Direct Sequence Spread Spectrum Physical Layer Specification IEEE Prepared by Jan Boer, Chair DS PRY Lucent Technologies WCND Utrecht

Size: px
Start display at page:

Download "Direct Sequence Spread Spectrum Physical Layer Specification IEEE Prepared by Jan Boer, Chair DS PRY Lucent Technologies WCND Utrecht"

Transcription

1 Direct Sequence Spread Spectrum Physical Layer Specification IEEE Prepared by Jan Boer, Chair DS PRY Lucent Technologies WCND Utrecht Copyright 1996 IEEE, All rights reserved, This contains parts from an unapproved draft, subject to change What is DSSS? ) Signal symbol is spreaded with a sequence I 1 +1 Less power density 'l"';'1'1---'i Frequency Frequency Cupyright 1996 IEEE, All rights reserved. This contains parts froln an unapproved draft, subjoctto change 2 1 Jan Boer, Lucent Technologies

2 11 chip BARKER sequence Good autocorrelation properties Minimal sequence allowed by FCC Coding gain 10.4 db +1., Copyright 1996 IEEE, AlL rights reserved. This contains parts from an unapproved draft, subject to change 3 DSSS benefits 10 db coding gain: - Robust against interferers and noise (10 db suppression) Robust against time delay spread - Resolution of echoes ClpyriShl 1996 IEEE, All rights reserved. This contains parts from an unapproved draft, subject to change 4 2 Jan Boer, Lucent Technologies

3 IEEE DSSS PRY characteristics 2.4 GHz ISM band (FCC ) 1 and 2 Mb/s datarate (DBPSK and DQPSK modulation) Symbolrate IMHz Chipping rate 11 MHz with 11 chip Barker sequence Multiple channels in 2.4 to GHz band Copyright 1996 IEEE, An rights reserved. This contains pam; from an unapproved draft, subject to change 5 PLCP Frame Format SIGNAL 8 bits SERVICE 8 bits PLCP Header 48blls PPDU Preamble and Header always at IMb/s nbpsk Copyrl,ght@1996lEEE, All rights reserved. This contains parts from an unapproved draft, subject to change 6 3 Jan Boer, Lucent Technologies

4 PLCP synchronization PPDU 128 scrambled I bits needed for o.a. gain setting energy detection antenna selection frequency offset compensation Copyright 1996 IEEE, All rights reserved. This contains parts from an unapproved draft, subject to change 7 Start Frame Delimiter 16 bit field (hf3ao) used for - bit synchronization Copyright 1996 IEEE, All rights reserved. This contains parts from an unapproved draft, subject to change 4 Jan Boer, Lucent Technologies

5 Signal Field PPDU Rate indication hoa IMb/s DBPSK h14 2Mb/s DQPSK Other values reserved for future use (100 kb/s quantities) Copyright 19961EEE, All rights reserved. This contains parts from an unapproved draft, subject to change 9 Service Field Reserved for future use hoo signifies compliant CopyrigliL EEE, All rights reserved. This contains parts from an unapproved draft. subject to change 10 5 Jan Boer, Lucent Technologies

6 Length Field PPDU Indicates number of octets to be transmitted in MPDU Used for End of frame detection MPDU CRC sync Copyright 1996 IEEE, All rights reserved. This contains part<; from an unapproved draft, subject to change 11 CRC field PPDU CCITT CRC-16 Protects Signal, Service and Length Field Copyright 1996 IEEE, All rights reserved. This contains parts from an unapproved draft, subject to change 12 6 Jan Boer, Lucent Technologies

7 Data Scrambler Scrambler Polynomial; G(z)=Z" +Z lr SERIAL DATA I I I~ I Z 1 Z 2 Z.. Z ,r---+l~ ZoO Z.. Z ' I----, r ~ ~~ALDATA ALL bits transmitted by the DSSS Phy are scrambled Purpose Whithening the spectrum DC blocking (Barker sequnce is asymetric) Copyrig hl 1996 IEEE, All righ" reserved. This contains parts from an unapproved draft, subject to change 13 DBPSK Modulation Q BitInput o Phase Change (+jro) Table 1, 1 Mbls OBPSK Encoding Table. o 1t Copyright 1996lEEE, All rights reserved. This contains parts from an unapproved draft, subject to change 14 7 Jan Boer, Lucent Technologies

8 DQPSK Modulation Q Dibit pattern (do,dl) do is lirst in time Phase Change (+jm) f f12 (-1f12) Table 1, 2 Mbfs OQPSK Encoding Table Copyright 1996 IEEE, All rights reserved. This contains parts from an unapproved draft, subject to change 15 Transmit Spectrum Mask Transmit Spectrum Mask Unfiltered Sinxlx -50 db fc -22 MHz fc -11 MHz fc fc +11 MHz fc +22 Mhz Copyrigh.@1996IEEE,Allrightsreserved. This contains pans from an unapproved draf., subjec o change 16 8 Jan Boer, Lucent Technologies

9 DSSS Channels CHNL_ID FCC ETSI Channel Japan Channel Frequencies Frequency Frequencies MHz N/A N/A MHz N/A N/A MHz 2422 MHz N/A MHz 2427 MHz N/A MHz 2432 MHz N/A MHz 2437 MHz N/A MHz 2442 MHz N/A MHz 2447 MHz N/A MHz 2452 MHz N/A MHz 2457 MHz N/A MHz 2462 MHz N/A 12 N/A NJA 2484 MHz Table 1, DSSS PHY Frequency Channel Plan Copyright 1996 IEEE. All rights reserved. This contains parts from an unapproved draft, subject to change 17 Clear Channel Assessment Three methods: - CCA mode 1: Energy above threshold - CCA mode 2: Carrier sense only - CCA mode 3: Carrier sense with energy above threshold Energy detection function of TX power - Tx power> 100 mw: -80 dbm - Tx power> 50mW : -76 dbm - Tx power < = 50mW: -70dBm Energy detect time : 15 Jls Correct PLCP header --> CCA busy for full (intended) duration of of frame as indicated by PLCP Length field Copyright 1996 IEEE. All rights reserved. This contains parts from an unapproved draft. subject to change 18 9 Jan Boer, Lucent Technologies

10 DSSS Specification Summary Slottime TX to Rx turnaround time Rx to Tx turnaround time Operating temperature range type 1: 0-40 C type 2: C Tx Power Levels 1000mW USA 100mW Europe 10 mwimhz Japan Minimum Transmitted Power Tx power level control 20 Ils 10 Ils 5 Ils 1 m W required above 100 m W Copyright 1996 IEEE, All rights reserved. Thjs contains parts from an unapproved draft. subject to change 19 DSSS Specification Summary (cant) Tx Center Frequency Tolerance Chip Clock Frequency Tolerance Tx Power On Ramp Tx Power Down Ramp RF Carrier suppression Transmit modulation accuracy Rx sensitivity Rx max input level Rx adjacent channel rejection +/- 25 ppm +/- 25 ppm 21ls 21ls 15 db test procedure FER (1024 Bytes) -4 db >35 > 30 MHz separation Copyright 1996 IEEE, All rights reserved. This contains parts from an unapproved draft, subject to change Jan Boer, Lucent Technologies

11 PLCP Transmit Procedure MAC PHY PLCP PMD_ANTSEL, PMD_RATE, PMD_ TXPWRLVL, PMD_TXSTART PHY PMD SYNC MPDU Scramble start CRC16 CRC16 Rate change start TX Power TX Power RAMP start end RAMP off Copyngh' 1996 IEEE, AlL righ<s reserved. This cdnmins parts from an unapproved draft, subject'" change 21 PLCP Receive Procedure MAC PHY _DATA.ind(DATA) PHY _RXSTART.ind(RXVECTOR).,...""... PHY PLCP PHY PMD Descramble start CRC CRC Rate change start start end Co pyri lth~ 1996 I.~EE, All rights reserved. This contains parts from an unapproved draft, subject to change Jan Boer, Lucent Technologies

12 I

IEEE SUPPLEMENT TO IEEE STANDARD FOR INFORMATION TECHNOLOGY

IEEE SUPPLEMENT TO IEEE STANDARD FOR INFORMATION TECHNOLOGY 18.4.6.11 Slot time The slot time for the High Rate PHY shall be the sum of the RX-to-TX turnaround time (5 µs) and the energy detect time (15 µs specified in 18.4.8.4). The propagation delay shall be

More information

September, Submission. September, 1998

September, Submission. September, 1998 Summary The CCK MBps Modulation for IEEE 802. 2.4 GHz WLANs Mark Webster and Carl Andren Harris Semiconductor CCK modulation will enable MBps operation in the 2.4 GHz ISM band An interoperable preamble

More information

Frequency Hopping Spread Spectrum PHY of the Wireless LAN Standard. Why Frequency Hopping?

Frequency Hopping Spread Spectrum PHY of the Wireless LAN Standard. Why Frequency Hopping? Frequency Hopping Spread Spectrum PHY of the 802.11 Wireless LAN Standard Presentation to IEEE 802 March 11, 1996 Naftali Chayat BreezeCom Copyright 1996 IEEE, All rights reserved. This contains parts

More information

doc.: IEEE /134R1 IEEE P Wireless LANs High Speed Direct Sequence Spread Spectrum Physical Layer Specification for the 2.

doc.: IEEE /134R1 IEEE P Wireless LANs High Speed Direct Sequence Spread Spectrum Physical Layer Specification for the 2. IEEE P802.11 Wireless LANs High Speed Direct Sequence Spread Spectrum Physical Layer Specification for the 2.4 GHz ISM Band Date: May, 1998 Author: Carl Andren Harris Semiconductor Address Phone: Fax:

More information

5 GHz, U-NII Band, L-PPM. Physical Layer Specification

5 GHz, U-NII Band, L-PPM. Physical Layer Specification 5 GHz, U-NII Band, L-PPM Physical Layer Specification 1.1 Introduction This document describes the physical layer proposed by RadioLAN Inc. for the 5 GHz, U-NII, L-PPM wireless LAN system. 1.1.1 Physical

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 1 FHSS, IR, and Data Modulations 2 IEEE 802.11b with FHSS IEEE 802.11b with IR Available Modulations and their Performance DBPSK DQPSK CCK: Complementary

More information

IEEE P Wireless Personal Area Networks

IEEE P Wireless Personal Area Networks IEEE P802.15 Wireless Personal Area Networks Project Title Date Submitted IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Technical Specification Draft for PSSS 250-2000 scheme 915

More information

Copyright 1999 by the Institute of Electrical and Electronics Engineers, Inc. 345 East 47th Street New York, NY 10017, USA All rights reserved.

Copyright 1999 by the Institute of Electrical and Electronics Engineers, Inc. 345 East 47th Street New York, NY 10017, USA All rights reserved. Std 0.b/D. (Draft Supplement to Std 0. Edition) DRAFT Supplement to STANDARD [for] Information Technology- Telecommunications and information exchange between systems- Local and metropolitan area networks-

More information

Wireless LAN Consortium OFDM Physical Layer Test Suite v1.6 Report

Wireless LAN Consortium OFDM Physical Layer Test Suite v1.6 Report Wireless LAN Consortium OFDM Physical Layer Test Suite v1.6 Report UNH InterOperability Laboratory 121 Technology Drive, Suite 2 Durham, NH 03824 (603) 862-0090 Jason Contact Network Switch, Inc 3245 Fantasy

More information

ETSI TS V1.1.1 ( )

ETSI TS V1.1.1 ( ) TS 102 887-1 V1.1.1 (2013-07) Technical Specification Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices; Smart Metering Wireless Access Protocol; Part 1: PHY layer 2 TS

More information

Keysight Technologies Testing WLAN Devices According to IEEE Standards. Application Note

Keysight Technologies Testing WLAN Devices According to IEEE Standards. Application Note Keysight Technologies Testing WLAN Devices According to IEEE 802.11 Standards Application Note Table of Contents The Evolution of IEEE 802.11...04 Frequency Channels and Frame Structures... 05 Frame structure:

More information

Abstract: [Final proposal for d, that is for the low cost and low power consumption WPAN.]

Abstract: [Final proposal for d, that is for the low cost and low power consumption WPAN.] Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Final Proposal for 802.15.4d from OKI] Date Submitted: [17-March-2008] Source: [Kiyoshi Fukui, Yasutaka

More information

TETRA Tx Test Solution

TETRA Tx Test Solution Product Introduction TETRA Tx Test Solution Signal Analyzer Reference Specifications ETSI EN 300 394-1 V3.3.1(2015-04) / Part1: Radio ETSI TS 100 392-2 V3.6.1(2013-05) / Part2: Air Interface May. 2016

More information

Wireless LAN Consortium

Wireless LAN Consortium Wireless LAN Consortium Clause 18 OFDM Physical Layer Test Suite Version 1.8 Technical Document Last Updated: July 11, 2013 2:44 PM Wireless LAN Consortium 121 Technology Drive, Suite 2 Durham, NH 03824

More information

IEEE P Wireless Personal Area Networks. LB34 Ranging comment resolution

IEEE P Wireless Personal Area Networks. LB34 Ranging comment resolution 0 0 0 0 0 0 Project Title Date Submitted Source Re: [] Abstract Purpose Notice Release P0. Wireless Personal Area Networks P0. Working Group for Wireless Personal Area Networks (WPANs) LB Ranging comment

More information

Understanding and Mitigating the Impact of Interference on Networks. By Gulzar Ahmad Sanjay Bhatt Morteza Kheirkhah Adam Kral Jannik Sundø

Understanding and Mitigating the Impact of Interference on Networks. By Gulzar Ahmad Sanjay Bhatt Morteza Kheirkhah Adam Kral Jannik Sundø Understanding and Mitigating the Impact of Interference on 802.11 Networks By Gulzar Ahmad Sanjay Bhatt Morteza Kheirkhah Adam Kral Jannik Sundø 1 Outline Background Contributions 1. Quantification & Classification

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANS)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANS) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Title: [General Atomics Call For Proposals Presentation] Date Submitted: [4 ] Source: Naiel Askar, Susan Lin, General Atomics-

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P82.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: Texas Instruments Impulse Radio UWB Physical Layer Proposal Date Submitted: 4 May, 29 Source: June Chul Roh,

More information

IEEE P < p>

IEEE P < p> January P0.- P0. Wireless Personal Area Networks Project Title Date Submitted Source Re: Abstract Purpose Notice Release P0. Working Group for Wireless Personal Area Networks (WPANs) Preliminary

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: [Proposals for Amendments to the FSK PHY of LECIM draft 15-12-0089-02-004k ] Date Submitted: [14 March 2012] Source:

More information

2 Receiver Tests Packet Error Rate (PER), Reported Energy Value, and Clear Channel Assessment (CCA) are used to assess and characterize the receiver.

2 Receiver Tests Packet Error Rate (PER), Reported Energy Value, and Clear Channel Assessment (CCA) are used to assess and characterize the receiver. Freescale Semiconductor Application Note Document Number: AN2985 Rev. 1.1, 08/2005 MC1319x Physical Layer Lab Test Description By: R. Rodriguez 1 Introduction The MC1319x device is a ZigBee and IEEE 802.15.4

More information

RF Basics June 2010 WLS 04

RF Basics June 2010 WLS 04 www.silabs.com RF Basics June 2010 WLS 04 Agenda Basic link parameters Modulation Types Datarate Deviation RX Baseband BW Crystal selection Frequency error compensation Important t radio parameters Regulatory

More information

UGWDR82NUH50 Datasheet

UGWDR82NUH50 Datasheet A -UN1 802.11b/g/n WiFi USB Radio Dongle Issue Date: 16-OCT-2009 Revision: 1.0 Re-Tek - 1657-1 - 45388 Warm Springs Blvd. Fremont, CA 94539 REVISION HISTORY Rev. No. History Issue Date Remarks 0.1 Draft

More information

PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands

PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands Project: IEEE P802.15 Study Group for Wireless Personal Area Networks (WPANs( WPANs) Title: Date Submitted: 15th April 2005 Source: Re: Abstract: Purpose: PSSS proposal Parallel reuse of 2.4 GHz PHY for

More information

Postprint.

Postprint. http://www.diva-portal.org Postprint This is the accepted version of a paper presented at nternational Conference on Wireless Communications and Signal Processing (WCSP 2011). Citation for the original

More information

Real-time FPGA realization of an UWB transceiver physical layer

Real-time FPGA realization of an UWB transceiver physical layer University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2005 Real-time FPGA realization of an UWB transceiver physical

More information

EECS 473 Advanced Embedded Systems. Lecture 14 Wireless in the real world

EECS 473 Advanced Embedded Systems. Lecture 14 Wireless in the real world EECS 473 Advanced Embedded Systems Lecture 14 Wireless in the real world Team status updates Team Alert (Home Alert) Team Fitness (Fitness watch) Team Glasses Team Mouse (Control in hand) Team WiFi (WiFi

More information

NAVAL POSTGRADUATE SCHOOL THESIS

NAVAL POSTGRADUATE SCHOOL THESIS NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SYNCHRONIZATION ANALYSIS AND SIMULATION OF A STANDARD IEEE 80.11G OFDM SIGNAL by Keith D. Lowham March 004 Thesis Advisor: Second Reader: Frank E.

More information

Comment Resolution for the MR-O-QPSK PHY

Comment Resolution for the MR-O-QPSK PHY Comment Resolution for the MR-O-QPSK PHY July 14, 2010 1/ 19 IEEE P802.15 Wireless Personal Area Networks Title: Proposed Comment Resolution of the MR-O-QPSK PHY Date Submitted: July 14, 2010 Source: Michael

More information

AN-1285 APPLICATION NOTE

AN-1285 APPLICATION NOTE APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 www.analog.com ADF7021-N Radio Performance for Wireless Meter-Bus (WM-Bus), Mode N by

More information

Common Platform for narrow band frequency hopping PHY

Common Platform for narrow band frequency hopping PHY Project Title IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Common Platform for narrow band frequency hopping PHY Date Submitted Source [01 May, 2009] [Benjamin Rolfe] [Jean Schwoerer]

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [IMEC UWB PHY Proposal] Date Submitted: [4 May, 2009] Source: Dries Neirynck, Olivier Rousseaux (Stichting

More information

Rob Havelt Black Hat Europe, 2009

Rob Havelt Black Hat Europe, 2009 Rob Havelt Black Hat Europe, 2009 Greetings Black Hat Rob Havelt rhavelt@trustwave.com I m from Trustwave s SpiderLabs I manage the Pen Test Practice in the US. I like to take things apart. Also, Scotch

More information

doc.: IEEE September, 2009

doc.: IEEE September, 2009 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: [Samsung/ETRI's EFC: HBC PHY proposal] Date Submitted: [24 September, 2009] Source: [Jahng Sun Park, SangYun Hwang,

More information

PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands. DWA Wireless GmbH, Germany Tel.: +49 (0)

PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands. DWA Wireless GmbH, Germany Tel.: +49 (0) Project: IEEE P802.15 Study Group for Wireless Personal Area Networks (WPANs( WPANs) Title: Date Submitted: 14th April 2005 Source: PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands GmbH

More information

IEEE P Wireless Personal Area Networks

IEEE P Wireless Personal Area Networks IEEE P0.-0-00-0-00c Project Title Date Submitted Source Re: [] Abstract Purpose Notice Release IEEE P0. Wireless Personal Area Networks IEEE P0. Working Group for Wireless Personal Area Networks (WPANs)

More information

Application Note AN041

Application Note AN041 CC24 Coexistence By G. E. Jonsrud 1 KEYWORDS CC24 Coexistence ZigBee Bluetooth IEEE 82.15.4 IEEE 82.11b WLAN 2 INTRODUCTION This application note describes the coexistence performance of the CC24 2.4 GHz

More information

PXI WLAN Measurement Suite Data Sheet

PXI WLAN Measurement Suite Data Sheet PXI WLAN Measurement Suite Data Sheet The most important thing we build is trust Bench-top R&D and production ready ATE RF performance verification tools Multi device parallel testing for higher production

More information

UWB for Sensor Networks:

UWB for Sensor Networks: IEEE-UBC Symposium on future wireless systems March 10 th 2006, Vancouver UWB for Sensor Networks: The 15.4a standard Andreas F. Molisch Mitsubishi Electric Research Labs, and also at Department of Electroscience,

More information

AN361 WIRELESS MBUS IMPLEMENTATION USING EZRADIOPRO DEVICES. 1. Introduction. 2. Wireless MBUS Standard

AN361 WIRELESS MBUS IMPLEMENTATION USING EZRADIOPRO DEVICES. 1. Introduction. 2. Wireless MBUS Standard WIRELESS MBUS IMPLEMENTATION USING EZRADIOPRO DEVICES 1. Introduction This application note describes how to create a wireless MBUS compliant device using Silicon Labs' Si443x EZRadioPRO RF transceiver

More information

CS 294-7: Wireless Local Area Networks. Professor Randy H. Katz CS Division University of California, Berkeley Berkeley, CA

CS 294-7: Wireless Local Area Networks. Professor Randy H. Katz CS Division University of California, Berkeley Berkeley, CA CS 294-7: Wireless Local Area Networks Professor Randy H. Katz CS Division University of California, Berkeley Berkeley, CA 94720-1776 1996 1 Desirable Features Ability to operate worldwide Minimize power

More information

Lower Layers PART1: IEEE and the ZOLERTIA Z1 Radio

Lower Layers PART1: IEEE and the ZOLERTIA Z1 Radio Slide 1 Lower Layers PART1: IEEE 802.15.4 and the ZOLERTIA Z1 Radio Jacques Tiberghien Kris Steenhaut Remark: all numerical data refer to the parameters defined in IEEE802.15.4 for 32.5 Kbytes/s transmission

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 1 PLCP format, Data Rates, OFDM, Modulations, 2 IEEE 802.11a: Transmit and Receive Procedure 802.11a Modulations BPSK Performance Analysis Convolutional

More information

Page 1. Outline : Wireless Networks Lecture 6: Final Physical Layer. Direct Sequence Spread Spectrum (DSSS) Spread Spectrum

Page 1. Outline : Wireless Networks Lecture 6: Final Physical Layer. Direct Sequence Spread Spectrum (DSSS) Spread Spectrum Outline 18-759 : Wireless Networks Lecture 6: Final Physical Layer Peter Steenkiste Dina Papagiannaki Spring Semester 2009 http://www.cs.cmu.edu/~prs/wireless09/ Peter A. Steenkiste 1 RF introduction Modulation

More information

IEEE g

IEEE g IEEE P802.15 Wireless Personal Area Networks Project Title IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) TG4g Coexistence Assurance Document Date Submitted April 2011 Source Re:

More information

Comment Resolution for the MR-O-QPSK PHY

Comment Resolution for the MR-O-QPSK PHY Comment Resolution for the MR-O-QPSK PHY July 15, 2010 1/ 19 IEEE P802.15 Wireless Personal Area Networks Title: Comment Resolution for the MR-O-QPSK PHY Date Submitted: July 15, 2010 Source: Michael Schmidt

More information

NOVEMBER 1~3 doc: IEEE /185

NOVEMBER 1~3 doc: IEEE /185 NOVEMBER 1~3 doc: EEE 802.11-93/185 EEES02.11 Wireless Access Method and Physical Specification Title: Date: Author: Analysis of OQPSK Modulation On DSSS PRY Acquisition 8 November 1993 Paul Struhsaker

More information

Spectrum Sensing Brief Overview of the Research at WINLAB

Spectrum Sensing Brief Overview of the Research at WINLAB Spectrum Sensing Brief Overview of the Research at WINLAB P. Spasojevic IAB, December 2008 What to Sense? Occupancy. Measuring spectral, temporal, and spatial occupancy observation bandwidth and observation

More information

Performance of UTRA TDD Ad Hoc and IEEE b in Vehicular Environments

Performance of UTRA TDD Ad Hoc and IEEE b in Vehicular Environments Performance of UTRA TDD Ad Hoc and IEEE 802.11b in Vehicular Environments Andre Ebner, Hermann Rohling and Lars Wischhof Technical University of Hamburg-Harburg Department of Telecommunications Eissendorfer

More information

Improved PHR coding of the MR-O-QPSK PHY

Improved PHR coding of the MR-O-QPSK PHY Improved PHR coding of the MR-O-QPSK PHY Michael Schmidt- ATMEL July 12, 2010 1/ 48 IEEE P802.15 Wireless Personal Area Networks Title: Improved PHR coding of the MR-O-QPSK PHY Date Submitted: July 12,

More information

IEEE Wireless Access Method and Physical Specification

IEEE Wireless Access Method and Physical Specification doc: IEEE P802.11-94/S9 IEEE 802.11 Wireless Access Method and Physical Specification Title: Prepared by: Abstract: Transmit Power Control Protocol provisions. Wim Diepstraten WCND-Utrecht AT&T -GIS (NCR)

More information

CS263: Wireless Communications and Sensor Networks

CS263: Wireless Communications and Sensor Networks CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 3: Antennas, Propagation, and Spread Spectrum September 30, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Antennas and

More information

DISCONTINUED. Modulation Type Number of RF Channels 15

DISCONTINUED. Modulation Type Number of RF Channels 15 RFM Products are now Murata products. 2.4 GHz Spread Spectrum Transceiver Module Small Size, Light Weight, Built-In Antenna Sleep Current less than 3 µa FCC, Canadian IC and ETSI Certified for Unlicensed

More information

2.4 GHz GaAs MMIC Experimental Results of FQPSK and DQPSK

2.4 GHz GaAs MMIC Experimental Results of FQPSK and DQPSK ,.March 1994! Doc: IEEE P802.11-94/52 IEEE 802.11 Wireless Access Method and Physical Layer Specifications 2.4 GHz GaAs MMIC Experimental Results of FQPSK and DQPSK Rommel B. Atienza, William Y. Chan,

More information

Basic idea: divide spectrum into several 528 MHz bands.

Basic idea: divide spectrum into several 528 MHz bands. IEEE 802.15.3a Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Overview of Multi-band OFDM Basic idea: divide spectrum into several

More information

Tutorial on to 802. Outline (1)

Tutorial on to 802. Outline (1) Tutorial on 80. to 80 Prepared by Vic Hayes, Chair IEEE P80. One of the founders and chair from the beginning (September 990) Lucent Technologies Copyright 996 IEEE, All rights reserved. This contains

More information

Adoption of this document as basis for broadband wireless access PHY

Adoption of this document as basis for broadband wireless access PHY Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Proposal on modulation methods for PHY of FWA 1999-10-29 Source Jay Bao and Partha De Mitsubishi Electric ITA 571 Central

More information

IEEE C802.16d-03/23

IEEE C802.16d-03/23 0-0-0 IEEE C0.d-0/ Project IEEE 0. Broadband Wireless Access Working Group Title Profiles for WirelessMAN-OFDM and WirelessHUMAN(-OFDM) Date Submitted 0-0-0 Source(s) Re: Abstract Purpose

More information

802.11ax Design Challenges. Mani Krishnan Venkatachari

802.11ax Design Challenges. Mani Krishnan Venkatachari 802.11ax Design Challenges Mani Krishnan Venkatachari Wi-Fi: An integral part of the wireless landscape At the center of connected home Opening new frontiers for wireless connectivity Wireless Display

More information

Signal Studio for IoT

Signal Studio for IoT Signal Studio for IoT N7610C TECHNICAL OVERVIEW Create Keysight validated and performance-optimized reference signals compliant to IEEE 802.15.4 (for ZigBee), 802.15.4g (for Wi-SUN), LoRa CSS and ITU-T

More information

Understanding and Mitigating the Impact of RF Interference on Networks

Understanding and Mitigating the Impact of RF Interference on Networks Understanding and Mitigating the Impact of RF Interference on 82. Networks Ramakrishna Gummadi David Wetherall Ben Greenstein Srinivasan Seshan USC Intel Research University of Washington CMU Abstract

More information

IEEE ax / OFDMA

IEEE ax / OFDMA #WLPC 2018 PRAGUE CZECH REPUBLIC IEEE 802.11ax / OFDMA WFA CERTIFIED Wi-Fi 6 PERRY CORRELL DIR. PRODUCT MANAGEMENT 1 2018 Aerohive Networks. All Rights Reserved. IEEE 802.11ax Timeline IEEE 802.11ax Passed

More information

PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands. PSSS mode for more even chiprates, simpler filter, and 250 kbit/s in 868 MHz

PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands. PSSS mode for more even chiprates, simpler filter, and 250 kbit/s in 868 MHz Project: IEEE P802.15 Study Group for Wireless Personal Area Networks (WPANs( WPANs) Title: Date Submitted: 7th April 2005 Source: PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands Andreas

More information

UNIVERSITY OF MICHIGAN DEPARTMENT OF ELECTRICAL ENGINEERING: SYSTEMS PROJECT REPORT FOR EECS 555 DIGITAL COMMUNICATION THEORY

UNIVERSITY OF MICHIGAN DEPARTMENT OF ELECTRICAL ENGINEERING: SYSTEMS PROJECT REPORT FOR EECS 555 DIGITAL COMMUNICATION THEORY UNIVERSITY OF MICHIGAN DEPARTMENT OF ELECTRICAL ENGINEERING: SYSTEMS PROJECT REPORT FOR EECS 555 DIGITAL COMMUNICATION THEORY GUIDED BY PROF. WAYNE STARK ANALYSIS OF PHYSICAL LAYER PROPOSALS FOR IEEE P802.15a

More information

ISO/IEC INTERNATIONAL STANDARD

ISO/IEC INTERNATIONAL STANDARD INTERNATIONAL STANDARD This is a preview - click here to buy the full publication ISO/IEC 24769-5 First edition 2012-12-15 Corrected version 2012-12-15 Information technology Automatic identification and

More information

LR1276 Module Datasheet V1.0

LR1276 Module Datasheet V1.0 LR1276 Module Datasheet V1.0 Features LoRaTM Modem 168 db maximum link budget +20 dbm - 100 mw constant RF output vs. V supply +14 dbm high efficiency PA Programmable bit rate up to 300 kbps High sensitivity:

More information

IEEE P Wireless Personal Area Networks

IEEE P Wireless Personal Area Networks IEEE P802.15 Wireless Personal Area Networks Project Title Date Submitted IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Technical Editor Contribution of IEEE Formatted Draft Text

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [TI Physical Layer Proposal] Date Submitted: [05 May, 2003] Source: [Anuj Batra, Jaiganesh Balakrishnan,

More information

Chapter XIII Short Range Wireless Devices - Building a global license-free system at frequencies below 1GHz By Austin Harney and Conor O Mahony

Chapter XIII Short Range Wireless Devices - Building a global license-free system at frequencies below 1GHz By Austin Harney and Conor O Mahony Chapter XIII Short Range Wireless Devices - Building a global license-free system at frequencies below 1GHz By Austin Harney and Conor O Mahony Introduction: The term Short Range Device (SRD) is intended

More information

Part A RADIO SPECIFICATION

Part A RADIO SPECIFICATION Part A RADIO SPECIFICATION BLUETOOTH SPECIFICATION Version 1.0 B page 17 of 1082 CONTENTS 1 Scope...18 2 Frequency Bands and Channel Arrangement...19 3 Transmitter Characteristics...20 3.1 Modulation

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P80.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [UWB Direct Chaotic Communications Technology] Date Submitted: [15 November, 004] Source: [(1) Y. Kim, C.

More information

Simple Algorithm in (older) Selection Diversity. Receiver Diversity Can we Do Better? Receiver Diversity Optimization.

Simple Algorithm in (older) Selection Diversity. Receiver Diversity Can we Do Better? Receiver Diversity Optimization. 18-452/18-750 Wireless Networks and Applications Lecture 6: Physical Layer Diversity and Coding Peter Steenkiste Carnegie Mellon University Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17/

More information

802.11ad - WLAN at 60 GHz A Technology Introduction White Paper

802.11ad - WLAN at 60 GHz A Technology Introduction White Paper A Technology Introduction White Paper Data rates in the range of several Gigabit/s are needed to transmit signals like uncompressed video signals. Amendment 802.11ad to the WLAN standard defines the MAC

More information

License Exempt Spectrum and Advanced Technologies. Marianna Goldhammer Director Strategic Technologies

License Exempt Spectrum and Advanced Technologies. Marianna Goldhammer Director Strategic Technologies License Exempt Spectrum and Advanced Technologies Marianna Goldhammer Director Strategic Technologies Contents BWA Market trends Power & Spectral Ingredients for Successful BWA Deployments Are regulations

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Pulsed DS-UWB with optional CS-UWB for Various Applications] Date Submitted: [January 2005] Source: [Huan-Bang

More information

AT02598:Migration from AT86RF212 to AT86RF212B. Description. Features. Atmel MCU Wireless APPLICATION NOTE

AT02598:Migration from AT86RF212 to AT86RF212B. Description. Features. Atmel MCU Wireless APPLICATION NOTE Atmel MCU Wireless AT02598:Migration from AT86RF212 to AT86RF212B APPLICATION NOTE Description This application note assists the users of Atmel Sub-GHz transceiver, AT86RF212 in converting designs to Atmel

More information

IEEE P Wireless Access Method and Physical Layer Specification

IEEE P Wireless Access Method and Physical Layer Specification doc: IEEE P802.11 93/5 IEEE P802.11 Wireless Access Method and Physical Layer Specification Comparison between 3-channel FDMA and CDMA Direct Sequence Spread Spectrum System. Jan Boer, Rajeev Krishnamoorthy

More information

802.11b White Paper. Table of Contents. VOCAL Technologies, Ltd. Home page

802.11b White Paper. Table of Contents. VOCAL Technologies, Ltd. Home page VOCAL Technologies, Ltd. Home age 802.b White Paer Table of Contents Page. 802.b Glossary... 2 2. Introduction to 802.b... 3 3. 802.b Overview... 6 4. CCK used in 802.b... 7 5. Walsh and Comlementary Codes

More information

Getting Started Guide

Getting Started Guide MaxEye IEEE 0.15.4 UWB Measurement Suite Version 1.0.0 Getting Started Guide 1 Table of Contents 1. Introduction... 3. Installed File Location... 3 3. Programming Examples... 4 3.1. 0.15.4 UWB Signal Generation...

More information

Nomadic Communications n/ac: MIMO and Space Diversity

Nomadic Communications n/ac: MIMO and Space Diversity Nomadic Communications 802.11n/ac: MIMO and Space Diversity Renato Lo Cigno ANS Group locigno@disi.unitn.it http://disi.unitn.it/locigno/teaching-duties/nomadic-communications CopyRight Quest opera è protetta

More information

AN ABSTRACT OF THE THESIS OF

AN ABSTRACT OF THE THESIS OF AN ABSTRACT OF THE THESIS OF David H. Buck for the degree of Master of Science in Electrical and Computer Engineering presented on May 28, 1999. Title: Data Rate Improvements for the IEEE 802.11 Wireless

More information

CH 5. Air Interface of the IS-95A CDMA System

CH 5. Air Interface of the IS-95A CDMA System CH 5. Air Interface of the IS-95A CDMA System 1 Contents Summary of IS-95A Physical Layer Parameters Forward Link Structure Pilot, Sync, Paging, and Traffic Channels Channel Coding, Interleaving, Data

More information

Wireless Personal Area Networks

Wireless Personal Area Networks 1 IEEE P802.15 Wireless Personal Area Networks Project Title IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Samsung physical layer proposal Date Submitted Source Re: 31 Kiran Bynam,

More information

RM24100A. *Maximum transmit power output levels and local radio frequency regulator bodies must be obeyed in the country of operation.

RM24100A. *Maximum transmit power output levels and local radio frequency regulator bodies must be obeyed in the country of operation. RM24100A 2.4GHz 100mW RS232 / RS485 / RS422 DSSS Radio Modem (IEEE 802.15.4 compliant) Operating Manual English 1.02 Introduction The RM24100A radio modem acts as a wireless serial cable replacement and

More information

A Guide. Wireless Network Library Ultra Wideband (UWB)

A Guide. Wireless Network Library Ultra Wideband (UWB) A Guide to the Wireless Network Library Ultra Wideband () Conforming to IEEE P802.15-02/368r5-SG3a IEEE P802.15-3a/541r1 IEEE P802.15-04/0137r3 IEEE P802.15.3/D15 SystemView by ELANIX Copyright 1994-2005,

More information

Ilenia Tinnirello. Giuseppe Bianchi, Ilenia Tinnirello

Ilenia Tinnirello. Giuseppe Bianchi, Ilenia Tinnirello Ilenia Tinnirello Ilenia.tinnirello@tti.unipa.it WaveLAN (AT&T)) HomeRF (Proxim)!" # $ $% & ' (!! ) & " *" *+ ), -. */ 0 1 &! ( 2 1 and 2 Mbps operation 3 * " & ( Multiple Physical Layers Two operative

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [A Modified Performance Evaluation Scheme for Computer Simulation ] Date Submitted: [November 15,

More information

Experimental and Theoretical Evaluation of Interference Characteristics between 2.4-GHz ISM-band Wireless LANs

Experimental and Theoretical Evaluation of Interference Characteristics between 2.4-GHz ISM-band Wireless LANs Experimental and Theoretical Evaluation of Interference Characteristics between 2.4-GHz ISM-band Wireless LANs Kazuhiro Takaya, Yuji Maeda, and Nobuo Kuwabara NTT Multimedia Networks Laboratories 9-11

More information

IEEE C802.16d-03/24r0. IEEE Broadband Wireless Access Working Group <

IEEE C802.16d-03/24r0. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group WirelessMAN-SCa Errata and System Profiles 2003-03-07 Source(s) Bob Nelson MacPhy Modems Inc. 1104

More information

Multi-Band OFDM: Achieving High Speed Wireless Communications. Dr. Anuj Batra Member Group Technical Staff DSP Solutions R&D Center Texas Instruments

Multi-Band OFDM: Achieving High Speed Wireless Communications. Dr. Anuj Batra Member Group Technical Staff DSP Solutions R&D Center Texas Instruments Multi- OFDM: Achieving High Speed Wireless Communications Dr. Anuj Batra Member Group Technical Staff DSP Solutions R&D Center Texas Instruments August 22, 2004 Acknowledgements We would like to thank

More information

Signal Studio for WLAN a/b/g/j/p/n/ac/ah/ax N7617C

Signal Studio for WLAN a/b/g/j/p/n/ac/ah/ax N7617C Signal Studio for WLAN 802.11a/b/g/j/p/n/ac/ah/ax N7617C TECHNICAL OVERVIEW Create Keysight validated and performance optimized reference signals compliant with the IEEE 802.11a/b/g/j/p/n/ac/ah/ax standards

More information

DISCONTINUED. Modulation Type Number of RF Channels 15

DISCONTINUED. Modulation Type Number of RF Channels 15 RFM products are now Murata Products 2.4 GHz Spread Spectrum Transceiver Module Small Size, Light Weight, Low Cost Sleep Current less than 3 µa FCC, Canadian IC and ETSI Certified for Unlicensed Operation

More information

Industrial-grade, high-power n a/b/g wifi 3x3 mini-pci module w/esd and Surge Protection, AR9160-BC1B+AR9106. Model: DNMA-H5

Industrial-grade, high-power n a/b/g wifi 3x3 mini-pci module w/esd and Surge Protection, AR9160-BC1B+AR9106. Model: DNMA-H5 Industrial-grade, high-power 802.11n a/b/g wifi 3x3 mini-pci module w/esd and Surge Protection, AR9160-BC1B+AR9106 Model: DNMA-H5 DNMA-H5 is an industrial-grade, high-power 802.11n a/b/g wifi 3x3 mini-pci

More information

NOTICE OF USE AND DISCLOSURE Copyright LoRa Alliance, Inc. (2017). All Rights Reserved.

NOTICE OF USE AND DISCLOSURE Copyright LoRa Alliance, Inc. (2017). All Rights Reserved. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 LoRaWAN 1.1 Regional Parameters Copyright 2017 LoRa Alliance, Inc. All rights reserved. NOTICE OF USE

More information

RM24100D. Introduction. Features. 2.4GHz 100mW RS232 / RS485 / RS422 DSSS Radio Modem (IEEE compliant) Operating Manual English 1.

RM24100D. Introduction. Features. 2.4GHz 100mW RS232 / RS485 / RS422 DSSS Radio Modem (IEEE compliant) Operating Manual English 1. RM24100D 2.4GHz 100mW RS232 / RS485 / RS422 DSSS Radio Modem (IEEE 802.15.4 compliant) Operating Manual English 1.09 Introduction The RM24100D radio modem acts as a wireless serial cable replacement and

More information

Major Leaps in Evolution of IEEE WLAN Technologies

Major Leaps in Evolution of IEEE WLAN Technologies Major Leaps in Evolution of IEEE 802.11 WLAN Technologies Thomas A. KNEIDEL Rohde & Schwarz Product Management Mobile Radio Tester WLAN Mayor Player in Wireless Communications Wearables Smart Homes Smart

More information

Programming the HSP3824

Programming the HSP3824 Harris Semiconductor No. AN9616 August 1996 Harris Wireless Programming the HSP3824 Author: John Fakatselis Introduction TM This application note serves as a firmware designers manual for the PRISM HSP3824

More information

CIS 632 / EEC 687 Mobile Computing. Mobile Communications (for Dummies) Chansu Yu. Contents. Modulation Propagation Spread spectrum

CIS 632 / EEC 687 Mobile Computing. Mobile Communications (for Dummies) Chansu Yu. Contents. Modulation Propagation Spread spectrum CIS 632 / EEC 687 Mobile Computing Mobile Communications (for Dummies) Chansu Yu Contents Modulation Propagation Spread spectrum 2 1 Digital Communication 1 0 digital signal t Want to transform to since

More information

IEEE P Wireless Personal Area Networks

IEEE P Wireless Personal Area Networks IEEE P0.-0-00-0-00c Project Title Date Submitted Source Re: [] Abstract Purpose Notice Release IEEE P0. Wireless Personal Area Networks IEEE P0. Working Group for Wireless Personal Area Networks (WPANs)

More information

1 UAT Test Procedure and Report

1 UAT Test Procedure and Report 1 UAT Test Procedure and Report These tests are performed to ensure that the UAT Transmitter will comply with the equipment performance tests during and subsequent to all normal standard operating conditions

More information