An evaluation of discomfort reduction based on auditory masking for railway brake sounds

Size: px
Start display at page:

Download "An evaluation of discomfort reduction based on auditory masking for railway brake sounds"

Transcription

1 PROCEEDINGS of the 22 nd International Congress on Acoustics Signal Processing in Acoustics: Paper ICA An evaluation of discomfort reduction based on auditory masking for railway brake sounds Sayaka Okayasu (a), Takahiro Fukumori (b), Masato Nakayama (c), Takanobu Nishiura (d) (a) Graduate School of Information Science and Engineering, Ritsumeikan University, Japan, (b,c,d) College of Information Science and Engineering, Ritsumeikan University, Japan, Abstract Railway brake sound in slowing railway vehicle causes noise problems in a station yard. Conventional noise reduction methods for railway brake sound have been proposed on basis of the improvement of brake mechanism. However, these methods have the insufficient performance of the noise reduction for railway brake sound and the railway brake sound still gives passengers discomfort feeling. In this paper, we focus on active control for reducing discomfort feeling of railway brake sound. We have previously proposed a discomfort reduction based on the auditory masking for a stationary sound. In this method, discomfort reduction is realized by emitting the noise control masker signal with the secondary loudspeaker without updating the estimated noise. However, the performance of discomfort reduction is insufficient for the railway brake sound because the railway brake sound is non-stationary noise. In this paper, we therefore propose a new discomfort reduction method based on auditory masking with the active noise estimation for the railway brake sound. We carried out subjective evaluation experiment with the actual railway brake sound. As a result, we confirmed the effectiveness of the proposed method. Keywords: Railway brake sound, Auditory masking, Discomfort reduction, Masker signal

2 An evaluation of discomfort reduction based on auditory masking for railway brake sounds. 1 Introduction In slowing old-type railway vehicle, the railway brake sound causes noise problems in a station yard. In the conventional researches, various methods for noise reduction have been proposed. Conventional noise reduction methods for the railway brake sound have been proposed on basis of the improvement of brake mechanism [1][2]. However, these methods have the insufficient performance of the noise reduction for the railway brake sound. The railway brake sound still gives passengers discomfort feeling. Therefore, we focus on discomfort reduction of that without improving brake mechanism. Active noise control (ANC) [3] has been proposed in order to reduce noise pressure by emitting opposite phase signal with the secondary loudspeaker. ANC is effective as the noise cancelling headphone. However, it is difficult to control large space such as station yard because the method controls a small point space. Also, the discomfort reduction based on auditory masking has been proposed [4][5]. Auditory masking is the phenomenon that a sound is difficult to be heard being covered by other sound caused by auditory characteristic of human [6]. This method can reduce discomfort feeling by emitting the masker signal with secondary loudspeaker. This method has been utilized for reducing discomfort of an airconditioner noise, a turbine sound, a dental treatment sound because these sounds have a stationary noise with spectral peaks. On the other hand, the railway brake sounds have a non-stationary noise with spectral peaks. This suggests that it is difficult to introduce this method to railway brake sounds. In this paper, we therefore propose a new method of discomfort reduction based on auditory masking with the adaptive noise estimation for the railway brake sound. The proposed method analyzes the non-stationary noise of the railway brake sound in frame by frame. Also, the proposed method designs the masker signal by using the estimated noise at real time. The masker signal is emitted with the secondary loudspeaker. Finally, we carry out subjective evaluation experiment with the actual railway brake sound to confirm the effectiveness of the proposed method. 2 Railway brake sound Old-type railway vehicle emits high-frequency noise in slowing in station yard. This high-frequency noise is called as the railway brake sound. It gives discomfort feeling many people in station yard. Figure 1 shows the spectrogram of the railway brake sound. The vertical axis shows the frequency, and the horizontal axis shows the time. The shades of collar shows the log power. This railway brake sound is recorded in Kansai main line operated by the West Japan Railway Company as shown in Fig. 2. 2

3 Figure 1: Spectrogram of the railway brake sound. Figure 2: Photograph of the railway vehicle. From Fig. 1, the railway brake sound has multiple spectral peaks from 2 to 12 khz. Noise with spectral peaks raises discomfort feeling [7]. Also we comfirmed that multiple spectral peaks and those sound pressure levels vary in the time. This result indicates that the railway brake sound is non-stationary noise. 3 Conventional discomfort reduction based on auditory masking for stationary noise We have proposed the discomfort reduction method based on auditory masking for the stationary sound as the conventional method. The conventional method can reduce discomfort feeling by emitting the masker signal which can mask the spectral peak with secondary loudspeaker. Spectral peak is discomfort component of noise. Figure 3 shows the flow of the conventional method. As shown in Fig. 3, the conventional method consists of two steps. Step 1) Detect the single spectral peak The conventional method assumes that the stationary noise with the single spectral peak is observed with microphone. In this step, the power spectrum of the noise is calculated from the observed noise using Fourier transform, and the spectral envelope is calculated from the power spectrum using smoothing processing. Also, to determine the single spectral peak, the local standard deviation is calculated as follow: V i F = P i μ i F σ i F (1) where i is frequency, F is frequency bandwidth for calculation, V F i is the local standard deviation, P i is the spectral envelop and μ F i is the average of P i in F [Hz] that centers on i [Hz], and σ F i is the standard deviation of that. V F i represents prominent value of the power of i [Hz] compared with that of the frequency width around i [Hz]. The frequency of the single spectral peak is calculated as follows: 3

4 Figure 3: The flow of the conventional method. Figure 4: Overview of the spectra of the noise and the masker signal. f = argmax(v F i ), (2) i where f is frequency of the single spectral peak which has the maximum value of local standard deviation. Step 2) Design the masker signal Figure 4 shows overview of the spectra of the noise and the masker signal. As shown in Fig. 4, the critical band [8] is very important in order to design the masker signal. Critical band is minimum frequency range that can mask center frequency of pure tone. Critical band is fomulated by 4

5 Figure 5: The flow of the proposed method. f p CB(f p ) = ( ( 1000 ) ), (3) where CB(f p ) is the critical band, and f p is the frequency of the single spectral peak. The band pass filter with bandwidth of CB(f p ) is designed as follows: h fp (t) = 2 f p,e1 sinc (2πtf p,e1 ) 2 f p,e2 sinc (2πtf p,e2 ), (4) f p,e1 = f p + CB(f p), 2 (5) f p,e2 = f p CB(f p), (6) 2 h fp (t) is the band pass filter which is used to design masker signal. f p,e1 and f p,e2 are upper and lower limit frequencies of band pass filter. To design bandlimited noise as the masker signal, the masker sound source is filtered by the band pass filter. White noise, pink noise and running water sound are generally utilized as the original sound sources of masker signal. However, the railway brake sound has multiple spectral peaks. Thus, in this paper, we design the masker signals for largest spectral peaks from 2 khz to 12 khz. 4 Suggestion of discomfort reduction using adaptive noise estimation for non-stationary noise The proposed method assumes that the non-stationary noise such as railway brake sound with multiple spectral peaks is observed with microphone. In the conventional discomfort reduction 5

6 Figure 6: The determination overview for estimated spectral peaks. method cannot reduce discomfort feeling insufficiently for non-stationary noise because designed masker signal is difficult to follow the time variation. In this paper, we propose the new discomfort reduction method based on auditory masking for the non-stationary noise such as the railway brake sound. Figure 5 shows the flow of the proposed method. As shown in Fig. 5, the proposed method consists of three steps as follows. Step 1) Detect multiple spectral peaks in current frame The railway brake sound has multiple spectral peaks which vary in the time. That is to say, it is necessary to detect multiple peaks in frame by frame. The local deviation is calclated by Eq (1) as same as the conventional method. The spectral peaks are detected by using the threshold of local standard deviation. To detect the spectral peaks, the threshold was determined in the preliminary experiment. If critical bands of detected spectral peaks are overlapped, the proposed method employs the frequency of spectral peak which has larger local standard deviation. The frequencies of spectral peaks are recorded in all frames. Step 2) Estimate the frequencies of multiple spectral peaks using the adaptive noise estimation Figure 6 shows the determination overview for estimated spectral peaks. In Fig.6, the vertical axis shows the frequency and the horizontal axis shows the time. As shown in Fig. 6, the masker signal is estimated according to spectral peaks in current and several previous frames. We define the range that combines current and several previous frames as the reference frame. The number of the reference frame was determined in the preliminary experiment. In Fig. 6, circles show the spectral peaks which are detected in Step 1. Squares show the estimated spectral peaks which are used to design masker signal. Dashed line represents the overlapping area of critical band in 6

7 the reference frame. To adaptively estimate the noise with spectral peaks, the spectral peaks which are detected in the reference frame are employed as estimated spectral peaks. This is because the spectral peaks of railway brake sound intermittently arise at same frequencies. The detected spectral peak in the closest frame to head frame in the reference frame employed as a estimated spectral peak when critical bands of spectral peaks in the reference frame are overlapped. To design the masker signal, the gains for bandlimited noises are detemined by using the adaptive estimation with the powers of estimated spectral peaks. The gains for bandlimited noises are calculated by using Segmental Peak Signal-to-Noise Ratio(SP_SNR) as follows: M(f p, n) = 10 α(f p,n), (7) L 1 α(f p, n) = 1 L N(f p, (n l)) l=0 SP_SNR 10, (8) where n is the index of frame, f p is the estimated spectral peak, L is the total number of referenced frame, N(f p, (n l)) represents log power of f p in (n l)th frame of noise, M(f p, n) represents log power of f p in n th frame of the masker signal. The value of SP_SNR was decided in the preliminary experiment. Step 3) Design the masker signal with the estimated frequencies of multiple spectral peaks By using the frequencies of the estimated spectral peaks and the estimated gains in Eq. (7), the masker signal is designed as follows: I masker(t, n) = M(f i, n) s fi (nt + t), i=1 I = M(f i, n) w(t) h fi (t), (0 t < T) (9) i=1 where i is the index of estimated spectral peaks, t is the time index in frame, T is the total number of sample in one frame, n is the index of frame, I is the total number of estimated spectral peaks, f i is the i th estimated spectral peak, masker(t, n) represents masker signal, s fi (nt + t) represents masker signal for f i, w(t) is the original sound source of masker signal, h fi (t) is the band-pass-filter calculated by Eq. (4). In the proposed method, the designed masker signal is emitted with the secondary loudspeaker. 5 Subjective evaluation experiment We carried out a subjective evaluation experiment to confirm the effectiveness of the proposed method. 7

8 (a) The masker signal with white noise (b) The masker signal with pink noise Figure 7: The result of subjective evaluation experiment. Table 1: Condition of subjective evaluation experiment. Environment (A weighted sound level) Headphone Subjects Sampling Frequency / Quantization Number of sound sources Reference frame width Frame width / Frame shift SP_SNR Experimental criteria Office (38.5 [db]) SONY,MDR-CD900ST 7 [people] 48 [khz] / 16 [bit] Evaluation sound sources:5 -The original railway brake sound -The railway brake sounds processed by -the conventional method with white noise -the proposed method with white noise -the conventional method with pink noise -the proposed method with pink noise 2.0 [sec.] 0.5 [sec.] / 0.25[sec.] White noise: 5 [db] Pink noise: 0 [db] Comparison with reference sound 1:Discomfort 2:Quite discomfort 0:Neutral -1:Little discomfort -2:Not discomfort 5.1 Experimental condition We carried out a subjective experiment to evaluate value of discomfort reduction of railway brake sound using the proposed method. Table 1 shows the condition of the experiment. 8

9 In this experiment, the proposed method was compared with the conventional one by using the value of discomfort feeling. The conventional method emits stationary masker signal to mask the single spectral peak of railway brake sound. On the other hand, the proposed method emits nonstationary masker signal which is designed at regular intervals to mask the multiple spectral peaks of railway brake sound. We compare the value of discomfort feeling in a round-robin of the railway brake sound because Scheffe s paired comparison is used as a configuration method of evaluation criteria [9]. 5.2 Result and discussion of subjective evaluation experiment Figure 7 shows a result of the subjective evaluation experiment. The vertical axis shows the value of discomfort feeling. We confirmed sufficiently discomfort reduction using the masker signal which is designed in frame by frame. As a result, the value of discomfort feeling was decreased by about 1.0 compared with that of the original railway brake sound and that of the proposed method. The experimental criteria of the proposed method is lower than that of the original railway brake sound and the conventional method. There are reasons that masker signal which is designed by using the proposed method could sufficiently reduce discomfort feeling of the railway brake noise. In the proposed method, masker signal was designed by using the estimated noise at real time. Therefore, masker signal can follow the time variation of multiple spectral peaks. Moreover, the sound pressure level is determined by using SP_SNR to adaptively estimate the change of it. The time variation of masker signal is smoothed by referencing not only current frame but also several previous frames. For shown above reasons, we subjectively confirmed the effectiveness of the proposed method for non-stationary noise. In addition, in this experiment, the value of discomfort reduction which uses the masker signals with white noise and pink noise are evaluated. We confirmed sufficiently discomfort reduction using the masker signal with pink noise compared with the masker signal with white noise from a result of subjective evaluation experiment. It is assumed that pink noise has 1/f fluctuation which produces comfort feeling for human [10]. 6 Conclusions In this paper, we proposed a discomfort reduction mothod based on auditory masking with the adaptive noise estimation for the railway brake sound. We carried out subjective evaluation experiment with the actual railway brake sound. As a result, we confirmed the effectiveness of the proposed method. In future work, we have a plan to design masker signals by employing suitable original sound source of masker signal for sufficiently discomfort reduction. Moreover, we have a plan to improve the estimation accuracy of the adaptive noise estimation. 9

10 Acknowledgments The work was partly supported by R-GIRO (Ritsumeikan Global Innovation Research Organization) funded by Ritsumeikan University. References [1] Lorang, X; Foy-Margiocchi, F; Nguyen Q.S; Gautier, P.E, TGV disc brake squeal, Journal of Sound and Vibration, Vol. 293, No.3-5, [2] Desplanques, Y; Roussette, O; Degallaix, G; Copin, R; Berthier, Y, Analysis of tribological behaviour of pad disc contact in railway braking Part 1. Laboratory test development, compromises between actual and simulated tribological triplets, Wear, Vol. 262, No. 5, 2007, pp [3] Elliott, J; Nelson, A, Active noise control, Signal Processing Magazine, IEEE, Vol. 10, No. 4, [4] Tsujikawa, M; Morise, M; Nishiura, T, A study of comfortable sound design for narrow-band noise based on psychoacoustic evaluation criteria, Internoise2011, Osaka, Japan, September 4-7, 2011, Tue-P-21. [5] Suhara, Y; Ikefuji, D; Nakayama, M; Nishiura, T, A design of control signal in reducing discomfort of the dental treatment sound based on auditory masking, ICA2013, Montreal, Canada, June 2-7, 2013, PaperID:3pNSc8. [6] Wegel, R.L; Lane, E.C, The Auditory Masking of One Pure Tone by Another and its Probable Relation to the Dynamics of the Inner Ear, Physical Review, Vol. 23, 1924, pp [7] Kumer, S; Foster, H; Bailey, P; Griffiths, T, Mapping unpleasantness of sounds to their auditory representation, The Journal of the Acoustical Society of America, Vol. 124, No. 6, 2008, pp [8] Zwicker, E; Terhardt, E, Analytical expression for critical-band rate and critical band width as a function of frequency, The Journal of Acoustical Society of America, Vol. 68, No. 5, 1980, pp [9] Scheffe, H, An analysis of variance for paired comparisons, The Journal of the American Statistical Association, Vol. 47, No. 259, 1952, pp [10] Musha, T, 1/f Fluctuations, A Monthly Publication of the Japan Society of Applied Physics, Vol. 46, No. 12, 1977, pp

An evaluation on comfortable sound design of unpleasant sounds based on chord-forming with bandlimited sound

An evaluation on comfortable sound design of unpleasant sounds based on chord-forming with bandlimited sound An evaluation on comfortable sound design of unpleasant sounds based on chord-forming with bandlimited sound Yoshitaka Ohshio 1 ; Daisuke Ikefuji 1 ; Masato Nakayama 2 ; Takanobu Nishiura 2 1 Graduate

More information

Multiple Audio Spots Design Based on Separating Emission of Carrier and Sideband Waves

Multiple Audio Spots Design Based on Separating Emission of Carrier and Sideband Waves Multiple Audio Spots Design Based on Separating Emission of Carrier and Sideband Waves Tadashi MATSUI 1 ; Daisuke IKEFUJI 1 ; Masato NAKAYAMA 2 ;Takanobu NISHIURA 2 1 Graduate School of Information Science

More information

Evaluation of clipping-noise suppression of stationary-noisy speech based on spectral compensation

Evaluation of clipping-noise suppression of stationary-noisy speech based on spectral compensation Evaluation of clipping-noise suppression of stationary-noisy speech based on spectral compensation Takahiro FUKUMORI ; Makoto HAYAKAWA ; Masato NAKAYAMA 2 ; Takanobu NISHIURA 2 ; Yoichi YAMASHITA 2 Graduate

More information

The Steering for Distance Perception with Reflective Audio Spot

The Steering for Distance Perception with Reflective Audio Spot Proceedings of 20 th International Congress on Acoustics, ICA 2010 23-27 August 2010, Sydney, Australia The Steering for Perception with Reflective Audio Spot Yutaro Sugibayashi (1), Masanori Morise (2)

More information

Tones in HVAC Systems (Update from 2006 Seminar, Quebec City) Jerry G. Lilly, P.E. JGL Acoustics, Inc. Issaquah, WA

Tones in HVAC Systems (Update from 2006 Seminar, Quebec City) Jerry G. Lilly, P.E. JGL Acoustics, Inc. Issaquah, WA Tones in HVAC Systems (Update from 2006 Seminar, Quebec City) Jerry G. Lilly, P.E. JGL Acoustics, Inc. Issaquah, WA Outline Review Fundamentals Frequency Spectra Tone Characteristics Tone Detection Methods

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 6.1 AUDIBILITY OF COMPLEX

More information

You know about adding up waves, e.g. from two loudspeakers. AUDL 4007 Auditory Perception. Week 2½. Mathematical prelude: Adding up levels

You know about adding up waves, e.g. from two loudspeakers. AUDL 4007 Auditory Perception. Week 2½. Mathematical prelude: Adding up levels AUDL 47 Auditory Perception You know about adding up waves, e.g. from two loudspeakers Week 2½ Mathematical prelude: Adding up levels 2 But how do you get the total rms from the rms values of two signals

More information

Tone-in-noise detection: Observed discrepancies in spectral integration. Nicolas Le Goff a) Technische Universiteit Eindhoven, P.O.

Tone-in-noise detection: Observed discrepancies in spectral integration. Nicolas Le Goff a) Technische Universiteit Eindhoven, P.O. Tone-in-noise detection: Observed discrepancies in spectral integration Nicolas Le Goff a) Technische Universiteit Eindhoven, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands Armin Kohlrausch b) and

More information

Hearing and Deafness 2. Ear as a frequency analyzer. Chris Darwin

Hearing and Deafness 2. Ear as a frequency analyzer. Chris Darwin Hearing and Deafness 2. Ear as a analyzer Chris Darwin Frequency: -Hz Sine Wave. Spectrum Amplitude against -..5 Time (s) Waveform Amplitude against time amp Hz Frequency: 5-Hz Sine Wave. Spectrum Amplitude

More information

EFFECTS OF PHYSICAL CONFIGURATIONS ON ANC HEADPHONE PERFORMANCE

EFFECTS OF PHYSICAL CONFIGURATIONS ON ANC HEADPHONE PERFORMANCE EFFECTS OF PHYSICAL CONFIGURATIONS ON ANC HEADPHONE PERFORMANCE Lifu Wu Nanjing University of Information Science and Technology, School of Electronic & Information Engineering, CICAEET, Nanjing, 210044,

More information

III. Publication III. c 2005 Toni Hirvonen.

III. Publication III. c 2005 Toni Hirvonen. III Publication III Hirvonen, T., Segregation of Two Simultaneously Arriving Narrowband Noise Signals as a Function of Spatial and Frequency Separation, in Proceedings of th International Conference on

More information

Automotive three-microphone voice activity detector and noise-canceller

Automotive three-microphone voice activity detector and noise-canceller Res. Lett. Inf. Math. Sci., 005, Vol. 7, pp 47-55 47 Available online at http://iims.massey.ac.nz/research/letters/ Automotive three-microphone voice activity detector and noise-canceller Z. QI and T.J.MOIR

More information

REAL-TIME BROADBAND NOISE REDUCTION

REAL-TIME BROADBAND NOISE REDUCTION REAL-TIME BROADBAND NOISE REDUCTION Robert Hoeldrich and Markus Lorber Institute of Electronic Music Graz Jakoministrasse 3-5, A-8010 Graz, Austria email: robert.hoeldrich@mhsg.ac.at Abstract A real-time

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 MODELING SPECTRAL AND TEMPORAL MASKING IN THE HUMAN AUDITORY SYSTEM PACS: 43.66.Ba, 43.66.Dc Dau, Torsten; Jepsen, Morten L.; Ewert,

More information

Auditory modelling for speech processing in the perceptual domain

Auditory modelling for speech processing in the perceptual domain ANZIAM J. 45 (E) ppc964 C980, 2004 C964 Auditory modelling for speech processing in the perceptual domain L. Lin E. Ambikairajah W. H. Holmes (Received 8 August 2003; revised 28 January 2004) Abstract

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.5 ACTIVE CONTROL

More information

Digitally controlled Active Noise Reduction with integrated Speech Communication

Digitally controlled Active Noise Reduction with integrated Speech Communication Digitally controlled Active Noise Reduction with integrated Speech Communication Herman J.M. Steeneken and Jan Verhave TNO Human Factors, Soesterberg, The Netherlands herman@steeneken.com ABSTRACT Active

More information

DESIGN OF VOICE ALARM SYSTEMS FOR TRAFFIC TUNNELS: OPTIMISATION OF SPEECH INTELLIGIBILITY

DESIGN OF VOICE ALARM SYSTEMS FOR TRAFFIC TUNNELS: OPTIMISATION OF SPEECH INTELLIGIBILITY DESIGN OF VOICE ALARM SYSTEMS FOR TRAFFIC TUNNELS: OPTIMISATION OF SPEECH INTELLIGIBILITY Dr.ir. Evert Start Duran Audio BV, Zaltbommel, The Netherlands The design and optimisation of voice alarm (VA)

More information

Results of Egan and Hake using a single sinusoidal masker [reprinted with permission from J. Acoust. Soc. Am. 22, 622 (1950)].

Results of Egan and Hake using a single sinusoidal masker [reprinted with permission from J. Acoust. Soc. Am. 22, 622 (1950)]. XVI. SIGNAL DETECTION BY HUMAN OBSERVERS Prof. J. A. Swets Prof. D. M. Green Linda E. Branneman P. D. Donahue Susan T. Sewall A. MASKING WITH TWO CONTINUOUS TONES One of the earliest studies in the modern

More information

The role of intrinsic masker fluctuations on the spectral spread of masking

The role of intrinsic masker fluctuations on the spectral spread of masking The role of intrinsic masker fluctuations on the spectral spread of masking Steven van de Par Philips Research, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands, Steven.van.de.Par@philips.com, Armin

More information

ADAPTIVE NOISE CANCELLING IN HEADSETS

ADAPTIVE NOISE CANCELLING IN HEADSETS ADAPTIVE NOISE CANCELLING IN HEADSETS 1 2 3 Per Rubak, Henrik D. Green and Lars G. Johansen Aalborg University, Institute for Electronic Systems Fredrik Bajers Vej 7 B2, DK-9220 Aalborg Ø, Denmark 1 2

More information

Combined effects of low frequency vertical vibration and noise on whole-body vibration sensation

Combined effects of low frequency vertical vibration and noise on whole-body vibration sensation Combined effects of low frequency vertical vibration and noise on whole-body vibration sensation Hiroshi MATSUDA and Nobuo MACHIDA 2, 2 College of Science and Technology, Nihon University, Japan ABSTRACT

More information

Sound Waves and Beats

Sound Waves and Beats Sound Waves and Beats Computer 32 Sound waves consist of a series of air pressure variations. A Microphone diaphragm records these variations by moving in response to the pressure changes. The diaphragm

More information

Near-sound-field Propagation Based on Individual Beam-steering for Carrier and Sideband Waves with Parametric Array Loudspeaker

Near-sound-field Propagation Based on Individual Beam-steering for Carrier and Sideband Waves with Parametric Array Loudspeaker Near-sound-field Propagation Based on Individual Beam-steering for Carrier and Sideband Waves with Parametric Array Loudspeaker Masato Nakayama, Ryosuke Konabe, Takahiro Fukumori and Takanobu Nishiura

More information

Active noise control at a moving virtual microphone using the SOTDF moving virtual sensing method

Active noise control at a moving virtual microphone using the SOTDF moving virtual sensing method Proceedings of ACOUSTICS 29 23 25 November 29, Adelaide, Australia Active noise control at a moving rophone using the SOTDF moving sensing method Danielle J. Moreau, Ben S. Cazzolato and Anthony C. Zander

More information

Experiments in two-tone interference

Experiments in two-tone interference Experiments in two-tone interference Using zero-based encoding An alternative look at combination tones and the critical band John K. Bates Time/Space Systems Functions of the experimental system: Variable

More information

Pre- and Post Ringing Of Impulse Response

Pre- and Post Ringing Of Impulse Response Pre- and Post Ringing Of Impulse Response Source: http://zone.ni.com/reference/en-xx/help/373398b-01/svaconcepts/svtimemask/ Time (Temporal) Masking.Simultaneous masking describes the effect when the masked

More information

Spectro-Temporal Methods in Primary Auditory Cortex David Klein Didier Depireux Jonathan Simon Shihab Shamma

Spectro-Temporal Methods in Primary Auditory Cortex David Klein Didier Depireux Jonathan Simon Shihab Shamma Spectro-Temporal Methods in Primary Auditory Cortex David Klein Didier Depireux Jonathan Simon Shihab Shamma & Department of Electrical Engineering Supported in part by a MURI grant from the Office of

More information

Interior Noise Characteristics in Japanese, Korean and Chinese Subways

Interior Noise Characteristics in Japanese, Korean and Chinese Subways IJR International Journal of Railway Vol. 6, No. 3 / September, pp. 1-124 The Korean Society for Railway Interior Noise Characteristics in Japanese, Korean and Chinese Subways Yoshiharu Soeta, Ryota Shimokura*,

More information

Week 1. Signals & Systems for Speech & Hearing. Sound is a SIGNAL 3. You may find this course demanding! How to get through it:

Week 1. Signals & Systems for Speech & Hearing. Sound is a SIGNAL 3. You may find this course demanding! How to get through it: Signals & Systems for Speech & Hearing Week You may find this course demanding! How to get through it: Consult the Web site: www.phon.ucl.ac.uk/courses/spsci/sigsys (also accessible through Moodle) Essential

More information

Isolated Word Recognition Based on Combination of Multiple Noise-Robust Techniques

Isolated Word Recognition Based on Combination of Multiple Noise-Robust Techniques Isolated Word Recognition Based on Combination of Multiple Noise-Robust Techniques 81 Isolated Word Recognition Based on Combination of Multiple Noise-Robust Techniques Noboru Hayasaka 1, Non-member ABSTRACT

More information

Reduction of Musical Residual Noise Using Harmonic- Adapted-Median Filter

Reduction of Musical Residual Noise Using Harmonic- Adapted-Median Filter Reduction of Musical Residual Noise Using Harmonic- Adapted-Median Filter Ching-Ta Lu, Kun-Fu Tseng 2, Chih-Tsung Chen 2 Department of Information Communication, Asia University, Taichung, Taiwan, ROC

More information

6-channel recording/reproduction system for 3-dimensional auralization of sound fields

6-channel recording/reproduction system for 3-dimensional auralization of sound fields Acoust. Sci. & Tech. 23, 2 (2002) TECHNICAL REPORT 6-channel recording/reproduction system for 3-dimensional auralization of sound fields Sakae Yokoyama 1;*, Kanako Ueno 2;{, Shinichi Sakamoto 2;{ and

More information

Complex Sounds. Reading: Yost Ch. 4

Complex Sounds. Reading: Yost Ch. 4 Complex Sounds Reading: Yost Ch. 4 Natural Sounds Most sounds in our everyday lives are not simple sinusoidal sounds, but are complex sounds, consisting of a sum of many sinusoids. The amplitude and frequency

More information

FFT 1 /n octave analysis wavelet

FFT 1 /n octave analysis wavelet 06/16 For most acoustic examinations, a simple sound level analysis is insufficient, as not only the overall sound pressure level, but also the frequency-dependent distribution of the level has a significant

More information

Active noise control at a moving virtual microphone using the SOTDF moving virtual sensing method

Active noise control at a moving virtual microphone using the SOTDF moving virtual sensing method Proceedings of ACOUSTICS 29 23 25 November 29, Adelaide, Australia Active noise control at a moving rophone using the SOTDF moving sensing method Danielle J. Moreau, Ben S. Cazzolato and Anthony C. Zander

More information

ACTIVE NOISE CONTROL ON HIGH FREQUENCY NARROW BAND DENTAL DRILL NOISE: PRELIMINARY RESULTS

ACTIVE NOISE CONTROL ON HIGH FREQUENCY NARROW BAND DENTAL DRILL NOISE: PRELIMINARY RESULTS ACTIVE NOISE CONTROL ON HIGH FREQUENCY NARROW BAND DENTAL DRILL NOISE: PRELIMINARY RESULTS Erkan Kaymak 1, Mark Atherton 1, Ken Rotter 2 and Brian Millar 3 1 School of Engineering and Design, Brunel University

More information

Composite square and monomial power sweeps for SNR customization in acoustic measurements

Composite square and monomial power sweeps for SNR customization in acoustic measurements Proceedings of 20 th International Congress on Acoustics, ICA 2010 23-27 August 2010, Sydney, Australia Composite square and monomial power sweeps for SNR customization in acoustic measurements Csaba Huszty

More information

Chapter 2. Meeting 2, Measures and Visualizations of Sounds and Signals

Chapter 2. Meeting 2, Measures and Visualizations of Sounds and Signals Chapter 2. Meeting 2, Measures and Visualizations of Sounds and Signals 2.1. Announcements Be sure to completely read the syllabus Recording opportunities for small ensembles Due Wednesday, 15 February:

More information

Sound waves. septembre 2014 Audio signals and systems 1

Sound waves. septembre 2014 Audio signals and systems 1 Sound waves Sound is created by elastic vibrations or oscillations of particles in a particular medium. The vibrations are transmitted from particles to (neighbouring) particles: sound wave. Sound waves

More information

Measuring procedures for the environmental parameters: Acoustic comfort

Measuring procedures for the environmental parameters: Acoustic comfort Measuring procedures for the environmental parameters: Acoustic comfort Abstract Measuring procedures for selected environmental parameters related to acoustic comfort are shown here. All protocols are

More information

Feedback Active Noise Control in a Crew Rest Compartment Mock-Up

Feedback Active Noise Control in a Crew Rest Compartment Mock-Up Copyright 2012 Tech Science Press SL, vol.8, no.1, pp.23-35, 2012 Feedback Active Noise Control in a Crew Rest Compartment Mock-Up Delf Sachau 1 Abstract: In the process of creating more fuel efficient

More information

Speech/Music Change Point Detection using Sonogram and AANN

Speech/Music Change Point Detection using Sonogram and AANN International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 6, Number 1 (2016), pp. 45-49 International Research Publications House http://www. irphouse.com Speech/Music Change

More information

ANALYTICAL NOISE MODELLING OF A CENTRIFUGAL FAN VALIDATED BY EXPERIMENTAL DATA

ANALYTICAL NOISE MODELLING OF A CENTRIFUGAL FAN VALIDATED BY EXPERIMENTAL DATA ANALYTICAL NOISE MODELLING OF A CENTRIFUGAL FAN VALIDATED BY EXPERIMENTAL DATA Beatrice Faverjon 1, Con Doolan 1, Danielle Moreau 1, Paul Croaker 1 and Nathan Kinkaid 1 1 School of Mechanical and Manufacturing

More information

Acoustic Calibration Service in Automobile Field at NIM, China

Acoustic Calibration Service in Automobile Field at NIM, China Acoustic Calibration Service in Automobile Field at NIM, China ZHONG Bo National Institute of Metrology, China zhongbo@nim.ac.cn Contents 1 Overview of Calibration Services 2 Anechoic Room Calibration

More information

Measuring the complexity of sound

Measuring the complexity of sound PRAMANA c Indian Academy of Sciences Vol. 77, No. 5 journal of November 2011 physics pp. 811 816 Measuring the complexity of sound NANDINI CHATTERJEE SINGH National Brain Research Centre, NH-8, Nainwal

More information

Introduction to cochlear implants Philipos C. Loizou Figure Captions

Introduction to cochlear implants Philipos C. Loizou Figure Captions http://www.utdallas.edu/~loizou/cimplants/tutorial/ Introduction to cochlear implants Philipos C. Loizou Figure Captions Figure 1. The top panel shows the time waveform of a 30-msec segment of the vowel

More information

Investigation of Noise Spectrum Characteristics for an Evaluation of Railway Noise Barriers

Investigation of Noise Spectrum Characteristics for an Evaluation of Railway Noise Barriers IJR International Journal of Railway Vol. 6, No. 3 / September 2013, pp. 125-130 ISSN 1976-9067(Print) ISSN 2288-3010(Online) Investigation of Noise Spectrum Characteristics for an Evaluation of Railway

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Engineering Acoustics Session 2pEAb: Controlling Sound Quality 2pEAb10.

More information

Technical Guide. Installed Sound. Recommended Equalization Procedures. TA-6 Version 1.1 April, 2002

Technical Guide. Installed Sound. Recommended Equalization Procedures. TA-6 Version 1.1 April, 2002 Installed Sound Technical Guide Recommended Equalization Procedures TA-6 Version 1.1 April, 2002 by Christopher Topper Sowden, P.E. Sowden and Associates I have found it interesting that in the 29 years

More information

SOUND QUALITY EVALUATION OF FAN NOISE BASED ON HEARING-RELATED PARAMETERS SUMMARY INTRODUCTION

SOUND QUALITY EVALUATION OF FAN NOISE BASED ON HEARING-RELATED PARAMETERS SUMMARY INTRODUCTION SOUND QUALITY EVALUATION OF FAN NOISE BASED ON HEARING-RELATED PARAMETERS Roland SOTTEK, Klaus GENUIT HEAD acoustics GmbH, Ebertstr. 30a 52134 Herzogenrath, GERMANY SUMMARY Sound quality evaluation of

More information

works must be obtained from the IEE

works must be obtained from the IEE Title A filtered-x LMS algorithm for sinu Effects of frequency mismatch Author(s) Hinamoto, Y; Sakai, H Citation IEEE SIGNAL PROCESSING LETTERS (200 262 Issue Date 2007-04 URL http://hdl.hle.net/2433/50542

More information

SGN Audio and Speech Processing

SGN Audio and Speech Processing Introduction 1 Course goals Introduction 2 SGN 14006 Audio and Speech Processing Lectures, Fall 2014 Anssi Klapuri Tampere University of Technology! Learn basics of audio signal processing Basic operations

More information

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 5: 12 Feb A. Faulkner.

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 5: 12 Feb A. Faulkner. Perception of pitch BSc Audiology/MSc SHS Psychoacoustics wk 5: 12 Feb 2009. A. Faulkner. See Moore, BCJ Introduction to the Psychology of Hearing, Chapter 5. Or Plack CJ The Sense of Hearing Lawrence

More information

Acoustic Communication System Using Mobile Terminal Microphones

Acoustic Communication System Using Mobile Terminal Microphones Acoustic Communication System Using Mobile Terminal Microphones Hosei Matsuoka, Yusuke Nakashima and Takeshi Yoshimura DoCoMo has developed a data transmission technology called Acoustic OFDM that embeds

More information

Sound Source Localization using HRTF database

Sound Source Localization using HRTF database ICCAS June -, KINTEX, Gyeonggi-Do, Korea Sound Source Localization using HRTF database Sungmok Hwang*, Youngjin Park and Younsik Park * Center for Noise and Vibration Control, Dept. of Mech. Eng., KAIST,

More information

Perception of pitch. Importance of pitch: 2. mother hemp horse. scold. Definitions. Why is pitch important? AUDL4007: 11 Feb A. Faulkner.

Perception of pitch. Importance of pitch: 2. mother hemp horse. scold. Definitions. Why is pitch important? AUDL4007: 11 Feb A. Faulkner. Perception of pitch AUDL4007: 11 Feb 2010. A. Faulkner. See Moore, BCJ Introduction to the Psychology of Hearing, Chapter 5. Or Plack CJ The Sense of Hearing Lawrence Erlbaum, 2005 Chapter 7 1 Definitions

More information

Effect of wind speed and wind direction on amplitude modulation of wind turbine noise. Thileepan PAULRAJ1; Petri VÄLISUO2;

Effect of wind speed and wind direction on amplitude modulation of wind turbine noise. Thileepan PAULRAJ1; Petri VÄLISUO2; Effect of wind speed and wind direction on amplitude modulation of wind turbine noise Thileepan PAULRAJ1; Petri VÄLISUO2; 1,2 University of Vaasa, Finland ABSTRACT Amplitude modulation of wind turbine

More information

Façade insulation at low frequencies influence of room acoustic properties

Façade insulation at low frequencies influence of room acoustic properties Buenos Aires 5 to 9 September, 06 Acoustics for the st Century PROCEEDINGS of the nd International Congress on Acoustics Challenges and Solutions in Acoustics Measurement and Design: Paper ICA06-8 Façade

More information

Fractional Octave Analysis and Acoustic Applications

Fractional Octave Analysis and Acoustic Applications www.mpihome.com m+p Analyzer Fractional Octave Analysis and Acoustic Applications Noise is increasingly the subject of new regulations for the protection of human health and safety as well as for improving

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS WAVES: WAVES BEHAVIOUR QUESTIONS No Brain Too Small PHYSICS DIFFRACTION GRATINGS (2016;3) Moana is doing an experiment in the laboratory. She shines a laser beam at a double slit and observes an interference

More information

Signal segmentation and waveform characterization. Biosignal processing, S Autumn 2012

Signal segmentation and waveform characterization. Biosignal processing, S Autumn 2012 Signal segmentation and waveform characterization Biosignal processing, 5173S Autumn 01 Short-time analysis of signals Signal statistics may vary in time: nonstationary how to compute signal characterizations?

More information

FROM BLIND SOURCE SEPARATION TO BLIND SOURCE CANCELLATION IN THE UNDERDETERMINED CASE: A NEW APPROACH BASED ON TIME-FREQUENCY ANALYSIS

FROM BLIND SOURCE SEPARATION TO BLIND SOURCE CANCELLATION IN THE UNDERDETERMINED CASE: A NEW APPROACH BASED ON TIME-FREQUENCY ANALYSIS ' FROM BLIND SOURCE SEPARATION TO BLIND SOURCE CANCELLATION IN THE UNDERDETERMINED CASE: A NEW APPROACH BASED ON TIME-FREQUENCY ANALYSIS Frédéric Abrard and Yannick Deville Laboratoire d Acoustique, de

More information

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 4: 7 Feb A. Faulkner.

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 4: 7 Feb A. Faulkner. Perception of pitch BSc Audiology/MSc SHS Psychoacoustics wk 4: 7 Feb 2008. A. Faulkner. See Moore, BCJ Introduction to the Psychology of Hearing, Chapter 5. Or Plack CJ The Sense of Hearing Lawrence Erlbaum,

More information

Implementation of decentralized active control of power transformer noise

Implementation of decentralized active control of power transformer noise Implementation of decentralized active control of power transformer noise P. Micheau, E. Leboucher, A. Berry G.A.U.S., Université de Sherbrooke, 25 boulevard de l Université,J1K 2R1, Québec, Canada Philippe.micheau@gme.usherb.ca

More information

DESIGN OF ROOMS FOR MULTICHANNEL AUDIO MONITORING

DESIGN OF ROOMS FOR MULTICHANNEL AUDIO MONITORING DESIGN OF ROOMS FOR MULTICHANNEL AUDIO MONITORING A.VARLA, A. MÄKIVIRTA, I. MARTIKAINEN, M. PILCHNER 1, R. SCHOUSTAL 1, C. ANET Genelec OY, Finland genelec@genelec.com 1 Pilchner Schoustal Inc, Canada

More information

Technical University of Denmark

Technical University of Denmark Technical University of Denmark Masking 1 st semester project Ørsted DTU Acoustic Technology fall 2007 Group 6 Troels Schmidt Lindgreen 073081 Kristoffer Ahrens Dickow 071324 Reynir Hilmisson 060162 Instructor

More information

Speech Synthesis using Mel-Cepstral Coefficient Feature

Speech Synthesis using Mel-Cepstral Coefficient Feature Speech Synthesis using Mel-Cepstral Coefficient Feature By Lu Wang Senior Thesis in Electrical Engineering University of Illinois at Urbana-Champaign Advisor: Professor Mark Hasegawa-Johnson May 2018 Abstract

More information

Fundamentals of Music Technology

Fundamentals of Music Technology Fundamentals of Music Technology Juan P. Bello Office: 409, 4th floor, 383 LaFayette Street (ext. 85736) Office Hours: Wednesdays 2-5pm Email: jpbello@nyu.edu URL: http://homepages.nyu.edu/~jb2843/ Course-info:

More information

EXPERIMENTAL INVESTIGATIONS OF DIFFERENT MICROPHONE INSTALLATIONS FOR ACTIVE NOISE CONTROL IN DUCTS

EXPERIMENTAL INVESTIGATIONS OF DIFFERENT MICROPHONE INSTALLATIONS FOR ACTIVE NOISE CONTROL IN DUCTS EXPERIMENTAL INVESTIGATIONS OF DIFFERENT MICROPHONE INSTALLATIONS FOR ACTIVE NOISE CONTROL IN DUCTS M. Larsson, S. Johansson, L. Håkansson and I. Claesson Department of Signal Processing Blekinge Institute

More information

Speech Enhancement in Presence of Noise using Spectral Subtraction and Wiener Filter

Speech Enhancement in Presence of Noise using Spectral Subtraction and Wiener Filter Speech Enhancement in Presence of Noise using Spectral Subtraction and Wiener Filter 1 Gupteswar Sahu, 2 D. Arun Kumar, 3 M. Bala Krishna and 4 Jami Venkata Suman Assistant Professor, Department of ECE,

More information

Binaural Hearing. Reading: Yost Ch. 12

Binaural Hearing. Reading: Yost Ch. 12 Binaural Hearing Reading: Yost Ch. 12 Binaural Advantages Sounds in our environment are usually complex, and occur either simultaneously or close together in time. Studies have shown that the ability to

More information

Added sounds for quiet vehicles

Added sounds for quiet vehicles Added sounds for quiet vehicles Prepared for Brigade Electronics by Dr Geoff Leventhall October 21 1. Introduction.... 2 2. Determination of source direction.... 2 3. Examples of sounds... 3 4. Addition

More information

What is Sound? Part II

What is Sound? Part II What is Sound? Part II Timbre & Noise 1 Prayouandi (2010) - OneOhtrix Point Never PSYCHOACOUSTICS ACOUSTICS LOUDNESS AMPLITUDE PITCH FREQUENCY QUALITY TIMBRE 2 Timbre / Quality everything that is not frequency

More information

Signals & Systems for Speech & Hearing. Week 6. Practical spectral analysis. Bandpass filters & filterbanks. Try this out on an old friend

Signals & Systems for Speech & Hearing. Week 6. Practical spectral analysis. Bandpass filters & filterbanks. Try this out on an old friend Signals & Systems for Speech & Hearing Week 6 Bandpass filters & filterbanks Practical spectral analysis Most analogue signals of interest are not easily mathematically specified so applying a Fourier

More information

Abnormal Compressor Noise Diagnosis Using Sound Quality Evaluation And Acoustic Array Method

Abnormal Compressor Noise Diagnosis Using Sound Quality Evaluation And Acoustic Array Method Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2012 Abnormal Compressor Noise Diagnosis Using Sound Quality Evaluation And Acoustic Array

More information

Sound pressure level calculation methodology investigation of corona noise in AC substations

Sound pressure level calculation methodology investigation of corona noise in AC substations International Conference on Advanced Electronic Science and Technology (AEST 06) Sound pressure level calculation methodology investigation of corona noise in AC substations,a Xiaowen Wu, Nianguang Zhou,

More information

Application Note. Airbag Noise Measurements

Application Note. Airbag Noise Measurements Airbag Noise Measurements Headquarters Skovlytoften 33 2840 Holte Denmark Tel: +45 45 66 40 46 E-mail: gras@gras.dk Web: gras.dk Airbag Noise Measurements* Per Rasmussen When an airbag inflates rapidly

More information

Effect of modulation depth, frequency, and intermittence on wind turbine noise annoyance a)

Effect of modulation depth, frequency, and intermittence on wind turbine noise annoyance a) Effect of modulation depth, frequency, and intermittence on wind turbine noise annoyance a) Christina Ioannidou, b) Sebastien Santurette, and Cheol-Ho Jeong Department of Electrical Engineering, Technical

More information

Multiple Sound Sources Localization Using Energetic Analysis Method

Multiple Sound Sources Localization Using Energetic Analysis Method VOL.3, NO.4, DECEMBER 1 Multiple Sound Sources Localization Using Energetic Analysis Method Hasan Khaddour, Jiří Schimmel Department of Telecommunications FEEC, Brno University of Technology Purkyňova

More information

Acoustic Yagi Uda Antenna Using Resonance Tubes

Acoustic Yagi Uda Antenna Using Resonance Tubes Acoustic Yagi Uda Antenna Using Resonance Tubes Yuki TAMURA 1 ; Kohei YATABE 2 ; Yasuhiro OUCHI 3 ; Yasuhiro OIKAWA 4 ; Yoshio YAMASAKI 5 1 5 Waseda University, Japan ABSTRACT A Yagi Uda antenna gets high

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.2 MICROPHONE T-ARRAY

More information

Loudspeaker Distortion Measurement and Perception Part 2: Irregular distortion caused by defects

Loudspeaker Distortion Measurement and Perception Part 2: Irregular distortion caused by defects Loudspeaker Distortion Measurement and Perception Part 2: Irregular distortion caused by defects Wolfgang Klippel, Klippel GmbH, wklippel@klippel.de Robert Werner, Klippel GmbH, r.werner@klippel.de ABSTRACT

More information

JBL Professional Application Note. Loudspeaker Array Low-Frequency Pattern Control using Filtered Array Technology

JBL Professional Application Note. Loudspeaker Array Low-Frequency Pattern Control using Filtered Array Technology JBL Professional Application Note Loudspeaker Array Low-Frequency Pattern Control using Filtered Array Technology 1: Overview Array directivity control theory is not new. Olson s Acoustical Engineering

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.2 MICROPHONE ARRAY

More information

EPILEPSY is a neurological condition in which the electrical activity of groups of nerve cells or neurons in the brain becomes

EPILEPSY is a neurological condition in which the electrical activity of groups of nerve cells or neurons in the brain becomes EE603 DIGITAL SIGNAL PROCESSING AND ITS APPLICATIONS 1 A Real-time DSP-Based Ringing Detection and Advanced Warning System Team Members: Chirag Pujara(03307901) and Prakshep Mehta(03307909) Abstract Epilepsy

More information

THE ATTENUATION OF NOISE ENTERING BUILDINGS USING QUARTER- WAVE RESONATORS: RESULTS FROM A FULL SCALE PROTOTYPE. C.D.Field and F.R.

THE ATTENUATION OF NOISE ENTERING BUILDINGS USING QUARTER- WAVE RESONATORS: RESULTS FROM A FULL SCALE PROTOTYPE. C.D.Field and F.R. THE ATTENUATION OF NOISE ENTERING BUILDINGS USING QUARTER- WAVE RESONATORS: RESULTS FROM A FULL SCALE PROTOTYPE C.D.Field and F.R.Fricke Department of Architectural and Design Science University of Sydney

More information

High-speed Noise Cancellation with Microphone Array

High-speed Noise Cancellation with Microphone Array Noise Cancellation a Posteriori Probability, Maximum Criteria Independent Component Analysis High-speed Noise Cancellation with Microphone Array We propose the use of a microphone array based on independent

More information

Transmitter Identification Experimental Techniques and Results

Transmitter Identification Experimental Techniques and Results Transmitter Identification Experimental Techniques and Results Tsutomu SUGIYAMA, Masaaki SHIBUKI, Ken IWASAKI, and Takayuki HIRANO We delineated the transient response patterns of several different radio

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 1, 21 http://acousticalsociety.org/ ICA 21 Montreal Montreal, Canada 2 - June 21 Psychological and Physiological Acoustics Session appb: Binaural Hearing (Poster

More information

Wavelet Transform for Bearing Faults Diagnosis

Wavelet Transform for Bearing Faults Diagnosis Wavelet Transform for Bearing Faults Diagnosis H. Bendjama and S. Bouhouche Welding and NDT research centre (CSC) Cheraga, Algeria hocine_bendjama@yahoo.fr A.k. Moussaoui Laboratory of electrical engineering

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 A MODEL OF THE HEAD-RELATED TRANSFER FUNCTION BASED ON SPECTRAL CUES

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 A MODEL OF THE HEAD-RELATED TRANSFER FUNCTION BASED ON SPECTRAL CUES 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, -7 SEPTEMBER 007 A MODEL OF THE HEAD-RELATED TRANSFER FUNCTION BASED ON SPECTRAL CUES PACS: 43.66.Qp, 43.66.Pn, 43.66Ba Iida, Kazuhiro 1 ; Itoh, Motokuni

More information

Distortion products and the perceived pitch of harmonic complex tones

Distortion products and the perceived pitch of harmonic complex tones Distortion products and the perceived pitch of harmonic complex tones D. Pressnitzer and R.D. Patterson Centre for the Neural Basis of Hearing, Dept. of Physiology, Downing street, Cambridge CB2 3EG, U.K.

More information

Whisstone, a sound diffractor: does it really affect traffic noise?

Whisstone, a sound diffractor: does it really affect traffic noise? Whisstone, a sound diffractor: does it really affect traffic noise? J. Hooghwerff W.J. van der Heijden H.F. Reinink M+P Consulting Engineers, Vught, the Netherlands. Y.H. Wijnant Faculty of Engineering

More information

ACTIVE LOW-FREQUENCY MODAL NOISE CANCELLA- TION FOR ROOM ACOUSTICS: AN EXPERIMENTAL STUDY

ACTIVE LOW-FREQUENCY MODAL NOISE CANCELLA- TION FOR ROOM ACOUSTICS: AN EXPERIMENTAL STUDY ACTIVE LOW-FREQUENCY MODAL NOISE CANCELLA- TION FOR ROOM ACOUSTICS: AN EXPERIMENTAL STUDY Xavier Falourd, Hervé Lissek Laboratoire d Electromagnétisme et d Acoustique, Ecole Polytechnique Fédérale de Lausanne,

More information

Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications. Howard Hausman April 1, 2010

Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications. Howard Hausman April 1, 2010 Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications Howard Hausman April 1, 2010 Satellite Communications: Part 4 Signal Distortions

More information

ECMA TR/105. A Shaped Noise File Representative of Speech. 1 st Edition / December Reference number ECMA TR/12:2009

ECMA TR/105. A Shaped Noise File Representative of Speech. 1 st Edition / December Reference number ECMA TR/12:2009 ECMA TR/105 1 st Edition / December 2012 A Shaped Noise File Representative of Speech Reference number ECMA TR/12:2009 Ecma International 2009 COPYRIGHT PROTECTED DOCUMENT Ecma International 2012 Contents

More information

Chapter 2: Digitization of Sound

Chapter 2: Digitization of Sound Chapter 2: Digitization of Sound Acoustics pressure waves are converted to electrical signals by use of a microphone. The output signal from the microphone is an analog signal, i.e., a continuous-valued

More information

Composite aeroacoustic beamforming of an axial fan

Composite aeroacoustic beamforming of an axial fan Acoustics Array Systems: Paper ICA2016-122 Composite aeroacoustic beamforming of an axial fan Jeoffrey Fischer (a), Con Doolan (b) (a) School of Mechanical and Manufacturing Engineering, UNSW Australia,

More information

IEEE 802.3aq Task Force Dynamic Channel Model Ad Hoc Task 2 - Time variation & modal noise 10/13/2004 con-call

IEEE 802.3aq Task Force Dynamic Channel Model Ad Hoc Task 2 - Time variation & modal noise 10/13/2004 con-call IEEE 802.3aq Task Force Dynamic Channel Model Ad Hoc Task 2 - Time variation & modal noise 10/13/2004 con-call Time variance in MMF links Further test results Rob Coenen Overview Based on the formulation

More information