Wavelength stabilized multi-kw diode laser systems

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Wavelength stabilized multi-kw diode laser systems"

Transcription

1 Wavelength stabilized multi-kw diode laser systems Bernd Köhler *, Andreas Unger, Tobias Kindervater, Simon Drovs, Paul Wolf, Ralf Hubrich, Anna Beczkowiak, Stefan Auch, Holger Müntz, Jens Biesenbach DILAS Diodenlaser GmbH, Galileo-Galilei-Str. 10, Mainz-Hechtsheim, Germany ABSTRACT We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kw was measured for a fiber coupled system (1000 µm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow linewidth diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W. Keywords : High power diode laser, wavelength stabilization, Volume Holographic Grating, broad area diode laser, fiber coupling, spectral beam combining 1 INTRODUCTION High-power diode laser systems are well established laser sources for a variety of applications including materials processing and solid state laser pumping. The main advantages of such systems are high wall-plug efficiency, high optical power, reliability, long lifetime, relatively low investment costs and a small footprint. However, besides these numerous advantages, one drawback of high-power diode laser systems is their relatively poor spectral brightness. Typical broad area diode laser bars have a large spectral width of about 3 to 6 nm and the peak wavelength drifts with driving current and temperature. The rapid progress in the fiber laser area has increased the demand for efficient diode pump lasers. For Ytterbium (Yb)- fiber lasers around 1080 nm normally fiber coupled diode laser systems at 915, 940 and 980 nm are used as pump sources. Especially the pump region at 980 nm is important because of the high absorption coefficient in combination with a small absorption bandwidth. To ensure stable and efficient pumping over the whole operating range, it is helpful to control the spectrum of the pump diodes in such a way that the spectral bandwidth of the laser diode is always consistent with the absorption bandwidth of the active laser medium. For Thin Disk Yb:YAG lasers it is beneficial to pump the zero-phonon line at 969 nm to improve beam quality and opticaloptical efficiency because of a smaller quantum defect compared to standard 940 nm pump wavelength 1. Another example which requires a narrow spectral bandwidth for pumping is Nd:YVO 4 at 888 nm, which is advantageous because of its isotropic absorption region with equal absorption coefficients in both polarization directions and the reduced quantum defect compared to the pump region at 808 nm 2. * tel. +49 (0) ; fax +49 (0) ;

2 One of the most demanding application with regard to spectral linewidth is optical pumping of alkali vapor lasers (e.g. rubidium or cesium) which requires a linewidth of about 10 GHz. For these demands spectral control of a diode laser pump source is absolutely mandatory for efficient pumping 3,4,5. In addition to enabling efficient pump sources for solid state lasers wavelength stabilization of high-power diode laser systems also enables power scaling by dense wavelength multiplexing. In recent years the brightness of diode laser bars has been significantly improved mainly by increasing the output power per emitter and by reducing the slow-axis divergence. The development led to the design of new types of diode laser bars with reduced number of emitters and increased pitch between the emitters. These minibars have advantages compared to the traditional 10 mm broad diode laser bars 6. Further brightness enhancement of diode laser systems is achieved by polarization coupling and wavelength multiplexing. Polarization coupling is limited to a factor of 2, whereas wavelength multiplexing is only limited by the number n of available wavelengths. As a matter of course, power scaling by wavelength multiplexing is achieved at the cost of spectral brightness. Wavelength multiplexing with standard broadband diode laser sources and wavelength couplers based on dielectric coatings requires a spectral distance of about 30 nm. Using diode laser sources with stabilized narrow emission spectra and Volume Holographic Gratings as combination elements the spectral distance can be significantly reduced down to 3 nm 7. As a consequence, the number of diode laser bars that can be multiplexed for a given spectral range increases, resulting in an enhancement of brightness. In the next section we will describe some general aspects of wavelength stabilization. 2 GENERAL ASPECTS OF WAVELENGTH STABILIZATION Different methods have been investigated in the past for improving the spectral brightness of broad area diode laser bars. These approaches can be divided into internal and external solutions. For internal solutions the wavelength stabilizing structure is integrated into the diode laser bar itself, whereas for external solutions separate bulk elements with integrated Bragg grating are used for wavelength stabilization. An example for a diode laser bar with internal wavelength stabilization is a distributed feedback diode laser (DFB) where the grating for selective spectral feedback is integrated in the structure of the active region of the laser bar itself. With such a device the wavelength shift with temperature is reduced down to about 0.08 nm/k and in addition the spectral bandwidth is reduced to less than 1 nm 8. It is evident that the fabrication process of such a DFB-diode laser is more complex leading to an increase in costs. Another drawback is the reduced efficiency of a DFB-diode laser, when compared to a standard broad area diode laser bar. In contrast to this internal approach wavelength stabilization by external components has also been investigated. One example for an external wavelength stabilizing element is a thick volume grating based on a photo-thermo-refractive (PTR) inorganic glass 9. Recording of highly efficient Bragg gratings in such photosensitive glass is achieved by periodic variation of the refractive index by UV exposure. Such volume diffractive gratings are commercially available from different vendors with slightly different nomenclatures, like Volume Bragg Grating (VBG) 10, Volume Holographic Grating (VHG) 11 or Reflecting Bragg Grating (RBG) 12. In contrast to the internal solution no modification of the chip structure is required for external wavelength stabilization, i.e. that standard diode laser bars can be used for wavelength stabilization with external Volume Holographic Gratings. This is an important advantage of the external solution. Furthermore, external stabilization leads to a further reduction in temperature drift and spectral bandwidth, when compared to the internal solution. The temperature drift can be reduced down to about 0.01 nm/k and the spectral bandwidth to less than 0.3 nm. However, one important disadvantage of external components is the requirement for sensitive and high-precision alignment of the VHG. A typical setup for a diode laser bar with external stabilization is shown in Fig. 1. Because of the angular sensitivity of the VHG it is advantageous to reduce the divergence of the diode laser bar especially in the fast-axis direction by collimating the beam with a fast-axis collimating lens (FAC). This will significantly increase the optical feedback by the VHG. Collimation of the beam in the slow-axis with a slow-axis collimating lens (SAC) is not mandatory. The VHG is positioned directly behind the FAC. The table in Fig. 1 shows typical alignment tolerances that are required for efficient wavelength stabilization.

3 typical tolerances for rotation x-axis y-axis z-axis ± 0.5 mrad ± 10 mrad ± 10 mrad Fig. 1: Typical setup for a wavelength stabilized diode laser bar with a VHG positioned directly behind the fast-axis collimating lens (FAC). The table shows typical alignment tolerances with respect to the shown setup. For efficient and stable operation of wavelength stabilization all relevant parameters have to be controlled carefully. The parameters of the diode laser bar include the reflectivity of the AR-coating of the output facet, the emitter structure, the cavity length, the smile, the angular emission characteristics and the mounting technology, which has an influence on the wavelength drift with current and temperature. The properties of a VHG are optimized by adapting the refractive index modulation, the spatial frequency and the thickness. These three independent parameters define the Bragg angle, the diffraction efficiency and the spectral and angular selectivity of the grating. In principal, for each configuration these VHG parameters have to be optimized separately. However, based on experience a value for the VHG reflectivity of about 15% is a good starting point for most common diode laser bars. A VHG with a higher reflectivity will increase the locking range at the cost of a higher power loss. This means that optimization of wavelength stabilization will always be a trade-off between locking range and power loss. Furthermore it is important to notice that the optimum reflectivity also depends on the demands of the application. For some applications the VHG has to be optimized for a large locking range, whereas for other applications low losses for fixed operating conditions could be requested. One means to overcome the sensitivity for smile is the integration of the grating structure into the FAC itself 13. Such an element is more insensitive to smile and misalignment. Due to the large angular divergence of the uncollimated beam and the small angular selectivity of the grating only a small part of the beam is reflected back into the diode laser cavity. In the case of misalignment or smile another part of the beam will be reflected to provide feedback. In contrast, for an ideal two component setup with good collimation and no smile nearly all light reflected from the VHG is coupled back into the diode laser cavity. On the other hand this implies that for efficient wavelength locking a significant increase of the reflectivity of the VHG-FAC to about 70% is required. A further advantage of a FAC with integrated VHG is that only one single element has to be handled and aligned. One disadvantage of a VHG-FAC is the relatively low refractive index of the PTR-material, which is typically based on silica (n=1.45). FACs are usually fabricated with high refractive index material like S-TiH53 or N-LAF21. By using low refractive index material, a smaller radius of curvature is required for the same focal length which is disadvantageous with respect to lens aberrations for high NA operation. 3 RESULTS FOR DIFFERENT CONFIGURATIONS In this section we will present different examples for wavelength stabilized diode laser units. In principle, wavelength stabilization is possible for all configurations and operation modes. This includes single diode laser bars, vertical and horizontal diode laser stacks, fiber coupled modules and complete turn-key systems. Operation mode can be continuous wave or pulsed mode (QCW, quasi-continuous wave). 3.1 Single diode laser bars The first example is a single diode laser bar with fast-axis collimation in the red spectral range mounted on a passively cooled heat sink. Wavelength stabilization is achieved by an external VHG at a central wavelength of nm. Fig. 2 shows the output power as a function of the operating current with and without wavelength stabilization (left part) and the corresponding spectra (right part). The maximum output power with stabilization is 4 W at an operating current of 8.5 A

4 and a temperature of 20 C. The peak wavelength of the stabilized spectrum is nm with a spectral bandwidth of less than 0.3 nm (90% power content value), which is significantly less compared to 1.5 nm without wavelength stabilization. The power vs. current characteristics shows that the lasing threshold with stabilization is reduced, which is typical for stabilized diodes because of additional feedback by the external grating. By adding optical elements for collimation and beam shaping fiber coupling of the diode laser bar into a 400 µm fiber with numerical aperture of 0.22 is possible. Fig. 2: Power vs. current curve of a wavelength stabilized diode laser bar with an external VHG at nm (left diagram). The right diagram shows the corresponding spectra with and without wavelength stabilization. For efficient feedback it is advantageous to use a diode bar with collimation in one or both axes and insert the VHG after the collimating optics. However, for some applications, like side-pumped solid-state lasers, diode laser bars without collimation are used. For sufficient feedback the reflectivity of the VHG has to be increased significantly compared to the operation with a collimated beam. Such a setup is comparable to a FAC with integrated VHG where efficiencies of about 70% have to be used (sect. 2). The advantage of a setup without collimating optics is that alignment of the VHG is not critical, but distance to the facet should be minimized. Fig. 3 shows the performance of a wavelength stabilized diode laser bar without collimation. The diode laser bar is operated in QCW-mode with 1.3 % duty cycle (260 µs pulse width, 50 Hz repetition rate) at a temperature of 20 C. Maximum output power is 243 W at a current of 250 A with a corresponding efficiency of 52%. The right part of Fig. 3 shows the spectrum of the stabilized bar at a peak wavelength of nm with a spectral width of less than 1 nm (90% value). Fig. 3: Power vs. current curve of an uncollimated wavelength stabilized diode laser bar with an external VHG at nm (left diagram). The right diagram shows the corresponding spectra with and without wavelength stabilization.

5 3.2 Diode laser stacks One approach for scaling the output power of diode laser units is dense packaging of multiple diode laser bars on heat sinks next to each other (horizontal stack) or on top of each other (vertical stack). A typical setup of a vertical stack is shown in Fig. 4. The vertical stack consists of 30 diode laser bars mounted on actively cooled micro-channel heat sinks. Each bar is individually collimated in fast-axis direction and wavelength stabilized by an external VHG. The total output power is 3375 W at an operating current of 110 A. Overall efficiency with stabilization is above 60 %. The right diagram of Fig. 4 shows the stabilized spectrum at a peak wavelength of nm and a temperature of 25 C. Although 30 individual spectra are combined the total width of the spectrum is below 0.7 nm (90% value). To ensure such small bandwidths even for large stacks the variation of the VHG parameters has to be very low. That is even more important when multiple stacks are combined in one setup. In sum, we built 4 different 30-bar stacks with a very small variation of of only ± 0.25 nm for the stack central wavelength (884.7 nm up to nm). Fig. 4: Power vs. current curve of a wavelength stabilized 30-bar vertical diode laser stack with external VHGs at nm (left diagram). The right diagram shows the corresponding spectra with and without wavelength stabilization. A similar setup of a diode laser stack at a different wavelength of 1533 nm is shown in Fig. 5. The vertical stack consists of 42 diode laser bars mounted on actively cooled micro-channel heat sinks. Each bar is individually collimated in both axes (FAC + SAC) and wavelength stabilized by an external VHG. The total output power is 835 W at an operating current of 60 A. Overall efficiency with stabilization is above 29 %. The right diagram of Fig. 5 shows the stabilized spectrum at a peak wavelength of 1533 nm and a temperature of 25 C. The total width of the spectrum is below 0.9 nm (90% value). Fig. 5: Power vs. current curve of a wavelength stabilized 42-bar vertical diode laser stack with external VHGs at 1533 nm (left diagram). The right diagram shows the corresponding spectrum.

6 3.3 Fiber coupled units In the last few years we developed a modular diode laser concept which is based on a standard building block for a variety of lasers with different output powers and beam qualities 14. According to the modular design principle the baseplates easily can be combined to scale output power, which is realized optically by spatial and / or polarization multiplexing. The advantage of a common baseplate as basic building block for the modular system is that the baseplate can be produced in high volume. The production process for the baseplate is highly automated which leads to a cost-efficient and reliable building block with high repeatability regarding optical properties. As a result pointing errors are minimized which is important for beam quality with regard to fiber coupling or wavelength stabilization, which is possible by using only one Volume Holographic Grating for the whole baseplate. Another important design aspect is that the cooling strategy allows the use of industrial water for the bottom-cooled baseplate. The modular concept is schematically shown in Fig. 6. Starting with a one-plate unit with up to 300 W output power for a 200 µm fiber (NA 0.22) we end up with a laser system consisting of 8 baseplates resulting in 2.2 kw output power for a fiber diameter of 400 µm (NA 0.22) at one single wavelength (without wavelength stabilization).. Fig. 6: Schematic drawing of modular diode laser concept based on one common baseplate. By adding an external VHG for wavelength stabilization of a single plate unit up to 284 W are achieved for a 200 µm NA0.22 fiber at an operating current of 40 A with an overall efficiency of 50%. The wavelength is centered at 976 nm with a spectral bandwidth below 0.5 nm (90% value). Data are shown in Fig. 7 (left part) in combination with results from a long term test (right part). The parameters for the long term test are 284 W output power, 40 A current and 20 C temperature. The total runtime shown in the diagram is 3900 h, which indicates a lifetime of > h, when end of lifetime is defined by 20% power decrease. We have built more than 50 of such units with a mean value of the peak wavelength of nm and a standard deviation of only ± 0.35 nm. Maximum deviation from the peak wavelength is only ± 0.55 nm and mean values for the linewidth are 0.85 nm (90% value) and 0.35 nm (FWHM), respectively.

7 Fig. 7: Power vs. current curve of a wavelength stabilized single plate unit with an external VHG at 976 nm (left diagram). The right diagram shows data of a 3900 h long term test at a current of 40 A and the corresponding spectrum. As mentioned before power scaling is realized by combining several base plates to one common laser unit. Fig. 8 shows the result for a laser unit with four base plates coupled into a 200 µm fiber with NA At an operating current of 40 A a maximum output power of 726 W is achieved with wavelength stabilization and 785 W without wavelength stabilization. The corresponding efficiencies are 40% and 44%, respectively. The right part of Fig. 8 shows the corresponding spectra. The center wavelength of the stabilized spectrum is at nm with a spectral width of only 0.7 nm (90% value), which is a significant reduction compared to the spectral width of 5.6 nm without spectral stabilization. Further power scaling will be achieved by power scaling of the base plate itself and will lead to 1 kw output power for the four-plate unit in the near future. Fig. 8: Power vs. current curve of a four plate unit with and without external wavelength stabilization at 976 nm (left diagram). The right diagram shows the corresponding spectra with and without wavelength stabilization. 3.4 Multi-kW fiber coupled systems The examples in the previous section were based on a modular concept, which uses the tailored bar concept in combination with a baseplate cooled with industrial water. A more compact setup can be realized with DI-water cooled vertical diode laser stacks as described in Sect We have developed a modular platform based on diode laser stacks with standard 10 mm broad diode laser bars, which is suitable for fiber coupling into a 1000 µm NA 0.22 fiber. Fig. 9 shows the result for a unit which is wavelength stabilized at a central wavelength of nm. The maximum output power is 2.3 kw at an operating current of 65 A with a corresponding efficiency of 46%. The peak wavelength is centered at nm with a spectral bandwidth below 0.6 nm (90% value). The diode laser module which is schematically shown in the left part of Fig. 9 can optionally be integrated into a stand-alone 19-inch mounting rack (right part of Fig. 9).

8 Fig. 9: Power vs. current curve of a 1000 µm NA 0.22 fiber coupled laser unit based on vertical diode laser stacks with external wavelength stabilization at nm (left diagram). The right diagram shows the corresponding spectrum. By changing the central wavelength of the VHG the stabilized wavelength easily can be shifted to 969 nm, which is the important zero-phonon pump wavelength for Thin Disk Yb:YAG lasers. Fig. 10 shows the result for such a unit which is wavelength stabilized at a central wavelength of nm. The maximum output power is 2.7 kw at an operating current of 75 A with a corresponding efficiency of 48 %. The peak wavelength is centered at nm with a spectral bandwidth below 0.6 nm (90% value). Fig. 10: Power vs. current curve of a 1000 µm NA 0.22 fiber coupled laser unit based on vertical diode laser stacks with external wavelength stabilization at nm (left diagram). The right diagram shows the corresponding spectrum.

9 4 SUMMARY AND OUTLOOK In conclusion, we have demonstrated efficient and stable wavelength locking for a couple of different configurations. Wavelength stabilization was realized for single bar modules, diode laser stacks and fiber coupled modules with fiber core diameters from 200 µm up to 1000 µm (NA 0.22). We have shown wavelength stabilization for a broad spectral range with different wavelengths from 634 nm to 1533 nm. The maximum output power of a wavelength stabilized fiber coupled system was 2.7 kw out of a 1000 µm fiber (NA 0.22). The center wavelength of this unit was nm with a spectral bandwidth of only 0.6 nm (90% value). In summary, we have pointed out that high-power diode laser modules with enhanced spectral brightness are very attractive devices for more efficient pumping of solid-state lasers with a narrow absorption bandwidth. In addition, such wavelength stabilized devices are important for further scaling the brightness of diode laser systems. In the next few years a further increase in brightness of diode laser systems towards a BPP below 10 mm mrad with multi-kw output power is expected. Dense wavelength multiplexing with wavelength stabilized systems will help to realize these high brightness diode laser modules. We already have demonstrated a polarized output power of 410 W out of a 100 µm NA 0.2 fiber by using such a dense wavelength multiplexing approach 15. Combining several of these units will lead to the goal of a multi-kw diode laser source with a BPP below 10 mm mrad. ACKNOWLEDGEMENTS A part of this work was sponsored by the German Bundesministerium für Bildung und Forschung (BMBF) within the German National Funding Initiative Integrated optical components for High-Power Laser Sources (INLAS). REFERENCES 1. B. Weichelt et. al.; Enhanced performance of thin-disk lasers by pumping into the zero-phonon line ; Optics Letters Vol. 37, pp (2012) 2. L. McDonagh et. al.; High-efficiency 60 W TEM 00 Nd:YVO 4 oscillator pumped at 888 nm ; Optics Letters Vol. 31, pp (2006) 3. A. Gourevitch et. al.; Continuous wave, 30 W laser-diode bar with 10 GHz linewidth for Rb laser pumping ; Optics Letters Vol. 33, pp. 702 (2008) 4. T. Koenning et. al.; Narrow line diode laser stacks for DPAL pumping ; Proc. SPIE Vol. 8962, 89620F (2014) 5. H. Kissel et. al.; High-power diode laser pumps for alkali lasers (DPAL) ; Proc. SPIE Vol. 8241, 82410Q (2012) 6. M. Haag et. al.; Novel high-brightness fiber coupled diode laser device ; Proc. SPIE Vol. 6456, (2007) 7. C. Wessling et. al.; Dense wavelength multiplexing for a high power diode laser ; Proc. SPIE Vol. 6104, (2006) 8. P. Crump et. al.; Reliable operation of 976nm High Power DFB Broad Area Diode Lasers with over 60% Power Conversion Efficiency ; Proc. SPIE Vol. 7953, 79531G (2011) 9. G.B. Venus et. al.; High-brightness narrow-line laser diode source with volume Bragg-grating feedback ; Proc. SPIE Vol. 5711, pp. 166 (2005) 10. B.L. Volodin et. al.; Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings ; Optics Letters Vol. 29, pp (2004) 11. C. Moser et. al.; Filters to Bragg About ; Photonics Spectra, pp. 82 (June 2005) 12. J. Lumeau et. al.; Tunable narrowband filter based on a combination of Fabry Perot etalon and volume Bragg grating ; Optics Letters Vol. 31, pp (2006) 13. C. Schnitzler et. al.; Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG ; Proc. SPIE Vol. 6456, (2007) 14. B. Köhler et. al.; Scalable high-power and high-brightness fiber coupled diode laser devices ; Proc. SPIE Vol. 8241, (2012) 15. A. Unger et. al.; Tailored bar concepts for 10mm-mrad fiber coupled modules scalable to kw-class direct diode lasers ; submitted to SPIE Conference 9348, paper (2015)

Tailored bar concepts for 10 mm-mrad fiber coupled modules scalable to kw-class direct diode lasers

Tailored bar concepts for 10 mm-mrad fiber coupled modules scalable to kw-class direct diode lasers Tailored bar concepts for 1 mm-mrad fiber coupled modules scalable to kw-class direct diode lasers Andreas Unger*, Ross Uthoff, Michael Stoiber, Thomas Brand, Heiko Kissel, Bernd Köhler, Jens Biesenbach

More information

Multi-kW high-brightness fiber coupled diode laser based on two dimensional stacked tailored diode bars

Multi-kW high-brightness fiber coupled diode laser based on two dimensional stacked tailored diode bars Multi-kW high-brightness fiber coupled diode laser based on two dimensional stacked tailored diode bars Andreas Bayer*, Andreas Unger, Bernd Köhler, Matthias Küster, Sascha Dürsch, Heiko Kissel, David

More information

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Ring cavity tunable fiber laser with external transversely chirped Bragg grating Ring cavity tunable fiber laser with external transversely chirped Bragg grating A. Ryasnyanskiy, V. Smirnov, L. Glebova, O. Mokhun, E. Rotari, A. Glebov and L. Glebov 2 OptiGrate, 562 South Econ Circle,

More information

High-power semiconductor lasers for applications requiring GHz linewidth source

High-power semiconductor lasers for applications requiring GHz linewidth source High-power semiconductor lasers for applications requiring GHz linewidth source Ivan Divliansky* a, Vadim Smirnov b, George Venus a, Alex Gourevitch a, Leonid Glebov a a CREOL/The College of Optics and

More information

High power VCSEL array pumped Q-switched Nd:YAG lasers

High power VCSEL array pumped Q-switched Nd:YAG lasers High power array pumped Q-switched Nd:YAG lasers Yihan Xiong, Robert Van Leeuwen, Laurence S. Watkins, Jean-Francois Seurin, Guoyang Xu, Alexander Miglo, Qing Wang, and Chuni Ghosh Princeton Optronics,

More information

11 kw direct diode laser system with homogenized 55 x 20 mm² Top-Hat intensity distribution

11 kw direct diode laser system with homogenized 55 x 20 mm² Top-Hat intensity distribution 11 kw direct diode laser system with homogenized 55 x 20 mm² Top-Hat intensity distribution Bernd Köhler *, Axel Noeske, Tobias Kindervater, Armin Wessollek, Thomas Brand, Jens Biesenbach DILAS Diodenlaser

More information

Tapered Amplifiers. For Amplification of Seed Sources or for External Cavity Laser Setups. 750 nm to 1070 nm COHERENT.COM DILAS.

Tapered Amplifiers. For Amplification of Seed Sources or for External Cavity Laser Setups. 750 nm to 1070 nm COHERENT.COM DILAS. Tapered Amplifiers For Amplification of Seed Sources or for External Cavity Laser Setups 750 nm to 1070 nm COHERENT.COM DILAS.COM Welcome DILAS Semiconductor is now part of Coherent Inc. With operations

More information

Reliable QCW diode laser arrays for operation with high duty cycles

Reliable QCW diode laser arrays for operation with high duty cycles Reliable QCW diode laser arrays for operation with high duty cycles Wilhelm Fassbender* a Heiko Kissel a, Jens Lotz a, Tobias Koenning a, Steve Patterson b and Jens Biesenbach a a Coherent / DILAS Diodenlaser

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

High Brightness kw QCW Diode Laser Stacks with Ultra-low Pitches

High Brightness kw QCW Diode Laser Stacks with Ultra-low Pitches High Brightness kw QCW Diode Laser Stacks with Ultra-low Pitches David Schleuning *, Rajiv Pathak, Calvin Luong, Eli Weiss, and Tom Hasenberg * Coherent Inc., 51 Patrick Henry Drive, Santa Clara, CA 9554

More information

Thermal tuning of volume Bragg gratings for high power spectral beam combining

Thermal tuning of volume Bragg gratings for high power spectral beam combining Thermal tuning of volume Bragg gratings for high power spectral beam combining Derrek R. Drachenberg, Oleksiy Andrusyak, Ion Cohanoschi, Ivan Divliansky, Oleksiy Mokhun, Alexei Podvyaznyy, Vadim Smirnov,

More information

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS Diode Laser Characteristics I. BACKGROUND Beginning in the mid 1960 s, before the development of semiconductor diode lasers, physicists mostly

More information

Laser Diode. Photonic Network By Dr. M H Zaidi

Laser Diode. Photonic Network By Dr. M H Zaidi Laser Diode Light emitters are a key element in any fiber optic system. This component converts the electrical signal into a corresponding light signal that can be injected into the fiber. The light emitter

More information

White Paper Laser Sources For Optical Transceivers. Giacomo Losio ProLabs Head of Technology

White Paper Laser Sources For Optical Transceivers. Giacomo Losio ProLabs Head of Technology White Paper Laser Sources For Optical Transceivers Giacomo Losio ProLabs Head of Technology September 2014 Laser Sources For Optical Transceivers Optical transceivers use different semiconductor laser

More information

1450-nm high-brightness wavelength-beam combined diode laser array

1450-nm high-brightness wavelength-beam combined diode laser array 1450-nm high-brightness wavelength-beam combined diode laser array Juliet T. Gopinath, Bien Chann, T.Y. Fan, and Antonio Sanchez-Rubio Lincoln Laboratory, Massachusetts Institute of Technology, Lexington,

More information

Effects of spherical aberrations on micro welding of glass using ultra short laser pulses

Effects of spherical aberrations on micro welding of glass using ultra short laser pulses Available online at www.sciencedirect.com Physics Procedia 39 (2012 ) 563 568 LANE 2012 Effects of spherical aberrations on micro welding of glass using ultra short laser pulses Kristian Cvecek a,b,, Isamu

More information

Technical Brief #2. Depolarizers

Technical Brief #2. Depolarizers Technical Brief #2 Depolarizers What is a depolarizer?...2 Principle of operation...2 Source coherence function dependence...2 Depolarizer realization...3 Input linear polarization state definition...4

More information

Vertical-Cavity Surface-Emitting Laser Technology

Vertical-Cavity Surface-Emitting Laser Technology Vertical-Cavity Surface-Emitting Laser Technology Introduction Vertical-Cavity Surface-Emitting Lasers (VCSELs) are a relatively recent type of semiconductor lasers. VCSELs were first invented in the mid-1980

More information

Q-switched resonantly diode-pumped Er:YAG laser

Q-switched resonantly diode-pumped Er:YAG laser Q-switched resonantly diode-pumped Er:YAG laser Igor Kudryashov a) and Alexei Katsnelson Princeton Lightwave Inc., 2555 US Route 130, Cranbury, New Jersey, 08512 ABSTRACT In this work, resonant diode pumping

More information

Kilowatt Class High-Power CW Yb:YAG Cryogenic Laser

Kilowatt Class High-Power CW Yb:YAG Cryogenic Laser Kilowatt Class High-Power CW Yb:YAG Cryogenic Laser D.C. Brown, J.M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper Snake Creek Lasers, LLC, Hallstead, PA 18822 ABSTRACT We discuss progress

More information

Wavelength Control and Locking with Sub-MHz Precision

Wavelength Control and Locking with Sub-MHz Precision Wavelength Control and Locking with Sub-MHz Precision A PZT actuator on one of the resonator mirrors enables the Verdi output wavelength to be rapidly tuned over a range of several GHz or tightly locked

More information

BN 1000 May Profile Optische Systeme GmbH Gauss Str. 11 D Karlsfeld / Germany. Tel Fax

BN 1000 May Profile Optische Systeme GmbH Gauss Str. 11 D Karlsfeld / Germany. Tel Fax BN 1000 May 2000 Profile Optische Systeme GmbH Gauss Str. 11 D - 85757 Karlsfeld / Germany Tel + 49 8131 5956-0 Fax + 49 8131 5956-99 info@profile-optsys.com www.profile-optsys.com Profile Inc. 87 Hibernia

More information

Photonics and Optical Communication

Photonics and Optical Communication Photonics and Optical Communication (Course Number 300352) Spring 2007 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering http://www.faculty.iu-bremen.de/dknipp/ 1 Photonics and Optical Communication

More information

Conduction-Cooled Bar Packages (CCPs), nm

Conduction-Cooled Bar Packages (CCPs), nm Conduction-Cooled Bar Packages (CCPs), 780-830 nm High Power Single-Bar Packages for Pumping and Direct-Diode Applications Based on Coherent s legendary Aluminum-free Active Area (AAA ) epitaxy, Coherent

More information

DIODE LASER SPECTROSCOPY (160309)

DIODE LASER SPECTROSCOPY (160309) DIODE LASER SPECTROSCOPY (160309) Introduction The purpose of this laboratory exercise is to illustrate how we may investigate tiny energy splittings in an atomic system using laser spectroscopy. As an

More information

UNMATCHED OUTPUT POWER AND TUNING RANGE

UNMATCHED OUTPUT POWER AND TUNING RANGE ARGOS MODEL 2400 SF SERIES TUNABLE SINGLE-FREQUENCY MID-INFRARED SPECTROSCOPIC SOURCE UNMATCHED OUTPUT POWER AND TUNING RANGE One of Lockheed Martin s innovative laser solutions, Argos TM Model 2400 is

More information

High efficiency laser sources usable for single mode fiber coupling and frequency doubling

High efficiency laser sources usable for single mode fiber coupling and frequency doubling High efficiency laser sources usable for single mode fiber coupling and frequency doubling Patrick Friedmann, Jeanette Schleife, Jürgen Gilly and Márc T. Kelemen m2k-laser GmbH, Hermann-Mitsch-Str. 36a,

More information

Direct diode lasers and their advantages for materials processing and other applications

Direct diode lasers and their advantages for materials processing and other applications Direct diode lasers and their advantages for materials processing and other applications Haro Fritsche a *, Fabio Ferrario a, Ralf Koch a, Bastian Krusche a, Ulrich Pahl a, Silke Pflueger b Andreas Grohe

More information

Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm

Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm Nufern, East Granby, CT, USA Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm www.nufern.com Examples of Single Frequency Platforms at 1mm and 1.5mm and Applications 2 Back-reflection

More information

Kit for building your own THz Time-Domain Spectrometer

Kit for building your own THz Time-Domain Spectrometer Kit for building your own THz Time-Domain Spectrometer 16/06/2016 1 Table of contents 0. Parts for the THz Kit... 3 1. Delay line... 4 2. Pulse generator and lock-in detector... 5 3. THz antennas... 6

More information

Continuous-Wave (CW) Single-Frequency IR Laser. NPRO 125/126 Series

Continuous-Wave (CW) Single-Frequency IR Laser. NPRO 125/126 Series Continuous-Wave (CW) Single-Frequency IR Laser NPRO 125/126 Series www.lumentum.com Data Sheet The Lumentum NPRO 125/126 diode-pumped lasers produce continuous-wave (CW), singlefrequency output at either

More information

Continuous Wave (CW) Single-Frequency IR Laser NPRO 125/126 Series

Continuous Wave (CW) Single-Frequency IR Laser NPRO 125/126 Series COMMERCIAL LASERS Continuous Wave (CW) Single-Frequency IR Laser NPRO 125/126 Series Key Features 1319 or 1064 nm outputs available Fiber-coupled output Proven nonplanar ring oscillator (NPRO) design Superior

More information

EXPRIMENT 3 COUPLING FIBERS TO SEMICONDUCTOR SOURCES

EXPRIMENT 3 COUPLING FIBERS TO SEMICONDUCTOR SOURCES EXPRIMENT 3 COUPLING FIBERS TO SEMICONDUCTOR SOURCES OBJECTIVES In this lab, firstly you will learn to couple semiconductor sources, i.e., lightemitting diodes (LED's), to optical fibers. The coupling

More information

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser V.I.Baraulya, S.M.Kobtsev, S.V.Kukarin, V.B.Sorokin Novosibirsk State University Pirogova 2, Novosibirsk, 630090, Russia ABSTRACT

More information

VERTICAL CAVITY SURFACE EMITTING LASER

VERTICAL CAVITY SURFACE EMITTING LASER VERTICAL CAVITY SURFACE EMITTING LASER Nandhavel International University Bremen 1/14 Outline Laser action, optical cavity (Fabry Perot, DBR and DBF) What is VCSEL? How does VCSEL work? How is it different

More information

EYP-DFB BFY02-0x0x

EYP-DFB BFY02-0x0x DATA SHEET 102 page 1 of 5 General Product Information Product Application 1064 nm DFB Laser with hermetic Butterfly Housing Spectroscopy Monitor Diode, Thermoelectric Cooler and Thermistor Metrology PM

More information

Advanced Features of InfraTec Pyroelectric Detectors

Advanced Features of InfraTec Pyroelectric Detectors 1 Basics and Application of Variable Color Products The key element of InfraTec s variable color products is a silicon micro machined tunable narrow bandpass filter, which is fully integrated inside the

More information

Combless broadband terahertz generation with conventional laser diodes

Combless broadband terahertz generation with conventional laser diodes Combless broadband terahertz generation with conventional laser diodes D. Molter, 1,2, A. Wagner, 1,2 S. Weber, 1,2 J. Jonuscheit, 1 and R. Beigang 1,2 1 Fraunhofer Institute for Physical Measurement Techniques

More information

Vanishing Core Fiber Spot Size Converter Interconnect (Polarizing or Polarization Maintaining)

Vanishing Core Fiber Spot Size Converter Interconnect (Polarizing or Polarization Maintaining) Vanishing Core Fiber Spot Size Converter Interconnect (Polarizing or Polarization Maintaining) The Go!Foton Interconnect (Go!Foton FSSC) is an in-fiber, spot size converting interconnect for convenient

More information

High power UV from a thin-disk laser system

High power UV from a thin-disk laser system High power UV from a thin-disk laser system S. M. Joosten 1, R. Busch 1, S. Marzenell 1, C. Ziolek 1, D. Sutter 2 1 TRUMPF Laser Marking Systems AG, Ausserfeld, CH-7214 Grüsch, Switzerland 2 TRUMPF Laser

More information

Lithium Triborate (LiB 3 O 5, LBO)

Lithium Triborate (LiB 3 O 5, LBO) NLO Cr ys tals Introduction Lithium Triborate (LiB 3 O 5, LBO) Lithium Triborate (LiB 3 O 5 or LBO) is an excellent nonlinear optical crystal discovered and developed by FIRSM, CAS (Fujian Institute of

More information

Vixar High Power Array Technology

Vixar High Power Array Technology Vixar High Power Array Technology I. Introduction VCSELs arrays emitting power ranging from 50mW to 10W have emerged as an important technology for applications within the consumer, industrial, automotive

More information

Lithium Triborate (LiB 3 O 5, LBO) Introductions

Lithium Triborate (LiB 3 O 5, LBO) Introductions s Laser s NLO s Birefringent s AO and EO s Lithium Triborate (LiB 3 O 5, ) Introductions Banner Union provide the high quality Broad transparency range from 160nm to 2600nm; High optical homogeneity (δn

More information

TECHNICAL BRIEF O K I L A S E R D I O D E P R O D U C T S. OKI Laser Diodes

TECHNICAL BRIEF O K I L A S E R D I O D E P R O D U C T S. OKI Laser Diodes TECHNICAL BRIEF O K I L A S E R D I O D E P R O D U C T S OKI Laser Diodes June 1995 OKI Laser Diodes INTRODUCTION This technical brief presents an overview of OKI laser diode and edge emitting light emitting

More information

Properties of Structured Light

Properties of Structured Light Properties of Structured Light Gaussian Beams Structured light sources using lasers as the illumination source are governed by theories of Gaussian beams. Unlike incoherent sources, coherent laser sources

More information

Diode laser arrays for 1.8 to 2.3 µm wavelength range

Diode laser arrays for 1.8 to 2.3 µm wavelength range Diode laser arrays for 1. to.3 µm wavelength range Márc T. Kelemen 1, Jürgen Gilly 1, M. Haag, Jens Biesenbach, Marcel Rattunde 3, Joachim Wagner 3 1 mk-laser GmbH, Tullastr. 7, D-79 Freiburg, Germany

More information

High Brightness Laser Diode Bars

High Brightness Laser Diode Bars High Brightness Laser Diode Bars Norbert Lichtenstein *, Yvonne Manz, Jürgen Müller, Jörg Troger, Susanne Pawlik, Achim Thies, Stefan Weiß, Rainer Baettig, Christoph Harder Bookham (Switzerland) AG, Binzstrasse

More information

cw, 325nm, 100mW semiconductor laser system as potential substitute for HeCd gas lasers

cw, 325nm, 100mW semiconductor laser system as potential substitute for HeCd gas lasers cw, 35nm, 1mW semiconductor laser system as potential substitute for HeCd gas lasers T. Schmitt 1, A. Able 1,, R. Häring 1, B. Sumpf, G. Erbert, G. Tränkle, F. Lison 1, W. G. Kaenders 1 1) TOPTICA Photonics

More information

Infrared wire grid polarizers: metrology, modeling, and laser damage threshold

Infrared wire grid polarizers: metrology, modeling, and laser damage threshold Infrared wire grid polarizers: metrology, modeling, and laser damage threshold Matthew George, Bin Wang, Jonathon Bergquist, Rumyana Petrova, Eric Gardner Moxtek Inc. Calcon 2013 Wire Grid Polarizer (WGP)

More information

Instruction manual and data sheet ipca h

Instruction manual and data sheet ipca h 1/15 instruction manual ipca-21-05-1000-800-h Instruction manual and data sheet ipca-21-05-1000-800-h Broad area interdigital photoconductive THz antenna with microlens array and hyperhemispherical silicon

More information

Copyright 2000 by the Society of Photo-Optical Instrumentation Engineers.

Copyright 2000 by the Society of Photo-Optical Instrumentation Engineers. Copyright by the Society of Photo-Optical Instrumentation Engineers. This paper was published in the proceedings of Optical Microlithography XIII, SPIE Vol. 4, pp. 658-664. It is made available as an electronic

More information

COMPACT Diode Laser System (Water-Cooled)

COMPACT Diode Laser System (Water-Cooled) COMPACT Diode Laser System (Water-Cooled) Easy-to-integrate CW system consists of a compact 19 (11HU including water-air-chiller), rack-mountable chassis and metal-armored fiber. Can be combined with DILAS

More information

Practical Applications of Laser Technology for Semiconductor Electronics

Practical Applications of Laser Technology for Semiconductor Electronics Practical Applications of Laser Technology for Semiconductor Electronics MOPA Single Pass Nanosecond Laser Applications for Semiconductor / Solar / MEMS & General Manufacturing Mark Brodsky US Application

More information

Autotracker III. Applications...

Autotracker III. Applications... Autotracker III Harmonic Generation System Model AT-III Applications... Automatic Second Harmonic and Third Harmonic Generation of UV Wavelengths Automatic Production of IR Wavelengths by Difference Frequency

More information

Solid-state 488-nm laser based on external-cavity frequency doubling of a multi-longitudinal mode semiconductor laser

Solid-state 488-nm laser based on external-cavity frequency doubling of a multi-longitudinal mode semiconductor laser Solid-state 488-nm laser based on external-cavity frequency doubling of a multi-longitudinal mode semiconductor laser Vincent Issier a, Boris Kharlamov *a, Thomas Kraft a, Andy Miller a, David Simons a,

More information

High-Power LDA Beam Transformation using Diffractive Grating Array

High-Power LDA Beam Transformation using Diffractive Grating Array High-Power LDA Beam ransformation using Diffractive Grating Arra Chongi Zhou, Chunan Zheng, Guoing Zheng, Chunlei Du (State Ke Lab of Optical echnologies for Microfabrication, Institute of Optics and Electronics,

More information

Diode Laser Control Electronics. Diode Laser Locking and Linewidth Narrowing. Rudolf Neuhaus, Ph.D. TOPTICA Photonics AG

Diode Laser Control Electronics. Diode Laser Locking and Linewidth Narrowing. Rudolf Neuhaus, Ph.D. TOPTICA Photonics AG Appl-1012 Diode Laser Control Electronics Diode Laser Locking and Linewidth Narrowing Rudolf Neuhaus, Ph.D. TOPTICA Photonics AG Introduction Stabilized diode lasers are well established tools for many

More information

2 in the multipath dispersion of the optical fibre. (b) Discuss the merits and drawbacks of cut bouls method of measurement of alternation.

2 in the multipath dispersion of the optical fibre. (b) Discuss the merits and drawbacks of cut bouls method of measurement of alternation. B.TECH IV Year I Semester (R09) Regular Examinations, November 2012 1 (a) Derive an expression for multiple time difference tt 2 in the multipath dispersion of the optical fibre. (b) Discuss the merits

More information

Vitara. Automated, Hands-Free Ultrashort Pulse Ti:Sapphire Oscillator Family. Superior Reliability & Performance. Vitara Features:

Vitara. Automated, Hands-Free Ultrashort Pulse Ti:Sapphire Oscillator Family. Superior Reliability & Performance. Vitara Features: Automated, Hands-Free Ultrashort Pulse Ti:Sapphire Oscillator Family Vitara is the new industry standard for hands-free, integrated, ultra-broadband, flexible ultrafast lasers. Representing the culmination

More information

WL Photonics Inc. Leading Provider of Fiber Optic Wavelength Tuning and Conditioning Solutions

WL Photonics Inc. Leading Provider of Fiber Optic Wavelength Tuning and Conditioning Solutions Faraday Optical Isolator FI-PS-, FI-PI- & FI-BP- Faraday optical isolators of FI- series are built with the superior materials of large Verdet constant, high thermal conductivity, low absorption coefficient

More information

HIGH BANDWIDTH DFB LASERS

HIGH BANDWIDTH DFB LASERS HIGH BANDWIDTH DFB LASERS 7-pin k-package AA71 SERIES The AA71 distributed feedback laser (DFB) is an InGaAsP/InP multi-quantum well laser diode. The module is ideal in applications where high bandwidth,

More information

HCS 50W, 60W & 80W. Data Sheet. Housed Collimated High Power Laser Diode Bar

HCS 50W, 60W & 80W. Data Sheet. Housed Collimated High Power Laser Diode Bar HCS 50W, 60W & 80W Housed Collimated High Power Laser Diode Bar Features: The II-VI Laser Enterprise HCS series of hard soldered collimated laser diode bars offer superior optical beam parameters with

More information

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO.

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO. a Nd:YSO resonator array µm Transmission spectrum (a. u.) b 4 F3/2-4I9/2 25 2 5 5 875 88 λ(nm) 885 Supplementary Figure. An array of nano-beam resonators fabricated in Nd:YSO. (a) Scanning electron microscope

More information

Optical Engineering 421/521 Sample Questions for Midterm 1

Optical Engineering 421/521 Sample Questions for Midterm 1 Optical Engineering 421/521 Sample Questions for Midterm 1 Short answer 1.) Sketch a pechan prism. Name a possible application of this prism., write the mirror matrix for this prism (or any other common

More information

1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz

1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz Optics Communications 277 (27) 161 165 www.elsevier.com/locate/optcom 1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz Andreas

More information

Laser Diode in TO-220 Package with FC-Connector 1.5 W cw Version 1.1 SPL 2F94-2S

Laser Diode in TO-220 Package with FC-Connector 1.5 W cw Version 1.1 SPL 2F94-2S 2016-03-02 Laser Diode in TO-220 Package with FC-Connector 1.5 W cw Version 1.1 Features: Efficient radiation source for cw and pulsed operation Reliable InGa(Al)As strained quantum-well structure New

More information

Thermal management and thermal properties of high-brightness diode lasers

Thermal management and thermal properties of high-brightness diode lasers Thermal management and thermal properties of high-brightness diode lasers Jens W. Tomm Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie Berlin Max-Born-Str. 2 A, D-12489 Berlin, Germany

More information

CVI LASER OPTICS ANTIREFLECTION COATINGS

CVI LASER OPTICS ANTIREFLECTION COATINGS CVI LASER OPTICS ANTIREFLECTION COATINGS BROADBAND MULTILAYER ANTIREFLECTION COATINGS Broadband antireflection coatings provide a very low reflectance over a broad spectral bandwidth. These advanced multilayer

More information

Recent advances in high-performance 2.X µm Vertical External Cavity Surface Emitting Laser (VECSEL)

Recent advances in high-performance 2.X µm Vertical External Cavity Surface Emitting Laser (VECSEL) Recent advances in high-performance 2.X µm Vertical External Cavity Surface Emitting Laser (VECSEL) Joachim Wagner*, M. Rattunde, S. Kaspar, C. Manz, A. Bächle Fraunhofer-Institut für Angewandte Festkörperphysik

More information

DPMPHOTONICS. Precision Optics Catalog. P.O. Box 3002 Vernon, CT Tel: (860) Fax: (860)

DPMPHOTONICS. Precision Optics Catalog. P.O. Box 3002 Vernon, CT Tel: (860) Fax: (860) DPMPHOTONICS Precision Optics Catalog DPMPHOTONICS P.O. Box 3002 Vernon, CT 06066. Tel: (860) 872-6573. Fax: (860) 454-4217. Welcome to DPM Photonics... Company Background DPM Photonics was founded in

More information

Confocal Imaging Through Scattering Media with a Volume Holographic Filter

Confocal Imaging Through Scattering Media with a Volume Holographic Filter Confocal Imaging Through Scattering Media with a Volume Holographic Filter Michal Balberg +, George Barbastathis*, Sergio Fantini % and David J. Brady University of Illinois at Urbana-Champaign, Urbana,

More information

10 W reliable operation of 808 nm broad-area diode lasers by near field distribution control in a multistripe contact geometry

10 W reliable operation of 808 nm broad-area diode lasers by near field distribution control in a multistripe contact geometry W reliable operation of 88 nm broad-area diode lasers by near field distribution control in a multistripe contact geometry K. Paschke*, S. Einfeldt, Chr. Fiebig, A. Ginolas, K. Häusler, P. Ressel, B. Sumpf,

More information

Single-mode lasing in PT-symmetric microring resonators

Single-mode lasing in PT-symmetric microring resonators CREOL The College of Optics & Photonics Single-mode lasing in PT-symmetric microring resonators Matthias Heinrich 1, Hossein Hodaei 2, Mohammad-Ali Miri 2, Demetrios N. Christodoulides 2 & Mercedeh Khajavikhan

More information

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 20 at the start of class PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

More information

PULSE PIC- PULSE PICKING

PULSE PIC- PULSE PICKING PULSE PIC- PULSE PICKING Acousto-optic products Introduction Pulse Picking A pulse picker is an electrically controlled optical switche used for extracting single pulses from a fast pulse train. Types

More information

High frequency stability semiconductor laser sources at 760 nm wavelength

High frequency stability semiconductor laser sources at 760 nm wavelength High frequency stability semiconductor laser sources at 760 nm wavelength BRETISLAV MIKEL, ZDENEK BUCHTA, JOSEF LAZAR AND ONDREJ CIP Coherence optics Institute of Scientific Instruments, ASCR v.v.i. Brno,

More information

How-to guide. Working with a pre-assembled THz system

How-to guide. Working with a pre-assembled THz system How-to guide 15/06/2016 1 Table of contents 0. Preparation / Basics...3 1. Input beam adjustment...4 2. Working with free space antennas...5 3. Working with fiber-coupled antennas...6 4. Contact details...8

More information

Mode stabilization of a laterally structured broad area diode laser using an external volume Bragg grating

Mode stabilization of a laterally structured broad area diode laser using an external volume Bragg grating Mode stabilization of a laterally structured broad area diode laser using an external volume Bragg grating Mario Niebuhr, 1 Christof Zink, 1 Andreas Jechow, 1 Axel Heuer, 1 Leonid B. Glebov 2 and Ralf

More information

Hybrid Integration Technology of Silicon Optical Waveguide and Electronic Circuit

Hybrid Integration Technology of Silicon Optical Waveguide and Electronic Circuit Hybrid Integration Technology of Silicon Optical Waveguide and Electronic Circuit Daisuke Shimura Kyoko Kotani Hiroyuki Takahashi Hideaki Okayama Hiroki Yaegashi Due to the proliferation of broadband services

More information

picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS

picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS 1 picoemerald Two Colors in One Box Microscopy and Spectroscopy with a Tunable Two-Color Source CARS and SRS microscopy

More information

The LINOS Singlets. Our quality criteria:

The LINOS Singlets. Our quality criteria: The LINOS From convergent lenses and diffuse lenses to best form lenses and aspheres, our extensive selection of simple lenses, or singlets, with various focal lengths and diameters guarantees that you

More information

Fiber-laser-pumped Ti:sapphire laser

Fiber-laser-pumped Ti:sapphire laser Fiber-laser-pumped Ti:sapphire laser G. K. Samanta, 1,* S. Chaitanya Kumar, 1 Kavita Devi, 1 and M. Ebrahim-Zadeh 1,2 1 ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels,

More information

Integrated Photonics based on Planar Holographic Bragg Reflectors

Integrated Photonics based on Planar Holographic Bragg Reflectors Integrated Photonics based on Planar Holographic Bragg Reflectors C. Greiner *, D. Iazikov and T. W. Mossberg LightSmyth Technologies, Inc., 86 W. Park St., Ste 25, Eugene, OR 9741 ABSTRACT Integrated

More information

Review of Semiconductor Physics

Review of Semiconductor Physics Review of Semiconductor Physics k B 1.38 u 10 23 JK -1 a) Energy level diagrams showing the excitation of an electron from the valence band to the conduction band. The resultant free electron can freely

More information

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2014) All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser Shengxiao

More information

VCSEL SENSOR FLAT WINDOW TO CAN

VCSEL SENSOR FLAT WINDOW TO CAN DATA SHEET VCSEL SENSOR FLAT WINDOW TO CAN SV3637-001 FEATURES: Designed for low drive currents between 7 and 15mA Flat Window TO-46 style package High speed 1 Ghz The SV3637 combines many of the desired

More information

Compact tunable diode laser with diffraction limited 1 Watt for atom cooling and trapping

Compact tunable diode laser with diffraction limited 1 Watt for atom cooling and trapping Compact tunable diode laser with diffraction limited 1 Watt for atom cooling and trapping Sandra Stry a, Lars Hildebrandt a, Joachim Sacher a Christian Buggle b, Mark Kemmann b, Wolf von Klitzing b a Sacher

More information

Power. Warranty. 30 <1.5 <3% Near TEM ~4.0 one year. 50 <1.5 <5% Near TEM ~4.0 one year

Power. Warranty. 30 <1.5 <3% Near TEM ~4.0 one year. 50 <1.5 <5% Near TEM ~4.0 one year DL CW Blue Violet Laser, 405nm 405 nm Operating longitudinal mode Several Applications: DNA Sequencing Spectrum analysis Optical Instrument Flow Cytometry Interference Measurements Laser lighting show

More information

850NM SINGLE MODE VCSEL TO-46 PACKAGE

850NM SINGLE MODE VCSEL TO-46 PACKAGE DATA SHEET 850NM SINGLE MODE VCSEL TO-46 PACKAGE HFE4093-332 FEATURES: Designed for drive currents between 1 and 5 ma Optimized for low dependence of electrical properties over temperature High speed 1

More information

Nd: YAG Laser Energy Levels 4 level laser Optical transitions from Ground to many upper levels Strong absorber in the yellow range None radiative to

Nd: YAG Laser Energy Levels 4 level laser Optical transitions from Ground to many upper levels Strong absorber in the yellow range None radiative to Nd: YAG Lasers Dope Neodynmium (Nd) into material (~1%) Most common Yttrium Aluminum Garnet - YAG: Y 3 Al 5 O 12 Hard brittle but good heat flow for cooling Next common is Yttrium Lithium Fluoride: YLF

More information

DPSS 266nm Deep UV Laser Module

DPSS 266nm Deep UV Laser Module DPSS 266nm Deep UV Laser Module Specifications: SDL-266-XXXT (nm) 266nm Ave Output Power 1-5mW 10~200mW Peak power (W) ~10 ~450 Average power (mw) Average power (mw) = Single pulse energy (μj) * Rep. rate

More information

Dense Spectral Beam Combining With Volume Bragg Gratings In Photo-thermo-refractive Glass

Dense Spectral Beam Combining With Volume Bragg Gratings In Photo-thermo-refractive Glass University of Central Florida Electronic Theses and Dissertations Doctoral Dissertation (Open Access) Dense Spectral Beam Combining With Volume Bragg Gratings In Photo-thermo-refractive Glass 2009 Oleksiy

More information

Evaluation of Scientific Solutions Liquid Crystal Fabry-Perot Etalon

Evaluation of Scientific Solutions Liquid Crystal Fabry-Perot Etalon Evaluation of Scientific Solutions Liquid Crystal Fabry-Perot Etalon Testing of the etalon was done using a frequency stabilized He-Ne laser. The beam from the laser was passed through a spatial filter

More information

880 Quantum Electronics Optional Lab Construct A Pulsed Dye Laser

880 Quantum Electronics Optional Lab Construct A Pulsed Dye Laser 880 Quantum Electronics Optional Lab Construct A Pulsed Dye Laser The goal of this lab is to give you experience aligning a laser and getting it to lase more-or-less from scratch. There is no write-up

More information

The Lightwave Model 142 CW Visible Ring Laser, Beam Splitter, Model ATM- 80A1 Acousto-Optic Modulator, and Fiber Optic Cable Coupler Optics Project

The Lightwave Model 142 CW Visible Ring Laser, Beam Splitter, Model ATM- 80A1 Acousto-Optic Modulator, and Fiber Optic Cable Coupler Optics Project The Lightwave Model 142 CW Visible Ring Laser, Beam Splitter, Model ATM- 80A1 Acousto-Optic Modulator, and Fiber Optic Cable Coupler Optics Project Stephen W. Jordan Seth Merritt Optics Project PH 464

More information

Components of Optical Instruments. Chapter 7_III UV, Visible and IR Instruments

Components of Optical Instruments. Chapter 7_III UV, Visible and IR Instruments Components of Optical Instruments Chapter 7_III UV, Visible and IR Instruments 1 Grating Monochromators Principle of operation: Diffraction Diffraction sources: grooves on a reflecting surface Fabrication:

More information

Kilowatt Yb:YAG Laser Illuminator. March 1997

Kilowatt Yb:YAG Laser Illuminator. March 1997 Approved for public release; distribution is unlimited Kilowatt Yb:YAG Laser Illuminator March 1997 David S. Sumida and Hans Bruesselbach Hughes Research Laboratories, Inc. 3011 Malibu Canyon Road, M/S

More information

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers Shun-ichi Matsushita*, * 2, Taizo Miyato*, * 2, Hiroshi Hashimoto*, * 2, Eisuke Otani* 2, Tatsuji Uchino* 2, Akira Fujisaki*,

More information

2003 American Institute of Physics. Reprinted with permission.

2003 American Institute of Physics. Reprinted with permission. Jesse Tuominen, Tapio Niemi, and Hanne Ludvigsen. 2003. Wavelength reference for optical telecommunications based on a temperature tunable silicon etalon. Review of Scientific Instruments, volume 74, number

More information

Optical Spectrum Analyzers

Optical Spectrum Analyzers Optical Spectrum Analyzers Broadband Spectrometer and Wavelength Meter in One Thorlabs Optical Spectrum Analyzers obtain highly accurate measurements of the spectra of unknown light sources. They are continuously

More information