Shifter xm-3600 Frequency Shifters - Overview Doodle Labs family of Wi-Fi Frequency Shifters (WiFi-FES) provide flexibility to system integrators looking to deploy their existing

More information

LR1276 Module Datasheet V1.0

LR1276 Module Datasheet V1.0 LR1276 Module Datasheet V1.0 Features LoRaTM Modem 168 db maximum link budget +20 dbm - 100 mw constant RF output vs. V supply +14 dbm high efficiency PA Programmable bit rate up to 300 kbps High sensitivity:

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [60GHz-band Gigabit Transceivers and Their Applications ] Date Submitted: [12 January 2004] Source: [Kenichi

More information

AN5009 Application note

AN5009 Application note AN5009 Application note Using the S2-LP transceiver under FCC title 47 part 90 in the 450 470 MHz band Introduction The S2-LP is a very low power RF transceiver, intended for RF wireless applications in

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 1 FHSS, IR, and Data Modulations 2 IEEE 802.11b with FHSS IEEE 802.11b with IR Available Modulations and their Performance DBPSK DQPSK CCK: Complementary

More information

Project: IEEE Working Group for Wireless Personal Area Networks (WPANs(

Project: IEEE Working Group for Wireless Personal Area Networks (WPANs( Project: IEEE 802.15 Working Group for Wireless Personal Area Networks (WPANs( WPANs) Title: [Panasonic PHY and MAC Proposal to IEEE802.15 TG3c CFP] Date Submitted: [07 May, 07] Source: [ Kazuaki Takahashi

More information

IQxel-M8 TM Multi-DUT Connectivity Test System

IQxel-M8 TM Multi-DUT Connectivity Test System TECHNICAL SPECIFICATIONS IQxel-M8 TM Multi-DUT Connectivity Test System 2017 LitePoint, A Teradyne Company. All rights reserved. Overview of IQxel-M8 The IQxel-M8 is a manufacturing oriented, Multi-DUT

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.5 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Elements of an IR-UWB PHY for Body Area Networks] Date Submitted: [0 March, 2009] Source: Olivier Rousseaux,

More information

PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands

PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands Project: IEEE P802.15 Study Group for Wireless Personal Area Networks (WPANs( WPANs) Title: Date Submitted: 17 November 2004 Source: PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks N (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs) Submission Title: [Continuous Spectrum (CS) UWB signal] Date Submitted: [July 21, 2005] Source: [Kenichi Takizawa, Shinsuke

More information

AN361 WIRELESS MBUS IMPLEMENTATION USING EZRADIOPRO DEVICES. 1. Introduction. 2. Wireless MBUS Standard

AN361 WIRELESS MBUS IMPLEMENTATION USING EZRADIOPRO DEVICES. 1. Introduction. 2. Wireless MBUS Standard WIRELESS MBUS IMPLEMENTATION USING EZRADIOPRO DEVICES 1. Introduction This application note describes how to create a wireless MBUS compliant device using Silicon Labs' Si443x EZRadioPRO RF transceiver

More information

EECS 473 Advanced Embedded Systems. Lecture 14 Wireless in the real world

EECS 473 Advanced Embedded Systems. Lecture 14 Wireless in the real world EECS 473 Advanced Embedded Systems Lecture 14 Wireless in the real world Team status updates Team Alert (Home Alert) Team Fitness (Fitness watch) Team Glasses Team Mouse (Control in hand) Team WiFi (WiFi

More information

AN4949 Application note

AN4949 Application note Application note Using the S2-LP transceiver under FCC title 47 part 15 in the 902 928 MHz band Introduction The S2-LP is a very low power RF transceiver, intended for RF wireless applications in the sub-1

More information

ADJACENT BAND COMPATIBILITY BETWEEN TETRA TAPS MOBILE SERVICES AT 870 MHz

ADJACENT BAND COMPATIBILITY BETWEEN TETRA TAPS MOBILE SERVICES AT 870 MHz Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ADJACENT BAND COMPATIBILITY BETWEEN TETRA TAPS MOBILE SERVICES AT 870 MHz

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N. WPANs) (WPANs( January doc.: IEEE 802.

Project: IEEE P Working Group for Wireless Personal Area Networks N. WPANs) (WPANs( January doc.: IEEE 802. Slide Project: IEEE P82.5 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Impulsive Direct-Sequence UWB Wireless Networks with Node Cooperation Relaying ] Date Submitted: [January,

More information

Address: [20-14, Higashi-Gotanda 3-Chome Shinagawa-ku, Tokyo , Japan] Voice [+81(3) ],

Address: [20-14, Higashi-Gotanda 3-Chome Shinagawa-ku, Tokyo , Japan] Voice [+81(3) ], Project: IEEEP802.15 Working Group for Wireless Personal Area Network(WPAN) Submission Title: [Study of mm wave propagation modeling to realize WPANs ] Date Submitted: [March 2004] Source: [Toshiyuki Hirose,

More information

ISO/IEC INTERNATIONAL STANDARD

ISO/IEC INTERNATIONAL STANDARD INTERNATIONAL STANDARD ISO/IEC 24730-62 First edition 2013-09-01 Information technology Real time locating systems (RTLS) Part 62: High rate pulse repetition frequency Ultra Wide Band (UWB) air interface

More information

2 Receiver Tests Packet Error Rate (PER), Reported Energy Value, and Clear Channel Assessment (CCA) are used to assess and characterize the receiver.

2 Receiver Tests Packet Error Rate (PER), Reported Energy Value, and Clear Channel Assessment (CCA) are used to assess and characterize the receiver. Freescale Semiconductor Application Note Document Number: AN2985 Rev. 1.1, 08/2005 MC1319x Physical Layer Lab Test Description By: R. Rodriguez 1 Introduction The MC1319x device is a ZigBee and IEEE 802.15.4

More information

IEEE g

IEEE g IEEE P802.15 Wireless Personal Area Networks Project Title IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) TG4g Coexistence Assurance Document Date Submitted Oct. 2010 Source Re:

More information

WLAN DesignGuide September 2004

WLAN DesignGuide September 2004 WLAN DesignGuide September 2004 Notice The information contained in this document is subject to change without notice. Agilent Technologies makes no warranty of any kind with regard to this material, including,

More information

Wireless LAN Consortium

Wireless LAN Consortium Wireless LAN Consortium Clause 18 OFDM Physical Layer Test Suite Version 1.8 Technical Document Last Updated: July 11, 2013 2:44 PM Wireless LAN Consortium 121 Technology Drive, Suite 2 Durham, NH 03824

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Link Level Simulations of THz-Communications Date Submitted: 15 July, 2013 Source: Sebastian Rey, Technische Universität

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Feasibility test of THz channel for high-speed wireless link Date Submitted: 12 Nov 2013 Source: Jae-Young Kim, Ho-Jin

More information

IQxel-M8W TM Multi-DUT Connectivity Test System

IQxel-M8W TM Multi-DUT Connectivity Test System TECHNICAL SPECIFICATIONS IQxel-M8W TM Multi-DUT Connectivity Test System 2018 LitePoint, A Teradyne Company. All rights reserved. General Technical Specifications RF Analyzer Parameter Ports (A/B) Value

More information

Spectral Mask and Field Trials of a COFDM Modem

Spectral Mask and Field Trials of a COFDM Modem Spectral Mask and Field Trials of a COFDM Modem Document Number: IEEE 802.16.3p-01/44 Date Submitted: 2001-03-12 Source: Jonathan Labs, Yvon Belec, J. Pierre Lamoureux, Voice: (514) 956-6300 ext 325 Stephan

More information

PXI WiMAX Measurement Suite Data Sheet

PXI WiMAX Measurement Suite Data Sheet PXI WiMAX Measurement Suite Data Sheet The most important thing we build is trust Transmit power Spectral mask Occupied bandwidth EVM (all, data only, pilots only) Frequency error Gain imbalance, Skew

More information

Wireless Personal Area Networks

Wireless Personal Area Networks 1 IEEE P802.15 Wireless Personal Area Networks Project Title IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Samsung and IMEC physical layer merged proposal Date Submitted Source

More information

Keysight Technologies Signal Studio for Short Range Communications

Keysight Technologies Signal Studio for Short Range Communications Keysight Technologies Signal Studio for Short Range Communications N7610B Technical Overview Create Keysight validated and performance-optimized reference signals compliant to IEEE 802.15.4 (for ZigBee),

More information

IQxel-M TM Multi-DUT/Multicom Connectivity Test System

IQxel-M TM Multi-DUT/Multicom Connectivity Test System TECHNICAL SPECIFICATIONS IQxel-M TM Multi-DUT/Multicom Connectivity Test System 2017 LitePoint, A Teradyne Company. All rights reserved. Overview of IQxel-M The IQxel-M is a manufacturing oriented, Multi-DUT,

More information

IQxel TM Next Generation Connectivity Test System

IQxel TM Next Generation Connectivity Test System TECHNICAL SPECIFICATIONS IQxel TM Next Generation Connectivity Test System 2017 LitePoint, A Teradyne Company. All rights reserved. General Technical Specifications RF Analyzer Parameter Ports Value Input

More information

Chapter XIII Short Range Wireless Devices - Building a global license-free system at frequencies below 1GHz By Austin Harney and Conor O Mahony

Chapter XIII Short Range Wireless Devices - Building a global license-free system at frequencies below 1GHz By Austin Harney and Conor O Mahony Chapter XIII Short Range Wireless Devices - Building a global license-free system at frequencies below 1GHz By Austin Harney and Conor O Mahony Introduction: The term Short Range Device (SRD) is intended

More information

Part A RADIO SPECIFICATION

Part A RADIO SPECIFICATION Part A RADIO SPECIFICATION BLUETOOTH SPECIFICATION Version 1.0 B page 17 of 1082 CONTENTS 1 Scope...18 2 Frequency Bands and Channel Arrangement...19 3 Transmitter Characteristics...20 3.1 Modulation

More information

GC9838-LR - INTELLIGENT HYBRID PLC-RF DIN RAIL MODEM

GC9838-LR - INTELLIGENT HYBRID PLC-RF DIN RAIL MODEM GC9838-LR - INTELLIGENT HYBRID PLC-RF DIN RAIL MODEM and a built-in sub-ghz wireless module to allow adaptive networking over different media. The wireless connectivity can be available in LoRa for tree-structure

More information

HD Radio AM Transmission System Specifications Rev. F August 24, 2011

HD Radio AM Transmission System Specifications Rev. F August 24, 2011 HD Radio AM Transmission System Specifications Rev. F August 24, 2011 SY_SSS_1082s TRADEMARKS HD Radio and the HD, HD Radio, and Arc logos are proprietary trademarks of ibiquity Digital Corporation. ibiquity,

More information

802.11ax Design Challenges. Mani Krishnan Venkatachari

802.11ax Design Challenges. Mani Krishnan Venkatachari 802.11ax Design Challenges Mani Krishnan Venkatachari Wi-Fi: An integral part of the wireless landscape At the center of connected home Opening new frontiers for wireless connectivity Wireless Display

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Partial PHY proposal in support of Coordinated-Interference Management for IEEE802.15.7r1 Date Submitted: January

More information

AN4110 Application note

AN4110 Application note Application note Using the SPIRIT1 transceiver under EN 300 220 at 868 MHz Introduction By Placido De Vita The SPIRIT1 is a very low power RF transceiver, intended for RF wireless applications in the sub-1

More information

March, 2003 IEEE P /131r0. IEEE P Wireless Personal Area Networks

March, 2003 IEEE P /131r0. IEEE P Wireless Personal Area Networks Project Title IEEE P802.15 Wireless Personal rea Networks IEEE P802.15 Working Group for Wireless Personal rea Networks (WPNs) PHY Proposal Using Dual Independent Single Sideband, Non-coherent M and Defined

More information

Keysight Technologies Testing WLAN Devices According to IEEE Standards. Application Note

Keysight Technologies Testing WLAN Devices According to IEEE Standards. Application Note Keysight Technologies Testing WLAN Devices According to IEEE 802.11 Standards Application Note Table of Contents The Evolution of IEEE 802.11...04 Frequency Channels and Frame Structures... 05 Frame structure:

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks N (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs) Submission Title: [Wideband Measurement for Body Effect of BAN Channel] Date Submitted: [July 18, 2007] Source: [Tetsushi

More information

IQgig-IF TM Technical Specifications

IQgig-IF TM Technical Specifications TECHNICAL SPECIFICATIONS IQgig-IF TM Technical Specifications 2018 LitePoint, A Teradyne Company. All rights reserved. Port Descriptions IQgig-IF Front Panel I/O Function Type Power Switch Power On/Off

More information

IQxel-M8 TM Multi-DUT Connectivity Test System

IQxel-M8 TM Multi-DUT Connectivity Test System TECHNICAL SPECIFICATIONS IQxel-M8 TM Multi-DUT Connectivity Test System 2015 LitePoint, A Teradyne Company. All rights reserved. Overview of IQxel-M8 The IQxel-M8 is a manufacturing oriented, Multi-DUTtest

More information