How to use VNWA for designing a Matching network and how to use ZPlots VNWA to move measurement to the antenna feeding point

Size: px
Start display at page:

Download "How to use VNWA for designing a Matching network and how to use ZPlots VNWA to move measurement to the antenna feeding point"

Transcription

1 How to use VNWA for designing a Matching network and how to use ZPlots VNWA to move measurement to the antenna feeding point Preface: To design a matching network for an antenna for matching it to a 50 ohm transmission line, is quite simple using the VNWA Matching Tool only based on a single sweep within, the frequency range of interest and measured at the feeding point of the antenna. This is made by calibrating the VNWA with a Short Open and Load calibration standard at the end of the feeding cable, connected to then antenna. However if you want to measure an antenna already mounted in the air and you have no idea what the cable length is, then a single measurement with the VNWA (at the TX end of the cable) we can determine the cable length very accurate, and by using the ZPlots program made by AC6LA, to be called from within the VNWA software, we can move the measurements to the feeding point of the antenna, and find the required impedances of the antenna feeding point for designing the matching network. ZPlots developed by AC6LA can be called directly from the VNWA software. ZPlots can as well be used as an independent program, and can read Touchstone files from other sources. After moving the measurement by the ZPlots to the antenna feeding point, the impedance can be saved into a Touchstone file (SnP), and subsequent import it into the VNWA software and use the VNWA Matching Tool, as explained in the following, and thus directly read the component values for the type of matching network selected. Both programs are free to download and use, but you need of course a VNWA to perform the measurements, or use other type of equipment able to produce a Touchstone file and subsequent import into the VNWA software followed by processing by ZPlots. That will be demonstrated for an antenna which I call the mystery antenna. The Mystery Antenna story: I had the parts for this antenna, and I had no idea of what it was designed for, or its past history, so I assemble it and did a single sweep from 1 to 30MHz.

2 The total assembled length is 3.75m and the metal frame structure used is only a mean to support it, and lag of proper ground plane is not relevant for doing this demonstration. As seen on next page it is a shorted antenna and with very low impedance (exposed to high power so a coil is burned?? time will show ). It resonates at 17MHz and thus can be used for the 18MHz band. However it should be adjusted in its length, which is quite simple, but let us just design a matching network as it is, and see below for marker 6 the R II is 14.48ohm and C II is -585,17pF thus inductive. The VNWA tool Matching Tool utilize R II and C II and thus selected for presentation of S11 traces. However before we do anything we transfer the S11 to Mem4 and present Mem4 as Smith Chart so we still can see the antenna plot in the smith chart for comparisons. As seen below the antenna plot is now red in the Smith chart as on top on the black S11 Smith chart trace. We use R II and CII traces/measurement as that is requested by the Matching Tool next to be used. The C II trace is with 500pF per division and reference 0 pf at division 5. R II is with 100 ohm/div and 0 ohm at division 0.

3 In the VNWA software we chose for Tools the Matching Tool and click Ok in the Prompt shown Enter the values ohm, pF and MHz for the frequency and select matching network 2 The matching network designed consist of Cp 418pF and Ls 93.6nH The matching network 1 could also have been used resulting in Lp 185nH and Cs 350pF Matching network 3 and 4 only applies if the antenna R II is above 50 ohm and the configuration depend whether the antenna is capacitive or inductive. Observe for marker 6 now the R II is 50 ohm and the C II is 0pF and a perfect power match exist. The loss resistance of the coil due to the Q of the coil is not accounted for so a small matching error may occur by measurements after the matching network build. That is the basic concept and a very simple method. Do a sweep and note the R II and C II at the frequency of interest enter these the three data elements into the Matching Toll and select matching network 1 or 2 and you are done. As mentioned the matching network 3 and 4 only relevant for R II above 50 ohm. If you only want to study the L and C values without the dynamic changes of the traces, then enter values for R II and C II into port 2 alternatively. For a capacitive and inductive antenna we thus have 4 different type of matching network to choose amongst.

4

5 Please note! You can at any time select Restore Unmatched to revert back to the antenna measurements Now what happens when a cable is connected? Below a cable of 51.95m RG8A/U is inserted and obviously we cannot use this for any calculation as such. Of course we could design a matching network at the MHz for fitting between the TX and the feeding cable, as R II is ohm and C II is 25.9pF, but it is much better to move the measurement toward the antenna using the AC6LA program ZPlots called directly from the VNWA software. Visit the AC6LA homepage for ZPlots (just google it) and read how to install and setup the VNWA. In Tool section use Configure Tools and enter the path where you installed ZPlots.

6 In ZPlots select Smith and Click on Add/Subt T Line In the window appearing select Unit to meter and Cable type to RG-8/U or whatever the cable type you use.r You may define a Custom cable type yourself if parameters known.

7 By entering meter and by clicking Apply we see a sensible result. Next click on OK Now click on Save as S1P and save the touchstone file generated in a folder to be remembered, with a descriptive name.

8 Next in the VNWA import to S11 the just saved Touchstone file name and it is seen not exactly as the direct measurement stored in Mem4 so we next try to find the correct length as we know what the result shall be. The correct length is 51.8m as seen below, but if we do not have a direct measurement in the feeding point of the antenna to compare to what then??. Until now we have only seen that ZPlots is a fantastic program We simply find the correct length by direct measurement with the VNWA when in Time Domain Mode. The VNWA must be calibrated from lowest to highest frequency e.g. 1 to 1300MHz or even better from 0.1 to 1300MHz to use the Time domain mode, and a Tim trace selected here tim3 RealZ

9 Below is seen a measurement of the cable alone and UPS!!, we have a reflection at 6.24m and at 45.6m so the cable is not OK. At 6.24m it has probably been under pressure (37.93ohm) and at 45.6m probably been twisted/bend too sharp (60.54 ohm). At marker 12 (a time marker) the Z0 found to 49.96ohm. but most important the length found to be 51.8m HURRA. Below seen the same measurement (a single sweep) performed with the antenna connected and the result identical s expected. The marker must be placed at the rising edge of the reflection and not the peak, caused by the traveling wave running to the tip of the antenna and return. Thus the pulse width represent the antenna length

10 So before using the ZPlots, find the cable length accurately by the VNWA, it is far more accurate than a physical length measurement, which I actually did. Remember to use same VF value in the VNWA for time domain as the cable VF else measurements are way off. The R II is found to be ohm as opposed to ohm by direct measurement And C II pF as opposed to pF What is the impact of this difference? By Loading the touchstone file for the direct antenna measurement and use the ZPlots derived data we see the SWR raised to 1.2. However a cable length of 51.8m is extreme, and by a new non defective cable and a shorter length the difference will be marginal. The concept proven. Kind regards June Kurt Poulsen de OZ7OU

Measuring the output impedance for a live PA stage

Measuring the output impedance for a live PA stage Measuring the output impedance for a live PA stage In the message # 6443 on the Yahoo VNWA group Sam Wetterlin gave a important contribution to the discussion about how to use the VNWA for measuring the

More information

Amateur Extra Manual Chapter 9.4 Transmission Lines

Amateur Extra Manual Chapter 9.4 Transmission Lines 9.4 TRANSMISSION LINES (page 9-31) WAVELENGTH IN A FEED LINE (page 9-31) VELOCITY OF PROPAGATION (page 9-32) Speed of Wave in a Transmission Line VF = Velocity Factor = Speed of Light in a Vacuum Question

More information

How to use the new VNWA Power Sweep Utility

How to use the new VNWA Power Sweep Utility How to use the new VNWA Power Sweep Utility Preface: From VNWA experimental version 36.6.9.5, released November 5 2015 and onward, the new VNWA Power Sweep Utility is available. The purpose of the utility

More information

Measurement of the equivalent circuit of quartz crystals

Measurement of the equivalent circuit of quartz crystals Measurement of the equivalent circuit of quartz crystals This application note shows how to measure the equivalent circuit of a quartz crystal with Bode 100. A.) Basics: An equivalent describtion of a

More information

This paper is meant assist in the operation and understanding of the VIA Bravo Family of products.

This paper is meant assist in the operation and understanding of the VIA Bravo Family of products. Abstract: This paper is meant assist in the operation and understanding of the VIA Bravo Family of products. Understanding the Display and its Readings: The VIA Bravo display provides graphical and numerical

More information

A Walk Through the MSA Software Vector Network Analyzer Reflection Mode 12/12/09

A Walk Through the MSA Software Vector Network Analyzer Reflection Mode 12/12/09 A Walk Through the MSA Software Vector Network Analyzer Reflection Mode 12/12/09 This document is intended to familiarize you with the basic features of the MSA and its software, operating as a Vector

More information

Antenna Matching Within an Enclosure Part II: Practical Techniques and Guidelines

Antenna Matching Within an Enclosure Part II: Practical Techniques and Guidelines Antenna Matching Within an Enclosure Part II: Practical Techniques and Guidelines By Johnny Lienau, RF Engineer June 2012 Antenna selection and placement can be a difficult task, and the challenges of

More information

But this is about practical experiments so lets find out what an inductor is all about.

But this is about practical experiments so lets find out what an inductor is all about. Chapter 2 inductors Inductors are components we often use in radio design. We measure them with our LCR meter and build a circuit with them, only to find out the resonance is way off from the calculated

More information

A Walk Through the MSA Software Vector Network Analyzer Transmission Mode 12/18/09

A Walk Through the MSA Software Vector Network Analyzer Transmission Mode 12/18/09 A Walk Through the MSA Software Vector Network Analyzer Transmission Mode 12/18/09 This document is intended to familiarize you with the basic features of the MSA and its software, operating as a Vector

More information

AA-35 ZOOM. RigExpert. User s manual. Antenna and cable analyzer

AA-35 ZOOM. RigExpert. User s manual. Antenna and cable analyzer AA-35 ZOOM Antenna and cable analyzer RigExpert User s manual . Table of contents Introduction Operating the AA-35 ZOOM First time use Main menu Multifunctional keys Connecting to your antenna SWR chart

More information

TWO METER HOMEMADE SLIM JIM ANTENNA

TWO METER HOMEMADE SLIM JIM ANTENNA Gordon Gibby July 15, 2016 TWO METER HOMEMADE SLIM JIM ANTENNA WIRE: Start with a piece of solid #14 AWG household wire approximately 3 yards and 9 inches long (117 ) (It is easier to be a couple inches

More information

Technical Manual For Chips Multilayer Antenna Matching Adjustment Method LDA31 series

Technical Manual For Chips Multilayer Antenna Matching Adjustment Method LDA31 series Technical Manual For Chips Multilayer Antenna Matching Adjustment Method LDA31 series Application: 2.4GHz Wireless Bluetooth TM 1/17 Chip Antenna is a special component to change characteristics and this

More information

NN Design Hub: NN Librarie[S]

NN Design Hub: NN Librarie[S] NN Design Hub: NN Librarie[S] Here you are the NN Librarie[S], the new design tool by Fractus Antennas (NN) that helps you design the antenna for your wireless device using any standard RF CAD software.

More information

How to select the very best parts for a SMA calibration kit for the DG8SAQ VNWA

How to select the very best parts for a SMA calibration kit for the DG8SAQ VNWA How to select the very best parts for a SMA calibration kit for the DG8SAQ VNWA Preface: Calibrating the VNWA and any other VNA requires the use of Calibration Standards such as a Short, a Open and a 50

More information

Migrating 4195A to E5061B LF-RF Network Analyzer. April 2010 Agilent Technologies

Migrating 4195A to E5061B LF-RF Network Analyzer. April 2010 Agilent Technologies Migrating 4195A to E61B LF-RF Network Analyzer April 2010 Agilent Technologies Page 1 Contents Overview of 4195A to E61B migration Migrating 4195A to E61B in network measurements Migrating 4195A to E61B

More information

14 Sept 2006 Page 1 of 11 TRF7960 RFID Reader & Antenna Circuits. 1.) Introduction

14 Sept 2006 Page 1 of 11 TRF7960 RFID Reader & Antenna Circuits. 1.) Introduction 14 Sept 2006 Page 1 of 11 TRF7960 RFID Reader & Antenna Circuits 1.) Introduction This paper describes the design method for determining an antenna matching circuit together with Tx and Rx interface circuits

More information

WE-525T Antenna Analyzer Manual and Specification

WE-525T Antenna Analyzer Manual and Specification WE-525T Antenna Analyzer Manual and Specification 1.0 Description This product is designed to speed and ease the testing and tuning of antenna systems. Graphical displays of SWR, Return loss, Distance

More information

Least understood topics by most HAMs RF Safety Ground Antennas Matching & Feed Lines

Least understood topics by most HAMs RF Safety Ground Antennas Matching & Feed Lines Least understood topics by most HAMs RF Safety Ground Antennas Matching & Feed Lines Remember this question from the General License Exam? G0A03 (D) How can you determine that your station complies with

More information

Transmission Lines As Impedance Transformers

Transmission Lines As Impedance Transformers Transmission Lines As Impedance Transformers Bill Leonard N0CU 285 TechConnect Radio Club 2017 TechFest Topics Review impedance basics Review Smith chart basics Demonstrate how antenna analyzers display

More information

Quick Site Testing with the 8800SX

Quick Site Testing with the 8800SX Quick Site Testing with the 8800SX Site Testing with the 8800SX Basic Tests 5 site testing involves several tests to verify site operation. NOTE: This is not intended to be a complete commissioning procedure.

More information

How to calibrate the VNWA sensitivity in Spectrum Analyzer mode

How to calibrate the VNWA sensitivity in Spectrum Analyzer mode How to calibrate the VNWA sensitivity in Spectrum Analyzer mode Preface: When using the VNWA as spectrum Analyzer (SA) the sensitivity is varying as function of frequency. This because the LO DDS feed

More information

Custom Interconnects Fuzz Button with Hardhat Test Socket/Interposer 1.00 mm pitch

Custom Interconnects Fuzz Button with Hardhat Test Socket/Interposer 1.00 mm pitch Custom Interconnects Fuzz Button with Hardhat Test Socket/Interposer 1.00 mm pitch Measurement and Model Results prepared by Gert Hohenwarter 12/14/2015 1 Table of Contents TABLE OF CONTENTS...2 OBJECTIVE...

More information

Applying and Measuring Ferrite Beads, Part III ~ Measurements Kurt Poulsen, Tom Hagen and Whitham D. Reeve

Applying and Measuring Ferrite Beads, Part III ~ Measurements Kurt Poulsen, Tom Hagen and Whitham D. Reeve Applying and Measuring Ferrite Beads, Part III ~ Measurements Kurt Poulsen, Tom Hagen and Whitham D. Reeve III-1. Introduction In Part I we described ferrite beads and their applications and simple test

More information

Connecting Your Rig To The Aether

Connecting Your Rig To The Aether Connecting Your Rig To The Aether 1 Ward Harriman (AE6TY) Pacificon 18 1: of course, there is no Aether! Presentation Goals Review a common design to reinforce forgotten knowledge. Use that design to demonstrate

More information

Ansoft Designer Tutorial ECE 584 October, 2004

Ansoft Designer Tutorial ECE 584 October, 2004 Ansoft Designer Tutorial ECE 584 October, 2004 This tutorial will serve as an introduction to the Ansoft Designer Microwave CAD package by stepping through a simple design problem. Please note that there

More information

Equivalent Circuit Determination of Quartz Crystals

Equivalent Circuit Determination of Quartz Crystals Page 1 of 11 Equivalent Circuit Determination of Quartz Crystals By Stephan Synkule & Florian Hämmerle 2010 Omicron Lab V1.1 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com

More information

Review: The MFJ-225 Graphical Antenna Analyzer Phil Salas AD5X

Review: The MFJ-225 Graphical Antenna Analyzer Phil Salas AD5X Review: The Graphical Antenna Analyzer Phil Salas AD5X The has a back-lit 3 LCD graphic display that simultaneously shows the frequency or swept frequency range, unsigned complex impedance, impedance magnitude,

More information

RigExpert AA-170 Antenna Analyzer (0.1 to 170 MHz) User s manual

RigExpert AA-170 Antenna Analyzer (0.1 to 170 MHz) User s manual RigExpert AA-170 Antenna Analyzer (0.1 to 170 MHz) User s manual Table of contents 1. Description... 3 2. Specifications... 4 3. Precautions... 5 4. Operation... 6 4.1. Preparation for use... 6 4.2. Turning

More information

A fool with a tool is still a fool. Measurements of an antenna loading coil by Frank F/N4SPP

A fool with a tool is still a fool. Measurements of an antenna loading coil by Frank F/N4SPP A fool with a tool is still a fool Measurements of an antenna loading coil by Frank F/N4SPP I have constructed a center-loaded mini-dipole, and used two of those to create a 2-element mini yagi beam antenna.

More information

Measuring Impedance with the Bode 100. OMICRON Lab Webinar Nov. 2014

Measuring Impedance with the Bode 100. OMICRON Lab Webinar Nov. 2014 Measuring Impedance with the Bode 100 OMICRON Lab Webinar Nov. 2014 Let s start with a question Why do the presenters wear moustaches? http://moteam.co/omimobros Page 4 Agenda Direct Impedance measurement

More information

WE-2705P Antenna Analyzer

WE-2705P Antenna Analyzer 1.0 Features: WE-2705P Antenna Analyzer Frequency range 1.5 2700 MHz Graphical display of SWR, Return loss, and Distance to Fault Smith chart display of Impedance Numerical display of Z=R+jX, L, C, Z,

More information

Chokes and Isolation Transformers For Receiving Antennas By Jim Brown K9YC 2018 by James W. Brown All rights reserved

Chokes and Isolation Transformers For Receiving Antennas By Jim Brown K9YC 2018 by James W. Brown All rights reserved Chokes and Isolation Transformers For Receiving Antennas By Jim Brown K9YC 2018 by James W. Brown All rights reserved Why We Need Them A feedline must be grounded where it enters the shack-for lightning

More information

Aries Kapton CSP socket

Aries Kapton CSP socket Aries Kapton CSP socket Measurement and Model Results prepared by Gert Hohenwarter 5/19/04 1 Table of Contents Table of Contents... 2 OBJECTIVE... 3 METHODOLOGY... 3 Test procedures... 4 Setup... 4 MEASUREMENTS...

More information

User manual. / verzió 1.0 /

User manual. / verzió 1.0 / User manual / verzió 1.0 / Budapest, 2017 "Antenna Analyzer plus" is a multifunctional measuring instrument, most useful for amateur radio activity. Its size allows you to easily take it for relocation

More information

Exercises for the Antenna Matching Course

Exercises for the Antenna Matching Course Exercises for the Antenna Matching Course Lee Vishloff, PEng, IEEE WCP C-160302-1 RELEASE 1 Notifications 2016 Services, Inc. All rights reserved. The and Services Inc. stylized text belongs to tech-knows

More information

Keysight MOI for USB Type-C Connectors & Cable Assemblies Compliance Tests (Type-C to Legacy Cable Assemblies)

Keysight MOI for USB Type-C Connectors & Cable Assemblies Compliance Tests (Type-C to Legacy Cable Assemblies) Revision 01.01 Jan-21, 2016 Universal Serial Bus Type-C TM Specification Revision 1.1 Keysight Method of Implementation (MOI) for USB Type-C TM Connectors and Cables Assemblies Compliance Tests Using Keysight

More information

Bill Ham Martin Ogbuokiri. This clause specifies the electrical performance requirements for shielded and unshielded cables.

Bill Ham Martin Ogbuokiri. This clause specifies the electrical performance requirements for shielded and unshielded cables. 098-219r2 Prepared by: Ed Armstrong Zane Daggett Bill Ham Martin Ogbuokiri Date: 07-24-98 Revised: 09-29-98 Revised again: 10-14-98 Revised again: 12-2-98 Revised again: 01-18-99 1. REQUIREMENTS FOR SPI-3

More information

Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor)

Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor) 72 Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor) Equipment List Qty Items Part Numbers 1 PASCO 750 Interface 1 Voltage Sensor CI-6503 1 AC/DC Electronics Laboratory EM-8656 2 Banana

More information

This chapter shows various ways of creating matching networks by sweeping values and using optimization. Lab 5: Matching & Optimization

This chapter shows various ways of creating matching networks by sweeping values and using optimization. Lab 5: Matching & Optimization 5 This chapter shows various ways of creating matching networks by sweeping values and using optimization. Lab 5: Matching & Optimization OBJECTIVES Create an input match to the RF and an output match

More information

JEREMY HALEY, WG9T LONGMONT AMATEUR RADIO CLUB. Longmont Amateur Radio Club

JEREMY HALEY, WG9T LONGMONT AMATEUR RADIO CLUB. Longmont Amateur Radio Club RF IMPEDANCE AND THE SMITH CHART JEREMY HALEY, WG9T LONGMONT AMATEUR RADIO CLUB 1 RESISTANCE, REACTANCE, AND IMPEDANCE RESISTANCE Energy conversion to heat. REACTANCE Capacitance: Energy storage in electric

More information

BANDPASS CAVITY RESONATORS

BANDPASS CAVITY RESONATORS BANDPASS CAVITY RESONATORS S Parameters Measurements and Modelling Using Bandpass Cavities for Impedance Matching Jacques Audet VE2AZX Web: ve2azx.net With the collaboration of Luc Laplante VE2ULU May

More information

Radio ETI031 Laboratory Experiments 2: VECTOR NETWORK ANALYSER, ANTENNA and RECEIVER MEASUREMENTS

Radio ETI031 Laboratory Experiments 2: VECTOR NETWORK ANALYSER, ANTENNA and RECEIVER MEASUREMENTS Lund University Electrical and Information Technology GJ 2007-09-30 Radio ETI031 Laboratory Experiments 2: VECTOR NETWORK ANALYSER, ANTENNA and RECEIVER MEASUREMENTS Göran Jönsson 2007 Objectives: Part

More information

Keysight MOI for USB Type-C Connectors & Cable Assemblies Compliance Tests (Type-C to Legacy Cable Assemblies)

Keysight MOI for USB Type-C Connectors & Cable Assemblies Compliance Tests (Type-C to Legacy Cable Assemblies) Revision 01.00 Nov-24, 2015 Universal Serial Bus Type-C TM Specification Revision 1.1 Keysight Method of Implementation (MOI) for USB Type-C TM Connectors and Cables Assemblies Compliance Tests Using Keysight

More information

Wireless Power Transfer

Wireless Power Transfer Wireless Power Transfer Dr. Tobias Glahn (CST AG) Nearfield Coupling: Inductive Coils Goals: maximum power transfer high energy efficiency range & freedom of movement Topics: Equivalent circuits Matching

More information

Aries Kapton CSP socket Cycling test

Aries Kapton CSP socket Cycling test Aries Kapton CSP socket Cycling test RF Measurement Results prepared by Gert Hohenwarter 10/21/04 1 Table of Contents TABLE OF CONTENTS... 2 OBJECTIVE... 3 METHODOLOGY... 3 Test procedures... 5 Setup...

More information

EH-20 20m antenna. By VE3RGW

EH-20 20m antenna. By VE3RGW EH-20 20m antenna By VE3RGW Equivalent circuit of EH-20 antenna system. Upper cylinder Lower cylinder Phasing coil Common mode radiator Tune coil RF choke or 14MHz trap 50ohm coaxial cable 0-150pF (case

More information

his report is my recent analysis of the EH antenna using the Pspice program and considering the antenna as a set of circuit elements.

his report is my recent analysis of the EH antenna using the Pspice program and considering the antenna as a set of circuit elements. his report is my recent analysis of the EH antenna using the Pspice program and considering the antenna as a set of circuit elements. The antenna can be considered as a set of circuit elements because

More information

Contactless RFID Tag Measurements

Contactless RFID Tag Measurements By Florian Hämmerle & Martin Bitschnau 2017 by OMICRON Lab V3.1 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com for technical support. Page 2 of 13 Table of Contents 1 Executive

More information

Master Thesis. Mobile Phone Antenna Modelling. Umut Bulus. Supervised by Prof. Dr.-Ing. K. Solbach

Master Thesis. Mobile Phone Antenna Modelling. Umut Bulus. Supervised by Prof. Dr.-Ing. K. Solbach Master Thesis Mobile Phone Antenna Modelling Umut Bulus Supervised by Prof. Dr.-Ing. K. Solbach 2.3.28 Contents Introduction Theoretical Background Antenna Measurements on Different PCB Variations Investigation

More information

ARRAY SOLUTIONS 350 Gloria Rd Sunnyvale, TX PowerAIM 120. Mar 10, 2008

ARRAY SOLUTIONS 350 Gloria Rd Sunnyvale, TX PowerAIM 120. Mar 10, 2008 ARRAY SOLUTIONS 350 Gloria Rd Sunnyvale, TX 75182 www.arraysolutions.com PowerAIM 120 Mar 10, 2008 The first part of this manual covers features that are common to the PowerAIM 120 and the AIM4170 antenna

More information

LAB 8: Activity P52: LRC Circuit

LAB 8: Activity P52: LRC Circuit LAB 8: Activity P52: LRC Circuit Equipment: Voltage Sensor 1 Multimeter 1 Patch Cords 2 AC/DC Electronics Lab (100 μf capacitor; 10 Ω resistor; Inductor Coil; Iron core; 5 inch wire lead) The purpose of

More information

Challenges and Solutions for Removing Fixture Effects in Multi-port Measurements

Challenges and Solutions for Removing Fixture Effects in Multi-port Measurements DesignCon 2008 Challenges and Solutions for Removing Fixture Effects in Multi-port Measurements Robert Schaefer, Agilent Technologies schaefer-public@agilent.com Abstract As data rates continue to rise

More information

Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 3571

Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 3571 Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 3571 Keywords: automotive keyless entry, MAX2640, LNA, 315MHz, RKE, stability, automotive, keyless entry APPLICATION

More information

VECTRONICS. SWR-66 Dip Meter Adapter

VECTRONICS. SWR-66 Dip Meter Adapter INTRODUCTION VECTRONICS SWR-66 Dip Meter Adapter Thank you for purchasing the SWR-66 Dip Meter Adapter. The SWR-66 Dip Meter Adapter works with your Vectronics SWR-584 HF/VHF SWR Analyzer. The SWR-66 Dip

More information

Equivalent Circuit Determination of Quartz Crystals

Equivalent Circuit Determination of Quartz Crystals Equivalent Circuit Determination of Quartz Crystals By Stephan Synkule & Florian Hämmerle 2017 by OMICRON Lab V2.1 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com for technical

More information

Aries QFP microstrip socket

Aries QFP microstrip socket Aries QFP microstrip socket Measurement and Model Results prepared by Gert Hohenwarter 2/18/05 1 Table of Contents Table of Contents... 2 OBJECTIVE... 3 METHODOLOGY... 3 Test procedures... 4 Setup... 4

More information

Vector Network Analyzers. Paul Coverdale VE3ICV

Vector Network Analyzers. Paul Coverdale VE3ICV Paul Coverdale VE3ICV What is a vector network analyzer? What is a vector? A vector is a quantity having magnitude and direction A vector can be described in rectangular (X,Y) or polar ( Z θ) notation

More information

EFHW LNR Precision EF-10/20/40MKII Examination

EFHW LNR Precision EF-10/20/40MKII Examination 1 sur 11 EFHW LNR Precision EF-10/20/40MKII Examination The background and details of the LNR (Par Electronics) EF-10/20/40 end fed half-wave multi-band portable HF antenna. Come see what s inside the

More information

Time Domain Reflectometer Example

Time Domain Reflectometer Example Time Domain Reflectometer Example This section presents differential and single-ended versions of a Time Domain Reflectometer (TDR). The setup demonstrates the process of analyzing both imdepance and delay.

More information

Impedance Transformation with Transmission Lines

Impedance Transformation with Transmission Lines Impedance Transformation with Transmission Lines Software Installation and Operation Manual Don Cochran WAØJOW 21826 Gardner Rd. Spring Hill, KS 66083 (913) 856-4075 Manual Revision 1 Page 1 Table of Contents

More information

MFJ-66 Dip Meter Adapter

MFJ-66 Dip Meter Adapter MFJ-66 Dip Meter Adapter Thank you for purchasing the MFJ-66 Dip Meter Adapter. The MFJ-66 Dip Meter Adapter works with your MFJ-209/249/259 SWR Analyzer. The MFJ-66 Dip Meter Adapter is a kit consisting

More information

Impedance 50 (75 connectors via adapters)

Impedance 50 (75 connectors via adapters) VECTOR NETWORK ANALYZER PLANAR 304/1 DATA SHEET Frequency range: 300 khz to 3.2 GHz Measured parameters: S11, S21, S12, S22 Dynamic range of transmission measurement magnitude: 135 db Measurement time

More information

Range Considerations for RF Networks

Range Considerations for RF Networks TI Technology Days 2010 Range Considerations for RF Networks Richard Wallace Abstract The antenna can be one of the most daunting components of wireless designs. Most information available relates to large

More information

JC-5 4KW PEP, 1KW RMS AUTO ANTENNA COUPLER

JC-5 4KW PEP, 1KW RMS AUTO ANTENNA COUPLER JC-5 4KW PEP, 1KW RMS AUTO ANTENNA COUPLER 1) DIRECTLY CONTROLLED BY ICOM, ALINCO & KENWOOD. 2) INDEPENDENT CAPACITOR INPUT AND OUTPUT BLOCKS! 3) 3 mm COIL WIRE & INTERNAL FAN FOR THE BIG COILS! 4) DIPPED

More information

P603-1 / P750 set. RF conducted measurement IEC

P603-1 / P750 set. RF conducted measurement IEC User manual Probe set set RF conducted measurement IEC 61967-4 Copyright July 2016 LANGER GmbH 2016.07.28 User manual P603-1+P750 GM CS Kö.doc Table of contents: Page 1 General description 3 2 P603-1 probe

More information

G11+ GSDR quick start assembly manual [Part 2]

G11+ GSDR quick start assembly manual [Part 2] G11+ GSDR quick start assembly manual [Part 2] January 31, 2012 Ver 1.1 Tasa, YU1LM and Nick, VK2DX Overview G11 quick start assembly manual Part 2 covers assembly of the TX components. There are two chapters

More information

Measuring crystal motional parameters with the MiniVNA. Joop, PE1CQP

Measuring crystal motional parameters with the MiniVNA. Joop, PE1CQP Measuring crystal motional parameters with the MiniVNA Joop, PE1CQP This document is a short manual for a software program to use the MiniVNA for measuring crystal parameters. It is inspired by documents

More information

PART III LABORATORY MANUAL. Electromagnetic Waves and Transmission Lines By Dr. Jayanti Venkataraman

PART III LABORATORY MANUAL. Electromagnetic Waves and Transmission Lines By Dr. Jayanti Venkataraman PART III LABORATORY MANUAL 202 Experiment I - Calibration of the Network Analyzer Objective: Calibrate the Network Analyzer for Transmission Procedure: (i) Turn the Power On (ii) Set the Frequency for

More information

Aries Center probe CSP socket Cycling test

Aries Center probe CSP socket Cycling test Aries Center probe CSP socket Cycling test RF Measurement Results prepared by Gert Hohenwarter 10/27/04 1 Table of Contents TABLE OF CONTENTS... 2 OBJECTIVE... 3 METHODOLOGY... 3 Test procedures... 5 Setup...

More information

RF Circuit Analysis (Using SimSmith)

RF Circuit Analysis (Using SimSmith) RF Circuit Analysis (Using SimSmith) Ward Harriman (AE6TY) Pacificon 18 Todays Goal NOT a tutorial: lots of those available. Demonstrate SimSmith s wide range of capabilities. Interest you in using it

More information

IEEE CX4 Quantitative Analysis of Return-Loss

IEEE CX4 Quantitative Analysis of Return-Loss IEEE CX4 Quantitative Analysis of Return-Loss Aaron Buchwald & Howard Baumer Mar 003 Return Loss Issues for IEEE 0G-Base-CX4 Realizable Is the spec realizable with standard packages and I/O structures

More information

TechFest Fall Bob Witte, KØNR Monument, CO

TechFest Fall Bob Witte, KØNR Monument, CO TechFest Fall 2015 Bob Witte, KØNR bob@k0nr.com Monument, CO 1 Electrical Engineer 35 years in the Test and Measurement Industry HP, Agilent, Keysight Technologies Author of Electronic Test Instruments

More information

Antenna Design for FM-02

Antenna Design for FM-02 Antenna Design for FM-02 I recently received my FM-02 FM transmitter which I purchased from WLC. I researched the forum on what antennas where being used by the DIY community and found a nice write-up

More information

Basic Wire Antennas. Part II: Loops and Verticals

Basic Wire Antennas. Part II: Loops and Verticals Basic Wire Antennas Part II: Loops and Verticals A loop antenna is composed of a single loop of wire, greater than a half wavelength long. The loop does not have to be any particular shape. RF power can

More information

Description RF Explorer RFEAH-25 1 is a 25mm diameter, high performance near field H-Loop antenna.

Description RF Explorer RFEAH-25 1 is a 25mm diameter, high performance near field H-Loop antenna. Description RF Explorer RFEAH-25 1 is a 25mm diameter, high performance near field H-Loop antenna. RFEAH-25 is a very sensitive, compact and easy to use H-loop near field antenna. The low-loss design exhibits

More information

J-Poles. Mythbusting J-Pole Antennas

J-Poles. Mythbusting J-Pole Antennas Mythbusting J-Pole Antennas For an antenna to work correctly, it must do two things well 1) Accept power from the feed line impedance match, SWR (ideally) 1:1 2) Radiate power in a pattern that is useful

More information

Development of a noval Switched Beam Antenna for Communications

Development of a noval Switched Beam Antenna for Communications Master Thesis Presentation Development of a noval Switched Beam Antenna for Communications By Ashraf Abuelhaija Supervised by Prof. Dr.-Ing. Klaus Solbach Institute of Microwave and RF Technology Department

More information

REFLECTIONS AND STANDING WAVE RATIO

REFLECTIONS AND STANDING WAVE RATIO Page 1 of 9 THE SMITH CHART.In the last section we looked at the properties of two particular lengths of resonant transmission lines: half and quarter wavelength lines. It is possible to compute the impedance

More information

Experiment 1: Instrument Familiarization (8/28/06)

Experiment 1: Instrument Familiarization (8/28/06) Electrical Measurement Issues Experiment 1: Instrument Familiarization (8/28/06) Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied

More information

Experiment 1: Instrument Familiarization

Experiment 1: Instrument Familiarization Electrical Measurement Issues Experiment 1: Instrument Familiarization Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied to the

More information

Aries CSP microstrip socket Cycling test

Aries CSP microstrip socket Cycling test Aries CSP microstrip socket Cycling test RF Measurement Results prepared by Gert Hohenwarter 2/18/05 1 Table of Contents TABLE OF CONTENTS... 2 OBJECTIVE... 3 METHODOLOGY... 3 Test procedures... 6 Setup...

More information

P a g e 1 ST985. TDR Cable Analyzer Instruction Manual. Analog Arts Inc.

P a g e 1 ST985. TDR Cable Analyzer Instruction Manual. Analog Arts Inc. P a g e 1 ST985 TDR Cable Analyzer Instruction Manual Analog Arts Inc. www.analogarts.com P a g e 2 Contents Software Installation... 4 Specifications... 4 Handling Precautions... 4 Operation Instruction...

More information

Wireless Power Transfer. CST COMPUTER SIMULATION TECHNOLOGY

Wireless Power Transfer. CST COMPUTER SIMULATION TECHNOLOGY Wireless Power Transfer Some History 1899 - Tesla 1963 - Schuder 1964 - Brown from Garnica et al. (2013) from Schuder et al. (1963) from Brown (1964) Commercialization 1990s onward: mobile device charging

More information

The Principle V(SWR) The Result. Mirror, Mirror, Darkly, Darkly

The Principle V(SWR) The Result. Mirror, Mirror, Darkly, Darkly The Principle V(SWR) The Result Mirror, Mirror, Darkly, Darkly 1 Question time!! What do you think VSWR (SWR) mean to you? What does one mean by a transmission line? Coaxial line Waveguide Water pipe Tunnel

More information

MFJ-219/219N 440 MHz UHF SWR Analyzer TABLE OF CONTENTS

MFJ-219/219N 440 MHz UHF SWR Analyzer TABLE OF CONTENTS MFJ-219/219N 440 MHz UHF SWR Analyzer TABLE OF CONTENTS Introduction...2 Powering The MFJ-219/219N...3 Battery Installation...3 Operation Of The MFJ-219/219N...4 SWR and the MFJ-219/219N...4 Measuring

More information

Experiment P45: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment P45: LRC Circuit (Power Amplifier, Voltage Sensor) PASCO scientific Vol. 2 Physics Lab Manual: P45-1 Experiment P45: (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh file Windows file circuits 30 m 700 P45 P45_LRCC.SWS EQUIPMENT NEEDED

More information

The Amazing MFJ 269 Author Jack Tiley AD7FO

The Amazing MFJ 269 Author Jack Tiley AD7FO The Amazing MFJ 269 Author Jack Tiley AD7FO ARRL Certified Emcomm and license class Instructor, Volunteer Examiner, EWA Technical Coordinator and President of the Inland Empire VHF Club What Can be Measured?

More information

The Facts about the Input Impedance of Power and Ground Planes

The Facts about the Input Impedance of Power and Ground Planes The Facts about the Input Impedance of Power and Ground Planes The following diagram shows the power and ground plane structure of which the input impedance is computed. Figure 1. Configuration of the

More information

Preliminary Users Manual for the Self Contained Return Loss and Cable Fault Test Set with Amplified Wideband Noise Source Copyright 2001 Bryan K.

Preliminary Users Manual for the Self Contained Return Loss and Cable Fault Test Set with Amplified Wideband Noise Source Copyright 2001 Bryan K. Preliminary Users Manual for the Self Contained Return Loss and Cable Fault Test Set with Amplified Wideband Noise Source Copyright 2001 Bryan K. Blackburn Self Contained Test Set Test Port Regulated 12

More information

Vector Impedance Antenna Analyzer. User s Manual. Revision 0.7. Updated to Firmware Version 0.6.x

Vector Impedance Antenna Analyzer. User s Manual. Revision 0.7. Updated to Firmware Version 0.6.x Vector Impedance Antenna Analyzer User s Manual Revision 0.7 Updated to Firmware Version 0.6.x This document is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

More information

Agilent MOI for MIPI D-PHY Conformance Tests Revision 1.00 Dec-1, 2011

Agilent MOI for MIPI D-PHY Conformance Tests Revision 1.00 Dec-1, 2011 Revision 1.00 Dec-1, 2011 Agilent Method of Implementation (MOI) for MIPI D-PHY Conformance Tests Using Agilent E5071C ENA Network Analyzer Option TDR 1 Table of Contents 1. Modification Record... 4 2.

More information

EXPERIMENT EM3 INTRODUCTION TO THE NETWORK ANALYZER

EXPERIMENT EM3 INTRODUCTION TO THE NETWORK ANALYZER ECE 351 ELECTROMAGNETICS EXPERIMENT EM3 INTRODUCTION TO THE NETWORK ANALYZER OBJECTIVE: The objective to this experiment is to introduce the student to some of the capabilities of a vector network analyzer.

More information

LAB EXERCISE 3 FET Amplifier Design and Linear Analysis

LAB EXERCISE 3 FET Amplifier Design and Linear Analysis ADS 2012 Workspaces and Simulation Tools (v.1 Oct 2012) LAB EXERCISE 3 FET Amplifier Design and Linear Analysis Topics: More schematic capture, DC and AC simulation, more on libraries and cells, using

More information

Tuning a 160M full sized vertical with strong AM broadcast RF present on the antenna. Jay Terleski, WX0B

Tuning a 160M full sized vertical with strong AM broadcast RF present on the antenna. Jay Terleski, WX0B Tuning a 160M full sized vertical with strong AM broadcast RF present on the antenna. Jay Terleski, WX0B I often get asked about how to match a ¼ WL vertical to a 50 ohm transmission line and what to do

More information

Adjust Antenna Tuners Antenna Measurements Capacitor Measurement Measure Feed Point Impedance Measure Ground Loss Inductor Measurement

Adjust Antenna Tuners Antenna Measurements Capacitor Measurement Measure Feed Point Impedance Measure Ground Loss Inductor Measurement The Micro908 antenna analyzer is an extremely useful instrument to have around the ham shack or homebrewer s workbench. This section describes the basic uses, as well as some advanced techniques for which

More information

SWR myths and mysteries.

SWR myths and mysteries. SWR myths and mysteries. By Andrew Barron ZL3DW September 2012 This article will explain some of the often misunderstood facts about antenna SWR at HF and uncover some popular misconceptions. The questions

More information

6 Meter Heliax Duplexers

6 Meter Heliax Duplexers Page 1 of 5 6 Meter Heliax Duplexers Updated 5-22-2002 13:55 UTC Duplexer design or website issues; e-mail Jim (callsign: WB5WPA) at jvpoll@dallas.net Dan, N5MRG, is also available for questions or consultation

More information

Activity P52: LRC Circuit (Voltage Sensor)

Activity P52: LRC Circuit (Voltage Sensor) Activity P52: LRC Circuit (Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) AC circuits P52 LRC Circuit.DS (See end of activity) (See end of activity) Equipment Needed Qty

More information

Circuit Characterization with the Agilent 8714 VNA

Circuit Characterization with the Agilent 8714 VNA Circuit Characterization with the Agilent 8714 VNA By: Larry Dunleavy Wireless and Microwave Instruments University of South Florida Objectives 1) To examine the concepts of reflection, phase shift, attenuation,

More information

Measurements of Elements of an LMR Multiband Antenna System Design

Measurements of Elements of an LMR Multiband Antenna System Design Measurements of Elements of an LMR Multiband Antenna System Design Steve Ellingson June 30, 2010 Contents 1 Introduction 2 2 Antenna Self-Impedance 2 3 Revised Performance Estimates Using Measured Z A

More information