Section 3. Reset HIGHLIGHTS. Reset. This section of the manual contains the following major topics:

Size: px
Start display at page:

Download "Section 3. Reset HIGHLIGHTS. Reset. This section of the manual contains the following major topics:"

Transcription

1 Section 3. HIGHLIGHTS This section of the manual contains the following major topics: 3.1 Introduction s and Delay Timers Registers and Status Bit Values Design Tips Related Application Notes Revision History Microchip Technology Inc. DS39503A-page 3-1

2 PIC18C Reference Manual 3.1 Introduction The reset logic is used to place the device into a known state. The source of the reset can be determined by reading the device status bits. The reset logic is designed with features that reduce system cost and increase system reliability. Devices differentiate between various kinds of reset: a) Power-on (POR) b) during normal operation c) during SLEEP d) WDT (normal operation) e) Programmable Brown-out (BOR) f) RESET Instruction g) Stack Overflow h) Stack Underflow Most registers are unaffected by a reset; their status is unknown on POR and unchanged by all other resets. The other registers are forced to a reset state on Power-on,, WDT, Brown-out, during SLEEP and by the RESET instruction. Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, RI, TO,PD,PORand BOR are set or cleared differently in different reset situations as indicated in Table 3-3. These bits are used in software to determine the nature of the reset. See Table 3-4 for a full description of the reset states of all registers. A simplified block diagram of the on-chip reset circuit is shown in Figure 3-1. This block diagram is a superset of reset features. To determine the features that are available on a specific device, please refer to the device s Data Sheet. Note: While the Enhanced MCU is in a reset state, the internal phase clock is held at Q1 (beginning of an instruction cycle). DS39503A-page Microchip Technology Inc.

3 Section 3. Figure 3-1: Simplified Block Diagram of On-chip Circuit RESET Instruction Stack Pointer Stack Overflow/Underflow External WDT Module rise detect SLEEP WDT Time-out Power-on Brown-out BOREN S OST/PWRT OSC1 OST 10-bit Ripple counter R Q Chip_ On-chip (1) RC OSC PWRT 10-bit Ripple counter 3 Enable PWRT Enable OSTT (2) Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin. 2: See Table 3-1 for time-out situations Microchip Technology Inc. DS39503A-page 3-3

4 PIC18C Reference Manual 3.2 s and Delay Timers Power-on (POR) The device has many sources for a device reset. Depending on the source of the reset, different delays may be initiated. These reset sources and the delays are discussed in the following subsections. A Power-on pulse is generated on-chip when rise is detected. To take advantage of thepor,justtiethepin directly (or through a resistor) to as shown in Figure 3-2.This will eliminate external RC components usually needed to create a Power-on delay. A minimum rise time for is required. See parameter D003 and parameter D004 in the Electrical Specifications section for details. Figure 3-2: Using On-Chip POR R (1) PIC18CXXX Note 1: The resistor is optional. When the device exits the reset condition (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges, otherwise the device will not function correctly. Ensure the delay is long enough to get all operating parameters within specification. Figure 3-3 shows a possible POR circuit for a slow power supply ramp up. The external Power-on circuit is only required if the device would exit reset before the device is in the valid operating range. The diode, D, helps discharge the capacitor quickly when powers down. Figure 3-3: External Power-on Circuit (For Slow Power-up) D R R1 PIC18CXXX C Note 1: R<40kΩ is recommended to ensure that the voltage drop across R does not violate the device s electrical specification. 2: R1 = 100Ω to 1 kω will limit any current flowing into from external capacitor C in the event of /VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). DS39503A-page Microchip Technology Inc.

5 Section Power-up Timer (PWRT) The Power-up Timer provides a delay on Power-on (POR) or Brown-out (BOR). See parameter D033 in the Electrical Specifications section. The Power-up Timer operates on a dedicated internal RC oscillator. The device is kept in reset as long as the PWRT is active. The PWRT delay allows to rise to an acceptable level. A configuration bit (PWRTEN) is provided to enable/disable the Power-up Timer. Note: The power-up time delay will vary from device to device due to, temperature and process variations. See DC parameters for details Oscillator Start-up Timer (OST) Some devices require the Power-up Timer to be enabled when the Brown-out circuitry is enabled. Please refer to the device data sheet for requirements. The Oscillator Start-Up Timer (OST) provides a 1024 oscillator cycle delay (from OSC1 input) (parameter 32) after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and is stable. The OST time-out is invoked only for XT, LP and HS modes, on Power-on, Brown-out, wake-up from SLEEP, or on a transition from Timer1 input clock as the system clock to the oscillator as the system clock by clearing the SCS bit. The oscillator start-up timer is disabled for all resets and wake-ups in RC and EC modes. (See Table 3-1) The OST counts the oscillator pulses on the OSC1/CLKIN pin. The counter only starts incrementing after the amplitude of the signal reaches the oscillator input thresholds. This delay allows the crystal oscillator or resonator to stabilize before the device exits the OST delay. The length of the time-out is a function of the crystal/resonator frequency. Figure 3-4 shows the operation of the OST circuit in conjunction with the power-up timer. For low frequency crystals, this start-up time can become quite long. That is because the time it takes the low frequency oscillator to start oscillating is longer than the power-up timer s delay. The time from when the power-up timer times out to when the oscillator starts to oscillate is a dead time. There is no minimum or maximum time for this dead time (TDEADTIME), and is dependent on the time for the oscillator circuitry to have good oscillations. Figure 3-4: Oscillator Start-up Time POR or BOR Trip Point 3 Oscillator OST TIME_OUT PWRT TIME_OUT TOSC1 TOST TDEADTIME INTERNAL RESET TPWRT TOSC1 TOST = Time for the crystal oscillator to react to an oscillation level detectable by the Oscillator Start-up Timer (OST). = 1024TOSC PLL Lock Time-out When the PLL is enabled, the time-out sequence following a Power-on is different from other oscillator modes. A portion of the Power-up Timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out TPLL (2ms nominal, Parameter 7 in the Electrical Specifications section) follows the Oscillator Start-up Time-out (OST) Microchip Technology Inc. DS39503A-page 3-5

6 PIC18C Reference Manual Power-up Sequence On power-up, the time-out sequence is as follows: First the internal POR is detected, then, if enabled, the PWRT time-out is invoked. After the PWRT time-out is over, the OST is activated. The total time-out will vary based on oscillator configuration and PWRTEN bit status. For example, in RC mode with the PWRTEN bit set (PWRT disabled), there will be no time-out at all. Figure 3-5, Figure 3-6 and Figure 3-7 depict time-out sequences. Since the time-outs occur from the internal POR pulse, if is kept low long enough, the time-outs will expire. Bringing high will begin execution immediately (Figure 3-7). This is useful for testing purposes or to synchronize more than one device operating in parallel. If the device voltage is not within the electrical specifications by the end of a time-out, the /VPP pin must be held low until the voltage is within the device specification. The use of an external RC delay is sufficient for many of these applications. On wake-up from sleep, the OST is activated for various oscillator configurations. When the PLL is activated in HS mode, an additional delay called TPLL (2 ms nominal) is added to the OST time-out to allow the necessary lock time for the PLL. See parameter D003 in the Electrical Specifications section for details. Table 3-1 shows the time-outs that occur in various situations, while Figure 3-5 through Figure 3-8 show four different cases that can happen on powering up the device. Table 3-1: Time-out in Various Situations Power-up (2) or Brown-Out (3) Oscillator Configuration PWRTEN =0 PWRTEN =1 Wake-up from SLEEP or Oscillator Switch HS with PLL enabled (1) 72 ms Tosc + 2ms 1024Tosc + 2 ms 1024Tosc + 2 ms HS, XT, LP 72 ms Tosc 1024Tosc 1024Tosc EC 72 ms External RC 72 ms Note 1: 2 ms = Nominal time required for the PLL to lock. See the Electrical Specifications section. 2: 72 ms is the nominal power-up timer delay. See the Electrical Specifications section. 3: It is recommended that the power-up timer is enabled when using the Brown-out module. Figure 3-5: Time-out Sequence on Power-up ( Tied to ) INTERNAL POR TPWRT (1) PWRT TIME-OUT TOST OST TIME-OUT INTERNAL RESET Note 1: TPWRT only occurs when PWRTEN = 1. DS39503A-page Microchip Technology Inc.

7 Section 3. Figure 3-6: Time-out Sequence on Power-up ( nottiedto): Case 1 INTERNAL POR TPWRT (1) PWRT TIME-OUT TOST OST TIME-OUT INTERNAL RESET Note 1: TPWRT only occurs when PWRTEN = 1. Figure 3-7: Time-out Sequence on Power-up ( nottiedto): Case 2 3 INTERNAL POR PWRT TIME-OUT TPWRT (1) TOST OST TIME-OUT INTERNAL RESET Note 1: TPWRT only occurs when PWRTEN = 1. Figure 3-8: Time-out Sequence on Power-up with Slow Rise Time ( Tied to ) 0V 5V INTERNAL POR PWRT TIME-OUT TPWRT (1) TDEADTIME OST TIME-OUT TOST INTERNAL RESET Note 1: TPWRT only occurs when PWRTEN = Microchip Technology Inc. DS39503A-page 3-7

8 PIC18C Reference Manual Figure 3-9: Time-out Sequence on POR w/ PLL Enabled ( Tied to ) IINTERNAL POR TPWRT (1) PWRT TIME-OUT TOST OST TIME-OUT TPLL PLL TIME-OUT INTERNAL RESET TOST = 1024 clock cycles. TPLL =PLLlocktime. Note 1: TPWRT only occurs when PWRTEN = 1. DS39503A-page Microchip Technology Inc.

9 Section Brown-Out (BOR) On-chip Brown-out circuitry places the device into reset when the device voltage () falls below a trip point (VBOR). This ensures that the device does not continue program execution outside the valid voltage operation range of the device. Brown-out resets are typically used in AC line applications (such as appliances) or large battery applications where large loads may be switched in (such as automotive). Appliances encounter brown-out situations during plug-in and online voltage dip. Automotive electronics encounter brown-out when the ignition key is turned. In these application scenarios, the device voltage temporarily falls below the specified operating minimum. If the brown-out circuit meets the current consumption requirements of the system, it may also be used as a voltage supervisory function. Note: Figure 3-10 shows typical brown-out situations. The Brown-out module is enabled by default. To disable the module, the BOREN configuration bit must be cleared at device programming. Figure 3-10: Before using the on-chip brown-out for a voltage supervisory function (monitor battery decay), please review the electrical specifications to ensure that they meet your requirements. Note 1: It is recommended that the power-up timer be enabled when using the BOR module. The power-up timer is enabled by programming the PWRTEN configuration bit to 0. Note 2: Some devices require the Power-up Timer to be enabled when the Brown-out circuitry is enabled. Please refer to the device data sheet for requirements. Brown-Out Situations 3 Internal parameter 33 VBOR VBOR Internal Power-up time (parameter 33) parameter 33 VBOR Internal parameter 33 (1) Note 1: The Electrical Specification Parameter (parameter 33) has a typical value of 72 ms Microchip Technology Inc. DS39503A-page 3-9

10 PIC18C Reference Manual BOR Operation The BOREN configuration bit can disable (if clear/programmed) or enable (if set) the Brown-out circuitry.if falls below VBOR (parameter D005 in the Electrical Specifications section), for greater than the Brown-out Pulse Width Time (TBOR), parameter 35, the brown-out situation will reset the chip. A reset is not guaranteed to occur if falls below VBOR for less than parameter 35. ThechipwillremaininBrown-outuntil rises above VBOR. After which, the Power-up Timer is invoked and will keep the chip in reset an additional time delay (parameter 33). If drops below VBOR while the Power-up Timer is running, the chip will go back into and the Power-up Timer will be re-initialized. Once rises above VBOR, the Power-up Timer will again start a time delay. When the BOREN bit is set, all voltages below VBOR will hold the device in the reset state. This includes during the power-up sequence. The brown-out trip point is user programmable at time of device programming. Figure 3-11 is a block diagram for the BOR circuit. Figure 3-11: Block Diagram of BOR Circuit BORV1:BORV0 BOR Configuration Bits BOREN 3to1MUX BOR VREN LVDEN EN Internally Generated Reference Voltage DS39503A-page Microchip Technology Inc.

11 Section 3. The Brown-out circuit has four available reset trip point voltages. The device selected determines which trip points make sense in an application. All devices have the trip points of 4.2V and 4.5V available. PIC18LCXXX devices add two more trip points. The first is 2.7V, while the second is dependent on the minimum operating voltage of that device. This means that the lowest trip point voltage will either be 2.5V or 1.8V. Table 3-2 shows the state of the configuration bits (BORV1:BORV0) and the BOR trip points that they select. Table 3-2: Example BOR Trip Point Levels BORV1:BORV0 Configuration Bits Minimum Voltage Trip Point Maximum Voltage Trip Point Comment V 1.86 V PIC18LCXXX Devices (w/ MIN =1.8V) V 2.58 V PIC18LCXXX Devices (w/ MIN 2.0V) V 2.78 V PIC18LCXXX Devices V 4.33 V All Devices V 4.64 V All Devices Note: The minimum voltage at which the Brown-out trip point can occur should be in the valid operating voltage range of the device. The BOR is programmable to ensure that the BOR can be optimized to the voltage-frequency of the device, since the minimum device value will depend on the frequency of operation. For example, min. at 40 MHz may be 4.2V, whereas at 2 MHz it may be 1.8V Microchip Technology Inc. DS39503A-page 3-11

12 PIC18C Reference Manual Current Implications for BOR Operation BOR Initialization There are three components to the current consumption of the BOR operation. These are: 1. Current from Internal Reference Voltage 2. Current from BOR comparator 3. Current from resistor ladder The Internal Reference Voltage is also used by the Low Voltage Detect circuitry and the A/D voltage references. The resistor ladder is also used by the Low Voltage Detect circuitry. If the Low Voltage Detect is enabled, then only the additional current of the comparator is added for enabling the BOR feature. When the module is enabled, the BOR comparator and voltage divider are enabled and consume static current. The Electrical Specifications section parameter 32 gives the current specification. The Brown-out Comparator circuit consumes current when enabled. To eliminate this current consumption, the Brown-out can be disabled by programming the Brown-out Enable configuration bit (BOREN) to '0'. The BOR module must be enabled and programmed through the device configuration bits. These include BOREN, which enables or disables the module, and BORV1:BORV0, which set the BOR voltage. DS39503A-page Microchip Technology Inc.

13 Section External Brown-Out Circuits There are some applications where the device s programmable Brown-out trip point levels may still not be at the desired level for the application. Figure 3-12 shows a circuit for external brown-out protection using the MCP100 device. Figure 3-13 and Figure 3-14 are two examples of external circuitry that may be implemented. Each option needs to be evaluated to determine if they match the requirements of the application. Figure 3-12: External Brown-Out Protection Using the MCP100 VSS MCP100 RST bypass capacitor PIC18CXXX Figure 3-13: External Brown-Out Protection Circuit 1 33 kω 10 kω Q kω PIC18CXXX Note 1: Internal Brown-out circuitry should be disabled when using this circuit. 2: Resistors should be adjusted for the characteristics of the transistor. 3: This circuit will activate reset when goes below (Vz + 0.7V) where Vz = Zener voltage. Figure 3-14: External Brown-Out Protection Circuit 2 R1 Q1 R2 40 kω PIC18CXXX Note 1: This circuit is less expensive, but less accurate. Transistor Q1 turns off when is below a certain level such that: R1 R1 + R2 =0.7V 2: Internal Brown-out circuitry should be disabled when using this circuit. 3: Resistors should be adjusted for the characteristics of the transistor Microchip Technology Inc. DS39503A-page 3-13

14 PIC18C Reference Manual 3.3 Registers and Status Bit Values Table 3-3 shows the significance of the device status bits and the initialization conditions for the RCON register. Table 3-4 shows the reset conditions for the Special Function Registers. Register 3-1 shows the bits of the RCON register and Table 3-3 shows the initialization values. Register 3-1: RCON Register Bits and Positions R/W-0 R/W-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-u IPEN LWRT RI TO PD POR BOR bit 7 bit 0 Table 3-3: Status Bits, Their Significance, and the Initialization Condition for RCON Register Condition Program Counter RCON Register RI TO PD POR BOR STKFUL STKUNF Power-on 0000h u u u during normal operation 0000h 00-u uuuu u u u u u u u Software during normal operation 0000h 0u-0 uuuu 0 u u u u u u Stack Overflow during normal operation 0000h 0u-u uu11 u u u u u u 1 Stack Underflow during normal operation 0000h 0u-u uu11 u u u u u 1 u during SLEEP 0000h 00-u 10uu u 1 0 u u u u WDT 0000h 0u-u 01uu u u u u WDT Wake-up PC + 2 uu-u 00uu u 0 0 u u u u Brown-out 0000h 0u-1 11u u u Interrupt Wake-up from SLEEP PC + 2 (1) uu-u 00uu u 1 0 u u u u Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'. Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (0008h or 0018h). DS39503A-page Microchip Technology Inc.

15 Section 3. Table 3-4: Initialization Conditions for SFR Registers Register Power-on, Brown-out s WDT Instruction Stack s Wake-up via WDT or Interrupt TOSU uuuu (3) TOSH uuuu uuuu (3) TOSL uuuu uuuu (3) STKPTR uu-u uuuu (3) PCLATU u uuuu PCLATH uuuu uuuu PCL PC + 2 (2) TBLPTRU uu uuuu TBLPTRH uuuu uuuu TBLPTRL uuuu uuuu TABLAT uuuu uuuu PRODH xxxx xxxx uuuu uuuu uuuu uuuu PRODL xxxx xxxx uuuu uuuu uuuu uuuu INTCON x u uuuu uuuu (1) 3 INTCON uuuu -u-u (1) INTCON uu-u u-uu (1) INDF0 N/A N/A N/A POSTINC0 N/A N/A N/A POSTDEC0 N/A N/A N/A PREINC0 N/A N/A N/A PLUSW0 N/A N/A N/A FSR0H uuuu FSR0L xxxx xxxx uuuu uuuu uuuu uuuu WREG xxxx xxxx uuuu uuuu uuuu uuuu INDF1 N/A N/A N/A POSTINC1 N/A N/A N/A POSTDEC1 N/A N/A N/A PREINC1 N/A N/A N/A Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up). 2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h). 3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack. 4: The long write enable is only reset on a POR or reset. 5: The bits in the PIR, PIE, and IPR registers are device dependent. Their function and location may change from device to device Microchip Technology Inc. DS39503A-page 3-15

16 PIC18C Reference Manual Table 3-4: Initialization Conditions for SFR Registers (Continued) Register Power-on, Brown-out s WDT Instruction Stack s Wake-up via WDT or Interrupt PLUSW1 N/A N/A N/A FSR1H uuuu FSR1L xxxx xxxx uuuu uuuu uuuu uuuu BSR uuuu INDF2 N/A N/A N/A POSTINC2 N/A N/A N/A POSTDEC2 N/A N/A N/A PREINC2 N/A N/A N/A PLUSW2 N/A N/A N/A FSR2H uuuu FSR2L xxxx xxxx uuuu uuuu uuuu uuuu STATUS ---x xxxx ---u uuuu ---u uuuu TMR0H xxxx xxxx uuuu uuuu uuuu uuuu TMR0L xxxx xxxx uuuu uuuu uuuu uuuu T0CON uuuu uuuu OSCCON u LVDCON uu uuuu WDTCON u RCON (4) q qquu uu-u qquu TMR1H xxxx xxxx uuuu uuuu uuuu uuuu TMR1L xxxx xxxx uuuu uuuu uuuu uuuu T1CON u-uu uuuu u-uu uuuu TMR2 xxxx xxxx uuuu uuuu uuuu uuuu PR T2CON uuu uuuu SSPBUF xxxx xxxx uuuu uuuu uuuu uuuu SSPADD uuuu uuuu SSPSTAT uuuu uuuu SSPCON uuuu uuuu SSPCON uuuu uuuu Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up). 2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h). 3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack. 4: The long write enable is only reset on a POR or reset. 5: The bits in the PIR, PIE, and IPR registers are device dependent. Their function and location may change from device to device. DS39503A-page Microchip Technology Inc.

17 Section 3. Table 3-4: Initialization Conditions for SFR Registers (Continued) Register Power-on, Brown-out s WDT Instruction Stack s Wake-up via WDT or Interrupt ADRESH xxxx xxxx uuuu uuuu uuuu uuuu ADRESL xxxx xxxx uuuu uuuu uuuu uuuu ADCON uuuu uuuu ADCON u- uuuu CCPR1H xxxx xxxx uuuu uuuu uuuu uuuu CCPR1L xxxx xxxx uuuu uuuu uuuu uuuu CCP1CON uu uuuu CCPR2H xxxx xxxx uuuu uuuu uuuu uuuu CCPR2L xxxx xxxx uuuu uuuu uuuu uuuu CCP2CON uu uuuu TMR3H xxxx xxxx uuuu uuuu uuuu uuuu TMR3L xxxx xxxx uuuu uuuu uuuu uuuu T3CON uuuu uuuu uuuu uuuu SPBRG xxxx xxxx uuuu uuuu uuuu uuuu RCREG xxxx xxxx uuuu uuuu uuuu uuuu TXREG xxxx xxxx uuuu uuuu uuuu uuuu TXSTA x u uuuu -uuu RCSTA x u uuuu uuuu IPR2 (5) 1 1 u PIR2 (5) 0 0 u (1) PIE2 (5) 0 0 u IPR1 (5) 1 1 u PIR1 (5) 0 0 u (1) PIE1 (5) 0 0 u Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up). 2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h). 3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack. 4: The long write enable is only reset on a POR or reset. 5: The bits in the PIR, PIE, and IPR registers are device dependent. Their function and location may change from device to device Microchip Technology Inc. DS39503A-page 3-17

18 PIC18C Reference Manual Table 3-4: Initialization Conditions for SFR Registers (Continued) Register Power-on, Brown-out s WDT Instruction Stack s Wake-up via WDT or Interrupt TRISE uuuu -uuu TRISD uuuu uuuu TRISC uuuu uuuu TRISB uuuu uuuu TRIS uuu uuuu LATE xxx uuu uuu LATD xxxx xxxx uuuu uuuu uuuu uuuu LATC xxxx xxxx uuuu uuuu uuuu uuuu LATB xxxx xxxx uuuu uuuu uuuu uuuu LATA -xxx xxxx -uuu uuuu -uuu uuuu PORTE uuu PORTD xxxx xxxx uuuu uuuu uuuu uuuu PORTC xxxx xxxx uuuu uuuu uuuu uuuu PORTB xxxx xxxx uuuu uuuu uuuu uuuu PORTA -x0x u0u uuu uuuu Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up). 2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h). 3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack. 4: The long write enable is only reset on a POR or reset. 5: The bits in the PIR, PIE, and IPR registers are device dependent. Their function and location may change from device to device. DS39503A-page Microchip Technology Inc.

19 Section Control (RCON) Register The Control (RCON) register contains flag bits to allow differentiation between resets. The Control register has seven bits. The POR (Power-on ) bit is cleared on a Power-on and is unaffected otherwise. The user sets this bit following a Power-on. On subsequent resets, if the POR bit is clear (= 0 ), it will indicate that a Power-on must have occurred. Note: The state of the BOR bit is unknown on Power-on. It must be set by the user and checked on subsequent resets to see if the BOR bit is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BOREN bit in the Configuration register). The power-down bit (PD) provides indication if the device was placed into sleep mode. It is set by a power-up, a CLRWDT instruction or by user software. The PD bit is cleared when the SLEEP instruction is executed or by user software. Register 3-2: RCON Register R/W-0 R/W-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-u IPEN LWRT RI TO PD POR BOR bit 7 bit 0 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 IPEN: Interrupt Priority Enable bit 1 = Enable priority levels on interrupts 0 = Disable priority levels on interrupts LWRT: Long Write Enable bit 1 = Enable Table Writes to internal program memory Once this bit is set, it can only be cleared by a POR or reset. 0 = Disable Table Writes to internal program memory; Table Writes only to external program memory. Unimplemented: Read as '0' RI: Instruction Flag bit 1= TheRESET instruction was not invoked 0= TheRESET instruction was executed (must be set in software after the RESET instruction is executed) TO: Time-out bit 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred PD: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction POR: Power-on Flag bit 1 = A Power-on has not occurred 0 = A Power-on occurred (must be set in software after a Power-on occurs) BOR: Brown-out Flag bit 1 = A Brown-out has not occurred 0 = A Brown-out occurred (must be set in software after a Brown-out or Power-on occurs) 3 Legend R = Readable bit W = Writable bit U = Unimplemented bit, read as 0 - n = Value at POR reset 1 = bit is set 0 = bit is cleared x = bit is unknown 2000 Microchip Technology Inc. DS39503A-page 3-19

20 PIC18C Reference Manual 3.4 Design Tips Question 1: With windowed devices, my system resets and operates properly. With an OTP device, my system does not operate properly. Answer 1: The most common reason for this is that the windowed device has not had its window covered. The background light causes the device to power-up in a different state than would typically be seen in a device where no light is present. In most cases, all the General Purpose RAM and Special Function Registers were not initialized by the application software. DS39503A-page Microchip Technology Inc.

21 Section Related Application Notes This section lists application notes that are related to this section of the manual. These application notes may not be written specifically for the Enhanced family (that is, they may be written for the Base-Line, the Mid-Range or High-End families), but the concepts are pertinent and could be used (with modification and possible limitations). The current application notes related to s are: Title Application Note # Power-up Trouble Shooting AN607 Power-up Considerations AN522 Note: Please visit the Microchip Web site for additional software code examples. These code examples are stand alone examples to assist in the understanding of the PIC18CXXX. The web address for these examples is: Microchip Technology Inc. DS39503A-page 3-21

22 PIC18C Reference Manual 3.6 Revision History Revision A This is the initial released revision of the Enhanced MCU description. DS39503A-page Microchip Technology Inc.

Section 2. Oscillator

Section 2. Oscillator Section 2. HIGHLIGHTS This section of the manual contains the following major topics: 2 2.1 Introduction... 2-2 2.2 Control Register... 2-3 2.3 Configurations... 2-4 2.4 Crystal s/ceramic Resonators...

More information

Building an Analog Communications System

Building an Analog Communications System Building an Analog Communications System Communicate between two PICs with analog signals. Analog signals have continous range. Analog signals must be discretized. Digital signal converted to analog Digital

More information

Section 22. Basic 8-bit A/D Converter

Section 22. Basic 8-bit A/D Converter M Section 22. A/D Converter HIGHLIGHTS This section of the manual contains the following major topics: 22.1 Introduction...22-2 22.2 Control Registers...22-3 22.3 A/D Acquisition Requirements...22-6 22.4

More information

PIC16C5X Data Sheet. EPROM/ROM-Based 8-bit CMOS Microcontroller Series Microchip Technology Inc. Preliminary DS30453D

PIC16C5X Data Sheet. EPROM/ROM-Based 8-bit CMOS Microcontroller Series Microchip Technology Inc. Preliminary DS30453D Data Sheet EPROM/ROM-Based -bit CMOS Microcontroller Series 2002 Microchip Technology Inc. Preliminary DS30453D EPROM/ROM-Based -bit CMOS Microcontroller Series Devices Included in this Data Sheet: PIC16C54

More information

PIC16(L)F720/ Pin Flash Microcontrollers. Low-Power Features: Devices Included In This Data Sheet: High-Performance RISC CPU:

PIC16(L)F720/ Pin Flash Microcontrollers. Low-Power Features: Devices Included In This Data Sheet: High-Performance RISC CPU: 20-Pin Flash Microcontrollers Devices Included In This Data Sheet: PIC16F720 PIC16F721 PIC16LF720 PIC16LF721 High-Performance RISC CPU: Only 35 Instructions to Learn: - All single-cycle instructions except

More information

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. M PIC16F87X 28/40-pin 8-Bit CMOS FLASH Microcontrollers Microcontroller

More information

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. 28/40-Pin 8-Bit CMOS FLASH Microcontrollers Devices Included in this Data

More information

Section 38. Oscillator with 500 khz Low-Power FRC

Section 38. Oscillator with 500 khz Low-Power FRC Section 38. Oscillator with 500 khz Low-Power FRC HIGHLIGHTS This section of the manual contains the following major topics: 38.1 Introduction... 38-2 38.2 CPU Clocking Scheme... 38-3 38.3 Oscillator Configuration...

More information

MCU Reset and Oscillator Circuits Application Note

MCU Reset and Oscillator Circuits Application Note MCU Reset and Oscillator Circuits Application Note D/N: HA0075E System Oscillator Crystal/Ceramic Oscillator Crystal/Ceramic Oscillator Equivalent Circuit The following circuit combination of resistors,

More information

8-Bit CMOS Microcontrollers with A/D Converter

8-Bit CMOS Microcontrollers with A/D Converter 8-Bit CMOS Microcontrollers with A/D Converter Devices included in this data sheet: PIC16C72 PIC16C73 PIC16C73A PIC16C74 PIC16C74A PIC16C76 PIC16C77 Microcontroller Core Features: High-performance RISC

More information

PIC16C77X. 28/40-Pin, 8-Bit CMOS Microcontrollers w/ 12-Bit A/D * * * * * Enhanced features. Microcontroller Core Features: Pin Diagram PIC16C774

PIC16C77X. 28/40-Pin, 8-Bit CMOS Microcontrollers w/ 12-Bit A/D * * * * * Enhanced features. Microcontroller Core Features: Pin Diagram PIC16C774 28/40-Pin, 8-Bit CMOS Microcontrollers w/ 12-Bit A/D Microcontroller Core Features: High-performance RISC CPU Only 35 single word instructions to learn All single cycle instructions except for program

More information

PIC16C925/ /68-Pin CMOS Microcontrollers with LCD Driver. High Performance RISC CPU: Analog Features: Special Microcontroller Features:

PIC16C925/ /68-Pin CMOS Microcontrollers with LCD Driver. High Performance RISC CPU: Analog Features: Special Microcontroller Features: 64/68-Pin CMOS Microcontrollers with LCD Driver High Performance RISC CPU: Only 35 single word instructions to learn All single cycle instructions except for program branches which are two-cycle Operating

More information

8-Bit CMOS Microcontrollers. PIC16C6X Features A R62 63 R A R A R Program Memory 1K 2K 2K 4K 2K 2K 4K 4K 8K 8K

8-Bit CMOS Microcontrollers. PIC16C6X Features A R62 63 R A R A R Program Memory 1K 2K 2K 4K 2K 2K 4K 4K 8K 8K 8-Bit CMOS Microcontrollers PIC16C6X Devices included in this data sheet: PIC16C61 PIC16C62 PIC16C62A PIC16CR62 PIC16C63 PIC16CR63 PIC16C64 PIC16C64A PIC16CR64 PIC16C65 PIC16C65A PIC16CR65 PIC16C66 PIC16C67

More information

PIC16C717/770/ /20-Pin, 8-Bit CMOS Microcontrollers with 10/12-Bit A/D. Microcontroller Core Features: Pin Diagram. Peripheral Features:

PIC16C717/770/ /20-Pin, 8-Bit CMOS Microcontrollers with 10/12-Bit A/D. Microcontroller Core Features: Pin Diagram. Peripheral Features: 18/20-Pin, 8-Bit CMOS Microcontrollers with 10/12-Bit A/D Microcontroller Core Features: High-performance RISC CPU Only 35 single word instructions to learn All single cycle instructions except for program

More information

PIC16F Pin, 8-Bit CMOS FLASH Microcontroller. Devices Included in this Data Sheet: Pin Diagram. Microcontroller Core Features:

PIC16F Pin, 8-Bit CMOS FLASH Microcontroller. Devices Included in this Data Sheet: Pin Diagram. Microcontroller Core Features: 28-Pin, 8-Bit CMOS FLASH Microcontroller Devices Included in this Data Sheet: PIC16F872 Microcontroller Core Features: High-performance RISC CPU Only 35 single word instructions to learn All single cycle

More information

PIC16(L)F720/721 Data Sheet

PIC16(L)F720/721 Data Sheet Data Sheet 20-Pin Flash Microcontrollers with nanowatt XLP Technology 2011 Microchip Technology Inc. Preliminary DS41430B Note the following details of the code protection feature on Microchip devices:

More information

PIC16C63A/65B/73B/74B

PIC16C63A/65B/73B/74B 8-Bit CMOS Microcontrollers with A/D Converter Devices included in this data sheet: PIC16C63A PIC16C65B PIC16CXX Microcontroller Core Features: High performance RISC CPU Only 35 single word instructions

More information

High-Performance 8-Bit CMOS EPROM Microcontrollers RD1/AD9 RD0/AD8 RE0/ALE RE1/OE RE2/WR RE3/CAP4 MCLR/VPP TEST

High-Performance 8-Bit CMOS EPROM Microcontrollers RD1/AD9 RD0/AD8 RE0/ALE RE1/OE RE2/WR RE3/CAP4 MCLR/VPP TEST High-Performance 8-Bit CMOS EPROM Microcontrollers Devices included in this data sheet: PIC17C752 PIC17C756 Microcontroller Core Features: Only 58 single word instructions to learn All single cycle instructions

More information

PIC16CR7X Data Sheet. 28/40-Pin, 8-Bit CMOS ROM Microcontrollers Microchip Technology Inc. DS21993C

PIC16CR7X Data Sheet. 28/40-Pin, 8-Bit CMOS ROM Microcontrollers Microchip Technology Inc. DS21993C Data Sheet 28/40-Pin, 8-Bit CMOS ROM Microcontrollers 2007 Microchip Technology Inc. DS21993C Note the following details of the code protection feature on Microchip devices: Microchip products meet the

More information

Section 34. Comparator

Section 34. Comparator Section 34. HIGHLIGHTS This section of the manual contains the following major topics: 34.1 Introduction... 34-2 34.2 Registers... 34-3 34.3 Operation... 34-6 34.4 Configuration... 34-7 34.5 Interrupts...

More information

ELCT 912: Advanced Embedded Systems

ELCT 912: Advanced Embedded Systems ELCT 912: Advanced Embedded Systems Lecture 5: PIC Peripherals on Chip Dr. Mohamed Abd El Ghany, Department of Electronics and Electrical Engineering The PIC Family: Peripherals Different PICs have different

More information

28/40/44-Pin, 8-Bit CMOS Flash Microcontrollers with 10-Bit A/D and nanowatt Technology. Interrupts 10-bit A/D (ch)

28/40/44-Pin, 8-Bit CMOS Flash Microcontrollers with 10-Bit A/D and nanowatt Technology. Interrupts 10-bit A/D (ch) 28/40/44-Pin, 8-Bit CMOS Flash Microcontrollers with 10-Bit A/D and nanowatt Technology Low-Power Features: Power-Managed modes: - Primary Run (XT, RC oscillator, 76 A, 1MHz, 2V) - RC_RUN (7 A, 31.25 khz,

More information

PIC16C63A/65B/73B/74B

PIC16C63A/65B/73B/74B 8-Bit CMOS Microcontrollers with A/D Converter Devices included in this data sheet: PIC16C63A PIC16C65B PIC16C73B PIC16C74B PIC16CXX Microcontroller Core Features: High-performance RISC CPU Only 35 single

More information

PIC16C5X. EPROM/ROM-Based 8-Bit CMOS Microcontroller Series. Peripheral Features: Devices Included in this Data Sheet: CMOS Technology:

PIC16C5X. EPROM/ROM-Based 8-Bit CMOS Microcontroller Series. Peripheral Features: Devices Included in this Data Sheet: CMOS Technology: EPROM/ROM-Based 8-Bit CMOS Microcontroller Series Devices Included in this Data Sheet: PIC16C54 PIC16CR54 PIC16C55 PIC16C56 PIC16CR56 PIC16C57 PIC16CR57 PIC16C58 PIC16CR58 Note: 16C5X refers to all revisions

More information

PIC16(L)F1512/3. 28-Pin Flash Microcontrollers with XLP Technology. High-Performance RISC CPU. Analog Features. Memory

PIC16(L)F1512/3. 28-Pin Flash Microcontrollers with XLP Technology. High-Performance RISC CPU. Analog Features. Memory 28-Pin Flash Microcontrollers with XLP Technology High-Performance RISC CPU C Compiler Optimized Architecture Only 49 Instructions Operating Speed: - DC 20 MHz clock input @ 2.5V - DC 16 MHz clock input

More information

MCV18E Data Sheet. 18-Pin Flash Microcontroller Microchip Technology Inc. DS41399A

MCV18E Data Sheet. 18-Pin Flash Microcontroller Microchip Technology Inc. DS41399A Data Sheet 18-Pin Flash Microcontroller 2009 Microchip Technology Inc. DS41399A Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification

More information

PIC16(L)F1516/7/8/9. 28/40/44-Pin Flash Microcontrollers with XLP Technology. Devices Included In This Data Sheet. Analog Features

PIC16(L)F1516/7/8/9. 28/40/44-Pin Flash Microcontrollers with XLP Technology. Devices Included In This Data Sheet. Analog Features 28/40/44-Pin Flash Microcontrollers with XLP Technology Devices Included In This Data Sheet PIC16F1516 PIC16F1517 PIC16F1518 PIC16F1519 PIC16LF1516 PIC16LF1517 PIC16LF1518 PIC16LF1519 High-Performance

More information

PIC16C9XX. 8-Bit CMOS Microcontroller with LCD Driver. Available in Die Form. Devices included in this data sheet: Microcontroller Core Features:

PIC16C9XX. 8-Bit CMOS Microcontroller with LCD Driver. Available in Die Form. Devices included in this data sheet: Microcontroller Core Features: 8-Bit CMOS Microcontroller with LCD Driver Devices included in this data sheet: PIC16C923 PIC16C924 Microcontroller Core Features: High performance RISC CPU Only 35 single word instructions to learn 4K

More information

PIC16F716 Data Sheet. 8-bit Flash-based Microcontroller with A/D Converter and Enhanced Capture/Compare/PWM

PIC16F716 Data Sheet. 8-bit Flash-based Microcontroller with A/D Converter and Enhanced Capture/Compare/PWM Data Sheet 8-bit Flash-based Microcontroller with A/D Converter and Enhanced Capture/Compare/PWM 2003 Microchip Technology Inc. Preliminary DS41206A Note the following details of the code protection feature

More information

Section 39. Oscillator (Part III)

Section 39. Oscillator (Part III) Section 39. Oscillator (Part III) HIGHLIGHTS This section of the manual contains the following topics: 39.1 Introduction... 39-2 39.2 CPU Clocking...39-3 39.3 Oscillator Configuration Registers... 39-4

More information

PIC16F72 Data Sheet. 28-Pin, 8-Bit CMOS FLASH Microcontoller with A/D Converter Microchip Technology Inc. DS39597C

PIC16F72 Data Sheet. 28-Pin, 8-Bit CMOS FLASH Microcontoller with A/D Converter Microchip Technology Inc. DS39597C Data Sheet 28-Pin, 8-Bit CMOS FLASH Microcontoller with A/D Converter 2007 Microchip Technology Inc. DS39597C Note the following details of the code protection feature on Microchip devices: Microchip products

More information

PIC16F716 Data Sheet. 8-bit Flash-based Microcontroller with A/D Converter and Enhanced Capture/Compare/PWM

PIC16F716 Data Sheet. 8-bit Flash-based Microcontroller with A/D Converter and Enhanced Capture/Compare/PWM Data Sheet 8-bit Flash-based Microcontroller with A/D Converter and Enhanced Capture/Compare/PWM 2003 Microchip Technology Inc. Preliminary DS41206A Note the following details of the code protection feature

More information

On-chip RC oscillator based Watchdog Timer(WDT) can be operated freely 12 I/O pins with their own independent direction control 3. Applications The ap

On-chip RC oscillator based Watchdog Timer(WDT) can be operated freely 12 I/O pins with their own independent direction control 3. Applications The ap MDT2010 1. General Description This EPROM-Based 8-bit micro-controller uses a fully static CMOS design technology combines higher speeds and smaller size with the low power and high noise immunity of CMOS.

More information

PIC16F/LF722A/723A Data Sheet

PIC16F/LF722A/723A Data Sheet Data Sheet 28-Pin Flash Microcontrollers with nanowatt XLP Technology DS41417A Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification

More information

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. M PIC16C5X EPROM/ROM-Based 8-Bit CMOS Microcontroller Series Devices Included

More information

PIC16F631/677/685/687/689/690

PIC16F631/677/685/687/689/690 20-Pin Flash-Based, 8-Bit CMOS Microcontrollers High-Performance RISC CPU Only 35 Instructions to Learn: - All single-cycle instructions except branches Operating Speed: - DC 20 MHz oscillator/clock input

More information

PIC16C712/716 Data Sheet

PIC16C712/716 Data Sheet Data Sheet 8-Bit CMOS Microcontrollers with A/D Converter and Capture/Compare/PWM 2005 Microchip Technology Inc. DS41106B Note the following details of the code protection feature on Microchip devices:

More information

PIC16F631/677/685/687/689/690 Data Sheet

PIC16F631/677/685/687/689/690 Data Sheet Data Sheet 20-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanowatt Technology 2007 Microchip Technology Inc. DS41262D Note the following details of the code protection feature on Microchip devices:

More information

Three-Stage Coil Gun

Three-Stage Coil Gun Three-Stage Coil Gun Final Project Report December 8, 2006 E155 Dan Pivonka and Michael Pugh Abstract: A coil gun is an electronic gun that fires a projectile by means of the magnetic field generated when

More information

PIC16C5X Data Sheet. EPROM/ROM-Based 8-bit CMOS Microcontroller Series Microchip Technology Inc. Preliminary DS30453D

PIC16C5X Data Sheet. EPROM/ROM-Based 8-bit CMOS Microcontroller Series Microchip Technology Inc. Preliminary DS30453D Data Sheet EPROM/ROM-Based 8-bit CMOS Microcontroller Series 2002 Microchip Technology Inc. Preliminary DS30453D Note the following details of the code protection feature on PICmicro MCUs. The PICmicro

More information

Section 59. Oscillators with DCO

Section 59. Oscillators with DCO Section 59. Oscillators with HIGHLIGHTS This section of the manual contains the following major topics: 59.1 Introduction... 59-2 59.2 Control Registers... 59-4 59.3 Operation: Clock Generation and Clock

More information

PIC16F7X7 Data Sheet. 28/40/44-Pin, 8-Bit CMOS Flash Microcontrollers with 10-Bit A/D and nanowatt Technology Microchip Technology Inc.

PIC16F7X7 Data Sheet. 28/40/44-Pin, 8-Bit CMOS Flash Microcontrollers with 10-Bit A/D and nanowatt Technology Microchip Technology Inc. Data Sheet 28/40/44-Pin, 8-Bit CMOS Flash Microcontrollers with 10-Bit A/D and nanowatt Technology 2004 Microchip Technology Inc. DS30498C Note the following details of the code protection feature on Microchip

More information

MK7A20P 8 bit microcontroller

MK7A20P 8 bit microcontroller MK7A2P. Feature ROM size: 2,48 Words OTP ROM RAM size: 72 Bytes 76 single word instruction Stack level: 2 I/O ports: 2 - Port B: 8 pull high I/O pin and has wake up function - Port A~3: 4 normal I/O pin

More information

FM8P756 OTP-Based 8-Bit Microcontroller with LCD Driver

FM8P756 OTP-Based 8-Bit Microcontroller with LCD Driver OTP-Based 8-Bit Microcontroller with LCD Driver Devices Included in this Data Sheet: A : 24-pin OTP device B : 20-pin OTP device C : 16-pin OTP device FEATURES D : 28-pin OTP device with VR pin E : 24-pin

More information

PIC16LF1554/ Pin Flash, 8-Bit Microcontrollers with XLP Technology. Description. High-Performance RISC CPU. Peripheral Features

PIC16LF1554/ Pin Flash, 8-Bit Microcontrollers with XLP Technology. Description. High-Performance RISC CPU. Peripheral Features 20-Pin Flash, 8-Bit Microcontrollers with XLP Technology Description The PIC16LF1554/1559 microcontrollers with Microchip enhanced mid-range core deliver unique on-chip features for the design of mtouch

More information

IZ602 LCD DRIVER Main features: Table 1 Pad description Pad No Pad Name Function

IZ602 LCD DRIVER Main features: Table 1 Pad description Pad No Pad Name Function LCD DRIVER The IZ602 is universal LCD controller designed to drive LCD with image element up to 128 (32x4). Instruction set makes IZ602 universal and suitable for applications with different types of displays.

More information

PIC16F882/883/884/886/887

PIC16F882/883/884/886/887 28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers High-Performance RISC CPU Only 35 Instructions to Learn: - All single-cycle instructions except branches Operating Speed: - DC 20 MHz oscillator/clock

More information

PIC16F688 Data Sheet. 14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanowatt Technology Microchip Technology Inc. Preliminary DS41203B

PIC16F688 Data Sheet. 14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanowatt Technology Microchip Technology Inc. Preliminary DS41203B Data Sheet 14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanowatt Technology 2004 Microchip Technology Inc. Preliminary DS41203B Note the following details of the code protection feature on Microchip

More information

PIC16(L)F1516/7/8/9 Data Sheet

PIC16(L)F1516/7/8/9 Data Sheet Data Sheet 28/40/44-Pin Flash Microcontrollers with nanowatt XLP Technology 2011 Microchip Technology Inc. Preliminary DS41452B Note the following details of the code protection feature on Microchip devices:

More information

PIC16F688 Data Sheet. 14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanowatt Technology Microchip Technology Inc.

PIC16F688 Data Sheet. 14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanowatt Technology Microchip Technology Inc. Data Sheet 14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanowatt Technology 2007 Microchip Technology Inc. DS41203D Note the following details of the code protection feature on Microchip devices:

More information

HT162X HT1620 HT1621 HT1622 HT16220 HT1623 HT1625 HT1626 COM

HT162X HT1620 HT1621 HT1622 HT16220 HT1623 HT1625 HT1626 COM RAM Mapping 328 LCD Controller for I/O MCU PATENTED PAT No. : 099352 Technical Document Application Note Features Operating voltage: 2.7V~5.2V Built-in RC oscillator 1/4 bias, 1/8 duty, frame frequency

More information

PIC12F683 Data Sheet. 8-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanowatt Technology

PIC12F683 Data Sheet. 8-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanowatt Technology Data Sheet 8-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanowatt Technology * 8-bit, 8-pin Devices Protected by Microchip s Low Pin Count Patent: U.S. Patent No. 5,847,450. Additional U.S. and foreign

More information

PIC16F627A/628A/648A Data Sheet

PIC16F627A/628A/648A Data Sheet Data Sheet FLASH-Based 8-Bit CMOS Microcontrollers 2002 Microchip Technology Inc. Preliminary DS40044A Note the following details of the code protection feature on Microchip devices: Microchip products

More information

PIC16F627A/628A/648A Data Sheet

PIC16F627A/628A/648A Data Sheet Data Sheet Flash-Based, 8-Bit CMOS Microcontrollers with nanowatt Technology 2009 Microchip Technology Inc. DS40044G Note the following details of the code protection feature on Microchip devices: Microchip

More information

Block Diagram , E I F = O 4 ) + J H 6 E E C + E H? K E J +,, H E L A H * E = I + E H? K E J + + % 8,, % 8 +, * * 6 A. H A G K A? O

Block Diagram , E I F = O 4 ) + J H 6 E E C + E H? K E J +,, H E L A H * E = I + E H? K E J + + % 8,, % 8 +, * * 6 A. H A G K A? O PAT No. : 099352 RAM Mapping 488 LCD Controller for I/O MCU Technical Document Application Note Features Operating voltage: 2.7V~5.2V Built-in LCD display RAM Built-in RC oscillator R/W address auto increment

More information

Section 45. High-Speed Analog Comparator

Section 45. High-Speed Analog Comparator Section 45. High-Speed Analog Comparator HIGHLIGHTS This section of the manual contains the following major topics: 45.1 Introduction... 45-2 45.2 Features Overview... 45-2 45.3 Module Description... 45-3

More information

PIC12LF1840T39A. 8-Bit Flash Microcontroller with XLP Technology. High-Performance RISC CPU: Low-Power Features: RF Transmitter:

PIC12LF1840T39A. 8-Bit Flash Microcontroller with XLP Technology. High-Performance RISC CPU: Low-Power Features: RF Transmitter: 8-Bit Flash Microcontroller with XLP Technology High-Performance RISC CPU: Only 49 Instructions to Learn: - All single-cycle instructions except branches Operating Speed: - DC 32 MHz oscillator/clock input

More information

CD4541BC Programmable Timer

CD4541BC Programmable Timer CD4541BC Programmable Timer General Description The CD4541BC Programmable Timer is designed with a 16-stage binary counter, an integrated oscillator for use with an external capacitor and two resistors,

More information

HT1621. HT1621 RAM Mapping 32x4 LCD Controller for I/O MCU

HT1621. HT1621 RAM Mapping 32x4 LCD Controller for I/O MCU HT1621 RAM Mapping 32x4 LCD Controller for I/O MCU Features Operating voltage: 2.4V ~ 5.2V Built-in 256kHz RC oscillator External 32.768kHz crystal or 256 khz frequency source input Selection of 1/2 or

More information

SG8F160P. 8-BIT MCU With Embedded Touch Sensor Version 1.1. Sigma reserves the right to change this documentation without prior notice

SG8F160P. 8-BIT MCU With Embedded Touch Sensor Version 1.1. Sigma reserves the right to change this documentation without prior notice SPECIFICATION SG8F160P Version 1.1 Sigma reserves the right to change this documentation without prior notice TABLE OF CONTENTS SG8F160P 1. GENERAL DESCRIPTION...3 2. FEATURES...3 3. PIN ASSIGNMENT...5

More information

HT1620 HT1621 HT1622 HT16220 HT1623 HT1625 HT1626 HT1627 HT16270 COM

HT1620 HT1621 HT1622 HT16220 HT1623 HT1625 HT1626 HT1627 HT16270 COM RAM Mapping 48 16 LCD Controller for I/O µc LCD Controller Product Line Selection Table HT162X HT1620 HT1621 HT1622 HT16220 HT1623 HT1625 HT1626 HT1627 HT16270 COM 4 4 8 8 8 81 16 16 16 SEG 32 32 32 32

More information

PIC12(L)F Pin Flash Microcontrollers with XLP Technology. Extreme Low-Power Management with PIC12LF1840 XLP. High-Performance RISC CPU

PIC12(L)F Pin Flash Microcontrollers with XLP Technology. Extreme Low-Power Management with PIC12LF1840 XLP. High-Performance RISC CPU 8-Pin Flash Microcontrollers with XLP Technology High-Performance RISC CPU Only 49 Instructions to Learn: - All single-cycle instructions except branches Operating Speed: - DC 32 MHz oscillator/clock input

More information

PIC18F2X1X/4X1X. 28/40/44-Pin Flash Microcontrollers with 10-Bit A/D and nanowatt Technology. Flexible Oscillator Structure: Power-Managed Modes:

PIC18F2X1X/4X1X. 28/40/44-Pin Flash Microcontrollers with 10-Bit A/D and nanowatt Technology. Flexible Oscillator Structure: Power-Managed Modes: 28/40/44-Pin Flash Microcontrollers with 10-Bit A/D and nanowatt Technology Power-Managed Modes: Run: CPU On, Peripherals On Idle: CPU Off, Peripherals On Sleep: CPU Off, Peripherals Off Idle mode Currents

More information

A Comparison of 8-Bit Microcontrollers. COP800 Byte/Words Cycles X SWAP OR A,[B] MC68HC05 LDA ROLA ROLA ROLA ROLA ADD STA 1 1 REGLO REGLO

A Comparison of 8-Bit Microcontrollers. COP800 Byte/Words Cycles X SWAP OR A,[B] MC68HC05 LDA ROLA ROLA ROLA ROLA ADD STA 1 1 REGLO REGLO A Comparison of 8-Bit Microcontrollers AN50 Author: INTRODUCTION Mark Palmer Microchip Technology Inc. The PIC6C5X/XX microcontrollers from Microchip Technology Inc., provide significant execution speed

More information

Section 25. Device Configuration

Section 25. Device Configuration Section 25. Device Configuration HIGHLIGHTS This section of the manual contains the following major topics: 25.1 Introduction... 25-2 25.2 Device Configuration Registers... 25-2 25.3 Configuration Bit

More information

PIC16C781/782 Data Sheet

PIC16C781/782 Data Sheet Data Sheet 8-Bit CMOS Microcontrollers with A/D, D/A, OPAMP, Comparators and PSMC 2001 Microchip Technology Inc. Preliminary DS41171A Note the following details of the code protection feature on PICmicro

More information

Pulse Width Modulation

Pulse Width Modulation ECEn 621" Computer Arithmetic" Project Notes Week 1 Pulse Width Modulation 1 Pulse Width Modulation A method of regulating the amount of voltage delivered to a load. The average value of the voltage fed

More information

Built-in LCD display RAM Built-in RC oscillator

Built-in LCD display RAM Built-in RC oscillator PAT No. : TW 099352 RAM Mapping 488 LCD Controller for I/O MCU Technical Document Application Note Features Operating voltage: 2.7V~5.2V Built-in LCD display RAM Built-in RC oscillator R/W address auto

More information

Designing with a Microcontroller (v6)

Designing with a Microcontroller (v6) Designing with a Microcontroller (v6) Safety: In this lab, voltages are less than 15 volts and this is not normally dangerous to humans. However, you should assemble or modify a circuit when power is disconnected

More information

PIC16F87/88 Data Sheet

PIC16F87/88 Data Sheet Data Sheet 18/20/28-Pin Enhanced FLASH Microcontrollers with nanowatt Technology 2003 Microchip Technology Inc. Preliminary DS30487B Note the following details of the code protection feature on Microchip

More information

MDT10P General Description. 2. Features. 3. Applications

MDT10P General Description. 2. Features. 3. Applications 1. General This ROM-Based 8-bit micro-controller uses a fully static CMOS technology process to achieve high speed, small size, the low power and high noise immunity. On chip memory includes 2K words EPROM,

More information

PATENTED. PAT No. : HT1622/HT1622G RAM Mapping 32 8 LCD Controller for I/O MCU. Features. General Description.

PATENTED. PAT No. : HT1622/HT1622G RAM Mapping 32 8 LCD Controller for I/O MCU. Features. General Description. RAM Mapping 328 LCD Controller for I/O MCU PATENTED PAT No. : 099352 Features Operating voltage: 2.7V~5.2V Built-in RC oscillator 1/4 bias, 1/8 duty, frame frequency is 64Hz Max. 328 patterns, 8 commons,

More information

PIC12F752/HV Pin Flash-Based, 8-Bit CMOS Microcontrollers. Peripheral Features. High-Performance RISC CPU. Microcontroller Features

PIC12F752/HV Pin Flash-Based, 8-Bit CMOS Microcontrollers. Peripheral Features. High-Performance RISC CPU. Microcontroller Features 8-Pin Flash-Based, 8-Bit CMOS Microcontrollers High-Performance RISC CPU Only 35 Instructions to Learn: - All single-cycle instructions except branches Operating Speed: - DC 20 MHz clock input - DC 200

More information

PIC16F684 Data Sheet. 14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanowatt Technology Microchip Technology Inc. Preliminary DS41202C

PIC16F684 Data Sheet. 14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanowatt Technology Microchip Technology Inc. Preliminary DS41202C Data Sheet 14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanowatt Technology 2004 Microchip Technology Inc. Preliminary DS41202C Note the following details of the code protection feature on Microchip

More information

Section Bit A/D Converter with Threshold Detect

Section Bit A/D Converter with Threshold Detect 51 Section 51. 12-Bit A/D Converter with Threshold Detect 12-Bit A/D Converter HIGHLIGHTS This section of the manual contains the following major topics: 51.1 Introduction... 51-2 51.2 A/D Terminology

More information

νµθωερτψυιοπασδφγηϕκλζξχϖβνµθωερτ ψυιοπασδφγηϕκλζξχϖβνµθωερτψυιοπα σδφγηϕκλζξχϖβνµθωερτψυιοπασδφγηϕκ χϖβνµθωερτψυιοπασδφγηϕκλζξχϖβνµθ

νµθωερτψυιοπασδφγηϕκλζξχϖβνµθωερτ ψυιοπασδφγηϕκλζξχϖβνµθωερτψυιοπα σδφγηϕκλζξχϖβνµθωερτψυιοπασδφγηϕκ χϖβνµθωερτψυιοπασδφγηϕκλζξχϖβνµθ θωερτψυιοπασδφγηϕκλζξχϖβνµθωερτψ υιοπασδφγηϕκλζξχϖβνµθωερτψυιοπασδ φγηϕκλζξχϖβνµθωερτψυιοπασδφγηϕκλζ ξχϖβνµθωερτψυιοπασδφγηϕκλζξχϖβνµ EE 331 Design Project Final Report θωερτψυιοπασδφγηϕκλζξχϖβνµθωερτψ

More information

Houngninou 2. Abstract

Houngninou 2. Abstract Houngninou 2 Abstract The project consists of designing and building a system that monitors the phase of two pulses A and B. Three colored LEDs are used to identify the phase comparison. When the rising

More information

Built-in LCD display RAM Built-in RC oscillator

Built-in LCD display RAM Built-in RC oscillator PAT No. : TW 099352 RAM Mapping 488 LCD Controller for I/O MCU Technical Document Application Note Features Operating voltage: 2.7V~5.2V Built-in LCD display RAM Built-in RC oscillator R/W address auto

More information

PIC12LF1840T48A Data Sheet

PIC12LF1840T48A Data Sheet Data Sheet 8-Bit Flash Microcontroller with XLP Technology 2011-2014 Microchip Technology Inc. DS40001594C Note the following details of the code protection feature on Microchip devices: Microchip products

More information

ML4818 Phase Modulation/Soft Switching Controller

ML4818 Phase Modulation/Soft Switching Controller Phase Modulation/Soft Switching Controller www.fairchildsemi.com Features Full bridge phase modulation zero voltage switching circuit with programmable ZV transition times Constant frequency operation

More information

Controlling DC Brush Motor using MD10B or MD30B. Version 1.2. Aug Cytron Technologies Sdn. Bhd.

Controlling DC Brush Motor using MD10B or MD30B. Version 1.2. Aug Cytron Technologies Sdn. Bhd. PR10 Controlling DC Brush Motor using MD10B or MD30B Version 1.2 Aug 2008 Cytron Technologies Sdn. Bhd. Information contained in this publication regarding device applications and the like is intended

More information

SH69P48A. OTP 4K 4-bit Micro-controller with 10-bit SAR A/D Converter. Features. General Description 1 V2.4

SH69P48A. OTP 4K 4-bit Micro-controller with 10-bit SAR A/D Converter. Features. General Description 1 V2.4 Features OTP 4K 4-bit Micro-controller with 10-bit SAR A/D Converter SH6610D-based single-chip 4-bit micro-controller with 10-bit SAR A/D converter OTPROM: 4K X 16bits RAM: 253 X 4bits - 61 System control

More information

RAM Mapping LCD Controller for I/O MCU. Built-in LCD display RAM Built-in RC oscillator

RAM Mapping LCD Controller for I/O MCU. Built-in LCD display RAM Built-in RC oscillator PAT No. : 099352 RAM Mapping 4816 LCD Controller for I/O MCU Technical Document Application Note Features Operating voltage: 2.7V~5.2V Built-in LCD display RAM Built-in RC oscillator R/W address auto increment

More information

PATENTED. PAT No. : HT1622/HT1622G RAM Mapping 32 8 LCD Controller for I/O MCU. Features. General Description.

PATENTED. PAT No. : HT1622/HT1622G RAM Mapping 32 8 LCD Controller for I/O MCU. Features. General Description. RAM Mapping 328 LCD Controller for I/O MCU PATENTED PAT No. : 099352 Features Operating voltage: 2.7V~5.2V Built-in RC oscillator 1/4 bias, 1/8 duty, frame frequency is 64Hz Max. 328 patterns, 8 commons,

More information

Application Circuits 3. 3V R2. C4 100n G PI O. 0 G PI O S e t u p d a ta G PI O. 5 G PI O M o t i o n I n t G PI O. 4 G PI O.

Application Circuits 3. 3V R2. C4 100n G PI O. 0 G PI O S e t u p d a ta G PI O. 5 G PI O M o t i o n I n t G PI O. 4 G PI O. General Description The is an ultra-low power motion detector controller integrated circuit. The device is ideally suited for battery operated wireless motion sensors that make use of an MCU for handling

More information

PIC16F72X/PIC16LF72X Data Sheet

PIC16F72X/PIC16LF72X Data Sheet Data Sheet 28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers 2008 Microchip Technology Inc. Preliminary DS41341B Note the following details of the code protection feature on Microchip devices: Microchip

More information

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1 5V/12V Synchronous Buck PWM Controller DESCRIPTION The is a high efficiency, fixed 300kHz frequency, voltage mode, synchronous PWM controller. The device drives two low cost N-channel MOSFETs and is designed

More information

DS1075. EconOscillator/Divider PRELIMINARY FEATURES PIN ASSIGNMENT FREQUENCY OPTIONS

DS1075. EconOscillator/Divider PRELIMINARY FEATURES PIN ASSIGNMENT FREQUENCY OPTIONS PRELIMINARY EconOscillator/Divider FEATURES Dual Fixed frequency outputs (200 KHz 100 MHz) User programmable on chip dividers (from 1 513) User programmable on chip prescaler (1, 2, 4) No external components

More information

PIC16(L)F /20/28-Pin Flash Microcontrollers with XLP Technology. Extreme Low-Power Management PIC16LF1847 with XLP: High-Performance RISC CPU:

PIC16(L)F /20/28-Pin Flash Microcontrollers with XLP Technology. Extreme Low-Power Management PIC16LF1847 with XLP: High-Performance RISC CPU: 18/20/28-Pin Flash Microcontrollers with XLP Technology High-Performance RISC CPU: C Compiler Optimized Architecture 256 bytes Data EEPROM Up to 14 Kbytes Linear Program Memory Addressing Up to 1024 bytes

More information

HT162X HT1620 HT1621 HT1622 HT16220 HT1623 HT1625 HT1626 COM

HT162X HT1620 HT1621 HT1622 HT16220 HT1623 HT1625 HT1626 COM Features Operating voltage: 2.4V~5.2V Built-in 256kHz RC oscillator External 32.768kHz crystal or 256kHz frequency source input Selection of 1/2 or1/3 bias, and selection of 1/2 or 1/3 or1/4 duty LCD applications

More information

HT162X HT1620 HT1621 HT1622 HT16220 HT1623 HT1625 HT1626 COM

HT162X HT1620 HT1621 HT1622 HT16220 HT1623 HT1625 HT1626 COM RAM Mapping 328 LCD Controller for I/O C Features Operating voltage: 2.7V~5.2V Built-in RC oscillator 1/4 bias, 1/8 duty, frame frequency is 64Hz Max. 328 patterns, 8 commons, 32 segments Built-in internal

More information

R/W address auto increment External Crystal kHz oscillator

R/W address auto increment External Crystal kHz oscillator RAM Mapping 328 LCD Controller for I/O MCU PATENTED PAT No. : 099352 Features Operating voltage: 2.7V~5.2V R/W address auto increment External Crystal 32.768kHz oscillator Two selectable buzzer frequencies

More information

rfpic12f675 FLASH-Based Microcontroller with ASK/FSK Transmitter High Performance RISC CPU: Pin Diagram: UHF ASK/FSK Transmitter: Peripheral Features:

rfpic12f675 FLASH-Based Microcontroller with ASK/FSK Transmitter High Performance RISC CPU: Pin Diagram: UHF ASK/FSK Transmitter: Peripheral Features: FLASH-Based Microcontroller with ASK/FSK Transmitter High Performance RISC CPU: Only 35 instructions to learn - All single cycle instructions except branches Operating speed: - Precision Internal 4 MHz

More information

Hello and welcome to this Renesas Interactive Course that provides an overview of the timers found on RL78 MCUs.

Hello and welcome to this Renesas Interactive Course that provides an overview of the timers found on RL78 MCUs. Hello and welcome to this Renesas Interactive Course that provides an overview of the timers found on RL78 MCUs. 1 The purpose of this course is to provide an introduction to the RL78 timer Architecture.

More information

PIC16(L)F1824/8. 14/20-Pin Flash Microcontrollers with XLP Technology. Extreme Low-Power Management PIC16LF1824/8 with XLP. High-Performance RISC CPU

PIC16(L)F1824/8. 14/20-Pin Flash Microcontrollers with XLP Technology. Extreme Low-Power Management PIC16LF1824/8 with XLP. High-Performance RISC CPU 14/20-Pin Flash Microcontrollers with XLP Technology High-Performance RISC CPU Only 49 Instructions to Learn: - All single-cycle instructions except branches Operating Speed: - DC 32 MHz oscillator/clock

More information

DESIGNING A POSITION REGULATOR FOR AN ACTUATOR POWERED BY A CONTINUOUS CURRENT MOTOR USING THE PIC16F73 MICROCONTROLLER

DESIGNING A POSITION REGULATOR FOR AN ACTUATOR POWERED BY A CONTINUOUS CURRENT MOTOR USING THE PIC16F73 MICROCONTROLLER U.P.B. Sci. Bull., Series C, Vol. 80, Iss. 2, 2018 ISSN 2286-3540 DESIGNING A POSITION REGULATOR FOR AN ACTUATOR POWERED BY A CONTINUOUS CURRENT MOTOR USING THE PIC16F73 MICROCONTROLLER Monica-Anca CHITA

More information

New Revision of SX18/20/28AC (Datecode Axyywwxx)

New Revision of SX18/20/28AC (Datecode Axyywwxx) New Revision of SX18/20/28AC (Datecode Axyywwxx) Datecode: yywwxx (old revisio) blank, A4, B4, C4, or D4 Week Year Datecode:Axyywwxx AB, AC,...BA..BC, etc. Week Year AB, AC,...Ax Date: 5/18/99 1999 Scenix

More information

Hello, and welcome to this presentation of the STM32G0 digital-to-analog converter. This block is used to convert digital signals to analog voltages

Hello, and welcome to this presentation of the STM32G0 digital-to-analog converter. This block is used to convert digital signals to analog voltages Hello, and welcome to this presentation of the STM32G0 digital-to-analog converter. This block is used to convert digital signals to analog voltages which can interface with the external world. 1 The STM32G0

More information

RAM Mapping 64 8 LCD Controller for I/O MCU. Built-in LCD display RAM Built-in RC oscillator

RAM Mapping 64 8 LCD Controller for I/O MCU. Built-in LCD display RAM Built-in RC oscillator RAM Mapping 648 LCD Controller for I/O MCU PATENTED PAT No. : 099352 Technical Document Application Note Features Operating voltage: 2.7V~5.2V Built-in LCD display RAM Built-in RC oscillator R/W address

More information

14/20-Pin MCUs with High-Precision 16-Bit PWMs

14/20-Pin MCUs with High-Precision 16-Bit PWMs 14/20-Pin MCUs with High-Precision 16-Bit PWMs Description PIC16(L)F1574/5/8/9 microcontrollers combine the capabilities of 16-bit PWMs with Analog to suit a variety of applications. These devices deliver

More information