United States Patent [19]

Size: px
Start display at page:

Download "United States Patent [19]"

Transcription

1 United States Patent [19] Leis et al. [11] [45] Apr. 19, 1983 [54] DGTAL VELOCTY SERVO [75] nventors: Michael D. Leis, Framingham; Robert C. Rose, Hudson, both of Mass. [73] Assignee: Digital Equipment Corporation, Maynard, Mass. [21] Appl. No.: 46,130 [22] Filed: Jun. 5, 1979 [51] nt. Cl.J... H02P 5/16 [52] U.S. Cl /314; 318/318; 318/327 [58] Field of Search /314, 318, 326, 327, 318/341; 331/1 A, 27; 324/83 FE, 83 FD; 328/155 [56] References Cited U.S. PATENT DOCUMENTS 3,176,208 3/1965 Gifft /314 3,351,868 11/1967 Farrow /27 3,500,160 3/1970 Sommer /314 3,546, Loyd /318 3,628, Pattantyus /314 3,851, Sommer F 3,858, Bussi /314 3,936, Taylor et a / ,117,419 9/1978 Rudd /83 FE 4,155,033 5/1979 DeBell et a /314 Primary Examiner-David Smith, Jr. Attorney, Agent, or Firm-Cesari and McKenna [57] ABSTRACf A servo circuit for electronically controlling the operation of an electric motor is disclosed. The rotational frequency of the motor is converted into a varying frequency waveform by a tachometer. The tachometer output is applied to a conversion circuit which includes a peak detector that converts the output waveform of the tachometer into a square-wave signal. The squarewave signal is, in turn, connected to one input of an exclusive-or gate. The peak detector square-wave signal is also applied to a shift register which, after a time delay, applies the same signal to another input of the exclusive-or gate. With these connections, the exclusive-or gate produces a square-wave output whose duty cycle is proportional to the speed ofthe DC motor. This output can then be either amplified and applied directly to the electric motor to drive it, or integrated and applied to an amplifier to drive the motor in accordance with standard servo techniques. 6 Claims, 2 Drawing Figures 1r ~"5 120 PEAK DETECTOR i L_ 10 r----~>----ln FROM SYSTEM o--t-...l.----j 185 DRVER a SWTCH SHFT REGSTER OUT L.P. FLTER MOTOR CONTROL ~

2 - L_~O. 120 PEAK DETECTOR ,,'5 FROM i -, N SHFT REGSTER OUT...- SYSTEM 0 f PROGRAMMABLE DRVER a SWTCH DVDER L.p. FLTER 155 ~ ~ ~ a (D = f"'1'-.6" =-' -::a -\0 00 w til ::r (D (D -o o-t') tv MOTOR CONTROL ~ Fig.,~ '" '(j..l 00 o.. -l N (j..l

3 u.s. Patent Apr. 19, 1983 Sheet 2 oi2 o J G _ H _ J _ K _ Fig. 2

4 1 DGTAL VELOCTY SERVO BACKGROUND OF THE NVENTON 1. Field of the nvention This invention relates to electronic servo circuits for controlling electric motors. 2. Description of the Prior Art Present-day electric apparatus often utili2;es direct 10 current motors to rotate or move mechanical parts. The rotational speed and power output of such motors are generally controlled by means of servo circuitry which controls the electric power applied to the motor. The servo circuitry receives as input~ various measured 15 parameters, such as position of the motor shaft or the torque produced by the motor, processes these input~, and produces an output signal to control the motor. Often, it is desirable to maintain a constant motor speed by means of a servo circuit. n such a case, the 20 motor shaft is generally connected to a tachometer which produces a varying output, often a train of pulses, with a frequency related to the rotational speed of the motor. A frequency-to-voltage converter is then used to convert the output developed by the tachometer 25 into a DC voltage which then can be processed by standard amplifier circuitry into the power output necessary to control the motor. Many prior art circuits have been designed to perform the necessary frequency-to-voltage COil version. n 30 one such system, each output pulse produced by the tachometer is applied to a monostable multi vibrator which, after a predetermined time interval, sets a latch. The latch is reset by the next tachometer pulse. The latch circuit produces a square wave output whose duty 35 cycle is proportional to the error between the actual motor speed and the desired motor speed. The output of the latch is connected in a feedback circuit so that the output duty cycle and, thus, the error is minimized 40 during circuit operation. Another prior art circuit utilizes phase comparison to control motor speed. n this type of circuitry. the output pulses produced by the tachometer are applied to one input of a phase comparator. A reference oscillator is 45 connected to the other input of the phase comparator. The phase comparator produces an output which is proportional to the difference in pha~e between the tachometer output and the reference signal; this output is amplified and used to drive the motor. 50 Although the above prior art circuits perform the required control function, each has its own problems. The multi vibrator circuit dflscribed above operate/! to adjust motor speed to a constant determined by the time. constant of the multivibrator. This time constant is in 55 turn determined by values of electronic components which are subject to change by thermal effects and aging. Thus to insure constant speed the components used in the multivibrator must be 0) precision components, (2) temperature compensated, or (3) adjusted at 60 the time of manufacture; each alternative is expensive. A second problem with the multivibrator circuit is that it needs additional circuitry to start the motor from a power-off condition, since the Servo loop may not be self-starting or may be slow in starting. 65 The phase comparison circuitry requires a phase comparator circuit which is generally complicated and expensive. 2 SUMMARY OF THE NVENTON The foregoing problems and others have been solved in one illustrative embodiment of a motor servo control 5 circuit in which frequently-to-voltage conversion is performed by using a shift register delay circuit. Basically, a tachometer waveform having a period proportional to the rotational period of the motor is first limited to produce a square-wave output by a peak detector. This output waveform is then delayed by means of a standard shift register shifted by a precise frequency reference. The output of the shift register and the output of the peak detector are applied to an exclusive-or gate which produces a pulsed output where the pulses have a duration equal to the delay introduced by the shift register and a pulse spacing equal to the difference between one-half the period of the peak detector square wave output and the delay time. n effect, the pulses produced by the exclusive-or gate have a duty cycle that varies proportionally to the frequency of the signal produced by the tachometer. f, for example, the delay introduced by the shift register is chosen to be one-quarter of the period of the tachometer signal at the desired motor rotational speed, the duty cycle of the output produced by the exclusive-or gate will be fifty percent when the motor is running at the desired speed. The duty cycle will be less than fifty percent if the motor is running at a speed below the desired speed and will be greater than fifty percent if the motor is running at a speed higher than the desired speed. The output of the exclusive-or gate may be amplified and applied directly to the motor or simply integrated by using a low-pass filter and applied to an amplifier to drive the motor. The delay introduced by the shift register and the corresponding motor speed is controlled by a reference frequency that can be easily derived from the system clock which is generally a crystal-controlled clock. The frequency-to-voltage conversion circuitry itself needs no temperature compensation or adjustment and is, therefore, simple and uncomplicated. BREF DESCRPTON OF THE DRAWNGS FG. 1 shows a block diagram of the illustrative servo circuit. FG. 2 shows a plurality of voltage waveforms at selected points in FG. 1. DETALED DESCRPTON Referring to FG. 1, a direct current motor 100 is controlled by servo circuitry consisting of peak detector 125, shift register 140, gate 150, filter 160, amplifier 180 and driver 185 operating under control of motor control circuitry 195 to run at various constant speeds. Motor 100 may illustratively be any conventional type of direct current motor, for example, a permanent magnet or field coil excited motor. As will be hereinafter described, the servo circuitry receives commands from motor control 195 causing the circuitry to control the electric power applied to motor 100. The servo circuitry monitors the rotational speed of motor 100 by means of a tachometer connected to the motor shaft. Specifically, the tachometer comprises slotted wheel 115 and variable reluctance coil pickup 120. The tachometer arrangement is coupled directly to motor 100 by means of shaft 110. The tachometer arrangement used to sense the rotational speed of motor 100 may be any conventional

5 3 arrangement, including a photocell and light and slotted wheel arrangement or the slotted disk and magnetic pickup arrangement shown in FG. 1. Well-known detectors of this type typically produce a sinusoidal-like output as shown in FG. 2A. Each peak in the wave- 5 form corresponds to the passage of a slot in wheel 15 past pickup 120 or, in the case of an optical arrangement, the passage of a slot by the photocell and light arrangement. The varying voltage produced by the tachometer 10 device is applied to peak detector 125 which serves to convert the analog waveform into a squared waveform suitable for use with digital electronics. Peak detector 125 may be of any conventional design which produces a square wave output having a signal transition corre- 15 sponding to each positive or negative peak in the input waveform. For example, typical prior art circuitry which may be used to perform this function consists of a differentiator and a zero crossing detector. Another device which performs a similar function is a subtrac- 20 tion peak detector in which the input waveform is subtracted from a slightly delayed copy. The difference becomes zero at the peaks of the input waveform. Due to the delay introduced in the processing of the signal waveform with this type of subtraction circuitry, output 25 signal transitions corresponding to input signal peaks are delayed by a small amount of time. Assuming that peak detector 125 is a subtraction peak detector, the output waveform produced by the tachometer output is shown in FG. 2B, which output 30 consists of a square waveform with period T having a signal transition corresponding to the positive and negative peaks in the tachometer output. The peak detector output is then applied to the frequency-to-voltage converter circuitry consisting of 35 shift register 140 and exclusive-or gate 150 which produces a square-wave output having a duty cycle proportional to the frequency of the input waveform, which output is then used to control the electric power applied to motor Specifically, the output of peak detector 125 is applied via leads 130 and 135 to upper input 145 of exclusive-or gate 150 and shift register 140, respectively. The output of peak detector 125 is also applied to motor control 195 for the purpose of slowing down the motor 45 as will be later described. Shift register 140 is of conventional design and consists of a plurality of stages connected in series. Data applied to the input is shifted from stage to stage under control of a clocking signal applied to shift input On the rising edge of a clock pulse applied to shift input 165, data present at the shift register input is sampled and on the falling input of a clock pulse applied to shift register 140, the sample data is shifted into the first stage. Each stage then shifts the data stored therein to 55 the next sequential stage and the last stage data appears on the output lead 146. Thus, shift register 140 produces a signal equivalent to that present at its input after a delay in time. The amount of delay is determined by the number of stages in shift register 140 multiplied by the 60 time interval between clock pulses applied to shift input 165. To insure proper operation of the circuitry, shift register 140 must have a plurality of stages. The reason for this is that the signal transitions in the output of peak detector 125 occur asynchronously with respect to the 65 clock pulses applied to shift input 165. Therefore a sampling delay of up to one clock pulse might occur before the input to register 140 is sampled by the inter- 4 nal circuitry. This unpredictable sampling delay causes a variation in the actual delay introduced by register 140 into the servo circuitry. As the number of shift register stages is increased the sampling delay becomes a smaller percentage of the actual delay and thus the error introduced by it decreases. llustratively, shift register 140 may consist of 18 stages. Shift input 165 receives clocking pulses from programmable divider 170 which, in turn, receives a constant frequency clock pulse on its input lead 175 from the system clock (not shown). Advantageously, the system clock may be crystal-controlled and is therefore extremely stable over time despite temperature variations and aging of the other components in the circuitry. Divider 170 is also controlled by signals on lead 191 from motor control 195. By appropriate signals, control 195 (which might illustratively include a microprocessor) may control the division constant in divider 170 thus effectively controlling the clock frequency applied to register 140. A change in the frequency of clock pulses applied to register 140 directly changes the delay. and will, in turn, change the speed of the motor, as will hereinafter be described. Assume, for the purposes of illustration, that the number of shift register stages and the clock pulse frequency is such that the delay introduced by shift register 140 is equal to one quarter of the period (T) of the tachometer waveform at rated velocity. The output of shift register 140 is then as shown in FG. 2C. The output of register 140 is applied to the lower input of exclusive-or gate 150. Exclusive-OR gate 150 is a well-known logic device which produces a high signal at its output 155 when either one, but not both, of its inputs 145 and 146 are high. With the input waveform 2B applied to input 145 and waveform 2C applied to input 146, the output produced on output lead 155 is shown in FG. 2D. t consists of a square wave output with a 50 percent duty cycle having an amplitude equivalent to the supply voltage 151 (magnitude V) applied to gate 150. As will be described in detail below, the signal produced on the output 155 of gate 150 has a duty cycle proportional to the frequency of the signal from peak detector 125. This signal is then filtered and amplified to produce the control signal for motor 100. Specifically, output 155 of gate 150 is applied to low pass filter 160 which may illustratively be a single pole filter consisting of a resistor and capacitor. Filter 160 integrates the output signal (waveform 2D), producing a D.C. value having a magnitude of approximately V /2. This D.C. signal is applied to the upper input of feedback amplifier 180. The lower input of amplifier 180 receives a reference voltage on lead 184 from the junction of resistors 182 and 183. Resistors 182 and 183 from a voltage divider between voltage source 181 and ground. Advantageously, voltage source 181 is the same source as source 151 used to provide power to exclusive-or gate 150. Variations in the magnitude V of the source will then be automatically cancelled by the circuitry. The values of resistors 182 and 183 may be chosen to give any fraction of the source voltage V. The selection of resistors 182 and 183 determines the operating point of the system for a predetermined delay introduced by register 140. For example, if register 140 introduces a delay of T/4, the servo system will be balanced if the value of resistor 182 equals the value of resistor 183. The output of amplifier 180 is applied to driver circuit

6 5 185 which in turn produces a drive signal on its output 186 to operate motor 100. Motor 10.0 is thereby provided with the appropriate electric power to cause it to run at a predetermin,ed constant speed. Assume now that some condition, such; as increasing 5 the load on motor 100, causes its speed to decrease. When this happens, the,period of the pulses produced by peak detector 125.' in response to the tachometer output increases as. shown'in,fg. 2E (i.e., the frequency decreases). Similarly, the peri0d, of the signal output of shift register 140 increases as shown in FG. 2F. The delay introduced by shift register 140, however, remains the same (T/4) since~the delay is determined by the clock pulses applied to shift lead 165 and these clock pulses do 15 not change frequency for a given operations condition. As shown in FG. 2(},theduration of the pulses produced at the output 155 of gate 150 remains constant, but their fn!quency decreases. This causes the effective duty cycle of the:sigrial from the exclusive-or gate to decrease. Accordingly, the magnitude of the D.C. signal produced by filter 160 is lower. Amplifier i80 responds to this lower signal at its negative input by increasing its output, in turn causing 25 driver 185 to increase its output to motor 100. Motor 100 is thereby caused to increase its speed. Assume now instead that external conditions cause the speed of motor 100 to increase. The period of the output signal of peak detector 125 decreases (i.e., its 30 frequency increases) as shown in FG. 2H. The period of the waveform produced at the output of shift register 140 also decreases as shown in FG. 21. However, as in the previous case, the delay remains the same, so the duration, or width, of the pulses produced by gate therefore remains the same but the frequency increases, causing the effective duty cycle of the signal at the output 155 to increase. Responsive to an increased duty cycle at its input, filter 160 produces an output with a larger magnitude. Upon receiving the output with in- 40 creased amplitude amplifier, 180 decreases its output causing driver 185 to decrease its drive to motor 100, thereby causing the motor speed to decrease. Thus, advantageously motor control 195 may control the operation of the servo circuitry to dynamically 45 switch motor 100 from one speed to another by changing the division constant of programmable divider 170. As explained above, a change in the division constant will effectively change the amount of delay introduced into the circuitry by register 140 and this the pulse, 50 width. The amount of delay is directly proportional to the duration of the output pulses produced by OR gate 150 and thus directly affects the duty cycle which in turn changes the drive applied to motor 100. A change from one speed to another may be effected in several 55 ways. For example, in some servo systems power may be reversed thus slowing the motor. n order to keep the system stable, the servo loop in this type of system must be able to sense the direction of rotation of the motor. n other systems, however, such as the circuit described 60 herein, the servo circuit cannot sense the direction of rotation of the motor; only the speed error can be sensed by the tachometer. n this type of system, to effect a change from a higher speed to a lower speed the drive provided to motor 100 may simply be reduced 65 and the motor allowed to coast to a lower speed. Advantageously, the servo circuitry may be used to produce positive braking to slow the motor down. 6 Positive braking may be accomplished by motor control 195 applying a reversing signal to drive circuit 185 by means of lead 190. The reversing signal introduces an inversion into the driver amplifiers causing them to apply a reverse currerit to motor 100. The servo circuitry, sensing a speed slow-down in motor 100, causes amplifier 180 to apply a larger signal to driver 185 in accordance with. the principles.described above. n response t.o the larger signal, however, driver 185 only 10 applies a larger reverse current to motor 100, slowing it even faster.. n the braking configuration the circuitry is in a socalled "positive feedback" configuration. f the circuitry remained in this configuration, the motor speed would eventually reverse and increase in the reverse direction indefinitely. To prevent such an occurrence motor control 195 monitors the period of the pulses produced by peak detector 125. When this period exceeds a reference time interval, control 195 controls driver 185 to remove all power from motor 100 allowing it to coast t6 the lower speed. Obvious varia:tions to the principles of operation of the invention described above would occur to those skilled in the art. For example, with some types of motors, the output of gate 150. may be amplified and used to directly drive motor 100, thereby eliminating filter 160, amplifier 180, and driver 185. This and other similar variations are within the scope of the invention. What is claimed is: 1. An electric motor servo control system for controlling the speed of an electric motor comprising: A. speed signal means for producing a speed signal consisting essentially of pulses whose time period of repitition is proportional to the rotational period of the motor, B. delay means for receiving the speed signal from said speed signal means and producing a delayed speed signal consisting essentially of pulses delayed from the pulses of the speed signal by a predetermined time interval that is less than the duration of the pulses of the speed signal whenever the speed of the motor is within an intended speed range, C. logical-combination means for receiving said speed signal and said delayed speed signal and for generating a sequence of constant-width, variablefrequency motor-control pulses wherein the pulse width is substantially equal to said predetermined time interval and the pulse frequency is proportional to the repetition frequency of the speed signal, the duty cycle of the motor-control pulses thereby varying in response to variations of the rotational speed of the motor, and D. means for receiving the motor-control pulses from said logical-combination means and adapted for coupling to the motor to drive the motor in accordance with the duty cycle of said motor-control pulses. 2. An electric motor servo control system as recited in claim 1 wherein said delay means includes a shift register means having an input terminal for receiving said speed signal and an output terminal at which it produces said delayed speed signal, said delay means further including means for shifting the contents of said shift register from its input terminal to its output terminal at a predetermined rate. 3. An electric motor servo control system as recited in claim 2 wherein said logical-combination means comprises an exclusive-or gate having input terminals for

7 7 receiving said speed signal and said delayed speed signal and an output terminal at which it produces said motorcontrol pulses. 4. A servo system for controlling an electric motor 5 comprising: A. A tachometer connected to said motor for producing a tachometer signal having a period proportional to the rotational period of said motor, B. a peak detector responsive to said tachometer 10 signal for producing a square wave output having signal transitions corresponding to the peaks in said tachometer signal, C. a shift register responsive to said square wave 15 output for producing an output equivalent to said square wave output delayed by a predetermined interval of time, D. an exclusive-or gate responsive to said square wave output and said shift register output for gen- 20 erating a motor-control signal consisting essentially of constant-width, variable-frequency motor-control pulses wherein the pulse width is substantially equal to said predetermined interval oftime and the 25 8 pulse frequency is proportional to the repetition frequency of the tachometer signal, and E. means responsive to said motor-control pulses for controlling the rotational speed of said motor in accordance with the duty cycle of the motor-control signal. S. An electric motor servo control system as recited in claim 4 additionally comprising means for braking the motor in response to a braking command, said braking means including: i. means responsive to said braking command for reversing the current supplied to said motor, ii. means connected to said motor for monitoring the rotational period of said motor, and iii. means for interrupting said current supplied to said motor when said rotational period of said motor exceeds a second predetermined time interval. 6. An electric motor servo control system as recited in claim 1 wherein said logical-combination means comprises an exclusive-or gate having input terminals receiving said speed signal and said delayed speed signal and an output terminal at which it prouces said motorcontrol pulses. * * * *

V IN. GmVJN. Cpi VOUT. Cpo. US Bl. * cited by examiner

V IN. GmVJN. Cpi VOUT. Cpo. US Bl. * cited by examiner 111111111111111111111111111111111111111111111111111111111111111111111111111 US006222418Bl (12) United States Patent (10) Patent No.: US 6,222,418 Bl Gopinathan et al. (45) Date of Patent: Apr. 24, 01 (54)

More information

II I III. United States Patent (19) Johnson, Jr. 73 Assignee: Exide Electronics Corporation,

II I III. United States Patent (19) Johnson, Jr. 73 Assignee: Exide Electronics Corporation, United States Patent (19) Johnson, Jr. (54) ISOLATED GATE DRIVE (75) Inventor: Robert W. Johnson, Jr., Raleigh, N.C. 73 Assignee: Exide Electronics Corporation, Raleigh, N.C. (21) Appl. No.: 39,932 22

More information

United States Patent [I91 [ill Patent Number: 6,037,886

United States Patent [I91 [ill Patent Number: 6,037,886 US006037886A United States Patent [91 [ill Patent Number: 6,037,886 Staszewski et al. [45] Date of Patent: Mar. 14,2000 [54] METHOD AND APPARATUS FOR Primary Examiner4oward L. Williams EXTRACTNG BAND AND

More information

United States Patent [19]

United States Patent [19] United States Patent [19] Simmonds et al. [54] APPARATUS FOR REDUCING LOW FREQUENCY NOISE IN DC BIASED SQUIDS [75] Inventors: Michael B. Simmonds, Del Mar; Robin P. Giffard, Palo Alto, both of Calif. [73]

More information

United States Patent [19] Adelson

United States Patent [19] Adelson United States Patent [19] Adelson [54] DIGITAL SIGNAL ENCODING AND DECODING APPARATUS [75] Inventor: Edward H. Adelson, Cambridge, Mass. [73] Assignee: General Electric Company, Princeton, N.J. [21] Appl.

More information

United States Patent (19) Rottmerhusen

United States Patent (19) Rottmerhusen United States Patent (19) Rottmerhusen USOO5856731A 11 Patent Number: (45) Date of Patent: Jan. 5, 1999 54 ELECTRICSCREWDRIVER 75 Inventor: Hermann Rottmerhusen, Tellingstedt, Germany 73 Assignee: Metabowerke

More information

IIHIII III. Azé V-y (Y. United States Patent (19) Remillard et al. Aa a C (> 2,4122.2% Z4622 C. A. 422 s (2/7aa/Z eazazazzasa saaaaaze

IIHIII III. Azé V-y (Y. United States Patent (19) Remillard et al. Aa a C (> 2,4122.2% Z4622 C. A. 422 s (2/7aa/Z eazazazzasa saaaaaze United States Patent (19) Remillard et al. (54) LOCK-IN AMPLIFIER 75 Inventors: Paul A. Remillard, Littleton, Mass.; Michael C. Amorelli, Danville, N.H. 73) Assignees: Louis R. Fantozzi, N.H.; Lawrence

More information

Feedback Devices. By John Mazurkiewicz. Baldor Electric

Feedback Devices. By John Mazurkiewicz. Baldor Electric Feedback Devices By John Mazurkiewicz Baldor Electric Closed loop systems use feedback signals for stabilization, speed and position information. There are a variety of devices to provide this data, such

More information

(12) United States Patent (10) Patent No.: US 6,433,976 B1. Phillips (45) Date of Patent: Aug. 13, 2002

(12) United States Patent (10) Patent No.: US 6,433,976 B1. Phillips (45) Date of Patent: Aug. 13, 2002 USOO6433976B1 (12) United States Patent (10) Patent No.: US 6,433,976 B1 Phillips (45) Date of Patent: Aug. 13, 2002 (54) INSTANTANEOUS ARC FAULT LIGHT 4,791,518 A 12/1988 Fischer... 361/42 DETECTOR WITH

More information

DC motor control using arduino

DC motor control using arduino DC motor control using arduino 1) Introduction: First we need to differentiate between DC motor and DC generator and where we can use it in this experiment. What is the main different between the DC-motor,

More information

INTEGRATED CIRCUITS. AN1221 Switched-mode drives for DC motors. Author: Lester J. Hadley, Jr.

INTEGRATED CIRCUITS. AN1221 Switched-mode drives for DC motors. Author: Lester J. Hadley, Jr. INTEGRATED CIRCUITS Author: Lester J. Hadley, Jr. 1988 Dec Author: Lester J. Hadley, Jr. ABSTRACT The purpose of this paper is to demonstrate the use of integrated switched-mode controllers, generally

More information

(12) United States Patent

(12) United States Patent (12) United States Patent Burzio et al. USOO6292039B1 (10) Patent No.: (45) Date of Patent: Sep. 18, 2001 (54) INTEGRATED CIRCUIT PHASE-LOCKED LOOP CHARGE PUMP (75) Inventors: Marco Burzio, Turin; Emanuele

More information

(12) United States Patent (10) Patent No.: US 7,804,379 B2

(12) United States Patent (10) Patent No.: US 7,804,379 B2 US007804379B2 (12) United States Patent (10) Patent No.: Kris et al. (45) Date of Patent: Sep. 28, 2010 (54) PULSE WIDTH MODULATION DEAD TIME 5,764,024 A 6, 1998 Wilson COMPENSATION METHOD AND 6,940,249

More information

MSK4310 Demonstration

MSK4310 Demonstration MSK4310 Demonstration The MSK4310 3 Phase DC Brushless Speed Controller hybrid is a complete closed loop velocity mode controller for driving a brushless motor. It requires no external velocity feedback

More information

United States Patent (19) Minowa

United States Patent (19) Minowa United States Patent (19) Minowa 54 ANALOG DISPLAY ELECTRONIC STOPWATCH (75) Inventor: 73 Assignee: Yoshiki Minowa, Suwa, Japan Kubushiki Kaisha Suwa Seikosha, Tokyo, Japan 21) Appl. No.: 30,963 22 Filed:

More information

United States Patent (19) Curcio

United States Patent (19) Curcio United States Patent (19) Curcio (54) (75) (73) (21) 22 (51) (52) (58) (56) ELECTRONICFLTER WITH ACTIVE ELEMENTS Inventor: Assignee: Joseph John Curcio, Boalsburg, Pa. Paoli High Fidelity Consultants Inc.,

More information

(12) United States Patent (10) Patent No.: US 6,705,355 B1

(12) United States Patent (10) Patent No.: US 6,705,355 B1 USOO670.5355B1 (12) United States Patent (10) Patent No.: US 6,705,355 B1 Wiesenfeld (45) Date of Patent: Mar. 16, 2004 (54) WIRE STRAIGHTENING AND CUT-OFF (56) References Cited MACHINE AND PROCESS NEAN

More information

Multivibrators. Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multivibrators. Department of Electrical & Electronics Engineering, Amrita School of Engineering Multivibrators Multivibrators Multivibrator is an electronic circuit that generates square, rectangular, pulse waveforms. Also called as nonlinear oscillators or function generators. Multivibrator is basically

More information

(12) United States Patent

(12) United States Patent (12) United States Patent US007035123B2 (10) Patent No.: US 7,035,123 B2 Schreiber et al. (45) Date of Patent: Apr. 25, 2006 (54) FREQUENCY CONVERTER AND ITS (56) References Cited CONTROL METHOD FOREIGN

More information

United States Patent (19 11 Patent Number: 5,592,073 Redlich 45) Date of Patent: Jan. 7, 1997

United States Patent (19 11 Patent Number: 5,592,073 Redlich 45) Date of Patent: Jan. 7, 1997 IIII US005592073A United States Patent (19 11 Patent Number: 5,592,073 Redlich 45) Date of Patent: Jan. 7, 1997 54) TRIAC CONTROL CIRCUIT Ramshaw, R. S., "Power Electronics Semiconductor 75) Inventor:

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 US 20030042949A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0042949 A1 Si (43) Pub. Date: Mar. 6, 2003 (54) CURRENT-STEERING CHARGE PUMP Related U.S. Application Data

More information

(12) (10) Patent No.: US 7, B2. Drottar (45) Date of Patent: Jun. 5, 2007

(12) (10) Patent No.: US 7, B2. Drottar (45) Date of Patent: Jun. 5, 2007 United States Patent US0072274.14B2 (12) (10) Patent No.: US 7,227.414 B2 Drottar (45) Date of Patent: Jun. 5, 2007 (54) APPARATUS FOR RECEIVER 5,939,942 A * 8/1999 Greason et al.... 330,253 EQUALIZATION

More information

III IIIIHIIII. United States Patent 19 Mo. Timing & WIN. Control Circuit. 11 Patent Number: 5,512, Date of Patent: Apr.

III IIIIHIIII. United States Patent 19 Mo. Timing & WIN. Control Circuit. 11 Patent Number: 5,512, Date of Patent: Apr. United States Patent 19 Mo 54) SWITCHED HIGH-SLEW RATE BUFFER (75) Inventor: Zhong H. Mo, Daly City, Calif. 73) Assignee: TelCom Semiconductor, Inc., Mountain View, Calif. 21 Appl. No.: 316,161 22 Filed:

More information

Step vs. Servo Selecting the Best

Step vs. Servo Selecting the Best Step vs. Servo Selecting the Best Dan Jones Over the many years, there have been many technical papers and articles about which motor is the best. The short and sweet answer is let s talk about the application.

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Querry et al. (54) (75) PHASE LOCKED LOOP WITH AUTOMATIC SWEEP Inventors: 73) Assignee: 21) (22 (51) (52) 58 56) Lester R. Querry, Laurel; Ajay Parikh, Gaithersburg, both of Md.

More information

(12) United States Patent (10) Patent No.: US 6,970,124 B1. Patterson (45) Date of Patent: Nov. 29, 2005

(12) United States Patent (10) Patent No.: US 6,970,124 B1. Patterson (45) Date of Patent: Nov. 29, 2005 USOO697O124B1 (12) United States Patent (10) Patent No.: Patterson (45) Date of Patent: Nov. 29, 2005 (54) INHERENT-OFFSET COMPARATOR AND 6,798.293 B2 9/2004 Casper et al.... 330/258 CONVERTER SYSTEMS

More information

(12) United States Patent

(12) United States Patent USOO7123644B2 (12) United States Patent Park et al. (10) Patent No.: (45) Date of Patent: Oct. 17, 2006 (54) PEAK CANCELLATION APPARATUS OF BASE STATION TRANSMISSION UNIT (75) Inventors: Won-Hyoung Park,

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Crawford 11 Patent Number: 45) Date of Patent: Jul. 3, 1990 54 (76) (21) 22 (51) (52) (58) 56 LASERRANGEFINDER RECEIVER. PREAMPLETER Inventor: Ian D. Crawford, 1805 Meadowbend

More information

~150 ~170. US Bl. * cited by examiner. (10) Patent No.: US 6,433,949 Bl

~150 ~170. US Bl. * cited by examiner. (10) Patent No.: US 6,433,949 Bl (12) United States Patent Murphy et ai. 111111 1111111111111111111111111111111111111111111111111111111111111 US006433949Bl (10) Patent No.: US 6,433,949 Bl (45) Date of Patent: Aug. 13,2002 (54) SERVO

More information

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation It should be noted that the frequency of oscillation ω o is determined by the phase characteristics of the feedback loop. the loop oscillates at the frequency for which the phase is zero The steeper the

More information

United States Patent (19) 11) 4,163,947

United States Patent (19) 11) 4,163,947 United States Patent (19) 11) Weedon (45) Aug. 7, 1979 (54) CURRENT AND VOLTAGE AUTOZEROING Attorney, Agent, or Firm-Weingarten, Maxham & INTEGRATOR Schurgin 75 Inventor: Hans J. Weedon, Salem, Mass. (57)

More information

United States Patent (19) Danz et al.

United States Patent (19) Danz et al. United States Patent (19) Danz et al. (54) INDUCTION MOTOR SLIP CONTROL 75) Inventors: George E. Danz, Radford; C. Calvin Shuler, Salem, both of Va. 73 Assignee: Kollmorgen, Technologies Corporation, Dallas,

More information

(12) United States Patent (10) Patent No.: US 7,199,695 B1 Zhou et a]. (45) Date of Patent: Apr. 3, 2007

(12) United States Patent (10) Patent No.: US 7,199,695 B1 Zhou et a]. (45) Date of Patent: Apr. 3, 2007 US007199695B1 (12) United States Patent (10) Patent No.: US 7,199,695 B1 Zhou et a]. (45) Date of Patent: Apr. 3, 2007 (54) MULTPHASE VOLTAGE REGULATOR 2006/0145800 A1* 7/2006 Dadafsharetal.... 336/82

More information

(12) United States Patent

(12) United States Patent (12) United States Patent US007 184283B2 (10) Patent No.: US 7,184,283 B2 Yang et al. (45) Date of Patent: *Feb. 27, 2007 (54) SWITCHING FREQUENCYJITTER HAVING (56) References Cited OUTPUT RIPPLE CANCEL

More information

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics Sr. No. Date TITLE To From Marks Sign 1 To verify the application of op-amp as an Inverting Amplifier 2 To

More information

rectifying smoothing circuit

rectifying smoothing circuit USOO648671.4B2 (12) United States Patent (10) Patent No.: Ushida et al. (45) Date of Patent: Nov. 26, 2002 (54) HALF-BRIDGE INVERTER CIRCUIT (56) References Cited (75) Inventors: Atsuya Ushida, Oizumi-machi

More information

( 19 ) United States ( 12 ) Patent Application Publication ( 10 ) Pub. No. : US 2017 / A1 ( 52 ) U. S. CI. CPC... HO2P 9 / 48 ( 2013.

( 19 ) United States ( 12 ) Patent Application Publication ( 10 ) Pub. No. : US 2017 / A1 ( 52 ) U. S. CI. CPC... HO2P 9 / 48 ( 2013. THE MAIN TEA ETA AITOA MA EI TA HA US 20170317630A1 ( 19 ) United States ( 12 ) Patent Application Publication ( 10 ) Pub No : US 2017 / 0317630 A1 Said et al ( 43 ) Pub Date : Nov 2, 2017 ( 54 ) PMG BASED

More information

USOO A United States Patent (19) 11 Patent Number: 5,889,643 Elms (45) Date of Patent: Mar. 30, 1999

USOO A United States Patent (19) 11 Patent Number: 5,889,643 Elms (45) Date of Patent: Mar. 30, 1999 USOO5889643A United States Patent (19) 11 Patent Number: 5,889,643 Elms (45) Date of Patent: Mar. 30, 1999 54). APPARATUS FOR DETECTING ARCING Primary Examiner Jeffrey Gaffin FAULTS AND GROUND FAULTS IN

More information

United States Patent (19) Harnden

United States Patent (19) Harnden United States Patent (19) Harnden 54) 75 (73) LMITING SHOOT THROUGH CURRENT INA POWER MOSFET HALF-BRIDGE DURING INTRINSIC DODE RECOVERY Inventor: Assignee: James A. Harnden, San Jose, Calif. Siliconix

More information

(12) (10) Patent N0.: US 6,538,473 B2 Baker (45) Date of Patent: Mar. 25, 2003

(12) (10) Patent N0.: US 6,538,473 B2 Baker (45) Date of Patent: Mar. 25, 2003 United States Patent US006538473B2 (12) (10) Patent N0.: Baker (45) Date of Patent: Mar., 2003 (54) HIGH SPEED DIGITAL SIGNAL BUFFER 5,323,071 A 6/1994 Hirayama..... 307/475 AND METHOD 5,453,704 A * 9/1995

More information

ASTABLE MULTIVIBRATOR

ASTABLE MULTIVIBRATOR 555 TIMER ASTABLE MULTIIBRATOR MONOSTABLE MULTIIBRATOR 555 TIMER PHYSICS (LAB MANUAL) PHYSICS (LAB MANUAL) 555 TIMER Introduction The 555 timer is an integrated circuit (chip) implementing a variety of

More information

USOO A United States Patent (19) 11 Patent Number: 5,534,804 Woo (45) Date of Patent: Jul. 9, 1996

USOO A United States Patent (19) 11 Patent Number: 5,534,804 Woo (45) Date of Patent: Jul. 9, 1996 III USOO5534.804A United States Patent (19) 11 Patent Number: Woo (45) Date of Patent: Jul. 9, 1996 (54) CMOS POWER-ON RESET CIRCUIT USING 4,983,857 1/1991 Steele... 327/143 HYSTERESS 5,136,181 8/1992

More information

United States Patent 19 Hsieh

United States Patent 19 Hsieh United States Patent 19 Hsieh US00566878OA 11 Patent Number: 45 Date of Patent: Sep. 16, 1997 54 BABY CRY RECOGNIZER 75 Inventor: Chau-Kai Hsieh, Chiung Lin, Taiwan 73 Assignee: Industrial Technology Research

More information

A Subsidiary of Regal-Beloit Corporation. AC Inverter Terminology

A Subsidiary of Regal-Beloit Corporation. AC Inverter Terminology AP200-9/01 Acceleration The rate of change in velocity as a function of time. Acceleration usually refers to increasing velocity and deceleration to decreasing velocity. Acceleration Boost During acceleration,

More information

issi Field of search. 348/36, , 33) of the turret punch press machine; an image of the

issi Field of search. 348/36, , 33) of the turret punch press machine; an image of the US005721587A United States Patent 19 11 Patent Number: 5,721,587 Hirose 45 Date of Patent: Feb. 24, 1998 54 METHOD AND APPARATUS FOR Primary Examiner Bryan S. Tung NSPECTNG PRODUCT PROCESSED BY Attorney,

More information

(12) United States Patent (10) Patent No.: US 6,373,236 B1. Lemay, Jr. et al. (45) Date of Patent: Apr. 16, 2002

(12) United States Patent (10) Patent No.: US 6,373,236 B1. Lemay, Jr. et al. (45) Date of Patent: Apr. 16, 2002 USOO6373236B1 (12) United States Patent (10) Patent No.: Lemay, Jr. et al. (45) Date of Patent: Apr. 16, 2002 (54) TEMPERATURE COMPENSATED POWER 4,205.263 A 5/1980 Kawagai et al. DETECTOR 4,412,337 A 10/1983

More information

(12) United States Patent (10) Patent No.: US 6,765,374 B1

(12) United States Patent (10) Patent No.: US 6,765,374 B1 USOO6765374B1 (12) United States Patent (10) Patent No.: Yang et al. (45) Date of Patent: Jul. 20, 2004 (54) LOW DROP-OUT REGULATOR AND AN 6,373.233 B2 * 4/2002 Bakker et al.... 323/282 POLE-ZERO CANCELLATION

More information

(12) United States Patent (10) Patent No.: US 6,337,722 B1

(12) United States Patent (10) Patent No.: US 6,337,722 B1 USOO6337722B1 (12) United States Patent (10) Patent No.: US 6,337,722 B1 Ha () Date of Patent: *Jan. 8, 2002 (54) LIQUID CRYSTAL DISPLAY PANEL HAVING ELECTROSTATIC DISCHARGE 5,195,010 A 5,220,443 A * 3/1993

More information

CHAPTER 6 DIGITAL INSTRUMENTS

CHAPTER 6 DIGITAL INSTRUMENTS CHAPTER 6 DIGITAL INSTRUMENTS 1 LECTURE CONTENTS 6.1 Logic Gates 6.2 Digital Instruments 6.3 Analog to Digital Converter 6.4 Electronic Counter 6.6 Digital Multimeters 2 6.1 Logic Gates 3 AND Gate The

More information

52 U.S. Cl /395 sponding ideal pulse-height spectrum. Comparison of the

52 U.S. Cl /395 sponding ideal pulse-height spectrum. Comparison of the US005545900A United States Patent (19 11) Patent Number: Bolk et al. (45) Date of Patent: Aug. 13, 1996 54 RADIATION ANALYSIS APPARATUS 3-179919 8/1991 Japan... 341?2O 75) Inventors: Hendrik J. J. Bolk;

More information

United States Patent (19) Archibald

United States Patent (19) Archibald United States Patent (19) Archibald 54 ELECTROSURGICAL UNIT 75 Inventor: G. Kent Archibald, White Bear Lake, Minn. 73 Assignee: Minnesota Mining and Manufacturing Company, Saint Paul, Minn. (21) Appl.

More information

BLOCK DIAGRAM OF THE UC3625

BLOCK DIAGRAM OF THE UC3625 U-115 APPLICATION NOTE New Integrated Circuit Produces Robust, Noise Immune System For Brushless DC Motors Bob Neidorff, Unitrode Integrated Circuits Corp., Merrimack, NH Abstract A new integrated circuit

More information

(12) United States Patent

(12) United States Patent USOO965 1411 B2 (12) United States Patent Yamaguchi et al. () Patent No.: (45) Date of Patent: US 9,651.411 B2 May 16, 2017 (54) ELECTROMAGNETIC FLOWMETER AND SELF-DAGNOSING METHOD OF EXCITING CIRCUIT

More information

APPEAL DECISION. Appeal No USA. Tokyo, Japan. Tokyo, Japan. Tokyo, Japan. Tokyo, Japan

APPEAL DECISION. Appeal No USA. Tokyo, Japan. Tokyo, Japan. Tokyo, Japan. Tokyo, Japan APPEAL DECISION Appeal No. 2013-6730 USA Appellant IMMERSION CORPORATION Tokyo, Japan Patent Attorney OKABE, Yuzuru Tokyo, Japan Patent Attorney OCHI, Takao Tokyo, Japan Patent Attorney TAKAHASHI, Seiichiro

More information

(12) United States Patent

(12) United States Patent USOO7068OB2 (12) United States Patent Moraveji et al. (10) Patent No.: () Date of Patent: Mar. 21, 2006 (54) (75) (73) (21) (22) (65) (51) (52) (58) CURRENT LIMITING CIRCUITRY Inventors: Farhood Moraveji,

More information

Norwalk, Conn. (21) Appl. No.: 344, Filed: Jan. 29, ) Int. Cl... G05B 19/40

Norwalk, Conn. (21) Appl. No.: 344, Filed: Jan. 29, ) Int. Cl... G05B 19/40 United States Patent (19) Overfield 54 CONTROL CIRCUIT FOR STEPPER MOTOR (75) Inventor: Dennis O. Overfield, Fairfield, Conn. 73 Assignee: The Perkin-Elmer Corporation, Norwalk, Conn. (21) Appl. No.: 344,247

More information

US A United States Patent (19) 11 Patent Number: 5,477,226 Hager et al. 45) Date of Patent: Dec. 19, 1995

US A United States Patent (19) 11 Patent Number: 5,477,226 Hager et al. 45) Date of Patent: Dec. 19, 1995 III IIHIIII US005477226A United States Patent (19) 11 Patent Number: 5,477,226 Hager et al. 45) Date of Patent: Dec. 19, 1995 (54) LOW COST RADAR ALTIMETER WITH 5,160,933 11/1992 Hager... 342/174 ACCURACY

More information

FDD spindle motor driver

FDD spindle motor driver FDD spindle motor driver The is a one-chip IC designed for driving FDD spindle motors. This high-performance IC employs a 3-phase, full-wave soft switching drive system, and contains a digital servo, an

More information

USOO A United States Patent (19) 11 Patent Number: 5,512,817. Nagaraj (45) Date of Patent: Apr. 30, 1996

USOO A United States Patent (19) 11 Patent Number: 5,512,817. Nagaraj (45) Date of Patent: Apr. 30, 1996 IIIHIIII USOO5512817A United States Patent (19) 11 Patent Number: Nagaraj (45) Date of Patent: Apr. 30, 1996 54 BANDGAP VOLTAGE REFERENCE 5,309,083 5/1994 Pierret et al.... 323/313 GENERATOR 5,39980 2/1995

More information

part data signal (12) United States Patent control 33 er m - sm is US 7,119,773 B2

part data signal (12) United States Patent control 33 er m - sm is US 7,119,773 B2 US007 119773B2 (12) United States Patent Kim (10) Patent No.: (45) Date of Patent: Oct. 10, 2006 (54) APPARATUS AND METHOD FOR CONTROLLING GRAY LEVEL FOR DISPLAY PANEL (75) Inventor: Hak Su Kim, Seoul

More information

HIGH LOW Astable multivibrators HIGH LOW 1:1

HIGH LOW Astable multivibrators HIGH LOW 1:1 1. Multivibrators A multivibrator circuit oscillates between a HIGH state and a LOW state producing a continuous output. Astable multivibrators generally have an even 50% duty cycle, that is that 50% of

More information

Br 46.4%g- INTEGRATOR OUTPUT. Feb. 23, 1971 C. A. WALTON 3,566,397. oend CONVERT CHANNEL SELEC +REF. SEL ZERO CORRECT UNKNOWN SCNAL INT.

Br 46.4%g- INTEGRATOR OUTPUT. Feb. 23, 1971 C. A. WALTON 3,566,397. oend CONVERT CHANNEL SELEC +REF. SEL ZERO CORRECT UNKNOWN SCNAL INT. Feb. 23, 1971 C. A. WALTON DUAL, SLOPE ANALOG TO DIGITAL CONVERTER Filed Jan. 1, 1969 2. Sheets-Sheet 2n 2b9 24n CHANNEL SELEC 23 oend CONVERT +REF. SEL ZERO CORRECT UNKNOWN SCNAL INT. REFERENCE SIGNAL

More information

United States Patent (19) Jaeschke et al.

United States Patent (19) Jaeschke et al. United States Patent (19) Jaeschke et al. 54 76 ELECTRICALLY ENHANCED HOT SURFACE IGNITER Inventors: James R. Jaeschke, 2314 Misty La, Waukesha, Wis. 53092; Gordon B. Spellman, 11305 N. Bobolink La. 30W,

More information

Speed Control Of Transformer Cooler Control By Using PWM

Speed Control Of Transformer Cooler Control By Using PWM Speed Control Of Transformer Cooler Control By Using PWM Bhushan Rakhonde 1, Santosh V. Shinde 2, Swapnil R. Unhone 3 1 (assistant professor,department Electrical Egg.(E&P), Des s Coet / S.G.B.A.University,

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1 US 20060239744A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0239744 A1 Hideaki (43) Pub. Date: Oct. 26, 2006 (54) THERMAL TRANSFERTYPE IMAGE Publication Classification

More information

United States Patent (19)

United States Patent (19) United States Patent (19) McLoughlin 54) NOZZLE PRESSURE CONTROL SYSTEM 76) Inventor: John McLoughlin, 92 Mobrey Ln., Smithtown, N.Y. 11787 22 Filed: Apr. 27, 1972 21 Appl. No.: 248,012 52 U.S. Cl... 169/24,

More information

(12) United States Patent (10) Patent No.: US 6,512,361 B1

(12) United States Patent (10) Patent No.: US 6,512,361 B1 USOO6512361B1 (12) United States Patent (10) Patent No.: US 6,512,361 B1 Becker (45) Date of Patent: Jan. 28, 2003 (54) 14/42-VOLTAUTOMOTIVE CIRCUIT 5,420.503 5/1995 Beha TESTER 5,517,183 A 5/1996 Bozeman,

More information

(12) United States Patent (10) Patent No.: US 7,009,450 B2

(12) United States Patent (10) Patent No.: US 7,009,450 B2 USOO700945OB2 (12) United States Patent (10) Patent No.: US 7,009,450 B2 Parkhurst et al. (45) Date of Patent: Mar. 7, 2006 (54) LOW DISTORTION AND HIGH SLEW RATE OUTPUT STAGE FOR WOLTAGE FEEDBACK (56)

More information

3.1 vs. (12) Patent Application Publication (10) Pub. No.: US 2002/ A1. (19) United States FB2 D ME VSS VOLIAGE REFER

3.1 vs. (12) Patent Application Publication (10) Pub. No.: US 2002/ A1. (19) United States FB2 D ME VSS VOLIAGE REFER (19) United States US 20020089860A1 (12) Patent Application Publication (10) Pub. No.: US 2002/0089860 A1 Kashima et al. (43) Pub. Date: Jul. 11, 2002 (54) POWER SUPPLY CIRCUIT (76) Inventors: Masato Kashima,

More information

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1 (19) United States US 2011 O156684A1 (12) Patent Application Publication (10) Pub. No.: US 2011/0156684 A1 da Silva et al. (43) Pub. Date: Jun. 30, 2011 (54) DC-DC CONVERTERS WITH PULSE (52) U.S. Cl....

More information

(12) United States Patent (10) Patent No.: US 6,275,104 B1

(12) United States Patent (10) Patent No.: US 6,275,104 B1 USOO6275104B1 (12) United States Patent (10) Patent No.: Holter (45) Date of Patent: Aug. 14, 2001 (54) MULTISTAGE AMPLIFIER WITH LOCAL 4,816,711 3/1989 Roza... 330/149 ERROR CORRECTION 5,030.925 7/1991

More information

ELG3331: Digital Tachometer Introduction to Mechatronics by DG Alciatore and M B Histand

ELG3331: Digital Tachometer Introduction to Mechatronics by DG Alciatore and M B Histand ELG333: Digital Tachometer Introduction to Mechatronics by DG Alciatore and M B Histand Our objective is to design a system to measure and the rotational speed of a shaft. A simple method to measure rotational

More information

(10) Patent No.: US 8.436,591 B2

(10) Patent No.: US 8.436,591 B2 USOO8436591 B2 (12) United States Patent Dearn (10) Patent No.: US 8.436,591 B2 (45) Date of Patent: May 7, 2013 (54) (75) (73) (*) (21) (22) (65) (51) (52) (58) BUCK-BOOST CONVERTER WITH SMOOTH TRANSTIONS

More information

(12) United States Patent

(12) United States Patent (12) United States Patent USO0973O294B2 (10) Patent No.: US 9,730,294 B2 Roberts (45) Date of Patent: Aug. 8, 2017 (54) LIGHTING DEVICE INCLUDING A DRIVE 2005/001765.6 A1 1/2005 Takahashi... HO5B 41/24

More information

JLJlJ. I N i L. ~ SELECTOR RF OUT. r ,! RING OSCILLATOR V 10. US Bl

JLJlJ. I N i L. ~ SELECTOR RF OUT. r ,! RING OSCILLATOR V 10. US Bl 111111111111111111111111111111111111111111111111111111111111111111111111111 US006560296Bl (12) United States Patent (10) Patent No.: US 6,560,296 B Glas et al. (45) Date of Patent: May 6, 2003 (54) METHOD

More information

(Refer Slide Time: 00:03:22)

(Refer Slide Time: 00:03:22) Analog ICs Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 27 Phase Locked Loop (Continued) Digital to Analog Converters So we were discussing

More information

Method and weaving loom for producing a leno ground fabric

Method and weaving loom for producing a leno ground fabric Wednesday, December 26, 2001 United States Patent: 6,311,737 Page: 1 ( 9 of 319 ) United States Patent 6,311,737 Wahhoud, et al. November 6, 2001 Method and weaving loom for producing a leno ground fabric

More information

(12) (10) Patent No.: US 7,226,021 B1. Anderson et al. (45) Date of Patent: Jun. 5, 2007

(12) (10) Patent No.: US 7,226,021 B1. Anderson et al. (45) Date of Patent: Jun. 5, 2007 United States Patent USOO7226021B1 (12) () Patent No.: Anderson et al. (45) Date of Patent: Jun. 5, 2007 (54) SYSTEM AND METHOD FOR DETECTING 4,728,063 A 3/1988 Petit et al.... 246,34 R RAIL BREAK OR VEHICLE

More information

75 Inventors: Onofre Costilla-Vela, Nuevo Leon; : R. SS II.

75 Inventors: Onofre Costilla-Vela, Nuevo Leon; : R. SS II. USOO5924.47OA United States Patent (19) 11 Patent Number: 5,924,470 Costilla-Vela et al. (45) Date of Patent: Jul. 20, 1999 54 METHOD FOR PREHEATING MOLDS FOR 1-91960 4/1989 Japan... 164/457 ALUMINUM CASTINGS

More information

-400. (12) Patent Application Publication (10) Pub. No.: US 2005/ A1. (19) United States. (43) Pub. Date: Jun. 23, 2005.

-400. (12) Patent Application Publication (10) Pub. No.: US 2005/ A1. (19) United States. (43) Pub. Date: Jun. 23, 2005. (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0135524A1 Messier US 2005O135524A1 (43) Pub. Date: Jun. 23, 2005 (54) HIGH RESOLUTION SYNTHESIZER WITH (75) (73) (21) (22)

More information

Quantum frequency standard Priority: Filing: Grant: Publication: Description

Quantum frequency standard Priority: Filing: Grant: Publication: Description C Quantum frequency standard Inventors: A.K.Dmitriev, M.G.Gurov, S.M.Kobtsev, A.V.Ivanenko. Priority: 2010-01-11 Filing: 2010-01-11 Grant: 2011-08-10 Publication: 2011-08-10 Description The present invention

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 (19) United States US 2003009 1220A1 (12) Patent Application Publication (10) Pub. No.: US 2003/0091220 A1 Sato et al. (43) Pub. Date: May 15, 2003 (54) CAPACITIVE SENSOR DEVICE (75) Inventors: Hideaki

More information

(12) United States Patent

(12) United States Patent (12) United States Patent US009682771B2 () Patent No.: Knag et al. (45) Date of Patent: Jun. 20, 2017 (54) CONTROLLING ROTOR BLADES OF A 5,676,334 A * /1997 Cotton... B64C 27.54 SWASHPLATELESS ROTOR 244.12.2

More information

(12) United States Patent (10) Patent No.: US 7.239,108 B2

(12) United States Patent (10) Patent No.: US 7.239,108 B2 USOO7239108B2 (12) United States Patent (10) Patent No.: US 7.239,108 B2 Best (45) Date of Patent: Jul. 3, 7 (54) METHOD FOR STEPPER MOTOR POSITION 4,684.866 A * 8/1987 Nehmer et al.... 318,696 REFERENCING

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 (19) United States US 2005OO17592A1 (12) Patent Application Publication (10) Pub. No.: Fukushima (43) Pub. Date: Jan. 27, 2005 (54) ROTARY ELECTRIC MACHINE HAVING ARMATURE WINDING CONNECTED IN DELTA-STAR

More information

Let us consider the following block diagram of a feedback amplifier with input voltage feedback fraction,, be positive i.e. in phase.

Let us consider the following block diagram of a feedback amplifier with input voltage feedback fraction,, be positive i.e. in phase. P a g e 2 Contents 1) Oscillators 3 Sinusoidal Oscillators Phase Shift Oscillators 4 Wien Bridge Oscillators 4 Square Wave Generator 5 Triangular Wave Generator Using Square Wave Generator 6 Using Comparator

More information

(12) United States Patent

(12) United States Patent USOO9304615B2 (12) United States Patent Katsurahira (54) CAPACITIVE STYLUS PEN HAVING A TRANSFORMER FOR BOOSTING ASIGNAL (71) Applicant: Wacom Co., Ltd., Saitama (JP) (72) Inventor: Yuji Katsurahira, Saitama

More information

III. United States Patent (19) Ashe. 5,495,245 Feb. 27, OTHER PUBLICATIONS Grebene, Bipolar and MOS Analog Integrated Circuit

III. United States Patent (19) Ashe. 5,495,245 Feb. 27, OTHER PUBLICATIONS Grebene, Bipolar and MOS Analog Integrated Circuit United States Patent (19) Ashe 54) DIGITAL-TO-ANALOG CONVERTER WITH SEGMENTED RESISTOR STRING 75 Inventor: James J. Ashe, Saratoga, Calif. 73 Assignee: Analog Devices, Inc., Norwood, Mass. 21 Appl. No.:

More information

(51) Int. Cl... HoH 316 trolling a state of conduction of AC current between the

(51) Int. Cl... HoH 316 trolling a state of conduction of AC current between the USOO58599A United States Patent (19) 11 Patent Number: 5,8,599 ROSenbaum () Date of Patent: Oct. 20, 1998 54 GROUND FAULT CIRCUIT INTERRUPTER 57 ABSTRACT SYSTEM WITH UNCOMMITTED CONTACTS A ground fault

More information

SERVO MOTOR CONTROL TRAINER

SERVO MOTOR CONTROL TRAINER SERVO MOTOR CONTROL TRAINER UC-1780A FEATURES Open & closed loop speed and position control. Analog and digital control techniques. PC based instrumentation include oscilloscope, multimeter and etc. PC

More information

SRVODRV REV7 INSTALLATION NOTES

SRVODRV REV7 INSTALLATION NOTES SRVODRV-8020 -REV7 INSTALLATION NOTES Thank you for purchasing the SRVODRV -8020 drive. The SRVODRV -8020 DC servo drive is warranted to be free of manufacturing defects for 1 year from the date of purchase.

More information

58 Field of Search /341,484, structed from polarization splitters in series with half-wave

58 Field of Search /341,484, structed from polarization splitters in series with half-wave USOO6101026A United States Patent (19) 11 Patent Number: Bane (45) Date of Patent: Aug. 8, 9 2000 54) REVERSIBLE AMPLIFIER FOR OPTICAL FOREIGN PATENT DOCUMENTS NETWORKS 1-274111 1/1990 Japan. 3-125125

More information

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1 US 20110241597A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0241597 A1 Zhu et al. (43) Pub. Date: Oct. 6, 2011 (54) H-BRIDGE DRIVE CIRCUIT FOR STEP Publication Classification

More information

(12) Patent Application Publication (10) Pub. No.: US 2002/ A1

(12) Patent Application Publication (10) Pub. No.: US 2002/ A1 (19) United States US 2002O180938A1 (12) Patent Application Publication (10) Pub. No.: US 2002/0180938A1 BOk (43) Pub. Date: Dec. 5, 2002 (54) COOLINGAPPARATUS OF COLOR WHEEL OF PROJECTOR (75) Inventor:

More information

United States Patent (19) Lee

United States Patent (19) Lee United States Patent (19) Lee (54) POWER SUPPLY CIRCUIT FOR DRIVING MAGNETRON 75 Inventor: Kyong-Keun Lee, Suwon, Rep. of Korea 73) Assignee: Samsung Electronics Co., Ltd., Suweon City, Rep. of Korea (21)

More information

Note 1: A 3A version to the LT1005 is also available. See LT1035 LT V, 35mA AUXILIARY REGULATOR

Note 1: A 3A version to the LT1005 is also available. See LT1035 LT V, 35mA AUXILIARY REGULATOR August 1984 Understanding and Applying the Multifunction Regulator Jim Williams The number of voltage regulators currently available makes the introduction of another regulator seem almost unnecessary.

More information

(12) United States Patent

(12) United States Patent USOO7233132B1 (12) United States Patent (10) Patent No.: Dong et a]. (45) Date of Patent: Jun. 19, 2007 (54) CURRENT SENSING IN MULTIPLE 6,469,481 B1 * 10/2002 Tateishi... 323/282 COUPLED INDUCTORS BY

More information

High Efficiency Parallel Post Regulator for Wide Range Input DC/DC Converter.

High Efficiency Parallel Post Regulator for Wide Range Input DC/DC Converter. University of Central Florida UCF Patents Patent High Efficiency Parallel Post Regulator for Wide Range nput DC/DC Converter. 6-17-2008 ssa Batarseh University of Central Florida Xiangcheng Wang University

More information

United States Patent (19) Onuki et al.

United States Patent (19) Onuki et al. United States Patent (19) Onuki et al. 54). IGNITION APPARATUS FOR AN INTERNAL COMBUSTION ENGINE 75 Inventors: Hiroshi Onuki; Takashi Ito, both of Hitachinaka, Katsuaki Fukatsu, Naka-gun; Ryoichi Kobayashi,

More information

Upgrading from Stepper to Servo

Upgrading from Stepper to Servo Upgrading from Stepper to Servo Switching to Servos Provides Benefits, Here s How to Reduce the Cost and Challenges Byline: Scott Carlberg, Motion Product Marketing Manager, Yaskawa America, Inc. The customers

More information