Efficient Er:YAG lasers at nm, resonantly pumped with narrow bandwidth diode laser modules at 1532 nm, for methane detection

Size: px
Start display at page:

Download "Efficient Er:YAG lasers at nm, resonantly pumped with narrow bandwidth diode laser modules at 1532 nm, for methane detection"

Transcription

1 Efficient Er:YAG lasers at nm, resonantly pumped with narrow bandwidth diode laser modules at 1532 nm, for methane detection H. Fritsche* a, O. Lux a, C. Schuett a, S. Heinemann b, W. Gries b, H. J. Eichler a a Institute for Optics and Atomic Physics, Technische Universität von Berlin, Berlin ; b DirectPhotonics Industries GmbH, Max-Planck-Str. 3, Berlin Germany ABSTRACT Eye safe laser operation at nm (6077 cm -1 ) of resonantly pumped Er:YAG laser systems is demonstrated in cw and Q-switched operation. High brightness diode laser modules emitting at 1532 nm have been utilized as pump sources providing an absorption efficiency of up to 96%. This leads to an overall efficiency of the Er:YAG laser of 30%. For cw operation, 9 W output power is possible at pump power of 30 W while Q-switching results in generation of more than 7 mj pulses with duration of 60 ns and repetition rate of 500 Hz. The Er:YAG laser systems have been applied for methane detection measurements demonstrating their feasibility for CH 4 -DIAL applications Keywords: resonant pumping, Er:YAG, eye safe, narrow linewidth diode laser, high brightness pump source, methane detection 1. INTRODUCTION Resonant pumping of Er:YAG is rapidly emerging as one promising way to generate high power room temperature lasers operating around 1.6 µm. The resonant pumping process of Er:YAG involves pump sources emitting at 1455 nm, 1470 nm or 1532 nm wavelength. Apart from fiber lasers, high brightness diode lasers are suitable in order to realize Er:YAG lasers with high quantum efficiency. In addition, for long propagation in free space with potential for human exposure, both high eye safety and low absorption rates are crucial. For erbium-doped materials lasing at 2.9 µm, it is very difficult to achieve high pump efficiencies from the 4 I 15/2 4 I 11/2 transition due to competing up conversion processes. The resonant pumping process is characterized by high quantum efficiency, which can be achieved at pump wavelengths around 1.5 µm. A quasi-two level laser process involving the 4 I 13/2 4 I 15/2 levels lead to laser radiation at 1617 nm or 1645 nm..fovw áw Energy [cm-1] yntntppt VOppD00 0J aoñ tv0000 tv0 1532nm 1469nm nm 975nm 1645nm t 1617nm 0000go NNWWpp ÑVWiVWN Fig. 1 Laser levels of Er:YAG laser with lasing wavelength at 1.6 µm and 2.9 µm *fritsche@physik.tu-berlin.de; phone: ; fax: ; Solid State Lasers XXII: Technology and Devices, edited by W. Andrew Clarkson, Ramesh Shori, Proc. of SPIE Vol. 8599, 85990G 2013 SPIE CCC code: X/13/$18 doi: / Proc. of SPIE Vol G-1

2 These two transitions are pumped with the same wavelength and compete with each other. For wavelength selection an etalon or volume Bragg grating can be used, exploitation of the gain cross-section is another option. The gain-cross section progresses differently for both wavelengths whereby 1617 nm becomes the dominant wavelength at an inversion parameter of about 0.3[1]. By varying the losses within the resonator the lasing wavelength can be adjusted which allows detection of CO 2 at 1617 nm and methane (CH 4 ) at 1645 nm with the same setup within a lidar system. This laser process is only affected by up conversion and excited state absorption (ESA), which can be observed by green light emission of the crystal. Because of that, the erbium concentration has to be very low (below 1 at%). Another benefit of Er:YAG is the long lifetime of the upper level which is about 7 ms. Due to that long lifetime Er:YAG is suitable for cwpumping to achieve high energy in q-switched operation instead of using a pulsed pump source as it is common. Already in 1972, K.White and S.Schleusener suggested Er:YAG lasers at 1.6 µm for methane detection[2], however resonant pumping was not yet possible with GaAs-based laser. With the development of high power InP-based laser diodes around 1.5 µm, a new way for pumping erbium lasers has now become available. There are now several diode lasers available at wavelength from 1450 nm up to 1532 nm which can be used for resonant pumping whereas the pumping efficiency is increased with the use of longer pump wavelength, on the other hand, the pump levels become more narrow with longer wavelength. 2.1 Narrow bandwidth diodes lasers as pump source 2. EXPERIMENT For the resonant pumping process a very stable narrow bandwidth pump source is needed to achieve high pump efficiencies. Common laser diode spectra show a FWHM of more than 5 nm and a center wavelength shift, depending on pump current and diode temperature. For most classic solid state lasers this is good enough, but for the resonantly pumped Er:YAG lasers that means a loss of pump power due to the narrow pump levels of the Er:YAG. All the power, which is not deponated in the pump levels is lost through up-conversion, ESA and heat. In order to increase the pump efficiency it is also possible to pump with 1532 nm instead of 1455 nm because of the higher quantum efficiency. On the other hand the 1532 nm band is narrower and a pump source with a very stable center wavelength and narrow bandwidth is needed for effective pumping. In the ultra-high brightness diode laser modules from DirectPhotonics Industries GmbH (DPI) a new way of building up high brightness power diode lasers with narrow bandwidth has been realized and tested for resonantly pumped Er:YAG lasers. 12 single emitter broad strip laser diodes are stacked in a staircase arrangement. Each single emitter has a single fast axis collimation lens which is individually aligned for achieving best possible brightness. These single emitter laser diodes are then optically stacked via a slow axis collimator (SAC). This SAC consists of a monolithic copper block with 12 curved facets forming all laser beams. Polarization multiplexing is deployed prior to focusing into a 100 µm fiber. By using this free space collimation, the beam profile is only limited by the size of the emitting area of the diodes. Currently, the modules consist of 100 µm broad stripe diodes, so that coupling into a 100 µm fiber, 0.15 NA can be achieved, which results in a beam parameter product of 7.5 mm mrad.[3] 1,0 = 1532,33 nm 0,8 C 0,6 0,4 FWHM = 0.17 nm 0,2 0, wavelength / nm Fig. 2 Spectrum of a DirectPhotonics DirectPump module at Proc. of SPIE Vol G-2

3 Wavelength stabilization is another key feature and is realized by one single volume Bragg grating (VBG) located behind the SAC which provides an external feedback to all single emitter lasers at the same time by coupling a small percentage back into the diodes. This way all emitters are locked to one specific wavelength (see Fig. 2). For the experiments we used a DPI DirectPump P LEF laser module. That laser emitted at a wavelength of and FWHM of 0.17 nm. Long term measurements showed a frequency stability of about 230 MHz over one hour (see Fig. 3 left). Because of the VBG wavelength stabilization it needs only to be passively water cooled, the wavelength is nearly independent on current changes and measured to only 0.01 nm / W (see Fig. 3 right) mean wavelength: nm frequency stability: 230 MHz linewidth: 0.17 nm shift of central wavelength = 0,01 nm / W E c wavelength E Ç rn ca1 t L J linewidth _ 200 > , m 3 _ -- f-g r I 1 I I I time / min output power / W Fig. 3 long term stability of DPI DirectPump was observed with 230 MHz (left side) and center wavelength shift by increasing output power (right side) with only 0.01 nm / W 2.2 Er:YAG lasers operating at 1645 nm For first experiments with the narrow bandwidth pumping we used a 12 W DPI laser module for pumping a 0.5 at% doped 30 mm long Er:YAG crystal in a short linear cavity with a curved in coupling mirror (radius of curvature R = mm). We observed an output power of 2.5 W at a pump power of 12.5 W while the laser threshold was observed to be 5.5 W. The slope efficiency was highest, η = 42%, with out coupling mirror reflectivity around 80% while the whole resonator has an overall length of only 10 cm. Another benefit of lower doped Er:YAG crystals is the absence of saturation effects within the possible pump power range. The output wavelength was measured to be 1646 nm, linewidth 0.02 nm (2.2 GHz) and the wavelength stability 113 MHz, respectively (see Fig. 4). 1646, ,040 - = linewidth < 20 pm 1646,035 - Su = 113 MHz 1646, , , , r time / s Fig. 4 wavelength stability measurement of the free running 0.5 at% Er:YAG laser By utilizing an out coupling mirror which was only one side coated it acts already as etalon and prevented lasing at 1617 nm even with resonator losses over 0.3. Independent of the out coupling reflectivity the output wavelength shifted stable to nm. For generating 1617 nm lasing output, different techniques of wavelength tuning are required. Proc. of SPIE Vol G-3

4 --Moc=93%;n:17% --Moc=85%; : 42% Alec =75%;n:42% Moc = 60 % ; n:18% Fig. 5 : setup of the linear resonator with an overall length of only 100 mm; right: resulting output power at 1645 nm In order to achieve pulsed mode operation we extended the resonator while preserving the pump beam volume inside the crystal. For that we built up a L-shaped resonator and extended the radius of curvature to R = mm. The slope efficiency is η = 38 % and the laser threshold was increased. The longer resonator design offered the possibility for implementing a q-switch and wavelength control elements by conserved performance. Fig. 6 : setup of the L-shaped resonator with an overall length of 200 mm; right: resulting output power at 1645 nm The long upper level life time of approx. 7 ms makes Er:YAG laser very suitable for q-switched mode operation with cw pump sources. We used an Alphalas LiNbO 3 pockels cell in Brewster cut for q-switching, placed in in front of the curved mirror in an L-shaped resonator (see Fig. 7 left). A maximum energy of 6.7 mj and a pulse width of 60 ns could be observed (see Fig. 7 right) at a pump power of 11.5 W. The repetition rate can be set up to 500 Hz without any changes in the resulting pulse width. Implementation of the pockels cell leads to additional losses and a wavelength shift to nm occurred nm R = mm Pump Laser Q-Switch f, f, Er:YAG I 1645 nm> Mc Moc 7 E_ arni a> m, t- o. f =50Hz T=60ns r /7/ i pump power / W Fig. 7 left: setup of the L-shaped resonator for cw and q-switched operation; right: resulting output energy in q-switched mode using a pockels cell. Proc. of SPIE Vol G-4

5 This setup is very close to the specifications needed for methane detection [4] and LIDAR applications. Methane shows strong absorption lines at cm -1 ( nm) and cm -1 ( nm)[4] (see Fig. 10). For tuning the wavelength to one of these lines an etalon was inserted in the cavity. By rotating the etalon we could tune the laser wavelength between cm -1 and cm -1, even cm -1 ( nm), which coincides with strong CO 2 absorption lines, could be realized. Using a etalon with 3 mm thickness increased the linewidth to 0.01 cm -1 (0.002 nm) and frequency stability to 39 MHz (see Fig. 8 left) Another small wavelength shift can be realized by temperature control of the Er:YAG crystal (see Fig 8 right). These two features together allow a very fast, stable and precise wavelength switching which is very use full for DIAL applications. Fig. 8 left: by utilizing an etalon the linewidth was increases to less than 2 pm while the long term wavelength stability increased to less than 40 MHz. right: by additional control of the of the Er:YAG crystal temperature the output wavelength can be adjusted in the pm region. 2.3 Application The actual approach for space born methane detection mission aims at the development of injection-seeded optical parametric oscillator/amplifier (OPO/OPA) systems which are pumped by high power Nd:YAG master oscillator power amplifier systems [5]. Due to the frequency conversion and amplification steps, these systems are rather complex and sensitive which complicates their application on satellites. Compared to that an Er:YAG laser is much more compact and easier to handle. The potential of the developed cw and pulsed Er:YAG laser sources in terms of methane LIDAR applications was evaluated by absorption measurements which were performed with the setup depicted in Fig. 9. this purpose, the collimated output radiation of the Er:YAG laser is separated into three portions by two beam splitters (BS).While the first part is guided to an InGaAs photodiode (PD1) which measures a reference intensity, the second part is coupled into a wavemeter to monitor the exact radiation frequency. The third beam portion is focused into a multi-pass absorption cell (New Focus, model 5612) by a biconvex lens with a focal length of 500 mm. A detailed description is given in [6]. wavemeter compact piezo gauge 0 Pump Laser 1532 nm vacuum system (p 2 10'6 mbar) Fig. 9 Schematic diagram of the experimental setup for methane absorption measurements Proc. of SPIE Vol G-5

6 The optical distance between the first and second photo diode was measured to be 170 ns, so this setup could be easily aligned with the 60 ns short pulses of the Er:YAG laser. After successful alignment also cw-measurments could be done. The multi-pass cell is equipped with two gas outlets. While one is connected to a compact piezo gauge (Balzers AG, model APR 260) to measure the internal pressure of the cell, the other one is attached to a CH 4 reservoir as well as a vacuum system to control an internal pressure in the low vacuum range (~10-1 mbar). In the wavelength region of 1.6 µm we can find several absorption lines we can reach with the tuned Er:YAG lasers (see fig. 10). Fig. 10 simulation of transmission spectra of methane around nm for room temperature, plotted for various pressures.... (grey curves) based,... on the HITRAN database[7]. For the experiment we evacuated the multi-pass cell in the first step and afterwards applied low methane pressures up to 300 mbar and measured the intensity of the transmitted signal while monitoring the wavelength using a wavemeter (HighFinesse-Ångstrom, model WS6-IR). Without setup we can use two different types of measurements, one is scanning the methane absorption line at constant pressure. For higher pressures we can observe, according to the theory, the reduction of the transmittance through the multi pass cell while tuning the wavelength of the Er:YAG laser over a methane absorption line. Here is the feasibility demonstrated at a constant pressure of about 30 mbar methane and a strong but small absorption line at nm (see fig. 11, compare fig. 10). That absorption line is very narrow but also the broad absorption lines at longer wavelength can already be observed. 1,00-0,95-0,90 - E. 0,85-0,80-0,75-0,70-0,65-0, ,1 6078,2 6078,3 6078,4 6078,5 6078,6 wavenumbers / cm Fig. 11 measurement of a fast scan over a methane absorption line, at a methane pressure of about 30 mbar Proc. of SPIE Vol G-6

7 Another measurement is to maintain a stable Er:YAG wavelength and observe the absorption change by varying the methane pressure inside the cell. In our setup pressures from 1 mbar (full transmission) to 350 mbar (zero transmission at an absorption line) was successfully realized. These types of measurements do not only show the presence of methane but also concentrations at different distances can be monitored. 3. CONCULUSION AND OUTLOOK. We developed cw as well as Q-switched Er:YAG lasers pumped by fiber-coupled, wavelength-stabilized diode laser modules provided by DirectPhotonics. The high power pump modules feature narrowband emission at 1532 nm with a linewidth of only 0.17 nm. At a pump power of 12.5 W we measured an output power of the Er:YAG System of 2.5 W, with the new 30 W pump module with increased wavelength stability we can measure the absorption efficiency to be 96% which allow a cw output power of the Er:YAG laser for more than 9 W, corresponding to an overall efficiency of 30%. Utilization of an electro-optic modulator enables pulsed operation at a repetition rate of 500 Hz with pulse energy of about 6.7 mj and pulse duration of 60 ns. Due to the high wavelength stability of the pump lasers, the free-running Er:YAG laser shows stable operation at nm with long-term fluctuations of less than 113 MHz while wavelength tuning can be obtained by employing intra-cavity etalons which also increases wavelength fluctuations to less than 39 MHz and linewidth of only 2 pm. The developed Er:YAG laser were applied for methane absorption measurements using a multi-pass absorption cell. Good agreement of the experimental results with theoretical simulations of the absorption characteristics demonstrated the potential of the developed Er:YAG lasers in terms of methane detection at low and high gas pressures, in the next step atomospherical DIAL experiments will follow. REFERENCES [1] Kudryashow, I., Ter-Gabrielyan, N. and Bubinsjii, M., Resonantly diode-pumped Er:YAG laser: 1470-nm vs nm CW pumping case, Proc. SPIE 7325, (2009) [2] White, K.O. and Schleusener, S.A., Coincidence of Er : YAG laser emission with methane absorption at nm, Appl. Phys. Lett. 21, 419 (1972) [3] Heinemann, S., Lewis, B., Regard, B. and Schmidt, T., Single emitter based diode lasers with high brightness high power and narrow linewidth, Proc. SPIE 7918, 79180M (February 21, 2011) [4] Kiemle, C., Quatrevalet, M., Ehret, G., Amediek, A., Fix, A. and Wirth, M., Sensitivity studies for a space-based methane lidar mission, Atmos. Meas. Tech. 4, (2011) [5] Fix, a., Büdenbender, C., Wirth, M., Quatrevalet, M., Amediek, A., Kiemle, C. and Ehret, G., Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing for CO2 and CH4, Proc. SPIE 8182, (2011) [6] McManus, J., Kebabian, P. and Zahniser, M., Astigmatic mirror multipass absorption cells for longpass-length spectroscopy, Appl. Opt. 34, (1995) [7] Rothman, L., Gordon, I., Barbe, A., Benner, D. C., Bernath, P., Birk, M., Boudon, V., Brown, L., Campargue, A., Champion, J.-P., Chance, K., Coudert, L., Dana, V., Devi, V. M., Fally, S., Flaud, J.-M., Gamache, R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W., Mandin, J.-Y., Massie, S., Mikhailenko, S., Miller, C., Moazzen-Ahmadi, N., Naumenko, O., Nikitin, A., Orphal, J., Perevalov, V., Perrin, A., Predoi- Cross, A., Rinsland, C., Rotger, M., Šimečková, M., Smith, M., Sung, K., Tashkun, S., Tennyson, J., Toth, R., Vandaele, A. and Auwera, J. V. et- al., The HITRAN 2008 molecular spectroscopic database, Journal of Quantitative Spectroscopy & Radiative Transfer 110 (9-10), (2009). Proc. of SPIE Vol G-7

1. INTRODUCTION ABSTRACT

1. INTRODUCTION ABSTRACT Generating a high brightness multi-kilowatt laser by dense spectral combination of VBG stabilized single emitter laser diodes H. Fritsche a*, R. Koch a, B. Krusche a, F. Ferrario a, A. Grohe a, S. Pflueger

More information

Q-switched resonantly diode-pumped Er:YAG laser

Q-switched resonantly diode-pumped Er:YAG laser Q-switched resonantly diode-pumped Er:YAG laser Igor Kudryashov a) and Alexei Katsnelson Princeton Lightwave Inc., 2555 US Route 130, Cranbury, New Jersey, 08512 ABSTRACT In this work, resonant diode pumping

More information

High-power semiconductor lasers for applications requiring GHz linewidth source

High-power semiconductor lasers for applications requiring GHz linewidth source High-power semiconductor lasers for applications requiring GHz linewidth source Ivan Divliansky* a, Vadim Smirnov b, George Venus a, Alex Gourevitch a, Leonid Glebov a a CREOL/The College of Optics and

More information

A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator

A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator Utah State University DigitalCommons@USU Space Dynamics Lab Publications Space Dynamics Lab 1-1-2011 A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator Robert J. Foltynowicz

More information

PUBLISHED VERSION.

PUBLISHED VERSION. PUBLISHED VERSION Chang, Wei-Han; Simakov, Nikita; Hosken, David John; Munch, Jesper; Ottaway, David John; Veitch, Peter John. Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645

More information

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Ring cavity tunable fiber laser with external transversely chirped Bragg grating Ring cavity tunable fiber laser with external transversely chirped Bragg grating A. Ryasnyanskiy, V. Smirnov, L. Glebova, O. Mokhun, E. Rotari, A. Glebov and L. Glebov 2 OptiGrate, 562 South Econ Circle,

More information

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG C. Schnitzler a, S. Hambuecker a, O. Ruebenach a, V. Sinhoff a, G. Steckman b, L. West b, C. Wessling c, D. Hoffmann

More information

CO 2 Remote Detection Using a 2-µm DIAL Instrument

CO 2 Remote Detection Using a 2-µm DIAL Instrument CO 2 Remote Detection Using a 2-µm DIAL Instrument Erwan Cadiou 1,2, Dominique Mammez 1,2, Jean-Baptiste Dherbecourt 1,, Guillaume Gorju 1, Myriam Raybaut 1, Jean-Michel Melkonian 1, Antoine Godard 1,

More information

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E.

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E. QPC Lasers, Inc. 2007 SPIE Photonics West Paper: Mon Jan 22, 2007, 1:20 pm, LASE Conference 6456, Session 3 High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh,

More information

High power VCSEL array pumped Q-switched Nd:YAG lasers

High power VCSEL array pumped Q-switched Nd:YAG lasers High power array pumped Q-switched Nd:YAG lasers Yihan Xiong, Robert Van Leeuwen, Laurence S. Watkins, Jean-Francois Seurin, Guoyang Xu, Alexander Miglo, Qing Wang, and Chuni Ghosh Princeton Optronics,

More information

DEVELOPMENT OF CW AND Q-SWITCHED DIODE PUMPED ND: YVO 4 LASER

DEVELOPMENT OF CW AND Q-SWITCHED DIODE PUMPED ND: YVO 4 LASER DEVELOPMENT OF CW AND Q-SWITCHED DIODE PUMPED ND: YVO 4 LASER Gagan Thakkar 1, Vatsal Rustagi 2 1 Applied Physics, 2 Production and Industrial Engineering, Delhi Technological University, New Delhi (India)

More information

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION Beam Combination of Multiple Vertical External Cavity Surface Emitting Lasers via Volume Bragg Gratings Chunte A. Lu* a, William P. Roach a, Genesh Balakrishnan b, Alexander R. Albrecht b, Jerome V. Moloney

More information

Quantum-Well Semiconductor Saturable Absorber Mirror

Quantum-Well Semiconductor Saturable Absorber Mirror Chapter 3 Quantum-Well Semiconductor Saturable Absorber Mirror The shallow modulation depth of quantum-dot saturable absorber is unfavorable to increasing pulse energy and peak power of Q-switched laser.

More information

High Power Thin Disk Lasers. Dr. Adolf Giesen. German Aerospace Center. Institute of Technical Physics. Folie 1. Institute of Technical Physics

High Power Thin Disk Lasers. Dr. Adolf Giesen. German Aerospace Center. Institute of Technical Physics. Folie 1. Institute of Technical Physics High Power Thin Disk Lasers Dr. Adolf Giesen German Aerospace Center Folie 1 Research Topics - Laser sources and nonlinear optics Speiser Beam control and optical diagnostics Riede Atm. propagation and

More information

Wavelength stabilized multi-kw diode laser systems

Wavelength stabilized multi-kw diode laser systems Wavelength stabilized multi-kw diode laser systems Bernd Köhler *, Andreas Unger, Tobias Kindervater, Simon Drovs, Paul Wolf, Ralf Hubrich, Anna Beczkowiak, Stefan Auch, Holger Müntz, Jens Biesenbach DILAS

More information

Single frequency MOPA system with near diffraction limited beam

Single frequency MOPA system with near diffraction limited beam Single frequency MOPA system with near diffraction limited beam quality D. Chuchumishev, A. Gaydardzhiev, A. Trifonov, I. Buchvarov Abstract Near diffraction limited pulses of a single-frequency and passively

More information

Efficient 1.5 W CW and 9 mj quasi-cw TEM 00 mode operation of a compact diode-laser-pumped 2.94-μm Er:YAG laser

Efficient 1.5 W CW and 9 mj quasi-cw TEM 00 mode operation of a compact diode-laser-pumped 2.94-μm Er:YAG laser Efficient 1.5 W CW and 9 mj quasi-cw TEM 00 mode operation of a compact diode-laser-pumped 2.94-μm Er:YAG laser John Gary Sousa* a, David Welford b and Josh Foster a a Sheaumann Laser, Inc., 45 Bartlett

More information

R. J. Jones Optical Sciences OPTI 511L Fall 2017

R. J. Jones Optical Sciences OPTI 511L Fall 2017 R. J. Jones Optical Sciences OPTI 511L Fall 2017 Semiconductor Lasers (2 weeks) Semiconductor (diode) lasers are by far the most widely used lasers today. Their small size and properties of the light output

More information

A novel tunable diode laser using volume holographic gratings

A novel tunable diode laser using volume holographic gratings A novel tunable diode laser using volume holographic gratings Christophe Moser *, Lawrence Ho and Frank Havermeyer Ondax, Inc. 85 E. Duarte Road, Monrovia, CA 9116, USA ABSTRACT We have developed a self-aligned

More information

Narrow line diode laser stacks for DPAL pumping

Narrow line diode laser stacks for DPAL pumping Narrow line diode laser stacks for DPAL pumping Tobias Koenning David Irwin, Dean Stapleton, Rajiv Pandey, Tina Guiney, Steve Patterson DILAS Diode Laser Inc. Joerg Neukum Outline Company overview Standard

More information

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W Joachim Sacher, Richard Knispel, Sandra Stry Sacher Lasertechnik GmbH, Hannah Arendt Str. 3-7, D-3537 Marburg,

More information

Conductively cooled 1-kHz single-frequency Nd:YAG laser for remote sensing

Conductively cooled 1-kHz single-frequency Nd:YAG laser for remote sensing Conductively cooled 1-kHz single-frequency Nd:YAG laser for remote sensing Juntao Wang ( ), Ren Zhu (ý ), Jun Zhou ( ), Huaguo Zang ( ÙÁ), Xiaolei Zhu (ý ), and Weibiao Chen (í Á) Shanghai Key Laboratory

More information

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models PGx1 PGx3 PGx11 PT2 Transform Limited Broadly Tunable Picosecond OPA optical parametric devices employ advanced design concepts in order to produce broadly tunable picosecond pulses with nearly Fourier-transform

More information

Eye safe solid state lasers for remote sensing and coherent laser radar

Eye safe solid state lasers for remote sensing and coherent laser radar Eye safe solid state lasers for remote sensing and coherent laser radar Jesper Munch, Matthew Heintze, Murray Hamilton, Sean Manning, Y. Mao, Damien Mudge and Peter Veitch Department of Physics The University

More information

UNMATCHED OUTPUT POWER AND TUNING RANGE

UNMATCHED OUTPUT POWER AND TUNING RANGE ARGOS MODEL 2400 SF SERIES TUNABLE SINGLE-FREQUENCY MID-INFRARED SPECTROSCOPIC SOURCE UNMATCHED OUTPUT POWER AND TUNING RANGE One of Lockheed Martin s innovative laser solutions, Argos TM Model 2400 is

More information

High Average Power, High Repetition Rate Side-Pumped Nd:YVO 4 Slab Laser

High Average Power, High Repetition Rate Side-Pumped Nd:YVO 4 Slab Laser High Average Power, High Repetition Rate Side-Pumped Nd:YVO Slab Laser Kevin J. Snell and Dicky Lee Q-Peak Incorporated 135 South Rd., Bedford, MA 173 (71) 75-9535 FAX (71) 75-97 e-mail: ksnell@qpeak.com,

More information

Diode laser modules based on new developments in tapered and broad area diode laser bars

Diode laser modules based on new developments in tapered and broad area diode laser bars Diode laser modules based on new developments in tapered and broad area diode laser bars Bernd Köhler *a, Sandra Ahlert a, Thomas Brand a, Matthias Haag a, Heiko Kissel a, Gabriele Seibold a, Michael Stoiber

More information

Scalable high-power and high-brightness fiber coupled diode laser devices

Scalable high-power and high-brightness fiber coupled diode laser devices Scalable high-power and high-brightness fiber coupled diode laser devices Bernd Köhler *, Sandra Ahlert, Andreas Bayer, Heiko Kissel, Holger Müntz, Axel Noeske, Karsten Rotter, Armin Segref, Michael Stoiber,

More information

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT In this chapter, the experimental results for fine-tuning of the laser wavelength with an intracavity liquid crystal element

More information

Tailored bar concepts for 10 mm-mrad fiber coupled modules scalable to kw-class direct diode lasers

Tailored bar concepts for 10 mm-mrad fiber coupled modules scalable to kw-class direct diode lasers Tailored bar concepts for 1 mm-mrad fiber coupled modules scalable to kw-class direct diode lasers Andreas Unger*, Ross Uthoff, Michael Stoiber, Thomas Brand, Heiko Kissel, Bernd Köhler, Jens Biesenbach

More information

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature Donghui Zhao.a, Xuewen Shu b, Wei Zhang b, Yicheng Lai a, Lin Zhang a, Ian Bennion a a Photonics Research Group,

More information

Vertical External Cavity Surface Emitting Laser

Vertical External Cavity Surface Emitting Laser Chapter 4 Optical-pumped Vertical External Cavity Surface Emitting Laser The booming laser techniques named VECSEL combine the flexibility of semiconductor band structure and advantages of solid-state

More information

A Narrow-Band Tunable Diode Laser System with Grating Feedback

A Narrow-Band Tunable Diode Laser System with Grating Feedback A Narrow-Band Tunable Diode Laser System with Grating Feedback S.P. Spirydovich Draft Abstract The description of diode laser was presented. The tuning laser system was built and aligned. The free run

More information

THE TUNABLE LASER LIGHT SOURCE C-WAVE. HÜBNER Photonics Coherence Matters.

THE TUNABLE LASER LIGHT SOURCE C-WAVE. HÜBNER Photonics Coherence Matters. THE TUNABLE LASER LIGHT SOURCE HÜBNER Photonics Coherence Matters. FLEXIBILITY WITH PRECISION is the tunable laser light source for continuous-wave (cw) emission in the visible and near-infrared wavelength

More information

A CW seeded femtosecond optical parametric amplifier

A CW seeded femtosecond optical parametric amplifier Science in China Ser. G Physics, Mechanics & Astronomy 2004 Vol.47 No.6 767 772 767 A CW seeded femtosecond optical parametric amplifier ZHU Heyuan, XU Guang, WANG Tao, QIAN Liejia & FAN Dianyuan State

More information

A continuous-wave optical parametric oscillator for mid infrared photoacoustic trace gas detection

A continuous-wave optical parametric oscillator for mid infrared photoacoustic trace gas detection A continuous-wave optical parametric oscillator for mid infrared photoacoustic trace gas detection Frank Müller, Alexander Popp, Frank Kühnemann Institute of Applied Physics, University of Bonn, Wegelerstr.8,

More information

High-Power, Passively Q-switched Microlaser - Power Amplifier System

High-Power, Passively Q-switched Microlaser - Power Amplifier System High-Power, Passively Q-switched Microlaser - Power Amplifier System Yelena Isyanova Q-Peak, Inc.,135 South Road, Bedford, MA 01730 isyanova@qpeak.com Jeff G. Manni JGM Associates, 6 New England Executive

More information

High-power operation of Tm:YLF, Ho:YLF and Er:YLF lasers

High-power operation of Tm:YLF, Ho:YLF and Er:YLF lasers High-power operation of Tm:YLF, Ho:YLF and Er:YLF lasers Peter F. Moulton Solid State and Diode Laser Technology Review 2003 20 May Albuquerque, NM Outline High-power Tm:YLF-pumped Ho:YLF laser ZGP OPO

More information

DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE

DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE 1 DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE PRESENTED BY- ARPIT RAWANKAR THE GRADUATE UNIVERSITY FOR ADVANCED STUDIES, HAYAMA 2 INDEX 1. Concept

More information

High-power diode-pumped Er 3+ :YAG single-crystal fiber laser

High-power diode-pumped Er 3+ :YAG single-crystal fiber laser High-power diode-pumped Er 3+ :YAG single-crystal fiber laser Igor Martial, 1,2,* Julien Didierjean, 2 Nicolas Aubry, 2 François Balembois, 1 and Patrick Georges 1 1 Laboratoire Charles Fabry de l Institut

More information

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS P. Weßels for the LZH high power laser development team Laser Zentrum Hannover, Germany 23.05.2011 OUTLINE Requirements on lasers for

More information

Lecture 08. Fundamentals of Lidar Remote Sensing (6)

Lecture 08. Fundamentals of Lidar Remote Sensing (6) Lecture 08. Fundamentals of Lidar Remote Sensing (6) Basic Lidar Architecture Basic Lidar Architecture Configurations vs. Arrangements Transceiver with HOE A real example: STAR Na Doppler Lidar Another

More information

Ultra-stable flashlamp-pumped laser *

Ultra-stable flashlamp-pumped laser * SLAC-PUB-10290 September 2002 Ultra-stable flashlamp-pumped laser * A. Brachmann, J. Clendenin, T.Galetto, T. Maruyama, J.Sodja, J. Turner, M. Woods Stanford Linear Accelerator Center, 2575 Sand Hill Rd.,

More information

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual 2012 858 West Park Street, Eugene, OR 97401 www.mtinstruments.com Table of Contents Specifications and Overview... 1 General Layout...

More information

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS Diode Laser Characteristics I. BACKGROUND Beginning in the mid 1960 s, before the development of semiconductor diode lasers, physicists mostly

More information

Lecture 08. Fundamentals of Lidar Remote Sensing (6)

Lecture 08. Fundamentals of Lidar Remote Sensing (6) Lecture 08. Fundamentals of Lidar Remote Sensing (6) Basic Lidar Architecture q Basic Lidar Architecture q Configurations vs. Arrangements q Transceiver with HOE q A real example: STAR Na Doppler Lidar

More information

External-Cavity Tapered Semiconductor Ring Lasers

External-Cavity Tapered Semiconductor Ring Lasers External-Cavity Tapered Semiconductor Ring Lasers Frank Demaria Laser operation of a tapered semiconductor amplifier in a ring-oscillator configuration is presented. In first experiments, 1.75 W time-average

More information

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a) Optical Sources (a) Optical Sources (b) The main light sources used with fibre optic systems are: Light-emitting diodes (LEDs) Semiconductor lasers (diode lasers) Fibre laser and other compact solid-state

More information

High-brightness and high-efficiency fiber-coupled module for fiber laser pump with advanced laser diode

High-brightness and high-efficiency fiber-coupled module for fiber laser pump with advanced laser diode High-brightness and high-efficiency fiber-coupled module for fiber laser pump with advanced laser diode Yohei Kasai* a, Yuji Yamagata b, Yoshikazu Kaifuchi a, Akira Sakamoto a, and Daiichiro Tanaka a a

More information

Investigations on the performance of lidar measurements with different pulse shapes using a multi-channel Doppler lidar system

Investigations on the performance of lidar measurements with different pulse shapes using a multi-channel Doppler lidar system Th12 Albert Töws Investigations on the performance of lidar measurements with different pulse shapes using a multi-channel Doppler lidar system Albert Töws and Alfred Kurtz Cologne University of Applied

More information

taccor Optional features Overview Turn-key GHz femtosecond laser

taccor Optional features Overview Turn-key GHz femtosecond laser taccor Turn-key GHz femtosecond laser Self-locking and maintaining Stable and robust True hands off turn-key system Wavelength tunable Integrated pump laser Overview The taccor is a unique turn-key femtosecond

More information

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc.

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc. Optodevice Data Book ODE-408-001I Rev.9 Mar. 2003 Opnext Japan, Inc. Section 1 Operating Principles 1.1 Operating Principles of Laser Diodes (LDs) and Infrared Emitting Diodes (IREDs) 1.1.1 Emitting Principles

More information

Midterm #1 Prep. Revision: 2018/01/20. Professor M. Csele, Niagara College

Midterm #1 Prep. Revision: 2018/01/20. Professor M. Csele, Niagara College Midterm #1 Prep Revision: 2018/01/20 Professor M. Csele, Niagara College Portions of this presentation are Copyright John Wiley & Sons, 2004 Review Material Safety Finding MPE for a laser Calculating OD

More information

Multi-Wavelength, µm Tunable, Tandem OPO

Multi-Wavelength, µm Tunable, Tandem OPO Multi-Wavelength, 1.5-10-µm Tunable, Tandem OPO Yelena Isyanova, Alex Dergachev, David Welford, and Peter F. Moulton Q-Peak, Inc.,135 South Road, Bedford, MA 01730 isyanova@qpeak.com Introduction Abstract:

More information

SECOND HARMONIC GENERATION AND Q-SWITCHING

SECOND HARMONIC GENERATION AND Q-SWITCHING SECOND HARMONIC GENERATION AND Q-SWITCHING INTRODUCTION In this experiment, the following learning subjects will be worked out: 1) Characteristics of a semiconductor diode laser. 2) Optical pumping on

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

Highly Reliable 40-mW 25-GHz 20-ch Thermally Tunable DFB Laser Module, Integrated with Wavelength Monitor

Highly Reliable 40-mW 25-GHz 20-ch Thermally Tunable DFB Laser Module, Integrated with Wavelength Monitor Highly Reliable 4-mW 2-GHz 2-ch Thermally Tunable DFB Laser Module, Integrated with Wavelength Monitor by Tatsuya Kimoto *, Tatsushi Shinagawa *, Toshikazu Mukaihara *, Hideyuki Nasu *, Shuichi Tamura

More information

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity Shinji Yamashita (1)(2) and Kevin Hsu (3) (1) Dept. of Frontier Informatics, Graduate School of Frontier Sciences The University

More information

Nd:GSAG laser for water vapor detection by LIDAR near 942 nm

Nd:GSAG laser for water vapor detection by LIDAR near 942 nm Nd:GSAG laser for water vapor detection by LIDAR near 942 nm Frank Kallmeyer * a, Marcus Dziedzina a, Daniel Schmidt a, Hans-Joachim Eichler a Reiner Treichel b, Susanne Nikolov b a Institute of Optic

More information

A new picosecond Laser pulse generation method.

A new picosecond Laser pulse generation method. PULSE GATING : A new picosecond Laser pulse generation method. Picosecond lasers can be found in many fields of applications from research to industry. These lasers are very common in bio-photonics, non-linear

More information

1. INTRODUCTION 2. LASER ABSTRACT

1. INTRODUCTION 2. LASER ABSTRACT Compact solid-state laser to generate 5 mj at 532 nm Bhabana Pati*, James Burgess, Michael Rayno and Kenneth Stebbins Q-Peak, Inc., 135 South Road, Bedford, Massachusetts 01730 ABSTRACT A compact and simple

More information

Kilowatt Class High-Power CW Yb:YAG Cryogenic Laser

Kilowatt Class High-Power CW Yb:YAG Cryogenic Laser Kilowatt Class High-Power CW Yb:YAG Cryogenic Laser D.C. Brown, J.M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper Snake Creek Lasers, LLC, Hallstead, PA 18822 ABSTRACT We discuss progress

More information

Tera-Hz Radiation Source by Deference Frequency Generation (DFG) and TPO with All Solid State Lasers

Tera-Hz Radiation Source by Deference Frequency Generation (DFG) and TPO with All Solid State Lasers Tera-Hz Radiation Source by Deference Frequency Generation (DFG) and TPO with All Solid State Lasers Jianquan Yao 1, Xu Degang 2, Sun Bo 3 and Liu Huan 4 1 Institute of Laser & Opto-electronics, 2 College

More information

Low Noise High Power Ultra-Stable Diode Pumped Er-Yb Phosphate Glass Laser

Low Noise High Power Ultra-Stable Diode Pumped Er-Yb Phosphate Glass Laser Low Noise High Power Ultra-Stable Diode Pumped Er-Yb Phosphate Glass Laser R. van Leeuwen, B. Xu, L. S. Watkins, Q. Wang, and C. Ghosh Princeton Optronics, Inc., 1 Electronics Drive, Mercerville, NJ 8619

More information

High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals

High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals R. J. Thompson, M. Tu, D. C. Aveline, N. Lundblad, L. Maleki Jet

More information

Lecture 17. Temperature Lidar (6) Na Resonance-Doppler Lidar Instrumentation

Lecture 17. Temperature Lidar (6) Na Resonance-Doppler Lidar Instrumentation Lecture 17. Temperature Lidar (6) Na Resonance-Doppler Lidar Instrumentation q Introduction: Requirements for Na Doppler Lidar q Classic Na Doppler Lidar Instrumentation Ø Na Doppler Lidar System Ø Key

More information

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Introduction Fundamentals of laser Types of lasers Semiconductor lasers ECE 5368 Introduction Fundamentals of laser Types of lasers Semiconductor lasers Introduction Fundamentals of laser Types of lasers Semiconductor lasers How many types of lasers? Many many depending on

More information

Wavelength Control and Locking with Sub-MHz Precision

Wavelength Control and Locking with Sub-MHz Precision Wavelength Control and Locking with Sub-MHz Precision A PZT actuator on one of the resonator mirrors enables the Verdi output wavelength to be rapidly tuned over a range of several GHz or tightly locked

More information

Luminous Equivalent of Radiation

Luminous Equivalent of Radiation Intensity vs λ Luminous Equivalent of Radiation When the spectral power (p(λ) for GaP-ZnO diode has a peak at 0.69µm) is combined with the eye-sensitivity curve a peak response at 0.65µm is obtained with

More information

Laser Diode. Photonic Network By Dr. M H Zaidi

Laser Diode. Photonic Network By Dr. M H Zaidi Laser Diode Light emitters are a key element in any fiber optic system. This component converts the electrical signal into a corresponding light signal that can be injected into the fiber. The light emitter

More information

J-KAREN-P Session 1, 10:00 10:

J-KAREN-P Session 1, 10:00 10: J-KAREN-P 2018 Session 1, 10:00 10:25 2018 5 8 Outline Introduction Capabilities of J-KAREN-P facility Optical architecture Status and implementation of J-KAREN-P facility Amplification performance Recompression

More information

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017 R. J. Jones College of Optical Sciences OPTI 511L Fall 2017 Active Modelocking of a Helium-Neon Laser The generation of short optical pulses is important for a wide variety of applications, from time-resolved

More information

Thin-Disc-Based Driver

Thin-Disc-Based Driver Thin-Disc-Based Driver Jochen Speiser German Aerospace Center (DLR) Institute of Technical Physics Solid State Lasers and Nonlinear Optics Folie 1 German Aerospace Center! Research Institution! Space Agency!

More information

A continuous-wave Raman silicon laser

A continuous-wave Raman silicon laser A continuous-wave Raman silicon laser Haisheng Rong, Richard Jones,.. - Intel Corporation Ultrafast Terahertz nanoelectronics Lab Jae-seok Kim 1 Contents 1. Abstract 2. Background I. Raman scattering II.

More information

External cavities for controling spatial and spectral properties of SC lasers. J.P. Huignard TH-TRT

External cavities for controling spatial and spectral properties of SC lasers. J.P. Huignard TH-TRT External cavities for controling spatial and spectral properties of SC lasers. J.P. Huignard TH-TRT Bright Er - Partners. WP 3 : External cavities approaches for high brightness. - RISOE TUD Dk - Institut

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Student Name Date MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.161 Modern Optics Project Laboratory Laboratory Exercise No. 6 Fall 2010 Solid-State

More information

Lecture 27. Wind Lidar (6) Edge Filter-Based Direct Detection Doppler Lidar

Lecture 27. Wind Lidar (6) Edge Filter-Based Direct Detection Doppler Lidar Lecture 27. Wind Lidar (6) Edge Filter-Based Direct Detection Doppler Lidar q FPI and Fizeau edge-filter DDL q Iodine-absorption-line edge-filter DDL q Edge-filter lidar data retrieval and error analysis

More information

Trace-gas detection based on the temperature-tuning periodically poled MgO: LiNbO 3 optical parametric oscillator

Trace-gas detection based on the temperature-tuning periodically poled MgO: LiNbO 3 optical parametric oscillator JOUNAL OF OPTOELECTONICS AND ADVANCED MATEIALS Vol. 8, No. 4, August 2006, p. 1438-14 42 Trace-gas detection based on the temperature-tuning periodically poled MgO: LiNbO 3 optical parametric oscillator

More information

DIODE LASER SPECTROSCOPY (160309)

DIODE LASER SPECTROSCOPY (160309) DIODE LASER SPECTROSCOPY (160309) Introduction The purpose of this laboratory exercise is to illustrate how we may investigate tiny energy splittings in an atomic system using laser spectroscopy. As an

More information

Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm

Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm Nufern, East Granby, CT, USA Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm www.nufern.com Examples of Single Frequency Platforms at 1mm and 1.5mm and Applications 2 Back-reflection

More information

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO.

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO. a Nd:YSO resonator array µm Transmission spectrum (a. u.) b 4 F3/2-4I9/2 25 2 5 5 875 88 λ(nm) 885 Supplementary Figure. An array of nano-beam resonators fabricated in Nd:YSO. (a) Scanning electron microscope

More information

The Lightwave Model 142 CW Visible Ring Laser, Beam Splitter, Model ATM- 80A1 Acousto-Optic Modulator, and Fiber Optic Cable Coupler Optics Project

The Lightwave Model 142 CW Visible Ring Laser, Beam Splitter, Model ATM- 80A1 Acousto-Optic Modulator, and Fiber Optic Cable Coupler Optics Project The Lightwave Model 142 CW Visible Ring Laser, Beam Splitter, Model ATM- 80A1 Acousto-Optic Modulator, and Fiber Optic Cable Coupler Optics Project Stephen W. Jordan Seth Merritt Optics Project PH 464

More information

Regenerative Amplification in Alexandrite of Pulses from Specialized Oscillators

Regenerative Amplification in Alexandrite of Pulses from Specialized Oscillators Regenerative Amplification in Alexandrite of Pulses from Specialized Oscillators In a variety of laser sources capable of reaching high energy levels, the pulse generation and the pulse amplification are

More information

LOPUT Laser: A novel concept to realize single longitudinal mode laser

LOPUT Laser: A novel concept to realize single longitudinal mode laser PRAMANA c Indian Academy of Sciences Vol. 82, No. 2 journal of February 2014 physics pp. 185 190 LOPUT Laser: A novel concept to realize single longitudinal mode laser JGEORGE, KSBINDRAand SMOAK Solid

More information

Wavelength Meter Sensitive and compact wavemeter with a large spectral range for high speed measurements of pulsed and continuous lasers.

Wavelength Meter Sensitive and compact wavemeter with a large spectral range for high speed measurements of pulsed and continuous lasers. Wavelength Meter Sensitive and compact wavemeter with a large spectral range for high speed measurements of pulsed and continuous lasers. Unrivaled precision Fizeau based interferometers The sturdiness

More information

Yellow nanosecond sum-frequency generating optical. parametric oscillator using periodically poled LiNbO 3

Yellow nanosecond sum-frequency generating optical. parametric oscillator using periodically poled LiNbO 3 Yellow nanosecond sum-frequency generating optical parametric oscillator using periodically poled LiNbO 3 Ole Bjarlin Jensen 1*, Morten Bruun-Larsen 2, Olav Balle-Petersen 3 and Torben Skettrup 4 1 DTU

More information

1 Introduction Atmospheric sensing using lidar Coherent lidar Summary of published CLR systems... 5

1 Introduction Atmospheric sensing using lidar Coherent lidar Summary of published CLR systems... 5 Eye-safe Er:YAG Lasers for Coherent Remote Sensing by Nick W. Chang Thesis submitted for the degree of Doctor of Philosophy in The University of Adelaide School of Chemistry and Physics August, 2012 2

More information

Fiber Lasers for EUV Lithography

Fiber Lasers for EUV Lithography Fiber Lasers for EUV Lithography A. Galvanauskas, Kai Chung Hou*, Cheng Zhu CUOS, EECS Department, University of Michigan P. Amaya Arbor Photonics, Inc. * Currently with Cymer, Inc 2009 International Workshop

More information

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers T. Day and R. A. Marsland New Focus Inc. 340 Pioneer Way Mountain View CA 94041 (415) 961-2108 R. L. Byer

More information

High-brightness pumping has several

High-brightness pumping has several More Efficient and Less Complex ENHANCING THE SPECTRAL AND SPATIAL BRIGHTNESS OF DIODE LASERS Recent breakthroughs in semiconductor laser technology have improved the laser system compactness, efficiency,

More information

101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity

101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity PRAMANA c Indian Academy of Sciences Vol. 75, No. 5 journal of November 2010 physics pp. 935 940 101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity S K

More information

High Power and Energy Femtosecond Lasers

High Power and Energy Femtosecond Lasers High Power and Energy Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average powers. PHAROS features a mechanical and optical

More information

High-Power Femtosecond Lasers

High-Power Femtosecond Lasers High-Power Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average power. PHAROS features a mechanical and optical design optimized

More information

High-peak power laser system used in Yb doped LMA fiber

High-peak power laser system used in Yb doped LMA fiber High-peak power laser system used in Yb doped LMA fiber Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan YOSHIDA Hidetsugu, TSUBAKIMOTO Koji, FUJITA Hisanori, NAKATSUKA Masahiro, MIYANAGA

More information

improved stability (compared with

improved stability (compared with Picosecond Tunable Systems Nanosecond Lasers NT230 SERIES NT230 series lasers deliver high up to 10 mj energy pulses at 100 Hz pulse repetition rate, tunable over a broad spectral range. Integrated into

More information

visibility values: 1) V1=0.5 2) V2=0.9 3) V3=0.99 b) In the three cases considered, what are the values of FSR (Free Spectral Range) and

visibility values: 1) V1=0.5 2) V2=0.9 3) V3=0.99 b) In the three cases considered, what are the values of FSR (Free Spectral Range) and EXERCISES OF OPTICAL MEASUREMENTS BY ENRICO RANDONE AND CESARE SVELTO EXERCISE 1 A CW laser radiation (λ=2.1 µm) is delivered to a Fabry-Pérot interferometer made of 2 identical plane and parallel mirrors

More information

Pound-Drever-Hall Locking of a Chip External Cavity Laser to a High-Finesse Cavity Using Vescent Photonics Lasers & Locking Electronics

Pound-Drever-Hall Locking of a Chip External Cavity Laser to a High-Finesse Cavity Using Vescent Photonics Lasers & Locking Electronics of a Chip External Cavity Laser to a High-Finesse Cavity Using Vescent Photonics Lasers & Locking Electronics 1. Introduction A Pound-Drever-Hall (PDH) lock 1 of a laser was performed as a precursor to

More information

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser V.I.Baraulya, S.M.Kobtsev, S.V.Kukarin, V.B.Sorokin Novosibirsk State University Pirogova 2, Novosibirsk, 630090, Russia ABSTRACT

More information

Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 µm

Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 µm Appl Phys B (2012) 106:315 319 DOI 10.1007/s00340-011-4670-5 Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 µm S. Lamrini P. Koopmann M. Schäfer K. Scholle

More information

High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser

High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser V. Khitrov*, B. Samson, D. Machewirth, D. Yan, K. Tankala, A. Held Nufern, 7 Airport Park Road, East Granby,

More information