Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm

Size: px
Start display at page:

Download "Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm"

Transcription

1 Nufern, East Granby, CT, USA Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm

2 Examples of Single Frequency Platforms at 1mm and 1.5mm and Applications 2

3 Back-reflection (mw) Single Frequency PM Amplifier Platform (2-15W) Output Power (W) SBS threshold at 164nm in 6.5m PLMA-YDF-1125 with 3m PM-DSF-1/125 delivery fiber on output 3

4 Back-reflection (mw) Single Frequency PM Amplifier Platform (2-15W) Output Power (W) Practical SBS limit in current generation of PM single mode Yb and Er:Yb multi-stage amplifiers is ~2W (15W) at 1mm (1.5mm) 4

5 Back-reflection (mw) Single Frequency PM Amplifier Platform (2-15W) Output Power (W) Standard wavelengths nm and nm 5

6 Back-reflection (mw) Single Frequency PM Amplifier Platform (2-15W) Output Power (W) Multiple options available (isolation, control, input power, etc) 6

7 Back-reflection (mw) Single Frequency PM Amplifier Platform (2-15W) Output Power (W) Mature platform, more than 5 amplifiers delivered over last 4 years 7

8 Single Frequency PM Amplifier Platform (2-15W) Demo models available for evaluation Specially designed Yb doped fibers with increased mode filed diameter but maintaining single mode spatial beam profile were used to alleviate the SBS limitation. 8

9 Single Frequency PM Amplifier Platform (2-15W) Demo models available for evaluation SBS-suppression fibers were used to further decrease the SBS threshold. 9

10 Single Frequency PM Amplifier Platform (2-15W) Optical Specifications 1

11 Single Frequency PM Amplifier Platform (2-15W) Mechanical, Electrical &Environmental Specifications 11

12 PER (db) Power (W) Extended Wavelengths Using Yb-doped Fibers Time (min) Time (min) 5W 116nm SFA with a fiber to free space isolator, tested with 1MHz DFB diode 12

13 PER (db) Power (W) Extended Wavelengths Using Yb-doped Fibers Time (min) Time (min) SNR of the SFA operating at 119nm 13

14 Single Frequency PM Amplifier Platform (4W at 1mm) By adopting state of the art PM LMA (25/4) fibers the SBS threshold can be raised to >4W (at 1mm) with 5kHz seed source 14

15 RIN (db/hz) PER (db) RIN (db/hz) Power (W) Single Frequency PM Amplifier Platform (4W at 1mm) RIN Measurement 4W output (NP Photonics seed laser) Frequency (MHz) Time (hrs) Frequency (MHz) Time (min) The 4W amplifier platform is fairly new (~8 units delivered in 29) 15

16 RIN (db/hz) PER (db) RIN (db/hz) Power (W) Single Frequency PM Amplifier Platform (4W at 1mm) RIN Measurement 4W output (NP Photonics seed laser) Frequency (MHz) Time (hrs) Frequency (MHz) Time (min) 3 systems are under evaluation at MIT (centre of ultra cold atoms) 16

17 RIN (db/hz) PER (db) RIN (db/hz) Power (W) Single Frequency PM Amplifier Platform (4W at 1mm) RIN Measurement 4W output (NP Photonics seed laser) Frequency (MHz) Time (hrs) Frequency (MHz) Time (min) Contact apeyman@mit.edu for references on how the amps are working 17

18 Power at Back Reflection Monitor (mw) Single Frequency PM Amplifier Platform (1W at 1mm) /4, 13 db 2/4, 8.7 db 25/4, 13 db 25/4, 1.5 db 25/4, 1.5 db, Heat Amplified Power Output (W) Practical SBS limit is increased in these PM LMA based amplifiers by using a temperature gradient along the active fiber length 18

19 Power at Back Reflection Monitor (mw) Single Frequency PM Amplifier Platform (1W at 1mm) /4, 13 db 2/4, 8.7 db 25/4, 13 db 25/4, 1.5 db 25/4, 1.5 db, Heat Amplified Power Output (W) Temperature gradient shifts the local SBS gain spectrum along the fiber length 19

20 Single Frequency PM Amplifier Platform (1W at 1mm) Property Amp Measured Parameters Tested Value Output Power [~5kHz] 15.5 W PER >15.5 db M 2 <1.1 Wavelength nm Input Power ~ 33mW Max Backward Power < 25mW 2

21 Single Frequency PM Amplifier Platform (1W at 1mm) POWER with Oven Off I 3A [A] I 3B [A] P SIGNAL [W] P BACK [mw]

22 Single Frequency PM Amplifier Platform (1W at 1mm) POWER with Oven On I 3A [A] I 3B [A] P SIGNAL [W] P BACK [mw]

23 P SIGNAL [W] Single Frequency PM Amplifier Platform (1W at 1mm) Power Stability P SIGNAL [W] Data collected at 1W > 4 Hours P [W] SIGNAL Minimum 1.3 Maximum 11.4 Sum Points 271 Mean Median 1.8 RMS Std Deviation Variance Std Error Skewness Kurtosis Time [Min] 23

24 Single Frequency PM Amplifier Platform (1W at 1mm) Beam Propagation Factor 1W M x 2 = 1.8 M Y 2 =

25 P TH [W] SBS Threshold Depends on Linewidth of Seed Source 8 7 SBS Threshold vs. Linewidth y = x R= m PLMA-25/44-YDF Linewidth [GHz] In some applications 1-1GHz linewidth is suitable (this signal linewidth reduces the SBS gain in the amplifier, which has linewidth ~5MHz) 25

26 P TH [W] SBS Threshold Depends on Linewidth of Seed Source 8 7 SBS Threshold vs. Linewidth y = x R= m PLMA-25/44-YDF Linewidth [GHz] In those cases broadening the linewidth to achieve more output power is an acceptable compromise 26

27 P TH [W] SBS Threshold Depends on Linewidth of Seed Source 8 7 SBS Threshold vs. Linewidth y = x R= m PLMA-25/44-YDF Linewidth [GHz] In this case LMA fibers generate output power >1kW CW 27

28 P SIGNAL [W] Nufern Turn-key, 1kW Amplifier (3GHz seed source) 1 kw Amplifier 1 88% Slope Efficiency P LAUNCHED PUMP [W] M 2 = 1.1 Measured at 1 kw Multi-stage turn-key packed amplifier (1mW input power) 28

29 P SIGNAL [W] Nufern Turn-key, 1kW Amplifier (3GHz seed source) 1 kw Amplifier 1 88% Slope Efficiency P LAUNCHED PUMP [W] M 2 = 1.1 Measured at 1 kw Signal Linewidth 3~1GHz 29

30 P SIGNAL [W] Nufern Turn-key, 1kW Amplifier (3GHz seed source) 1 kw Amplifier 1 88% Slope Efficiency P LAUNCHED PUMP [W] M 2 = 1.1 Measured at 1 kw Linearly polarized option PER~13dB 3

31 P SIGNAL [W] Nufern Turn-key, 1kW Amplifier (3GHz seed source) 1 kw Amplifier 1 88% Slope Efficiency P LAUNCHED PUMP [W] M 2 = 1.1 Measured at 1 kw Multiple units shipped

32 High Power Single Frequency 1.5mm PM-LMA Amp 155nm SF fiber laser, 5mW isolator 155nm 1W NuAmp PM-MFA PLMA-EYDF-25/3 LMA-GDF-25/3 Dichroic filters 3W 94nm bar diode 16nm ASE 155nm signal 5mW 155nm single-frequency seed fiber laser, 5kHz linewidth 32

33 High Power Single Frequency 1.5mm PM-LMA Amp 155nm SF fiber laser, 5mW isolator 155nm 1W NuAmp PM-MFA PLMA-EYDF-25/3 LMA-GDF-25/3 Dichroic filters 3W 94nm bar diode 16nm ASE 155nm signal 1W PM single-frequency pre-amp (NuAMP) 33

34 High Power Single Frequency 1.5mm PM-LMA Amp 155nm SF fiber laser, 5mW isolator 155nm 1W NuAmp PM-MFA PLMA-EYDF-25/3 LMA-GDF-25/3 Dichroic filters 3W 94nm bar diode 16nm ASE 155nm signal Amplified in Er:Yb PM LMA 25/3 fiber, counter pumped at 94nm 34

35 155nm signal, W 16nm ASE, mw High Power Single Frequency 1.5mm PM-LMA Amp ~48dB PM SF 155nm amp efficiency test EYDF-25/3 y =.418x nm 5kHz input signal linewidth Coupled 94nm pump, W 35

36 155nm signal, W 16nm ASE, mw High Power Single Frequency 1.5mm PM-LMA Amp ~48dB PM SF 155nm amp efficiency test EYDF-25/3 y =.418x W output Coupled 94nm pump, W 36

37 155nm signal, W 16nm ASE, mw High Power Single Frequency 1.5mm PM-LMA Amp ~48dB PM SF 155nm amp efficiency test EYDF-25/3 y =.418x % slope efficiency Coupled 94nm pump, W 37

38 155nm signal, W 16nm ASE, mw High Power Single Frequency 1.5mm PM-LMA Amp ~48dB PM SF 155nm amp efficiency test EYDF-25/3 y =.418x PER 13dB Coupled 94nm pump, W 38

39 155nm signal, W 16nm ASE, mw High Power Single Frequency 1.5mm PM-LMA Amp ~48dB PM SF 155nm amp efficiency test EYDF-25/3 y =.418x ~48dB 155nm ASE suppression Coupled 94nm pump, W 39

40 155nm signal, W 16nm ASE, mw High Power Single Frequency 1.5mm PM-LMA Amp ~48dB PM SF 155nm amp efficiency test EYDF-25/3 y =.418x <2W 16nm ASE Coupled 94nm pump, W 4

41 Recent Advances in Tm-fibers for 2mm Wavelength 41

42 Absorption & Emission Cross Sections Pump Options for Tm-doped Fibers Gain Spectral Region Emission Absorption Wavelength (nm) Resonant pumping around 156nm is difficult to power scale with direct diode pumping (no high power/brightness pumps) 42

43 Absorption & Emission Cross Sections Pump Options for Tm-doped Fibers Gain Spectral Region Emission Absorption Wavelength (nm) Solution here is to pump with Er:Yb fiber laser which is in turn pumped by 9xx high brightness diodes (>4W output power demonstrated, IPG 27) 43

44 Absorption & Emission Cross Sections Pump Options for Tm-doped Fibers Gain Spectral Region Emission Absorption Wavelength (nm) However, the overall E-O the efficiency is low using this scheme 44

45 Historical Perspective on 79nm pumped Tm-fibers Increasing the Tm 3+ concentration decreases the ion-ion separation to enhance the 2 for 1 cross-relaxation process. Pumping at 79nm is attractive because of the compatibility with 88nm pump diode; however, the quantum efficiency needs to be improved to be practical 45

46 Historical Perspective on 79nm pumped Tm-fibers Increasing the Tm 3+ concentration decreases the ion-ion separation to enhance the 2 for 1 cross-relaxation process. Early work on power scaling efficient Tm-doped silica fibers attributed to Jackson et al. (Uni. Sydney, Aus) and Clarkson et al (ORC, Southampton, UK) 46

47 Historical Perspective on 79nm pumped Tm-fibers Increasing the Tm 3+ concentration decreases the ion-ion separation to enhance the 2 for 1 cross-relaxation process. Both groups recognized early on that optimizing the cross relaxation process in highly doped silica fibers could improve the efficiency of 79nm pumped fibers 47

48 Slope Efficiency (%) Improvements in Fiber Efficiency over the Years :1 limit Date To date >65% slope efficiency has been demonstrated for 79nm pumped fibers operating around 2mm, approaching the theoretical limit 48

49 Slope Efficiency (%) Improvements in Fiber Efficiency over the Years :1 limit Date Far exceeding the overall E-O efficiency of resonant pumped Tm-fiber systems 49

50 Number of modes Tm-doped LMA Fibers for Single Mode Beam Quality Pedestal Silica Cladding Index Profile Tm-doped Core.1.2 NA Much of the early high efficiency Tm-doped fibers were multimode because of the high NA (A. Carter et al., CLEO 27) 5

51 Number of modes Tm-doped LMA Fibers for Single Mode Beam Quality Pedestal Silica Cladding Index Profile Tm-doped Core.1.2 NA High Tm-doping levels coupled with high Al co-dopant levels would lead to an NA>.2 w.r.t. the silica cladding (A. Carter et al., CLEO 27) 51

52 Number of modes Tm-doped LMA Fibers for Single Mode Beam Quality Pedestal Silica Cladding Index Profile Tm-doped Core.1.2 NA By incorporating a pedestal layer around the Tm-doped core the effective NA is reduced to ~.1, reducing the mode content within the doped core (A. Carter et al., CLEO 27) 52

53 Number of modes Tm-doped LMA Fibers for Single Mode Beam Quality Pedestal Silica Cladding Index Profile Tm-doped Core.1.2 NA By reducing the NA of the core, large core fibers with good beam quality became possible (LMA fibers) (A. Carter et al., CLEO 27) 53

54 Signal output, W Monolithic 2W Single Frequency PM Amp (24nm) 1 st stage core-pump PM amplifier ~5mW output power ~3 nd stage cladding-pumped PM amplifier ~2W output power ~1mW single frequency seed 237nm 2 nd stage cladding-pumped PM amplifier ~3W output power Delivery fiber and angled Endcap assembly PM Isolator Monolithic 3-stage (2W) PM amplifier compatible with input from semiconductor DFB diode at 2µm (~1mW) Pump current, A 54

55 2-mm Output (W) High Power Single Frequency at 2µm 6W single frequency amplifier (G. Goodno et al., NGST, ASSP 29, post deadline) DFB 3 mw 24 nm <5 MHz 3-stage pre-amplifier chain 15 W Forward power monitor Return power monitor ASE filter 79-nm pump Conductive Heatsink 3.1 m active fiber 79-nm pump 55 cm passive fiber 68 W To diagnostics Least-squares fit: y =.54x Absorbed pump (W) 55 6W result is based on 3.1m of Tm-LMA 25/4 fiber and is not an SBS limited result at this power 55

56 Signal Power [Watt] Monolithic 4W Single Mode MOPA at 24nm nm Power vs. 79nm Pump Power Pump Power [Watt] System is based on Tm-LMA-2/4 was delivered to US Government lab June

57 RGB Harmonics from Fiber NLLs (Reference, J. Anderegg et al, SPIE Photonics West, 21) Through the 2 nd and even the 3 rd harmonics of the 1um, 1.5um and 2um narrow linewidth lasers provide narrow linewidth laser source in visible regime

58 RGB Harmonics from Fiber NLLs (Reference, J. Anderegg et al, SPIE Photonics West, 21) Additional wavelength regime can be produced through the Sum-Frequency Generation (SFG)

59 59 Frequency Doubling of High Power Fiber Lasers (Reference, J. Anderegg et al, SPIE Photonics West, 21) Fiber MOPA coupled to enhancement cavity 59

60 6 Frequency Doubling of High Power Fiber Lasers (Reference, J. Anderegg et al, SPIE Photonics West, 21) Fiber MOPA coupled to enhancement cavity 6

61 Conclusion With the advance in the fiber design and implementation of various SBS mitigation techniques, Up to 1W 1.um single frequency amplifiers (<5kHz linewidth) has been demonstrated. Up to 1W 1.5um single frequency amplifiers (<5kHz linewidth) has been demonstrated. Up to 6W 2um single frequency amplifiers (3MHz linewidth) has been demonstrated. 61

62 Conclusion Together with the advance in the harmonic conversion cavities, these high power narrow linewidth fiber amplifiers can provide a broad range of narrow linewidth lasers targeting various atomic transition band. 62

High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser

High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser V. Khitrov*, B. Samson, D. Machewirth, D. Yan, K. Tankala, A. Held Nufern, 7 Airport Park Road, East Granby,

More information

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS P. Weßels for the LZH high power laser development team Laser Zentrum Hannover, Germany 23.05.2011 OUTLINE Requirements on lasers for

More information

1 kw, 15!J linearly polarized fiber laser operating at 977 nm

1 kw, 15!J linearly polarized fiber laser operating at 977 nm 1 kw, 15!J linearly polarized fiber laser operating at 977 nm V. Khitrov, D. Machewirth, B. Samson, K. Tankala Nufern, 7 Airport Park Road, East Granby, CT 06026 phone: (860) 408-5000; fax: (860)408-5080;

More information

Fiber lasers: The next generation

Fiber lasers: The next generation Fiber lasers: The next generation David N Payne Optoelectronics Research Centre and SPI Lasers kw fibre laser No connection! After the telecoms EDFA The fibre laser another fibre revolution? Fibre laser

More information

High-power fibre Raman lasers at the University of Southampton

High-power fibre Raman lasers at the University of Southampton High-power fibre Raman lasers at the University of Southampton Industry Day Southampton, April 2 2014 Johan Nilsson Optoelectronics Research Centre University of Southampton, England Also consultant to

More information

Mitigation of Self-Pulsing in High Power Pulsed Fiber Lasers

Mitigation of Self-Pulsing in High Power Pulsed Fiber Lasers Mitigation of Self-Pulsing in High Power Pulsed Fiber Lasers Yusuf Panbiharwala, Deepa Venkitesh, Balaji Srinivasan* Department of Electrical Engineering, Indian Institute of Technology Madras. *Email

More information

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers 1.0 Modulation depth 0.8 0.6 0.4 0.2 0.0 Laser 3 Laser 2 Laser 4 2 3 4 5 6 7 8 Absorbed pump power (W) Laser 1 W. Guan and J. R.

More information

Survey Report: Laser R&D

Survey Report: Laser R&D Survey Report: Laser R&D Peter Moulton VP/CTO, Q-Peak, Inc. DLA-2011 ICFA Mini-Workshop on Dielectric Laser Accelerators September 15, 2011 SLAC, Menlo Park, CA Outline DLA laser requirements (one version)

More information

Recent Progress in Active Fiber Designs and Monolithic High Power Fiber Laser Devices. Kanishka Tankala, Adrian Carter and Bryce Samson

Recent Progress in Active Fiber Designs and Monolithic High Power Fiber Laser Devices. Kanishka Tankala, Adrian Carter and Bryce Samson Recent Progress in Active Fiber Designs and Monolithic High Power Fiber Laser Devices Kanishka Tankala, Adrian Carter and Bryce Samson Advantages of Fiber Lasers Features Highly efficient diode pumped

More information

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers Shun-ichi Matsushita*, * 2, Taizo Miyato*, * 2, Hiroshi Hashimoto*, * 2, Eisuke Otani* 2, Tatsuji Uchino* 2, Akira Fujisaki*,

More information

A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm

A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm A 1 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 112 nm Jianhua Wang, 1,2 Jinmeng Hu, 1 Lei Zhang, 1 Xijia Gu, 3 Jinbao Chen, 2 and Yan Feng 1,* 1 Shanghai Key Laboratory of Solid

More information

High peak power singlefrequency. applications

High peak power singlefrequency. applications High peak power singlefrequency MOPFA for lidar applications L. Lombard, G. Canat, A. Durécu, J. Le Gouët, A. Dolfi- Bouteyre, M. Valla, B. Augère, D Goular, C. Besson. Applications of wind lidars Wake

More information

High-brightness pumping has several

High-brightness pumping has several More Efficient and Less Complex ENHANCING THE SPECTRAL AND SPATIAL BRIGHTNESS OF DIODE LASERS Recent breakthroughs in semiconductor laser technology have improved the laser system compactness, efficiency,

More information

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers Integrated disruptive components for 2µm fibre Lasers ISLA 2 µm Sub-Picosecond Fiber Lasers Advantages: 2 - microns wavelength offers eye-safety potentially higher pulse energy and average power in single

More information

Single-Frequency, 2-cm, Yb-Doped Silica-Fiber Laser

Single-Frequency, 2-cm, Yb-Doped Silica-Fiber Laser Single-Frequency, 2-cm, Yb-Doped Silica-Fiber Laser W. Guan and J. R. Marciante University of Rochester Laboratory for Laser Energetics The Institute of Optics Frontiers in Optics 2006 90th OSA Annual

More information

Survey Report: Laser R&D

Survey Report: Laser R&D Survey Report: Laser R&D Peter Moulton VP/CTO, Q-Peak, Inc. DLA-2011 ICFA Mini-Workshop on Dielectric Laser Accelerators September 15, 2011 SLAC, Menlo Park, CA Outline DLA laser requirements (one version)

More information

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E.

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E. QPC Lasers, Inc. 2007 SPIE Photonics West Paper: Mon Jan 22, 2007, 1:20 pm, LASE Conference 6456, Session 3 High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh,

More information

Multiwatts narrow linewidth fiber Raman amplifiers

Multiwatts narrow linewidth fiber Raman amplifiers Multiwatts narrow linewidth fiber Raman amplifiers Yan Feng *, Luke Taylor, and Domenico Bonaccini Calia European Southern Observatory, Karl-Schwarzschildstr., D-878 Garching, Germany * Corresponding author:

More information

Research Article Over 19 W Single-Mode 1545 nm Er,Yb Codoped All-Fiber Laser

Research Article Over 19 W Single-Mode 1545 nm Er,Yb Codoped All-Fiber Laser Hindawi Advances in Condensed Matter Physics Volume 217, Article ID 748565, 5 pages https://doi.org/1.1155/217/748565 Research Article Over 19 W Single-Mode 1545 nm Er,Yb Codoped All-Fiber Laser Jiadong

More information

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems Lasers à fibres ns et ps de forte puissance Francois SALIN EOLITE systems Solid-State Laser Concepts rod temperature [K] 347 -- 352 342 -- 347 337 -- 342 333 -- 337 328 -- 333 324 -- 328 319 -- 324 315

More information

A new picosecond Laser pulse generation method.

A new picosecond Laser pulse generation method. PULSE GATING : A new picosecond Laser pulse generation method. Picosecond lasers can be found in many fields of applications from research to industry. These lasers are very common in bio-photonics, non-linear

More information

1550 nm Programmable Picosecond Laser, PM

1550 nm Programmable Picosecond Laser, PM 1550 nm Programmable Picosecond Laser, PM The Optilab is a programmable laser that produces picosecond pulses with electrical input pulses. It functions as a seed pulse generator for Master Oscillator

More information

Latest developments in high power, tunable, CW, narrow line thulium fiber laser for deployment to the ISTEF

Latest developments in high power, tunable, CW, narrow line thulium fiber laser for deployment to the ISTEF Latest developments in high power, tunable, CW, narrow line thulium fiber laser for deployment to the ISTEF Vikas Sudesh *a, Timothy S. McComb a, Robert A. Sims a, Lawrence Shah a, Martin Richardson a

More information

High Peak Power Fiber Seeds & Efficient Stabilized Pumps

High Peak Power Fiber Seeds & Efficient Stabilized Pumps High Peak Power Fiber Seeds & Efficient Stabilized Pumps Features Ultra Narrow Spectral Bandwidth (< 100kHz Instantaneous for single mode diodes) Ultra Track Linear Tracking Photodiode Temperature Stabilized

More information

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband Continuum White Light Generation WhiteLase: High Power Ultrabroadband Light Sources Technology Ultrafast Pulses + Fiber Laser + Non-linear PCF = Spectral broadening from 400nm to 2500nm Ultrafast Fiber

More information

UNMATCHED OUTPUT POWER AND TUNING RANGE

UNMATCHED OUTPUT POWER AND TUNING RANGE ARGOS MODEL 2400 SF SERIES TUNABLE SINGLE-FREQUENCY MID-INFRARED SPECTROSCOPIC SOURCE UNMATCHED OUTPUT POWER AND TUNING RANGE One of Lockheed Martin s innovative laser solutions, Argos TM Model 2400 is

More information

High Power Fiber lasers and Amplifiers: A tutorial overview

High Power Fiber lasers and Amplifiers: A tutorial overview WSOF-2010 High Power Fiber lasers and Amplifiers: A tutorial overview William.Torruellas@JHUAPL.edu The views, opinions, and/or findings contained in this article/presentation are those of the author/presenter

More information

25 W CW Raman-fiber-amplifier-based 589 nm source for laser guide star

25 W CW Raman-fiber-amplifier-based 589 nm source for laser guide star 25 W CW Raman-fiber-amplifier-based 589 nm source for laser guide star Yan Feng*, Luke Taylor, Domenico Bonaccini Calia, Ronald Holzlöhner and Wolfgang Hackenberg European Southern Observatory (ESO), 85748

More information

High-power semiconductor lasers for applications requiring GHz linewidth source

High-power semiconductor lasers for applications requiring GHz linewidth source High-power semiconductor lasers for applications requiring GHz linewidth source Ivan Divliansky* a, Vadim Smirnov b, George Venus a, Alex Gourevitch a, Leonid Glebov a a CREOL/The College of Optics and

More information

According to this the work in the BRIDLE project was structured in the following work packages:

According to this the work in the BRIDLE project was structured in the following work packages: The BRIDLE project: Publishable Summary (www.bridle.eu) The BRIDLE project sought to deliver a technological breakthrough in cost effective, high-brilliance diode lasers for industrial applications. Advantages

More information

Photonic Crystal Fiber Interfacing. In partnership with

Photonic Crystal Fiber Interfacing. In partnership with Photonic Crystal Fiber Interfacing In partnership with Contents 4 Photonics Crystal Fibers 6 End-capping 8 PCF connectors With strong expertise in designing fiber lasers and fused fiber components, ALPhANOV,

More information

2. EXPERIMENTAL DESIGN

2. EXPERIMENTAL DESIGN All-glass Fiber Amplifier Pumped by Ultra-high Brightness Pumps Charles X. Yu*, Oleg Shatrovoy, and T. Y. Fan MIT Lincoln Lab, 244 Wood Street, Lexington, MA, USA 02421 *chars@ll.mit.edu ABSTRACT We investigate

More information

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber H. Ahmad 1, S. Shahi 1 and S. W. Harun 1,2* 1 Photonics Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia 2 Department

More information

Continuous-Wave (CW) Single-Frequency IR Laser. NPRO 125/126 Series

Continuous-Wave (CW) Single-Frequency IR Laser. NPRO 125/126 Series Continuous-Wave (CW) Single-Frequency IR Laser NPRO 125/126 Series www.lumentum.com Data Sheet The Lumentum NPRO 125/126 diode-pumped lasers produce continuous-wave (CW), singlefrequency output at either

More information

Investigation of the impact of fiber Bragg grating bandwidth on the efficiency of a fiber Raman laser

Investigation of the impact of fiber Bragg grating bandwidth on the efficiency of a fiber Raman laser Investigation of the impact of fiber Bragg grating bandwidth on the efficiency of a fiber Raman laser US-Australia meeting May12, 2015 Leanne J. Henry, Michael Klopfer (1), and Ravi Jain (1) (1) University

More information

High-Power, Passively Q-switched Microlaser - Power Amplifier System

High-Power, Passively Q-switched Microlaser - Power Amplifier System High-Power, Passively Q-switched Microlaser - Power Amplifier System Yelena Isyanova Q-Peak, Inc.,135 South Road, Bedford, MA 01730 isyanova@qpeak.com Jeff G. Manni JGM Associates, 6 New England Executive

More information

R. J. Jones Optical Sciences OPTI 511L Fall 2017

R. J. Jones Optical Sciences OPTI 511L Fall 2017 R. J. Jones Optical Sciences OPTI 511L Fall 2017 Semiconductor Lasers (2 weeks) Semiconductor (diode) lasers are by far the most widely used lasers today. Their small size and properties of the light output

More information

Drive Laser State-of-the-art: Performance, Stability and Programmable Repetition Rate The Jefferson Lab Experience

Drive Laser State-of-the-art: Performance, Stability and Programmable Repetition Rate The Jefferson Lab Experience Drive Laser State-of-the-art: Performance, Stability and Programmable Repetition Rate The Jefferson Lab Experience Michelle Shinn ERL Workshop Jefferson Lab March 22, 2005 Work supported by, the Joint

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW #5 is assigned (due April 9) April 9 th class will be in

More information

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton Progress in ultrafast Cr:ZnSe Lasers Evgueni Slobodtchikov, Peter Moulton Topics Diode-pumped Cr:ZnSe femtosecond oscillator CPA Cr:ZnSe laser system with 1 GW output This work was supported by SBIR Phase

More information

Power Scaling of Tm:fiber Lasers to the kw Level

Power Scaling of Tm:fiber Lasers to the kw Level Power Scaling of Tm:fiber Lasers to the kw Level Peter F. Moulton Q-Peak, Inc. CREOL Industrial Affiliates Day 2009 High Power Optical Sources for the 21st Century April 17, 2009 Outline Background Fundamentals

More information

Development of High-peak Power Yb-doped Fiber Laser in Large Core Fiber

Development of High-peak Power Yb-doped Fiber Laser in Large Core Fiber Development of High-peak Power Yb-doped Fiber Laser in Large Core Fiber Institute of Laser Engineering Osaka University Hidetsugu Yoshida Koji Tsubakimoto Hisanori Fujita Masahiro Nakatsuka Noriaki Miyanaga

More information

Yb-free, SLM EDFA: comparison of 980-, and nm excitation for the core- and clad-pumping

Yb-free, SLM EDFA: comparison of 980-, and nm excitation for the core- and clad-pumping Yb-free, SLM EDFA: comparison of 98-, 147- and 153-nm excitation for the core- and clad-pumping M. Dubinskii a, V. Ter-Mikirtychev b, J. Zhang a and I. Kudryashov c, a U.S. Army Research Laboratory, AMSRD-ARL-SE-EO,

More information

Thulium-Doped Fiber Amplifier Development for Power Scaling the 2 Micron Coherent Laser Absorption Instrument for ASCENDS

Thulium-Doped Fiber Amplifier Development for Power Scaling the 2 Micron Coherent Laser Absorption Instrument for ASCENDS Thulium-Doped Fiber Amplifier Development for Power Scaling the 2 Micron Coherent Laser Absorption Instrument for ASCENDS Mark W. Phillips Lockheed Martin Coherent Technologies 135 South Taylor Avenue,

More information

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Ring cavity tunable fiber laser with external transversely chirped Bragg grating Ring cavity tunable fiber laser with external transversely chirped Bragg grating A. Ryasnyanskiy, V. Smirnov, L. Glebova, O. Mokhun, E. Rotari, A. Glebov and L. Glebov 2 OptiGrate, 562 South Econ Circle,

More information

High Power Compact Fiber Chirped Pulse Amplifiers at 1558-nm using Er/Yb LMA Fibers and Chirped Volume Bragg Grating Compressors

High Power Compact Fiber Chirped Pulse Amplifiers at 1558-nm using Er/Yb LMA Fibers and Chirped Volume Bragg Grating Compressors High Power Compact Fiber Chirped Pulse Amplifiers at 1558-nm using Er/Yb LMA Fibers and Chirped Volume Bragg Grating Compressors Ming-Yuan Cheng, Almantas Galvanauskas University of Michigan Vadim Smirnov,

More information

The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width

The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width Ryo Kawahara *1, Hiroshi Hashimoto *1, Jeffrey W. Nicholson *2, Eisuke Otani *1,

More information

Low Noise High Power Ultra-Stable Diode Pumped Er-Yb Phosphate Glass Laser

Low Noise High Power Ultra-Stable Diode Pumped Er-Yb Phosphate Glass Laser Low Noise High Power Ultra-Stable Diode Pumped Er-Yb Phosphate Glass Laser R. van Leeuwen, B. Xu, L. S. Watkins, Q. Wang, and C. Ghosh Princeton Optronics, Inc., 1 Electronics Drive, Mercerville, NJ 8619

More information

56:/)'2 :+9: 3+'9;8+3+4:

56:/)'2 :+9: 3+'9;8+3+4: Experts in next generation test equipment 56:/)'2 :+9: 3+'9;8+3+4: Optical Spectrum Analyzer Optical Complex Spectrum Analyzer Optical MultiTest Platform & Modules AP2040 series - OSA 4 AP2050 series -

More information

Optical Fibre Amplifiers Continued

Optical Fibre Amplifiers Continued 1 Optical Fibre Amplifiers Continued Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus ECE 445 Lecture 09 Fall Semester 2016 2 ERBIUM-DOPED FIBRE AMPLIFIERS BASIC

More information

GaSb based high power single spatial mode and distributed feedback lasers at 2.0 μm

GaSb based high power single spatial mode and distributed feedback lasers at 2.0 μm GaSb based high power single spatial mode and distributed feedback lasers at 2.0 μm Clifford Frez 1, Kale J. Franz 1, Alexander Ksendzov, 1 Jianfeng Chen 2, Leon Sterengas 2, Gregory L. Belenky 2, Siamak

More information

SodiumStar 20/2 High Power cw Tunable Guide Star Laser

SodiumStar 20/2 High Power cw Tunable Guide Star Laser SodiumStar 20/2 High Power cw Tunable Guide Star Laser Laser Guide Star Adaptive Optics Facilities LIDAR Atmospheric Monitoring Laser Cooling SodiumStar 20/2 High Power cw Tunable Guide Star Laser Existing

More information

Low Noise, High Power DFB Laser Part #LN Pxx

Low Noise, High Power DFB Laser Part #LN Pxx Ver 2b, 7-5-2018 Product Specification 5800 Uplander Way Culver City, CA 90230 Tel: (310) 642-7975 sales@apichip.com www.apichip.com Low Noise, High Power DFB Laser Part #LN-1550-165-Pxx PRODUCT FEATURES

More information

Practical Aspects of Raman Amplifier

Practical Aspects of Raman Amplifier Practical Aspects of Raman Amplifier Contents Introduction Background Information Common Types of Raman Amplifiers Principle Theory of Raman Gain Noise Sources Related Information Introduction This document

More information

Continuous Wave (CW) Single-Frequency IR Laser NPRO 125/126 Series

Continuous Wave (CW) Single-Frequency IR Laser NPRO 125/126 Series COMMERCIAL LASERS Continuous Wave (CW) Single-Frequency IR Laser NPRO 125/126 Series Key Features 1319 or 1064 nm outputs available Fiber-coupled output Proven nonplanar ring oscillator (NPRO) design Superior

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

High Power Thin Disk Lasers. Dr. Adolf Giesen. German Aerospace Center. Institute of Technical Physics. Folie 1. Institute of Technical Physics

High Power Thin Disk Lasers. Dr. Adolf Giesen. German Aerospace Center. Institute of Technical Physics. Folie 1. Institute of Technical Physics High Power Thin Disk Lasers Dr. Adolf Giesen German Aerospace Center Folie 1 Research Topics - Laser sources and nonlinear optics Speiser Beam control and optical diagnostics Riede Atm. propagation and

More information

Tapered Amplifiers. For Amplification of Seed Sources or for External Cavity Laser Setups. 750 nm to 1070 nm COHERENT.COM DILAS.

Tapered Amplifiers. For Amplification of Seed Sources or for External Cavity Laser Setups. 750 nm to 1070 nm COHERENT.COM DILAS. Tapered Amplifiers For Amplification of Seed Sources or for External Cavity Laser Setups 750 nm to 1070 nm COHERENT.COM DILAS.COM Welcome DILAS Semiconductor is now part of Coherent Inc. With operations

More information

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices Dr. Rüdiger Paschotta RP Photonics Consulting GmbH Competence Area: Fiber Devices Topics in this Area Fiber lasers, including exotic types Fiber amplifiers, including telecom-type devices and high power

More information

High-gain Er-doped fiber amplifier generating eye-safe MW peak-power, mj-energy pulses

High-gain Er-doped fiber amplifier generating eye-safe MW peak-power, mj-energy pulses High-gain Er-doped fiber amplifier generating eye-safe MW peak-power, mj-energy pulses Sebastien Desmoulins and Fabio Di Teodoro 1,* Aculight Corporation, 22121 2 th Avenue S.E., Bothell, WA 921 1 Currently

More information

Fiber lasers and their advanced optical technologies of Fujikura

Fiber lasers and their advanced optical technologies of Fujikura Fiber lasers and their advanced optical technologies of Fujikura Kuniharu Himeno 1 Fiber lasers have attracted much attention in recent years. Fujikura has compiled all of the optical technologies required

More information

Power. Warranty. 30 <1.5 <3% Near TEM ~4.0 one year. 50 <1.5 <5% Near TEM ~4.0 one year

Power. Warranty. 30 <1.5 <3% Near TEM ~4.0 one year. 50 <1.5 <5% Near TEM ~4.0 one year DL CW Blue Violet Laser, 405nm 405 nm Operating longitudinal mode Several Applications: DNA Sequencing Spectrum analysis Optical Instrument Flow Cytometry Interference Measurements Laser lighting show

More information

Quantum-Well Semiconductor Saturable Absorber Mirror

Quantum-Well Semiconductor Saturable Absorber Mirror Chapter 3 Quantum-Well Semiconductor Saturable Absorber Mirror The shallow modulation depth of quantum-dot saturable absorber is unfavorable to increasing pulse energy and peak power of Q-switched laser.

More information

Coherence control of the FOS-79800F. applications, Stimulated Brillouin Scattering. these reasons, controlling DFB source spectral

Coherence control of the FOS-79800F. applications, Stimulated Brillouin Scattering. these reasons, controlling DFB source spectral Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) FOS Solutions for Multi-Wavelength Test Applications Dependable long-term performance is the trademark of the FOS-79800,

More information

High-peak power laser system used in Yb doped LMA fiber

High-peak power laser system used in Yb doped LMA fiber High-peak power laser system used in Yb doped LMA fiber Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan YOSHIDA Hidetsugu, TSUBAKIMOTO Koji, FUJITA Hisanori, NAKATSUKA Masahiro, MIYANAGA

More information

THE TUNABLE LASER LIGHT SOURCE C-WAVE. HÜBNER Photonics Coherence Matters.

THE TUNABLE LASER LIGHT SOURCE C-WAVE. HÜBNER Photonics Coherence Matters. THE TUNABLE LASER LIGHT SOURCE HÜBNER Photonics Coherence Matters. FLEXIBILITY WITH PRECISION is the tunable laser light source for continuous-wave (cw) emission in the visible and near-infrared wavelength

More information

Photonics (OPTI 510R 2017) - Final exam. (May 8, 10:30am-12:30pm, R307)

Photonics (OPTI 510R 2017) - Final exam. (May 8, 10:30am-12:30pm, R307) Photonics (OPTI 510R 2017) - Final exam (May 8, 10:30am-12:30pm, R307) Problem 1: (30pts) You are tasked with building a high speed fiber communication link between San Francisco and Tokyo (Japan) which

More information

HIGH POWER DFB LASERS

HIGH POWER DFB LASERS HIGH POWER DFB LASERS Single frequency lasers in 14-pin butterfly package AA1401 SERIES INCLUDING AA1402, AA1406, AA1408, and AA1415 The Gooch & Housego high power distributed feedback laser (DFB) is an

More information

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University Photonics Group Department of Micro- and Nanosciences Aalto University Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Last Lecture Topics Course introduction Ray optics & optical

More information

X-CAN. A coherent amplification network of femtosecond fiber amplifiers

X-CAN. A coherent amplification network of femtosecond fiber amplifiers X-CAN A coherent amplification network of femtosecond fiber amplifiers Jean-Christophe Chanteloup, Louis Daniault LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Route de Saclay, 91128, Palaiseau, France Gérard

More information

High power VCSEL array pumped Q-switched Nd:YAG lasers

High power VCSEL array pumped Q-switched Nd:YAG lasers High power array pumped Q-switched Nd:YAG lasers Yihan Xiong, Robert Van Leeuwen, Laurence S. Watkins, Jean-Francois Seurin, Guoyang Xu, Alexander Miglo, Qing Wang, and Chuni Ghosh Princeton Optronics,

More information

A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator

A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator Utah State University DigitalCommons@USU Space Dynamics Lab Publications Space Dynamics Lab 1-1-2011 A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator Robert J. Foltynowicz

More information

Operating longitudinal mode Several Polarization ratio > 100:1. Power. Warranty. 30 <1.5 <5% Near TEM ~4.0 one year

Operating longitudinal mode Several Polarization ratio > 100:1. Power. Warranty. 30 <1.5 <5% Near TEM ~4.0 one year DL CW Blue Violet Laser, 405nm 405 nm Operating longitudinal mode Several Applications: DNA Sequencing Spectrum analysis Optical Instrument Flow Cytometry Interference Measurements Laser lighting show

More information

Fiber Lasers for EUV Lithography

Fiber Lasers for EUV Lithography Fiber Lasers for EUV Lithography A. Galvanauskas, Kai Chung Hou*, Cheng Zhu CUOS, EECS Department, University of Michigan P. Amaya Arbor Photonics, Inc. * Currently with Cymer, Inc 2009 International Workshop

More information

Micromachining with tailored Nanosecond Pulses

Micromachining with tailored Nanosecond Pulses Micromachining with tailored Nanosecond Pulses Hans Herfurth a, Rahul Patwa a, Tim Lauterborn a, Stefan Heinemann a, Henrikki Pantsar b a )Fraunhofer USA, Center for Laser Technology (CLT), 46025 Port

More information

Concepts for High Power Laser Diode Systems

Concepts for High Power Laser Diode Systems Concepts for High Power Laser Diode Systems 1. Introduction High power laser diode systems is a new development within the field of laser diode systems. Pioneer of such laser systems was SDL, Inc. which

More information

Laser Diode. Photonic Network By Dr. M H Zaidi

Laser Diode. Photonic Network By Dr. M H Zaidi Laser Diode Light emitters are a key element in any fiber optic system. This component converts the electrical signal into a corresponding light signal that can be injected into the fiber. The light emitter

More information

Supercontinuum Sources

Supercontinuum Sources Supercontinuum Sources STYS-SC-5-FC (SM fiber coupled) Supercontinuum source SC-5-FC is a cost effective supercontinuum laser with single mode FC connector output. With a total output power of more than

More information

A continuous-wave Raman silicon laser

A continuous-wave Raman silicon laser A continuous-wave Raman silicon laser Haisheng Rong, Richard Jones,.. - Intel Corporation Ultrafast Terahertz nanoelectronics Lab Jae-seok Kim 1 Contents 1. Abstract 2. Background I. Raman scattering II.

More information

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Keisuke Kasai a), Jumpei Hongo, Masato Yoshida, and Masataka Nakazawa Research Institute of

More information

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity Shinji Yamashita (1)(2) and Kevin Hsu (3) (1) Dept. of Frontier Informatics, Graduate School of Frontier Sciences The University

More information

ModBox-FE-125ps-10mJ. Performance Highlights FEATURES APPLICATIONS. Electrical & Optical Pulse Diagrams

ModBox-FE-125ps-10mJ. Performance Highlights FEATURES APPLICATIONS. Electrical & Optical Pulse Diagrams The System-FE-1064nm is set to generate short shaped pulses with high extinction ratio at 1064.1 nm. It allows dynamic extinction ratio up to 55 db with user adjustable pulse duration, repetition rate

More information

Power scaling of a hybrid microstructured Yb-doped fiber amplifier

Power scaling of a hybrid microstructured Yb-doped fiber amplifier Power scaling of a hybrid microstructured Yb-doped fiber amplifier Item Type Article Authors Mart, Cody; Pulford, Benjamin; Ward, Benjamin; Dajani, Iyad; Ehrenreich, Thomas; Anderson, Brian; Kieu, Khanh;

More information

Advanced seeders for fiber lasers - IFLA. 23 June. 2014

Advanced seeders for fiber lasers - IFLA. 23 June. 2014 Advanced seeders for fiber lasers - IFLA 23 June. 2014 Seeders - introduction In MOPA * pulsed fiber lasers, seeders largely impact major characteristics of the laser system: Optical spectrum Peak power

More information

New approach to image amplification based on an optically-pumped multi-core optical fiber

New approach to image amplification based on an optically-pumped multi-core optical fiber New approach to image amplification based on an optically-pumped multi-core optical fiber Arturo Chavez-Pirson, Bor-Chyuan Hwang, Dan Nguyen, Tao Luo, Shibin Jiang NP Photonics, 9030 S. Rita Road, Tucson,

More information

EDFA WDM Optical Network using GFF

EDFA WDM Optical Network using GFF EDFA WDM Optical Network using GFF Shweta Bharti M. Tech, Digital Communication, (Govt. Women Engg. College, Ajmer), Rajasthan, India ABSTRACT This paper describes the model and simulation of EDFA WDM

More information

taccor Optional features Overview Turn-key GHz femtosecond laser

taccor Optional features Overview Turn-key GHz femtosecond laser taccor Turn-key GHz femtosecond laser Self-locking and maintaining Stable and robust True hands off turn-key system Wavelength tunable Integrated pump laser Overview The taccor is a unique turn-key femtosecond

More information

Vertical External Cavity Surface Emitting Laser

Vertical External Cavity Surface Emitting Laser Chapter 4 Optical-pumped Vertical External Cavity Surface Emitting Laser The booming laser techniques named VECSEL combine the flexibility of semiconductor band structure and advantages of solid-state

More information

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs)

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Prof. Dr. Yaocheng SHI ( 时尧成 ) yaocheng@zju.edu.cn http://mypage.zju.edu.cn/yaocheng 1 Traditional Optical Communication System Loss

More information

Efficient All-fiber Passive Coherent Combining of Fiber Lasers

Efficient All-fiber Passive Coherent Combining of Fiber Lasers Efficient All-fiber Passive Coherent Combining of Fiber Lasers Baishi Wang (1), Eric Mies (1), Monica Minden (2), Anthony Sanchez (3) (1) Vytran, LLC, 14 Campus Drive, Morganville, NJ 7751, (2) HRL Laboratories,

More information

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Introduction Fundamentals of laser Types of lasers Semiconductor lasers ECE 5368 Introduction Fundamentals of laser Types of lasers Semiconductor lasers Introduction Fundamentals of laser Types of lasers Semiconductor lasers How many types of lasers? Many many depending on

More information

O. Mahran 1,2 and A.A.Samir 1

O. Mahran 1,2 and A.A.Samir 1 International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 1306 The Effect of the Amplifier Length on the Gain and Noise Figure of the Er/Yb Co-Doped Waveguide Amplifiers

More information

DatasheetArchive.com. Request For Quotation

DatasheetArchive.com. Request For Quotation DatasheetArchive.com Request For Quotation Order the parts you need from our real-time inventory database. Simply complete a request for quotation form with your part information and a sales representative

More information

NEC's 1310 nm InGaAsP MQW-DFB LASER DIODE IN COAXIAL PACKAGE FOR FIBER OPTIC COMMUNICATIONS

NEC's 1310 nm InGaAsP MQW-DFB LASER DIODE IN COAXIAL PACKAGE FOR FIBER OPTIC COMMUNICATIONS FEATURES NEC's 131 nm InGaAsP MQW-DFB LASER DIODE IN COAXIAL PACKAGE FOR FIBER OPTIC COMMUNICATIONS INTERNAL OPTICAL ISOLATOR PEAK EMISSION WAVELENGTH: λp = 131 nm OPTICAL OUTPUT POWER: = 2. mw WIDE OPERATING

More information

ESTIMATION OF NOISE FIGURE USING GFF WITH HYBRID QUAD PUMPING

ESTIMATION OF NOISE FIGURE USING GFF WITH HYBRID QUAD PUMPING IJCRR Vol 05 issue 13 Section: Technology Category: Research Received on: 19/12/12 Revised on: 16/01/13 Accepted on: 09/02/13 ESTIMATION OF NOISE FIGURE USING GFF WITH HYBRID QUAD PUMPING V.R. Prakash,

More information

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2014) All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser Shengxiao

More information

Jordan Camp. NASA Goddard Space Flight Center. LISA X Symposium May 20, 2014

Jordan Camp. NASA Goddard Space Flight Center. LISA X Symposium May 20, 2014 elisa Laser Development in the US Jordan Camp Kenji Numata NASA Goddard Space Flight Center LISA X Symposium May 20, 2014 elisalaser poga program at GSFC Provide TRL 5 laser system by 2016 Modern, fiber-based

More information

Low threshold continuous wave Raman silicon laser

Low threshold continuous wave Raman silicon laser NATURE PHOTONICS, VOL. 1, APRIL, 2007 Low threshold continuous wave Raman silicon laser HAISHENG RONG 1 *, SHENGBO XU 1, YING-HAO KUO 1, VANESSA SIH 1, ODED COHEN 2, OMRI RADAY 2 AND MARIO PANICCIA 1 1:

More information

Ultra-Broadband Fiber-Based Optical Supercontinuum Source

Ultra-Broadband Fiber-Based Optical Supercontinuum Source Ultra-Broadband Fiber-Based Optical Supercontinuum Source Luo Ma A Thesis In the Department of Electrical and Computer Engineering Presented in Partial Fulfillment of the Requirements for the Degree of

More information