Added sounds for quiet vehicles

Size: px
Start display at page:

Download "Added sounds for quiet vehicles"

Transcription

1 Added sounds for quiet vehicles Prepared for Brigade Electronics by Dr Geoff Leventhall October Introduction Determination of source direction Examples of sounds Addition of a musical chord Loudness of the demonstration sounds Directivity of the sounds Attenuation And Finally... 9 Definitions Locatable (adj.): Describes a sound whose source direction is readily discernible by a listener. Locatability (noun): Locatability has two components; (1) determination of direction of a sound source and (2) estimation of its distance Directivity: The property of a source which describes how the source radiates energy in given directions. Attenuation: Describes the reduction of sound energy due to its dissipation Audibility: Describes the degree of perception of a sound by a listener 1

2 Added sounds for quiet vehicles Prepared for Brigade Electronics by Dr Geoff Leventhall October Introduction. An essential element of safety in the presence of moving vehicles is the ability to locate the direction in which a nearby vehicle is travelling and also to estimate its distance. Identification of the direction is determined psychoacoustically, as described below. Estimation of the distance is a learned effect, developed from familiarity with vehicle sounds, particularly their loudness. Knowledge of direction and distance combine to give the location of a vehicle, referred to as its locatability. 2. Determination of source direction. Three overlapping frequency regions have been shown to influence the perception of the direction of a sound source. The time difference between arrival of sound at the ears. This interaural time difference (ITD) is a relatively low frequency phenomenon and operates up to about The sound pressure difference between sound at the two ears is the interaural intensity difference (IID) and operates from about 7 upwards but most significantly at higher frequencies. At frequencies above about 5, reflections from the outer ear into the ear canal give further information on location of a source. Determination of direction is easiest when the sound contains maximum information over all frequency ranges, which is given by white sound. However, white sound has a harsh quality: (Click the icon to hear the sound). White sound 2 and pink sound, falling at 3dB/octave is a more pleasant sounding alternative. 1 Human Localisation, Binaural cues 2 ID-6 2

3 Pink sound 3 Consequently, where broadband sound is used, pink sound is made the basis for the following demonstration sounds, which have been developed to illustrate the variety of sounds which have good locatability. The spectra of white sound and pink sound are shown in Figs 1 and 2. The top plot is a narrow band constant bandwidth spectrum, with frequency resolution of 1. White sound has a uniform spectrum on the constant bandwidth plot, but rises at 3dB per octave on the third octave plot, due to the widening of the bands as frequency rises. Pink sound falls at 3dB/octave on the constant bandwidth plot, but is level on the third octave plot. In the spectra in Figs 1 to 9, levels are relative. The upper spectrum is a narrow band analysis with 1 frequency resolution. The lower spectrum is one-third octave. All third octave analyses have been normalised to a level of 6dBA in order to permit loudness level (phons) to be calculated and compared, as in Section Examples of sounds All samples are shown with constant level and frequency, although variation of these can be used to indicate vehicle speed. locatability and is not recommended by the Working Group. A single tone has poor 3.1 Two tones The simplest, but least effective, locating sound is two tones, one in the lower frequency region plus one in the higher frequency region for location. (These tones, used for Illustration, are taken from the Japanese guidelines) 3 ID 7 3

4 Two tones 4 6 and 2.5k The spectra are shown in Fig 3. The sound will have poor locatability. 3.2 Two frequency regions A development from two tones is to use a low and a high frequency sound region as in the following: Two frequency regions 5 covering the following third octave bands 8, 1 and , 315, 4 In this, the spectra of Fig 4 show a fairly slow fall off away from the centre frequency of the main bands. 3.3 Two frequency regions plus tone Two frequency regions plus tone 6 This is the same as in 2.2 but with a 1 tone added. The tone is about 1dB above surrounding noise on a narrow band analysis, but about 5dB above adjacent third octave bands. Spectra are in Fig Two frequency regions plus tone 7 As above with 25 tone instead of 1. The tone is about 2dB above the surrounding sound on the narrow band analysis, but about 5dB above adjacent third octave bands. Spectra are in Fig 6. 4 ID-5 5 ID-8 6 ID-2 7 ID-9 4

5 3.3.3 Two frequency regions 8 Two frequency regions, similar width to the above, but with rapid fall off at sides. Spectra are in Fig Two frequency regions plus tone 9 with 2 tone added. Spectra are in Fig 8. This is similar to 3.3, but Two frequency regions 1 Lower frequency region is narrower than higher frequency region. Spectra see Fig Addition of a musical chord The demonstration sounds illustrate the range of sounds which give good locatability, whilst leaving room for personalisation by manufacturers. For example, sound 3.2 (ID-8) contains low and high frequency broadband sound, but can include either fixed or speed controlled tones within the frequency region between the two broadband sounds. The following sound 11 is ID-8 with a fixed or speed dependent chord added. The chord consists of three notes at frequencies B4 = , D5 = , F5# = ID-8 with fixed frequency chord The frequency can be varied as in the following 8 ID-1 9 ID-3 1 ID-4 11 ID -14 5

6 ID-8 with variable frequency chord The narrow band spectrum for the addition of sound ID-8 and the fixed chord is at the top of Fig 1. The bottom of Fig 1 is the spectrum with frequency shifted chord. Here the rectangular box shows the extent of the shift. The lower margin is 494, the upper is 916. Thus the shift of the F5# note is from 74 to 916, a ratio of Other tones shift ratios can be chosen. 5. Loudness of demonstration sounds ANSI S Procedure for the Computation of Loudness of Steady sounds provides a convenient way of calculating the loudness of sounds, in the unit phon. 4 phon is the loudness of a 1 tone at 4dB. 8 phon is the loudness of a 1 tone at 8dB etc. Consequently if a complex sound has a loudness of 8phon, it is equally loud to a 1 tone at a level of 8dB. The calculated loudness of the sample sounds is shown in Table 1 for all sounds normalised to 6dBA. The broadband sounds are close to 8phon, with the exception of sound ID-4 in Fig. 9 which has a phon level of The two tone sound( ID-5 and Fig. 3) has a phon level of 7.5. In order to match the phon levels of the broadband sounds, the two tones have to be increased by about 1dB, giving an A-wtd level of 7dBA. Table 1 Summary of Sounds Sound Characteristic Loudness in phon at 6dBA ID -2 As ID 8 but with tone at 1k 8.1 phon ID - 3 Similar to ID 1, with tone at phon ID - 4 Two humped, but lower frequency hump narrowed 77.6 phon ID - 5 Two tones equal level, 6 and 2.5k 7.5 phon 6

7 ID 8 Two bands of overlapping broadband 8.2 phon ID 9 As ID 8 but with tone at phon ID 1 Two bands with faster fall-off than ID phon It is seen from Table 1 that a good spread of broadband sound gives a good phon level, but the detail of the broadband is not too critical, as long as the spread is wide. At least an octave in both high and low frequency regions is required. 6. Directivity of the sounds. Directivity depends on two main factors: the source (loudspeaker) dimensions and the wavelength of the sound. For a fixed source dimension higher frequencies are radiated more directionally than lower ones, and concentrated forward of the vehicle. The detail of the directivity will be affected by the mounting of the loudspeaker at the front of the vehicle, but general principles still apply. Fig 11 shows the radiation patters (for source diameter/wavelength) of.25 and 1. Fig 11 Directivity patterns 7

8 If we consider a source diameter of.1m, representing the loudspeaker in the sounder, then the corresponding wavelengths for the two conditions in Fig 11 are.4m and.1m, or frequencies of 85 and 34. Consequently, lower frequencies spread out, whilst higher frequencies are directed forward. This means that the main sound is radiated forward of the vehicle, although lower frequencies give information, for example, to pedestrians approaching a T- junction. 6.1 Sound fields. The directional patterns of broadband and tonal sounds, when used in reversing alarms, have been determined by Laroche as in Fig 12, which compares tonal, multi-tonal and broadband sounds. It is seen that the broadband sound has the most regular radiation pattern, with highest levels concentrated down the axis of the alarm. From Fig 11, it is the higher frequencies in the sound which are concentrated axially, whilst lower frequencies spread out. Similar considerations apply to the use of broadband and tones in vehicle sounders. Fig 12. Fig 4 from Laroche Comparison of different vehicle backup-alarm types with regards to worker safety Proc ICBEN, 211 8

9 It should also be noted from Fig 12 that a tonal sound results in multiple reflections from nearby surfaces, causing interference effects, leading to an irregular sound field. Multiple tones even-out the sound field, but it is only the broadband sound which has clearly defined radiation characteristics, making it the optimum choice for a vehicle sounder. 7. Attenuation The attenuation of sound with distance is greatest for high frequencies, due to air and ground absorption. These two factors are not important for street traffic, but could be considered for an isolated vehicle. However, attenuation through facades adjacent to the road is very important, and also increases with frequency. This means that the higher frequencies emitted by a sounder will be at low levels within buildings, due to both the directionality of the radiation and the effect of the building façade. These result in reduced A- weighted and phon levels within the building. 8. And Finally It has been shown that a wide variety of sounds can be added to quiet vehicles. However, in order to maintain good locatability it is necessary to include broadband sounds in both low and high frequency ranges. There is a variety of choices for this. Tones, either fixed or variable, can be added to the broadband sounds. Again there is a wide variety of choice. A good spread of broadband frequencies gives a higher loudness (phon level) for a given A-weighted level of sound, compared with tones on their own. 9

10 White noise White Level db k 1.25 k Frequency 1.6 k 2. k 2.5 k 3.15 k 4. k 5. k 6.3 k 8. k 1. k dba Fig 1 White sound. Top: narrow band spectrum. Bottom: third octave spectrum. (ID 6) Series1 1

11 Pink noise Pink Level db k 1.25 k Frequency 1.6 k 2. k 2.5 k 3.15 k 4. k 5. k 6.3 k 8. k 1. k dba Fig 2 Pink sound. Upper narrow band spectrum. Bottom: third octave spectrum (ID- 7) 11

12 ID5 Two tones equal amp 6 and 25 ID Level db k 1.25 k Frequency 1.6 k 2. k 2.5 k 3.15 k 4. k 5. k 6.3 k 8. k 1. k dba Fig 3 Two tones 6 and 25 (ID-5) 12

13 ID-8 Two humps ID Level db Fig k 1.25 k Frequency 1.6 k 2. k 2.5 k 3.15 k 4. k 5. k 6.3 k 8. k 1. k dba 8, 1, 125 bands plus 25, 315, 4 bands (ID-8) 13

14 ID 2 1 tone and rd octs ID Level db k 1.25 k Frequency 1.6 k 2. k 2.5 k 3.15 k 4. k 5. k 6.3 k 8. k 1. k dba Fig 5 As in Fig 4 plus tone at 1, about 5dB above adjacent 1/3 oct bands. Just audible? (ID-2) 14

15 ID-9 Two humps plus 25 ID Level db k 1.25 k Frequency 1.6 k 2. k 2.5 k 3.15 k 4. k 5. k 6.3 k 8. k 1. k dba Fig 6 Two bands plus 25 (ID 9) 15

16 Two bands rapid fall off ID k 1.25 k 1.6 k 2. k 2.5 k 3.15 k 4. k 5. k 6.3 k 8. k 1. k dba Fig 7 Two frequency regions, rapid fall off (ID-1) 16

17 ID 3 2 tone and rd octs. Faster fall off than ID1/2 ID Level db k 1.25 k Frequency 1.6 k 2. k 2.5 k 3.15 k 4. k 5. k 6.3 k 8. k 1. k dba Fig 8 Bands at 8, 1, 125 and 25, 315, 4 with tone at 2 (ID-3) 17

18 LF narrow band of noise HF wider band. LF1-122 HF 2-4 ID Level db k 1.25 k Frequency 1.6 k 2. k 2.5 k 3.15 k 4. k 5. k 6.3 k 8. k 1. k dba Fig 9 Two bands Lower frequency narrower than higher frequency. (ID-4) 18

19 ID-8 + chord Fixed tones ID-8 + chord frequency shift Speed dependent tones Fig 1 Spectra with fixed and speed dependent tones. Compare Fig 4 19

AUDITORY ILLUSIONS & LAB REPORT FORM

AUDITORY ILLUSIONS & LAB REPORT FORM 01/02 Illusions - 1 AUDITORY ILLUSIONS & LAB REPORT FORM NAME: DATE: PARTNER(S): The objective of this experiment is: To understand concepts such as beats, localization, masking, and musical effects. APPARATUS:

More information

Environmental Noise Propagation

Environmental Noise Propagation Environmental Noise Propagation How loud is a 1-ton truck? That depends very much on how far away you are, and whether you are in front of a barrier or behind it. Many other factors affect the noise level,

More information

Envelopment and Small Room Acoustics

Envelopment and Small Room Acoustics Envelopment and Small Room Acoustics David Griesinger Lexicon 3 Oak Park Bedford, MA 01730 Copyright 9/21/00 by David Griesinger Preview of results Loudness isn t everything! At least two additional perceptions:

More information

Tones in HVAC Systems (Update from 2006 Seminar, Quebec City) Jerry G. Lilly, P.E. JGL Acoustics, Inc. Issaquah, WA

Tones in HVAC Systems (Update from 2006 Seminar, Quebec City) Jerry G. Lilly, P.E. JGL Acoustics, Inc. Issaquah, WA Tones in HVAC Systems (Update from 2006 Seminar, Quebec City) Jerry G. Lilly, P.E. JGL Acoustics, Inc. Issaquah, WA Outline Review Fundamentals Frequency Spectra Tone Characteristics Tone Detection Methods

More information

Room Acoustics. March 27th 2015

Room Acoustics. March 27th 2015 Room Acoustics March 27th 2015 Question How many reflections do you think a sound typically undergoes before it becomes inaudible? As an example take a 100dB sound. How long before this reaches 40dB?

More information

IS SII BETTER THAN STI AT RECOGNISING THE EFFECTS OF POOR TONAL BALANCE ON INTELLIGIBILITY?

IS SII BETTER THAN STI AT RECOGNISING THE EFFECTS OF POOR TONAL BALANCE ON INTELLIGIBILITY? IS SII BETTER THAN STI AT RECOGNISING THE EFFECTS OF POOR TONAL BALANCE ON INTELLIGIBILITY? G. Leembruggen Acoustic Directions, Sydney Australia 1 INTRODUCTION 1.1 Motivation for the Work With over fifteen

More information

Auditory Localization

Auditory Localization Auditory Localization CMPT 468: Sound Localization Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University November 15, 2013 Auditory locatlization is the human perception

More information

Acoustics Technical Note

Acoustics Technical Note Acoustics Technical Note To Ian Roach From Alf Maneylaws Copies to File Date 30/3/11 Subject D123356: Devonport EfW: Analysis of measurement data to support adopted approach to BS4142 assessment. Introduction

More information

A102 Signals and Systems for Hearing and Speech: Final exam answers

A102 Signals and Systems for Hearing and Speech: Final exam answers A12 Signals and Systems for Hearing and Speech: Final exam answers 1) Take two sinusoids of 4 khz, both with a phase of. One has a peak level of.8 Pa while the other has a peak level of. Pa. Draw the spectrum

More information

Chapter 12. Preview. Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect. Section 1 Sound Waves

Chapter 12. Preview. Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect. Section 1 Sound Waves Section 1 Sound Waves Preview Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect Section 1 Sound Waves Objectives Explain how sound waves are produced. Relate frequency

More information

Audio Engineering Society Convention Paper Presented at the 110th Convention 2001 May Amsterdam, The Netherlands

Audio Engineering Society Convention Paper Presented at the 110th Convention 2001 May Amsterdam, The Netherlands Audio Engineering Society Convention Paper Presented at the 110th Convention 2001 May 12 15 Amsterdam, The Netherlands This convention paper has been reproduced from the author's advance manuscript, without

More information

Computational Perception. Sound localization 2

Computational Perception. Sound localization 2 Computational Perception 15-485/785 January 22, 2008 Sound localization 2 Last lecture sound propagation: reflection, diffraction, shadowing sound intensity (db) defining computational problems sound lateralization

More information

Measuring procedures for the environmental parameters: Acoustic comfort

Measuring procedures for the environmental parameters: Acoustic comfort Measuring procedures for the environmental parameters: Acoustic comfort Abstract Measuring procedures for selected environmental parameters related to acoustic comfort are shown here. All protocols are

More information

FLOATING WAVEGUIDE TECHNOLOGY

FLOATING WAVEGUIDE TECHNOLOGY FLOATING WAVEGUIDE TECHNOLOGY Floating Waveguide A direct radiator loudspeaker has primarily two regions of operation: the pistonic region and the adjacent upper decade of spectrum. The pistonic region

More information

SIA Software Company, Inc.

SIA Software Company, Inc. SIA Software Company, Inc. One Main Street Whitinsville, MA 01588 USA SIA-Smaart Pro Real Time and Analysis Module Case Study #2: Critical Listening Room Home Theater by Sam Berkow, SIA Acoustics / SIA

More information

1 White Paper. Intelligibility.

1 White Paper. Intelligibility. 1 FOR YOUR INFORMATION THE LIMITATIONS OF WIDE DISPERSION White Paper Distributed sound systems are the most common approach to providing sound for background music and paging systems. Because distributed

More information

Copyright 2009 Pearson Education, Inc.

Copyright 2009 Pearson Education, Inc. Chapter 16 Sound 16-1 Characteristics of Sound Sound can travel through h any kind of matter, but not through a vacuum. The speed of sound is different in different materials; in general, it is slowest

More information

Acoustics II: Kurt Heutschi recording technique. stereo recording. microphone positioning. surround sound recordings.

Acoustics II: Kurt Heutschi recording technique. stereo recording. microphone positioning. surround sound recordings. demo Acoustics II: recording Kurt Heutschi 2013-01-18 demo Stereo recording: Patent Blumlein, 1931 demo in a real listening experience in a room, different contributions are perceived with directional

More information

A White Paper on Danley Sound Labs Tapped Horn and Synergy Horn Technologies

A White Paper on Danley Sound Labs Tapped Horn and Synergy Horn Technologies Tapped Horn (patent pending) Horns have been used for decades in sound reinforcement to increase the loading on the loudspeaker driver. This is done to increase the power transfer from the driver to the

More information

The following is the summary of Keane Acoustics community mechanical noise study for the City of St. Petersburg.

The following is the summary of Keane Acoustics community mechanical noise study for the City of St. Petersburg. August 11, 2017 David Goodwin Director Planning & Economic Development Department City of St. Petersburg Re: City of St. Petersburg Dear Mr. Goodwin, The following is the summary of Keane Acoustics community

More information

Technical Guide. Installed Sound. Recommended Equalization Procedures. TA-6 Version 1.1 April, 2002

Technical Guide. Installed Sound. Recommended Equalization Procedures. TA-6 Version 1.1 April, 2002 Installed Sound Technical Guide Recommended Equalization Procedures TA-6 Version 1.1 April, 2002 by Christopher Topper Sowden, P.E. Sowden and Associates I have found it interesting that in the 29 years

More information

ARCHITECTURAL ACOUSTICS. Sound. bandshell; Honolulu, HI a passive, architectural system. Ball State Architecture ENVIRONMENTAL SYSTEMS 1 Grondzik 1

ARCHITECTURAL ACOUSTICS. Sound. bandshell; Honolulu, HI a passive, architectural system. Ball State Architecture ENVIRONMENTAL SYSTEMS 1 Grondzik 1 ARCHITECTURAL ACOUSTICS SOUND & HEARING Sound bandshell; Honolulu, HI a passive, architectural system Ball State Architecture ENVIRONMENTAL SYSTEMS 1 Grondzik 1 Sound Can architecture be heard? Most people

More information

COMP 546. Lecture 23. Echolocation. Tues. April 10, 2018

COMP 546. Lecture 23. Echolocation. Tues. April 10, 2018 COMP 546 Lecture 23 Echolocation Tues. April 10, 2018 1 Echos arrival time = echo reflection source departure 0 Sounds travel distance is twice the distance to object. Distance to object Z 2 Recall lecture

More information

A3D Contiguous time-frequency energized sound-field: reflection-free listening space supports integration in audiology

A3D Contiguous time-frequency energized sound-field: reflection-free listening space supports integration in audiology A3D Contiguous time-frequency energized sound-field: reflection-free listening space supports integration in audiology Joe Hayes Chief Technology Officer Acoustic3D Holdings Ltd joe.hayes@acoustic3d.com

More information

Multi-channel Active Control of Axial Cooling Fan Noise

Multi-channel Active Control of Axial Cooling Fan Noise The 2002 International Congress and Exposition on Noise Control Engineering Dearborn, MI, USA. August 19-21, 2002 Multi-channel Active Control of Axial Cooling Fan Noise Kent L. Gee and Scott D. Sommerfeldt

More information

Noise Certification Workshop

Noise Certification Workshop Session2: EPNdB Metric Why is it used in Aircraft Noise Certification? How is it calculated? Alain DEPITRE DGAC - FRANCE Bangkok, 6 to 7 November 2006 1 Human hearing system response The human hearing

More information

FFT 1 /n octave analysis wavelet

FFT 1 /n octave analysis wavelet 06/16 For most acoustic examinations, a simple sound level analysis is insufficient, as not only the overall sound pressure level, but also the frequency-dependent distribution of the level has a significant

More information

ITV CORONATION STREET PRODUCTION FACILITY, TRAFFORD WHARF ROAD ASSESSMENT OF POTENTIAL NOISE & VIBRATION IMPACT OF PROPOSED METROLINK LINE

ITV CORONATION STREET PRODUCTION FACILITY, TRAFFORD WHARF ROAD ASSESSMENT OF POTENTIAL NOISE & VIBRATION IMPACT OF PROPOSED METROLINK LINE ITV CORONATION STREET PRODUCTION FACILITY, TRAFFORD WHARF ROAD ASSESSMENT OF POTENTIAL NOISE & VIBRATION IMPACT OF PROPOSED METROLINK LINE On behalf of: ITV plc Report No. 22396.01v1 October 2014 ITV CORONATION

More information

Binaural Hearing. Reading: Yost Ch. 12

Binaural Hearing. Reading: Yost Ch. 12 Binaural Hearing Reading: Yost Ch. 12 Binaural Advantages Sounds in our environment are usually complex, and occur either simultaneously or close together in time. Studies have shown that the ability to

More information

Physics I Notes: Chapter 13 Sound

Physics I Notes: Chapter 13 Sound Physics I Notes: Chapter 13 Sound I. Properties of Sound A. Sound is the only thing that one can hear! Where do sounds come from?? Sounds are produced by VIBRATING or OSCILLATING OBJECTS! Sound is a longitudinal

More information

ALTERNATING CURRENT (AC)

ALTERNATING CURRENT (AC) ALL ABOUT NOISE ALTERNATING CURRENT (AC) Any type of electrical transmission where the current repeatedly changes direction, and the voltage varies between maxima and minima. Therefore, any electrical

More information

Chapter 16 Sound. Copyright 2009 Pearson Education, Inc.

Chapter 16 Sound. Copyright 2009 Pearson Education, Inc. Chapter 16 Sound 16-6 Interference of Sound Waves; Beats Sound waves interfere in the same way that other waves do in space. 16-6 Interference of Sound Waves; Beats Example 16-12: Loudspeakers interference.

More information

Standard Octaves and Sound Pressure. The superposition of several independent sound sources produces multifrequency noise: i=1

Standard Octaves and Sound Pressure. The superposition of several independent sound sources produces multifrequency noise: i=1 Appendix C Standard Octaves and Sound Pressure C.1 Time History and Overall Sound Pressure The superposition of several independent sound sources produces multifrequency noise: p(t) = N N p i (t) = P i

More information

DESIGN OF VOICE ALARM SYSTEMS FOR TRAFFIC TUNNELS: OPTIMISATION OF SPEECH INTELLIGIBILITY

DESIGN OF VOICE ALARM SYSTEMS FOR TRAFFIC TUNNELS: OPTIMISATION OF SPEECH INTELLIGIBILITY DESIGN OF VOICE ALARM SYSTEMS FOR TRAFFIC TUNNELS: OPTIMISATION OF SPEECH INTELLIGIBILITY Dr.ir. Evert Start Duran Audio BV, Zaltbommel, The Netherlands The design and optimisation of voice alarm (VA)

More information

Lecture PowerPoints. Chapter 12 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 12 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 12 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

You know about adding up waves, e.g. from two loudspeakers. AUDL 4007 Auditory Perception. Week 2½. Mathematical prelude: Adding up levels

You know about adding up waves, e.g. from two loudspeakers. AUDL 4007 Auditory Perception. Week 2½. Mathematical prelude: Adding up levels AUDL 47 Auditory Perception You know about adding up waves, e.g. from two loudspeakers Week 2½ Mathematical prelude: Adding up levels 2 But how do you get the total rms from the rms values of two signals

More information

Perception of low frequencies in small rooms

Perception of low frequencies in small rooms Perception of low frequencies in small rooms Fazenda, BM and Avis, MR Title Authors Type URL Published Date 24 Perception of low frequencies in small rooms Fazenda, BM and Avis, MR Conference or Workshop

More information

THE ATTENUATION OF NOISE ENTERING BUILDINGS USING QUARTER- WAVE RESONATORS: RESULTS FROM A FULL SCALE PROTOTYPE. C.D.Field and F.R.

THE ATTENUATION OF NOISE ENTERING BUILDINGS USING QUARTER- WAVE RESONATORS: RESULTS FROM A FULL SCALE PROTOTYPE. C.D.Field and F.R. THE ATTENUATION OF NOISE ENTERING BUILDINGS USING QUARTER- WAVE RESONATORS: RESULTS FROM A FULL SCALE PROTOTYPE C.D.Field and F.R.Fricke Department of Architectural and Design Science University of Sydney

More information

Lecture PowerPoints. Chapter 12 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 12 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 12 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

INVESTIGATING BINAURAL LOCALISATION ABILITIES FOR PROPOSING A STANDARDISED TESTING ENVIRONMENT FOR BINAURAL SYSTEMS

INVESTIGATING BINAURAL LOCALISATION ABILITIES FOR PROPOSING A STANDARDISED TESTING ENVIRONMENT FOR BINAURAL SYSTEMS 20-21 September 2018, BULGARIA 1 Proceedings of the International Conference on Information Technologies (InfoTech-2018) 20-21 September 2018, Bulgaria INVESTIGATING BINAURAL LOCALISATION ABILITIES FOR

More information

PROFESSIONAL. EdgeMax EM90 and EM180 In-Ceiling Loudspeakers. Design Guide

PROFESSIONAL. EdgeMax EM90 and EM180 In-Ceiling Loudspeakers. Design Guide PROFESSIONAL EdgeMax and In-Ceiling Loudspeakers Design Guide Contents EdgeMax Loudspeaker Overview. 3 Comparison of In-Ceiling and Surface Mounted Loudspeaker Performance. 3 EdgeMax Loudspeaker Performance.

More information

ACOUSTIC BARRIER FOR TRANSFORMER NOISE. Ruisen Ming. SVT Engineering Consultants, Leederville, WA 6007, Australia

ACOUSTIC BARRIER FOR TRANSFORMER NOISE. Ruisen Ming. SVT Engineering Consultants, Leederville, WA 6007, Australia ICSV14 Cairns Australia 9-12 July, 2007 ACOUSTIC BARRIER FOR TRANSFORMER NOISE Ruisen Ming SVT Engineering Consultants, Leederville, WA 6007, Australia Roy.Ming@svt.com.au Abstract In this paper, an acoustic

More information

What is Sound? Part II

What is Sound? Part II What is Sound? Part II Timbre & Noise 1 Prayouandi (2010) - OneOhtrix Point Never PSYCHOACOUSTICS ACOUSTICS LOUDNESS AMPLITUDE PITCH FREQUENCY QUALITY TIMBRE 2 Timbre / Quality everything that is not frequency

More information

Technical Note Vol. 1, No. 10 Use Of The 46120K, 4671 OK, And 4660 Systems in Fixed instaiiation Sound Reinforcement

Technical Note Vol. 1, No. 10 Use Of The 46120K, 4671 OK, And 4660 Systems in Fixed instaiiation Sound Reinforcement Technical Note Vol. 1, No. 10 Use Of The 46120K, 4671 OK, And 4660 Systems in Fixed instaiiation Sound Reinforcement Introduction: For many small and medium scale sound reinforcement applications, preassembled

More information

Real-world attenuation of muff-type hearing protectors: The effect of spectacles

Real-world attenuation of muff-type hearing protectors: The effect of spectacles Real-world attenuation of muff-type hearing protectors: The effect of spectacles Frank Lemstad and Roald Kluge Sinus as, Sandvigå 24 N-7 Stavanger, Norway frank.lemstad@sinusas.no ABSTRACT A study has

More information

ODEON APPLICATION NOTE Calculation of Speech Transmission Index in rooms

ODEON APPLICATION NOTE Calculation of Speech Transmission Index in rooms ODEON APPLICATION NOTE Calculation of Speech Transmission Index in rooms JHR, February 2014 Scope Sufficient acoustic quality of speech communication is very important in many different situations and

More information

XLA 3200 Line Array Loudspeakers

XLA 3200 Line Array Loudspeakers XLA 3200 Line Array Loudspeakers LBC 3200/00, LBC 3201/00, LBC 3210/00 en Product information and installation manual, please see www.boschsecurity.com XLA 3200 Line Array Loudspeakers Table of Contents

More information

NOISE IMPACT ASSESSMENT 2016

NOISE IMPACT ASSESSMENT 2016 Panther Environmental Solutions Ltd, Unit 4, Innovation Centre, Institute of Technology, Green Road, Carlow, Ireland. Mobile: 087-8519284 Telephone /Fax: 059-9134222 Email: info@pantherwms.com Website:

More information

Chapter 5 Window Functions. periodic with a period of N (number of samples). This is observed in table (3.1).

Chapter 5 Window Functions. periodic with a period of N (number of samples). This is observed in table (3.1). Chapter 5 Window Functions 5.1 Introduction As discussed in section (3.7.5), the DTFS assumes that the input waveform is periodic with a period of N (number of samples). This is observed in table (3.1).

More information

AN AUDITORILY MOTIVATED ANALYSIS METHOD FOR ROOM IMPULSE RESPONSES

AN AUDITORILY MOTIVATED ANALYSIS METHOD FOR ROOM IMPULSE RESPONSES Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-), Verona, Italy, December 7-9,2 AN AUDITORILY MOTIVATED ANALYSIS METHOD FOR ROOM IMPULSE RESPONSES Tapio Lokki Telecommunications

More information

SOUND QUALITY EVALUATION OF FAN NOISE BASED ON HEARING-RELATED PARAMETERS SUMMARY INTRODUCTION

SOUND QUALITY EVALUATION OF FAN NOISE BASED ON HEARING-RELATED PARAMETERS SUMMARY INTRODUCTION SOUND QUALITY EVALUATION OF FAN NOISE BASED ON HEARING-RELATED PARAMETERS Roland SOTTEK, Klaus GENUIT HEAD acoustics GmbH, Ebertstr. 30a 52134 Herzogenrath, GERMANY SUMMARY Sound quality evaluation of

More information

Sound All sound begins with a vibrating object Ex. Vibrating tuning fork Vibrating prong sets molecules near it in motion

Sound All sound begins with a vibrating object Ex. Vibrating tuning fork Vibrating prong sets molecules near it in motion Sound All sound begins with a vibrating object Ex. Vibrating tuning fork Vibrating prong sets molecules near it in motion As prong swings right, air molecules in front of the movement are forced closer

More information

EQ s & Frequency Processing

EQ s & Frequency Processing LESSON 9 EQ s & Frequency Processing Assignment: Read in your MRT textbook pages 403-441 This reading will cover the next few lessons Complete the Quiz at the end of this chapter Equalization We will now

More information

Psychoacoustic Cues in Room Size Perception

Psychoacoustic Cues in Room Size Perception Audio Engineering Society Convention Paper Presented at the 116th Convention 2004 May 8 11 Berlin, Germany 6084 This convention paper has been reproduced from the author s advance manuscript, without editing,

More information

CONTENTS. Preface...vii. Acknowledgments...ix. Chapter 1: Behavior of Sound...1. Chapter 2: The Ear and Hearing...11

CONTENTS. Preface...vii. Acknowledgments...ix. Chapter 1: Behavior of Sound...1. Chapter 2: The Ear and Hearing...11 CONTENTS Preface...vii Acknowledgments...ix Chapter 1: Behavior of Sound...1 The Sound Wave...1 Frequency...2 Amplitude...3 Velocity...4 Wavelength...4 Acoustical Phase...4 Sound Envelope...7 Direct, Early,

More information

Combining Subjective and Objective Assessment of Loudspeaker Distortion Marian Liebig Wolfgang Klippel

Combining Subjective and Objective Assessment of Loudspeaker Distortion Marian Liebig Wolfgang Klippel Combining Subjective and Objective Assessment of Loudspeaker Distortion Marian Liebig (m.liebig@klippel.de) Wolfgang Klippel (wklippel@klippel.de) Abstract To reproduce an artist s performance, the loudspeakers

More information

IMPLEMENTATION AND APPLICATION OF A BINAURAL HEARING MODEL TO THE OBJECTIVE EVALUATION OF SPATIAL IMPRESSION

IMPLEMENTATION AND APPLICATION OF A BINAURAL HEARING MODEL TO THE OBJECTIVE EVALUATION OF SPATIAL IMPRESSION IMPLEMENTATION AND APPLICATION OF A BINAURAL HEARING MODEL TO THE OBJECTIVE EVALUATION OF SPATIAL IMPRESSION RUSSELL MASON Institute of Sound Recording, University of Surrey, Guildford, UK r.mason@surrey.ac.uk

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 VIRTUAL AUDIO REPRODUCED IN A HEADREST

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 VIRTUAL AUDIO REPRODUCED IN A HEADREST 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 VIRTUAL AUDIO REPRODUCED IN A HEADREST PACS: 43.25.Lj M.Jones, S.J.Elliott, T.Takeuchi, J.Beer Institute of Sound and Vibration Research;

More information

LINE ARRAY Q&A ABOUT LINE ARRAYS. Question: Why Line Arrays?

LINE ARRAY Q&A ABOUT LINE ARRAYS. Question: Why Line Arrays? Question: Why Line Arrays? First, what s the goal with any quality sound system? To provide well-defined, full-frequency coverage as consistently as possible from seat to seat. However, traditional speaker

More information

The following is the summary of Keane Acoustics acoustical study for the City of St. Petersburg.

The following is the summary of Keane Acoustics acoustical study for the City of St. Petersburg. November 23, 2017 David Goodwin Director Planning & Economic Development Department City of St. Petersburg Re: City of St. Petersburg Dear Mr. Goodwin, The following is the summary of Keane Acoustics acoustical

More information

THE CASE FOR SPECTRAL BASELINE NOISE MONITORING FOR ENVIRONMENTAL NOISE ASSESSMENT.

THE CASE FOR SPECTRAL BASELINE NOISE MONITORING FOR ENVIRONMENTAL NOISE ASSESSMENT. ICSV14 Cairns Australia 9-12 July, 2007 THE CASE FOR SPECTRAL BASELINE NOISE MONITORING FOR ENVIRONMENTAL NOISE ASSESSMENT Michael Caley 1 and John Savery 2 1 Senior Consultant, Savery & Associates Pty

More information

UNIT-II : SIGNAL DEGRADATION IN OPTICAL FIBERS

UNIT-II : SIGNAL DEGRADATION IN OPTICAL FIBERS UNIT-II : SIGNAL DEGRADATION IN OPTICAL FIBERS The Signal Transmitting through the fiber is degraded by two mechanisms. i) Attenuation ii) Dispersion Both are important to determine the transmission characteristics

More information

SOUND. Second, the energy is transferred from the source in the form of a longitudinal sound wave.

SOUND. Second, the energy is transferred from the source in the form of a longitudinal sound wave. SOUND - we can distinguish three aspects of any sound. First, there must be a source for a sound. As with any wave, the source of a sound wave is a vibrating object. Second, the energy is transferred from

More information

An audio circuit collection, Part 3

An audio circuit collection, Part 3 Texas Instruments Incorporated An audio circuit collection, Part 3 By Bruce Carter Advanced Linear Products, Op Amp Applications Introduction This is the third in a series of articles on single-supply

More information

Chapter 15 Supplement HPS. Harmonic Motion

Chapter 15 Supplement HPS. Harmonic Motion Chapter 15 Supplement HPS Harmonic Motion Motion Linear Moves from one place to another Harmonic Motion that repeats over and over again Examples time, speed, acceleration Examples Pendulum Swing Pedaling

More information

Physics 101. Lecture 21 Doppler Effect Loudness Human Hearing Interference of Sound Waves Reflection & Refraction of Sound

Physics 101. Lecture 21 Doppler Effect Loudness Human Hearing Interference of Sound Waves Reflection & Refraction of Sound Physics 101 Lecture 21 Doppler Effect Loudness Human Hearing Interference of Sound Waves Reflection & Refraction of Sound Quiz: Monday Oct. 18; Chaps. 16,17,18(as covered in class),19 CR/NC Deadline Oct.

More information

Digitally controlled Active Noise Reduction with integrated Speech Communication

Digitally controlled Active Noise Reduction with integrated Speech Communication Digitally controlled Active Noise Reduction with integrated Speech Communication Herman J.M. Steeneken and Jan Verhave TNO Human Factors, Soesterberg, The Netherlands herman@steeneken.com ABSTRACT Active

More information

Airborne Sound Insulation

Airborne Sound Insulation Airborne Sound Insulation with XL2-TA Sound Level Meter This application note describes the verification of the airborne sound insulation in buildings with the XL2-TA Sound Level Meter. All measurements

More information

Chapter 16. Waves and Sound

Chapter 16. Waves and Sound Chapter 16 Waves and Sound 16.1 The Nature of Waves 1. A wave is a traveling disturbance. 2. A wave carries energy from place to place. 1 16.1 The Nature of Waves Transverse Wave 16.1 The Nature of Waves

More information

Electricity Supply to Africa and Developing Economies. Challenges and opportunities. Planning for the future in uncertain times

Electricity Supply to Africa and Developing Economies. Challenges and opportunities. Planning for the future in uncertain times Electricity Supply to Africa and Developing Economies. Challenges and opportunities. Planning for the future in uncertain times 765 kv Substation Acoustic Noise Impact Study by Predictive Software and

More information

Sound Waves and Beats

Sound Waves and Beats Sound Waves and Beats Computer 32 Sound waves consist of a series of air pressure variations. A Microphone diaphragm records these variations by moving in response to the pressure changes. The diaphragm

More information

MUS 302 ENGINEERING SECTION

MUS 302 ENGINEERING SECTION MUS 302 ENGINEERING SECTION Wiley Ross: Recording Studio Coordinator Email =>ross@email.arizona.edu Twitter=> https://twitter.com/ssor Web page => http://www.arts.arizona.edu/studio Youtube Channel=>http://www.youtube.com/user/wileyross

More information

Digital Signal Processing Audio Measurements Custom Designed Tools. Loudness measurement in sone (DIN ISO 532B)

Digital Signal Processing Audio Measurements Custom Designed Tools. Loudness measurement in sone (DIN ISO 532B) Loudness measurement in sone (DIN 45631 ISO 532B) Sound can be described with various physical parameters e.g. intensity, pressure or energy. These parameters are very limited to describe the perception

More information

Technical Notes Vol. 1, No Volt Distribution Systems Using JBL Industrial Series Loudspeakers

Technical Notes Vol. 1, No Volt Distribution Systems Using JBL Industrial Series Loudspeakers Technical Notes Vol. 1, No. 2 70-Volt Distribution Systems Using JBL Industrial Series Loudspeakers Theory of Line Distribution Systems In a typical paging, background music, or noise-masking system, many

More information

Keysight Technologies 8 Hints for Making Better Measurements Using RF Signal Generators. Application Note

Keysight Technologies 8 Hints for Making Better Measurements Using RF Signal Generators. Application Note Keysight Technologies 8 Hints for Making Better Measurements Using RF Signal Generators Application Note 02 Keysight 8 Hints for Making Better Measurements Using RF Signal Generators - Application Note

More information

Multichannel level alignment, part I: Signals and methods

Multichannel level alignment, part I: Signals and methods Suokuisma, Zacharov & Bech AES 5th Convention - San Francisco Multichannel level alignment, part I: Signals and methods Pekka Suokuisma Nokia Research Center, Speech and Audio Systems Laboratory, Tampere,

More information

SUMMARY. ) f s Shock wave Sonic boom UNIT. Waves transmit energy. Sound is a longitudinal mechanical wave. KEY CONCEPTS CHAPTER SUMMARY

SUMMARY. ) f s Shock wave Sonic boom UNIT. Waves transmit energy. Sound is a longitudinal mechanical wave. KEY CONCEPTS CHAPTER SUMMARY UNIT D SUMMARY KEY CONCEPTS CHAPTER SUMMARY 9 Waves transmit energy. Crest, trough, amplitude, wavelength Longitudinal and transverse waves Cycle Period, frequency f 1_ T Universal wave equation v fλ Wave

More information

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 4: 7 Feb A. Faulkner.

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 4: 7 Feb A. Faulkner. Perception of pitch BSc Audiology/MSc SHS Psychoacoustics wk 4: 7 Feb 2008. A. Faulkner. See Moore, BCJ Introduction to the Psychology of Hearing, Chapter 5. Or Plack CJ The Sense of Hearing Lawrence Erlbaum,

More information

Additional Reference Document

Additional Reference Document Audio Editing Additional Reference Document Session 1 Introduction to Adobe Audition 1.1.3 Technical Terms Used in Audio Different applications use different sample rates. Following are the list of sample

More information

Psycho-acoustics (Sound characteristics, Masking, and Loudness)

Psycho-acoustics (Sound characteristics, Masking, and Loudness) Psycho-acoustics (Sound characteristics, Masking, and Loudness) Tai-Shih Chi ( 冀泰石 ) Department of Communication Engineering National Chiao Tung University Mar. 20, 2008 Pure tones Mathematics of the pure

More information

5. The Eureka Gold Controls

5. The Eureka Gold Controls Page 1 The Minelab Eureka Gold 5. The Eureka Gold Controls This section gives detailed descriptions of the controls of the Eureka Gold detector and their functionality. Having knowledge of these controls

More information

UNDERWATER SHIP PASSPORT IGNACY GLOZA

UNDERWATER SHIP PASSPORT IGNACY GLOZA UNDERWATER SHIP PASSPORT IGNACY GLOZA Naval University of Gdynia 81-103 Gdynia, Śmidowicza 69, Poland igloza@amw.gdynia.pl For years in the Polish Navy extensive measurements have been made of the underwater-radiated

More information

Active Control of Energy Density in a Mock Cabin

Active Control of Energy Density in a Mock Cabin Cleveland, Ohio NOISE-CON 2003 2003 June 23-25 Active Control of Energy Density in a Mock Cabin Benjamin M. Faber and Scott D. Sommerfeldt Department of Physics and Astronomy Brigham Young University N283

More information

Chapter 14, Sound. 1. When a sine wave is used to represent a sound wave, the crest corresponds to:

Chapter 14, Sound. 1. When a sine wave is used to represent a sound wave, the crest corresponds to: CHAPTER 14 1. When a sine wave is used to represent a sound wave, the crest corresponds to: a. rarefaction b. condensation c. point where molecules vibrate at a right angle to the direction of wave travel

More information

Rec. ITU-R SM RECOMMENDATION ITU-R SM SPECTRA AND BANDWIDTH OF EMISSIONS. (Question ITU-R 76/1)

Rec. ITU-R SM RECOMMENDATION ITU-R SM SPECTRA AND BANDWIDTH OF EMISSIONS. (Question ITU-R 76/1) Rec. ITU-R SM.38-1 1 RECOMMENDATION ITU-R SM.38-1 SPECTRA AND BANDWIDTH OF EMISSIONS (Question ITU-R 76/1) (1948-1951-1953-1956-1959-1963-1966-197-1974-1978-198-1986-199-1994-1999) Rec. ITU-R SM.38-1 The

More information

describe sound as the transmission of energy via longitudinal pressure waves;

describe sound as the transmission of energy via longitudinal pressure waves; 1 Sound-Detailed Study Study Design 2009 2012 Unit 4 Detailed Study: Sound describe sound as the transmission of energy via longitudinal pressure waves; analyse sound using wavelength, frequency and speed

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. Just over two hundred years ago Thomas Young demonstrated the interference of light by illuminating two closely spaced narrow slits with light from a single light source.

More information

THE TEMPORAL and spectral structure of a sound signal

THE TEMPORAL and spectral structure of a sound signal IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 13, NO. 1, JANUARY 2005 105 Localization of Virtual Sources in Multichannel Audio Reproduction Ville Pulkki and Toni Hirvonen Abstract The localization

More information

ANALYTICAL NOISE MODELLING OF A CENTRIFUGAL FAN VALIDATED BY EXPERIMENTAL DATA

ANALYTICAL NOISE MODELLING OF A CENTRIFUGAL FAN VALIDATED BY EXPERIMENTAL DATA ANALYTICAL NOISE MODELLING OF A CENTRIFUGAL FAN VALIDATED BY EXPERIMENTAL DATA Beatrice Faverjon 1, Con Doolan 1, Danielle Moreau 1, Paul Croaker 1 and Nathan Kinkaid 1 1 School of Mechanical and Manufacturing

More information

Chapter 17. The Principle of Linear Superposition and Interference Phenomena

Chapter 17. The Principle of Linear Superposition and Interference Phenomena Chapter 17 The Principle of Linear Superposition and Interference Phenomena 17.1 The Principle of Linear Superposition When the pulses merge, the Slinky assumes a shape that is the sum of the shapes of

More information

PHYS 130 Exam #2 3/26/2009

PHYS 130 Exam #2 3/26/2009 PHYS 130 Exam #2 3/26/2009 Equations you might need: p = F/S v = d/t F = ma vt = 344 + 0.6 (T 20) v = f λ W = FD (f1 f0)/f0 ±V/v nλ = L1 L2 fb = f1 f2 P = E/t I = P/S (Ax/Ay) 2 = Ix/Iy SILx SILy Table

More information

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics Sound Section 1 Preview Section 1 Sound Waves Section 2 Sound Intensity and Resonance Section 3 Harmonics Sound Section 1 TEKS The student is expected to: 7A examine and describe oscillatory motion and

More information

PRELIMINARY STUDY ON THE SPEECH PRIVACY PERFORMANCE OF THE FABPOD

PRELIMINARY STUDY ON THE SPEECH PRIVACY PERFORMANCE OF THE FABPOD PRELIMINARY STUDY ON THE SPEECH PRIVACY PERFORMANCE OF THE FABPOD Xiaojun Qiu 1, Eva Cheng 1, Ian Burnett 1, Nicholas Williams 2, Jane Burry 2 and Mark Burry 2 1 School of Electrical and Computer Engineering

More information

Pipeline Blowdown Noise Levels

Pipeline Blowdown Noise Levels Pipeline Blowdown Noise Levels James Boland 1, Henrik Malker 2, Benjamin Hinze 3 1 SLR Consulting, Acoustics and Vibration, Brisbane, Australia 2 Atkins Global, Acoustics, London, United Kingdom 3 SLR

More information

Silent Transformers to Help Consolidated Edison Meet New York City s Ultrastrict Noise Ordinances

Silent Transformers to Help Consolidated Edison Meet New York City s Ultrastrict Noise Ordinances BY DR. RAMSIS GIRGIS, ABB INC. The Sound of Silence: Silent Transformers to Help Consolidated Edison Meet New York City s Ultrastrict Noise Ordinances S ilence is a source of great strength. Although these

More information

Comparison of Audible Noise Caused by Magnetic Components in Switch-Mode Power Supplies Operating in Burst Mode and Frequency-Foldback Mode

Comparison of Audible Noise Caused by Magnetic Components in Switch-Mode Power Supplies Operating in Burst Mode and Frequency-Foldback Mode Comparison of Audible Noise Caused by Magnetic Components in Switch-Mode Power Supplies Operating in Burst Mode and Frequency-Foldback Mode Laszlo Huber and Milan M. Jovanović Delta Products Corporation

More information

WITHIN GENERATOR APPLICATIONS

WITHIN GENERATOR APPLICATIONS POWER SYSTEMS TOPICS 9 Measuring and Understanding Sound WITHIN GENERATOR APPLICATIONS INTRODUCTION When selecting a generator, there are many factors to consider so as not to negatively impact the existing

More information

The absorption of the light may be intrinsic or extrinsic

The absorption of the light may be intrinsic or extrinsic Attenuation Fiber Attenuation Types 1- Material Absorption losses 2- Intrinsic Absorption 3- Extrinsic Absorption 4- Scattering losses (Linear and nonlinear) 5- Bending Losses (Micro & Macro) Material

More information

14 fasttest. Multitone Audio Analyzer. Multitone and Synchronous FFT Concepts

14 fasttest. Multitone Audio Analyzer. Multitone and Synchronous FFT Concepts Multitone Audio Analyzer The Multitone Audio Analyzer (FASTTEST.AZ2) is an FFT-based analysis program furnished with System Two for use with both analog and digital audio signals. Multitone and Synchronous

More information

Offaly County Council

Offaly County Council Derryclure Landfill Facility, Derryclure, Co. Offaly Annual Monitoring Report Waste Licence Reg. No. W0029-04 Report Date: th October 15 Fitz Scientific Unit 35A, Boyne Business Park, Drogheda, Co. Louth

More information