Slide 4 Now we have the same components that we find in our eye. The analogy is made clear in this slide. Slide 5 Important structures in the eye

Size: px
Start display at page:

Download "Slide 4 Now we have the same components that we find in our eye. The analogy is made clear in this slide. Slide 5 Important structures in the eye"

Transcription

1 Vision 1

2 Slide 2 The obvious analogy for the eye is a camera, and the simplest camera is a pinhole camera: a dark box with light-sensitive film on one side and a pinhole on the other. The image is made by light shining through the pinhole. Rays of light are straight unless they are bent (refracted) by passing through a material like glass: so this makes it obvious why the image is upside down. Slide 3 The pinhole camera passes very little light. To get a brighter image, we can use a lens to form the image. This works by bending the light and we ll see later exactly how this happens. To control the amount of light that gets in, we use the aperture diaphragm. 2

3 Slide 4 Now we have the same components that we find in our eye. The analogy is made clear in this slide Slide 5 Important structures in the eye 3

4 Slide 6 A convex lens will focus light onto a point. If light approaches the lens in nearly parallel rays (as light from a very distant object will do) then the distance from the lens to the focal point (the focal length of the lens) is a measure of the power of the lens. The shorted that distance, the more powerful is the lens. The power is measured in diopters (see slide for calculation). Slide 7 So a lens with a high power will focus the light closer to itself. A powerful lens is more convex than a less powerful lens (it s fatter). Slide 8 Summary of where in the eye refraction happens. Note that most of it is in the cornea, with small contributions from the lens. Note also that we can assess the contribution from the front and back of the lens and of the cornea: the back of the lens is more curved than the front and thus refracts more powerfully; the back of the cornea is concave and thus has a negative refracting power. Most significant of all: the cornea is the major refracting element, and this is because the transition from a low to a high refractive index happens at the front of the cornea. Other refracting surfaces have lower power because there is no transition between a low and a high refractive index. 4

5 Slide 9 Normal visual acuity is defined as shown in the slide. Some people can manage better: 6/6 (or 20/20) vision is simply a useful standard of normal eyesight. Using the simple model of the eye shown here (the reduced eye ), where we ignore the lens for simplicity and put all the refraction in the cornea, we can show that exactly one ray of light from each part of the image will pass through the cornea in a straight line and land on the retina, and that all these straight lines will pass through one point 17mm from the retina. Based on this we can calculate the separation on the retina between two points that we are only just able to distinguish: this separation is about 5 µm, which corresponds to the size of 2-3 photoreceptors (see later slide). Slide 10 There are two common methods of measuring visual acuity, the Snellen chart (made of letters of different sizes) and the Landolt C test shown here. In each case the feature you need to distinguish has a size corresponding to the normal visual acuity (see slide 10) of 1.75mm at 6m (1minute of arc). The test stimuli are designed to be readable to a normal subject at different distances, here 6m and 12m. If you can see at 6m only what a normal subject can see at 12m (and not a smaller one), your visual acuity is defined as 6/12. A Landolt C designed to be seen at 24m would have a gap 7mm wide, and if you could see only that one at 6m your visual acuity would be 6/24 (and so on) Slide 11 Because light rays from close objects are diverging, you need greater refractive power (a thicker, more curved lens) to focus the image of close objects onto the retina. Look at this in conjunction with slide 8: the focal length of the fatter lens is shorter, i.e. its refracting power in diopters is greater. 5

6 Slide 12 When we focus on near objects, our lens changes in shape like the lens shown in slide 12. This is possible because the human lens, when isolated from the eye, assumes a rounded shape. Most of the time it is held stretched by the sclera, pulling on the suspensory ligaments. Focusing on a near object involves contraction of the circular ciliary muscle, which allows the lens to become more curved. This is the mechanism of accommodation. Slide 13 Accommodation is measured in diopters, just like the power of a lens. If you measure the closest point you can focus clearly (called the near point ), in metres, then the inverse of that is your accommodative power in diopters. Slide 14 Accommodative power declines with age because our lens becomes less able to assume its round shape when relaxed. This is because all proteins in our body become stiffer with age. This decline is not very noticeable up to the late 30s (accommodation ~5 diopters, near point ~20cm) because we seldom want to hold anything closer than that. However in the 40s the decline becomes noticeable as (for instance) we have to hold a book further from our eyes in order to read it. 6

7 Slide 15 If the eyeball is the wrong shape (or less commonly, the cornea or lens are the wrong shape) we get a refractive error. In hyperopia, the eyeball cannot focus even on distant objects because the image would land behind the retina (even further behind in the case of near objects). More refracting power is needed to focus on the retina; this can be provided by accommodation (slides 12-16), but is tiring over long periods and the decline in accommodation in age makes hyperopia an increasing problem in an older person. Myopia makes it impossible to focus on distant objects (they are focused in front of the retina) although near ones can be focused on the retina. Slide 16 Refractive errors can be corrected by using lenses to increase or decrease refractive power. In myopia we want to focus further back, and thus to have less refractive power. We thus use a concave lens which has a negative refracting power in diopters. In hyperopia we need to focus further forward, and thus to have more refractive power. This can be done with a convex lens, like those shown in slides 7 and 8, which has a positive refracting power in diopters. Astigmatism is too much or too little refacting power in one axis (horizontal or vertical) relative to the other axis. It can also be corrected with additional lenses (see Seeley if you are curious about astigmatism but I won t be asking you about it in the exam; you should however understand myopia and hyperopia). Slide 17 Aqueous humour is produced behind the iris and flows forward through the pupit into the canal of Schlemm and thence into a vein. If the canal becomes blocked glaucoma can result because pressure approaches arterial pressure. Blood flow through the retina can be blocked leading to blindness. 7

8 Slide 18 The amount of light entering the eye is controlled by the pupil, the round opening in the iris. It gets smaller in bright light, and larger in dim light (just like you d open or close the aperture of a camera to let in more or less light). The iris is controlled by the autonomic nervous system, the sympathetic nerves causing it to dilate and parasympathetic to constrict. Slide 19 Now we move from the optical and muscular components of the eye to the neural components in the retina. This slide shows the neural components of the eye: the retina and the optic nerve, and some associated features Slide 20 This slide shows the basic structure of the retina. The fovea (or fovea centralis, the same thing) is the point on the retina that corresponds to what you re looking at (i.e the point on which your gaze is fixed). The rest of the retina is called the peripheral retina. Note that the photoreceptors (the light-sensitive cells) are on the back of the retina as far as the light is concerned, i.e. light has to go through the retina to reach them. 8

9 Slide 21 A view of the retina through an ophthalmoscope. This shines a light into the eye and makes an image of the retina. Note: (1) the fovea; (2) the entry point of the optic nerve, which is also where the blood vessels enter the eye. All the blood vessels you can see are in front of the photoreceptors, i.e. the might has to go around them in order to reach the photoreceptors. Note that the peripheral retina has many blood vessels, the fovea few. Slide 22 Sections cut through the retina in the periphery and the fovea. Light has to pass through a lot of structures in the peripheral retina before it reaches the photoreceptors. In contrast, in the fovea, everything else is moved aside so that light reaches the photoreceptors directly. 9

10 Slide 23 Two types of phtoreceptor cell, rods and cones. We will go into their different functions in later slides. Where the optic nerve enters the eye, the optic disc, is clearly visible because the blood vessels enter there too. Note that there are no photoreceptors at all in the optic disc. This is the basis for the blind spot phenomenon. If you haven t done the online blind spot experiments (on Blackboard), go and do them. Slide 24 Differences between rods and cones. Make sure you understand these. 10

11 Slide 25 The colour sensitivities of the cone pigments. Slide 26 Deficiencies in distinguishing colours (colloquially, colour blindness ) are caused by missing or abnormal cone pigments. Here, if the red cones are missing, the person will be unable to distinguish colours in the yellow-orange-red range of colours. Practically, this also causes difficulty with some shades of green, and is referred to as red-green anomaly. Slide 27 The Ishihara tests are used to detect colour vision abnormalities. The Ishihara test is constructed by first making one number in blue-yellow contrasting colours (1). Blueyellow colour blindness is very rare so almost everyone will perceive this. Then a different number is made from red-green contrasting colours (2). Combining the two gives a stimulus that will be seen as the number 6 (in this example) by a normal subject, because the redgreen contrast is dominant, but as a 5 by a red-green colour blind subject who can only perceive the blue-yellow contrast. 11

12 Slide 28 The two optic nerves meet at the optic chiasm (named for its X shape, after the Greek letter chi, χ). Some fibres cross over those from the nasal side of the retina (i.e. the side nearer the nose). This means that the information from the left side of each retina (where the image is formed from objects to our right) is processed on the left side of the brain, and vice versa. Slide 29 The primary visual cortex is at the occipital lobe of the brain (at the back). It detects edges and very simple features of what we see. It is Brodmann s area 17. Other areas nearby form the secondary visual cortex; areas in the secondary visual cortex deal with more complex features of images, like colour, shape and 3- dimensional position. The total area of the brain that deals with vision is very large (see shaded area on slide). Slide 30 In the primary visual cortex, a lot of cells (requiring a lot of the surface area of the cortex) are concerned with processing information from the foveal area, in the centre of the retina, which is the only area we can see clearly (for this reason, and also that shown in slide 22). 12

13 Slide 31 The main job of the primary visual cortex is to detect very simple features of the visual image, such as edges. The importance of edge detection in identifying objects is nicely demonstrated by this line drawing. Slides As well as identifying objects, detecting edges is essential to distinguishing shading and also colour of objects. If we can t see an edge between two areas of a different shade, we can t see that they are different. Follow the animated slides of these illusions in the PowerPoint file on the website. Slide 35 Depth perception (judging how far away something is) can be done to a certain extent with one eye ( monocular depth cues ). If something is in front of or behind something else, or larger/smaller than a similar object, or moving relative to another object, we judge it as nearer or further away. 13

14 Slide 36 A well-known illusion using monocular depth cues. Slide 37 Because we have two forwardfacing eyes, we can judge distance based on the relative positions on the retina of objects that are nearer or further away. This is called the binocular disparity mechanism; binocular because it uses both eyes, and disparity because the positions of objects on each retina differ with distance. Slide 38 In the real world, binocular disparity would always be combined with other (monocular) depth cues, but it s possible to make a stimulus that uses only binocular disparity using random dots. The dots in the centre of these images are shifted, but those in the surrounding area are in identical positions. This makes the central square look further away or closer if you fuse the two images. 14

The Human Eye and a Camera 12.1

The Human Eye and a Camera 12.1 The Human Eye and a Camera 12.1 The human eye is an amazing optical device that allows us to see objects near and far, in bright light and dim light. Although the details of how we see are complex, the

More information

EYE. The eye is an extension of the brain

EYE. The eye is an extension of the brain I SEE YOU EYE The eye is an extension of the brain Eye brain proxomity Can you see : the optic nerve bundle? Spinal cord? The human Eye The eye is the sense organ for light. Receptors for light are found

More information

Topic 4: Lenses and Vision. Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic

Topic 4: Lenses and Vision. Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic Topic 4: Lenses and Vision Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic Double Concave Lenses Are thinner and flatter in the middle than around the edges.

More information

Chapter 6 Human Vision

Chapter 6 Human Vision Chapter 6 Notes: Human Vision Name: Block: Human Vision The Humane Eye: 8) 1) 2) 9) 10) 4) 5) 11) 12) 3) 13) 6) 7) Functions of the Eye: 1) Cornea a transparent tissue the iris and pupil; provides most

More information

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5 Lecture 3.5 Vision The eye Image formation Eye defects & corrective lenses Visual acuity Colour vision Vision http://www.wired.com/wiredscience/2009/04/schizoillusion/ Perception of light--- eye-brain

More information

SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to:

SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to: SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to: Eric Hamber Secondary 5025 Willow Street Vancouver, BC Table of Contents A. Chapter 6.1 Parts of the eye.. Parts of

More information

PHGY Physiology. The Process of Vision. SENSORY PHYSIOLOGY Vision. Martin Paré. Visible Light. Ocular Anatomy. Ocular Anatomy.

PHGY Physiology. The Process of Vision. SENSORY PHYSIOLOGY Vision. Martin Paré. Visible Light. Ocular Anatomy. Ocular Anatomy. PHGY 212 - Physiology SENSORY PHYSIOLOGY Vision Martin Paré Assistant Professor of Physiology & Psychology pare@biomed.queensu.ca http://brain.phgy.queensu.ca/pare The Process of Vision Vision is the process

More information

PHGY Physiology. SENSORY PHYSIOLOGY Vision. Martin Paré

PHGY Physiology. SENSORY PHYSIOLOGY Vision. Martin Paré PHGY 212 - Physiology SENSORY PHYSIOLOGY Vision Martin Paré Assistant Professor of Physiology & Psychology pare@biomed.queensu.ca http://brain.phgy.queensu.ca/pare The Process of Vision Vision is the process

More information

12.1. Human Perception of Light. Perceiving Light

12.1. Human Perception of Light. Perceiving Light 12.1 Human Perception of Light Here is a summary of what you will learn in this section: Focussing of light in your eye is accomplished by the cornea, the lens, and the fluids contained in your eye. Light

More information

SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to:

SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to: SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to: Eric Hamber Secondary 5025 Willow Street Vancouver, BC Table of Contents A. Chapter 6.1 Parts of the eye.. Parts of

More information

The eye & corrective lenses

The eye & corrective lenses Phys 102 Lecture 20 The eye & corrective lenses 1 Today we will... Apply concepts from ray optics & lenses Simple optical instruments the camera & the eye Learn about the human eye Accommodation Myopia,

More information

Seeing and Perception. External features of the Eye

Seeing and Perception. External features of the Eye Seeing and Perception Deceives the Eye This is Madness D R Campbell School of Computing University of Paisley 1 External features of the Eye The circular opening of the iris muscles forms the pupil, which

More information

EYE STRUCTURE AND FUNCTION

EYE STRUCTURE AND FUNCTION Name: Class: Date: EYE STRUCTURE AND FUNCTION The eye is the body s organ of sight. It gathers light from the environment and forms an image on specialized nerve cells on the retina. Vision occurs when

More information

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS-GRADE: VIII OPTICAL INSTRUMENTS

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS-GRADE: VIII OPTICAL INSTRUMENTS L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION - 2016-17 PHYSICS-GRADE: VIII OPTICAL INSTRUMENTS SIMPLE MICROSCOPE A simple microscope consists of a single convex lens of a short focal length. The object

More information

Class 10 Science NCERT Exemplar Solutions Human Eye and Colourful World

Class 10 Science NCERT Exemplar Solutions Human Eye and Colourful World Class 10 Science NCERT Exemplar Solutions Human Eye and Colourful World Short Answer Questions Question 1. A student sitting at the back of the classroom cannot read clearly the letters written on the

More information

Science 8 Unit 2 Pack:

Science 8 Unit 2 Pack: Science 8 Unit 2 Pack: Name Page 0 Section 4.1 : The Properties of Waves Pages By the end of section 4.1 you should be able to understand the following: Waves are disturbances that transmit energy from

More information

Chapter Human Vision

Chapter Human Vision Chapter 6 6.1 Human Vision How Light Enters the Eye Light enters the eye through the pupil. The pupil appears dark because light passes through it without reflecting back Pupil Iris = Coloured circle of

More information

November 14, 2017 Vision: photoreceptor cells in eye 3 grps of accessory organs 1-eyebrows, eyelids, & eyelashes 2- lacrimal apparatus:

November 14, 2017 Vision: photoreceptor cells in eye 3 grps of accessory organs 1-eyebrows, eyelids, & eyelashes 2- lacrimal apparatus: Vision: photoreceptor cells in eye 3 grps of accessory organs 1-eyebrows, eyelids, & eyelashes eyebrows: protection from debris & sun eyelids: continuation of skin, protection & lubrication eyelashes:

More information

III: Vision. Objectives:

III: Vision. Objectives: III: Vision Objectives: Describe the characteristics of visible light, and explain the process by which the eye transforms light energy into neural. Describe how the eye and the brain process visual information.

More information

2 The First Steps in Vision

2 The First Steps in Vision 2 The First Steps in Vision 2 The First Steps in Vision A Little Light Physics Eyes That See light Retinal Information Processing Whistling in the Dark: Dark and Light Adaptation The Man Who Could Not

More information

Chapter 25: Applied Optics. PHY2054: Chapter 25

Chapter 25: Applied Optics. PHY2054: Chapter 25 Chapter 25: Applied Optics PHY2054: Chapter 25 1 Operation of the Eye 24 mm PHY2054: Chapter 25 2 Essential parts of the eye Cornea transparent outer structure Pupil opening for light Lens partially focuses

More information

Biology 70 Slides for Lecture 1 Fall 2007

Biology 70 Slides for Lecture 1 Fall 2007 Biology 70 Part II Sensory Systems www.biology.ucsc.edu 1 2 intensity vs spatial position (image formation) color 3 4 motion depth (monocular) 5 6 1 depth (binocular) 1. In the lectures on perception we

More information

Refraction of Light. Refraction of Light

Refraction of Light. Refraction of Light 1 Refraction of Light Activity: Disappearing coin Place an empty cup on the table and drop a penny in it. Look down into the cup so that you can see the coin. Move back away from the cup slowly until the

More information

The Eye. Nakhleh Abu-Yaghi, M.B.B.S Ophthalmology Division

The Eye. Nakhleh Abu-Yaghi, M.B.B.S Ophthalmology Division The Eye Nakhleh Abu-Yaghi, M.B.B.S Ophthalmology Division Coats of the Eyeball 1- OUTER FIBROUS COAT is made up of : Posterior opaque part 2-THE SCLERA the dense white part 1- THE CORNEA the anterior

More information

Aspects of Vision. Senses

Aspects of Vision. Senses Lab is modified from Meehan (1998) and a Science Kit lab 66688 50. Vision is the act of seeing; vision involves the transmission of the physical properties of an object from an object, through the eye,

More information

EYE ANATOMY. Multimedia Health Education. Disclaimer

EYE ANATOMY. Multimedia Health Education. Disclaimer Disclaimer This movie is an educational resource only and should not be used to manage your health. The information in this presentation has been intended to help consumers understand the structure and

More information

Sense Organs (Eye) The eye is the sense organ of sight. The eye is shaped like a ball and is located in bony

Sense Organs (Eye) The eye is the sense organ of sight. The eye is shaped like a ball and is located in bony Sense Organs (Eye) The eye is the sense organ of sight. The eye is shaped like a ball and is located in bony sockets in the skull. It is held in place by six muscles which are joined to the outside of

More information

Exam 3--PHYS 151--S15

Exam 3--PHYS 151--S15 Name: Class: Date: Exam 3--PHYS 151--S15 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Consider this diagram of the eye and answer the following questions.

More information

Vision. By: Karen, Jaqui, and Jen

Vision. By: Karen, Jaqui, and Jen Vision By: Karen, Jaqui, and Jen Activity: Directions: Stare at the black dot in the center of the picture don't look at anything else but the black dot. When we switch the picture you can look around

More information

THE EYE. People of Asian descent have an EPICANTHIC FOLD in the upper eyelid; no functional difference.

THE EYE. People of Asian descent have an EPICANTHIC FOLD in the upper eyelid; no functional difference. THE EYE The eye is in the orbit of the skull for protection. Within the orbit are 6 extrinsic eye muscles, which move the eye. There are 4 cranial nerves: Optic (II), Occulomotor (III), Trochlear (IV),

More information

Lenses. Images. Difference between Real and Virtual Images

Lenses. Images. Difference between Real and Virtual Images Linear Magnification (m) This is the factor by which the size of the object has been magnified by the lens in a direction which is perpendicular to the axis of the lens. Linear magnification can be calculated

More information

Lenses. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved.

Lenses. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. PHYSICS NOTES ON A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. Types of There are two types of basic lenses. (1.)

More information

Photography (cont d)

Photography (cont d) Lecture 13 Ch. 4 Photography continued Ch. 5 The Eye Feb. 23, 2010 Exams will be back on Feb. 25 Homework 5 is due Feb. 25 Read all of Ch. 5. on The Eye. 1 Photography (cont d) Polarizing and haze filters

More information

Visual Perception. Readings and References. Forming an image. Pinhole camera. Readings. Other References. CSE 457, Autumn 2004 Computer Graphics

Visual Perception. Readings and References. Forming an image. Pinhole camera. Readings. Other References. CSE 457, Autumn 2004 Computer Graphics Readings and References Visual Perception CSE 457, Autumn Computer Graphics Readings Sections 1.4-1.5, Interactive Computer Graphics, Angel Other References Foundations of Vision, Brian Wandell, pp. 45-50

More information

INSTRUCTORS GUIDE FOR THE HUMAN EYE AND VISION

INSTRUCTORS GUIDE FOR THE HUMAN EYE AND VISION INSTRUCTORS GUIDE FOR THE HUMAN EYE AND VISION Modern Miracle Medical Machines Dyan McBride Based on similar lessons developed by the Hartmut Wiesner & Physics Education Group, LMU Munich Our most important

More information

The Special Senses: Vision

The Special Senses: Vision OLLI Lecture 5 The Special Senses: Vision Vision The eyes are the sensory organs for vision. They collect light waves through their photoreceptors (located in the retina) and transmit them as nerve impulses

More information

30 Lenses. Lenses change the paths of light.

30 Lenses. Lenses change the paths of light. Lenses change the paths of light. A light ray bends as it enters glass and bends again as it leaves. Light passing through glass of a certain shape can form an image that appears larger, smaller, closer,

More information

Chapter Six Chapter Six

Chapter Six Chapter Six Chapter Six Chapter Six Vision Sight begins with Light The advantages of electromagnetic radiation (Light) as a stimulus are Electromagnetic energy is abundant, travels VERY quickly and in fairly straight

More information

OPTICAL SYSTEMS OBJECTIVES

OPTICAL SYSTEMS OBJECTIVES 101 L7 OPTICAL SYSTEMS OBJECTIVES Aims Your aim here should be to acquire a working knowledge of the basic components of optical systems and understand their purpose, function and limitations in terms

More information

The Eye and Vision. Activities: Linda Shore, Ed.D. Exploratorium Teacher Institute Exploratorium, all rights reserved

The Eye and Vision. Activities: Linda Shore, Ed.D. Exploratorium Teacher Institute Exploratorium, all rights reserved The Eye and Vision By Linda S. Shore, Ed.D. Director,, San Francisco, California, United States lindas@exploratorium.edu Activities: Film Can Eyeglasses a pinhole can help you see better Vessels using

More information

LO - Lab #06 - The Amazing Human Eye

LO - Lab #06 - The Amazing Human Eye LO - Lab #06 - In this lab you will examine and model one of the most amazing optical systems you will ever encounter: the human eye. You might find it helpful to review the anatomy and function of the

More information

1. What are the components of your nervous system? 2. How do telescopes and human eyes work?

1. What are the components of your nervous system? 2. How do telescopes and human eyes work? Chapter 18 Vision and Hearing Although small, your eyes and ears are amazingly important and complex organs. Do you know how your eyes and ears work? Scientists have learned enough about these organs to

More information

Yokohama City University lecture INTRODUCTION TO HUMAN VISION Presentation notes 7/10/14

Yokohama City University lecture INTRODUCTION TO HUMAN VISION Presentation notes 7/10/14 Yokohama City University lecture INTRODUCTION TO HUMAN VISION Presentation notes 7/10/14 1. INTRODUCTION TO HUMAN VISION Self introduction Dr. Salmon Northeastern State University, Oklahoma. USA Teach

More information

HW- Finish your vision book!

HW- Finish your vision book! March 1 Table of Contents: 77. March 1 & 2 78. Vision Book Agenda: 1. Daily Sheet 2. Vision Notes and Discussion 3. Work on vision book! EQ- How does vision work? Do Now 1.Find your Vision Sensation fill-in-theblanks

More information

Special Senses. Important Concepts. Anatomy of the Eye. Anatomy of the Eye. Biol 219 Lecture 17 Vision Fall The Eye and Vision

Special Senses. Important Concepts. Anatomy of the Eye. Anatomy of the Eye. Biol 219 Lecture 17 Vision Fall The Eye and Vision Special Senses The Eye and Vision Important Concepts Describe the structures of the eye and the role of each structure in vision. Trace the pathway for vis ion from the retina to the visual cortex. Explain

More information

Unit 3: Energy On the Move

Unit 3: Energy On the Move 14 14 Table of Contents Unit 3: Energy On the Move Chapter 14: Mirrors and Lenses 14.1: Mirrors 14.2: Lenses 14.3: Optical Instruments 14.1 Mirrors How do you use light to see? When light travels from

More information

12.1. Human Perception of Light. Perceiving Light

12.1. Human Perception of Light. Perceiving Light 12.1 Human Perception of Light Here is a summary of what you will learn in this section: Focussing of light in your eye is accomplished by the cornea, the lens, and the fluids contained in your eye. Light

More information

Objectives. 3. Visual acuity. Layers of the. eye ball. 1. Conjunctiva : is. three quarters. posteriorly and

Objectives. 3. Visual acuity. Layers of the. eye ball. 1. Conjunctiva : is. three quarters. posteriorly and OCULAR PHYSIOLOGY (I) Dr.Ahmed Al Shaibani Lab.2 Oct.2013 Objectives 1. Review of ocular anatomy (Ex. after image) 2. Visual pathway & field (Ex. Crossed & uncrossed diplopia, mechanical stimulation of

More information

The Human Brain and Senses: Memory

The Human Brain and Senses: Memory The Human Brain and Senses: Memory Methods of Learning Learning - There are several types of memory, and each is processed in a different part of the brain. Remembering Mirror Writing Today we will be.

More information

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 35 Lecture RANDALL D. KNIGHT Chapter 35 Optical Instruments IN THIS CHAPTER, you will learn about some common optical instruments and

More information

Sensory receptors External internal stimulus change detectable energy transduce action potential different strengths different frequencies

Sensory receptors External internal stimulus change detectable energy transduce action potential different strengths different frequencies General aspects Sensory receptors ; respond to changes in the environment. External or internal environment. A stimulus is a change in the environmental condition which is detectable by a sensory receptor

More information

Visual Perception of Images

Visual Perception of Images Visual Perception of Images A processed image is usually intended to be viewed by a human observer. An understanding of how humans perceive visual stimuli the human visual system (HVS) is crucial to the

More information

The Human Brain and Senses: Memory

The Human Brain and Senses: Memory The Human Brain and Senses: Memory Methods of Learning Methods of Learning Learning The acquisition of new knowledge and skills. There are several types of memory, and each is processed in a different

More information

sclera pupil What happens to light that enters the eye?

sclera pupil What happens to light that enters the eye? Human Vision Textbook pages 202 215 Before You Read Some people can see things clearly from a great distance. Other people can see things clearly only when they are nearby. Why might this be? Write your

More information

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

More information

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc.

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc. Chapter 24 Geometrical Optics Lenses convex (converging) concave (diverging) Mirrors Ray Tracing for Mirrors We use three principal rays in finding the image produced by a curved mirror. The parallel ray

More information

Eye. Eye Major structural layer of the wall of the eye is a thick layer of dense C.T.; that layer has two parts:

Eye. Eye Major structural layer of the wall of the eye is a thick layer of dense C.T.; that layer has two parts: General aspects Sensory receptors ; External or internal environment. A stimulus is a change in the environmental condition which is detectable by a sensory receptor 1 Major structural layer of the wall

More information

Chapter 11 Lesson 4 THE EYE

Chapter 11 Lesson 4 THE EYE Chapter 11 Lesson 4 THE EYE Eye Openers Museum of Vision You need a couple blank sheets of paper. Label each side #1 How We See #2 Binocular Vision #3 Optical Illusions #4 Persistence of Vision On Packet

More information

Lecture 8. Human Information Processing (1) CENG 412-Human Factors in Engineering May

Lecture 8. Human Information Processing (1) CENG 412-Human Factors in Engineering May Lecture 8. Human Information Processing (1) CENG 412-Human Factors in Engineering May 30 2009 1 Outline Visual Sensory systems Reading Wickens pp. 61-91 2 Today s story: Textbook page 61. List the vision-related

More information

Visual Effects of Light. Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana

Visual Effects of Light. Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana Visual Effects of Light Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana Light is life If sun would turn off the life on earth would

More information

Coarse hairs that overlie the supraorbital margins Functions include: Shading the eye Preventing perspiration from reaching the eye

Coarse hairs that overlie the supraorbital margins Functions include: Shading the eye Preventing perspiration from reaching the eye SPECIAL SENSES (INDERA KHUSUS) Dr.Milahayati Daulay Departemen Fisiologi FK USU Eye and Associated Structures 70% of all sensory receptors are in the eye Most of the eye is protected by a cushion of fat

More information

Chapter 2: The Beginnings of Perception

Chapter 2: The Beginnings of Perception Chapter 2: The Beginnings of Perception We ll see the first three steps of the perceptual process for vision https:// 49.media.tumblr.co m/ 87423d97f3fbba8fa4 91f2f1bfbb6893/ tumblr_o1jdiqp4tc1 qabbyto1_500.gif

More information

Chapter 25. Optical Instruments

Chapter 25. Optical Instruments Chapter 25 Optical Instruments Optical Instruments Analysis generally involves the laws of reflection and refraction Analysis uses the procedures of geometric optics To explain certain phenomena, the wave

More information

PHYS:1200 LECTURE 31 LIGHT AND OPTICS (3)

PHYS:1200 LECTURE 31 LIGHT AND OPTICS (3) 1 PHYS:1200 LECTURE 31 LIGHT AND OPTICS (3) In lecture 30, we applied the law of reflection to understand how images are formed using plane and curved mirrors. In this lecture we will use the law of refraction

More information

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 27 Physics, 4 th Edition James S. Walker Chapter 27 Optical Instruments Units of Chapter 27 The Human Eye and the Camera Lenses in Combination and Corrective Optics The Magnifying

More information

Life Science Chapter 2 Study Guide

Life Science Chapter 2 Study Guide Key concepts and definitions Waves and the Electromagnetic Spectrum Wave Energy Medium Mechanical waves Amplitude Wavelength Frequency Speed Properties of Waves (pages 40-41) Trough Crest Hertz Electromagnetic

More information

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7)

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7) Lenses- Worksheet 1. Look at the lenses in front of you and try to distinguish the different types of lenses? Describe each type and record its characteristics. 2. Using the lenses in front of you, look

More information

Chapter 20 Human Vision

Chapter 20 Human Vision Chapter 20 GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Characterize the physical parameters that are significant in human vision. Visual

More information

Human Eye and Colourful World Science. Intext Exercise 1

Human Eye and Colourful World Science. Intext Exercise 1 Intext Exercise 1 Question 1: What is meant by power of accommodation of the eye? Solution 1: When the ciliary muscles are relaxed, the eye lens becomes thin, the focal length increases, and the distant

More information

ABO Certification Training. Part I: Anatomy and Physiology

ABO Certification Training. Part I: Anatomy and Physiology ABO Certification Training Part I: Anatomy and Physiology Major Ocular Structures Centralis Nerve Major Ocular Structures The Cornea Cornea Layers Epithelium Highly regenerative: Cells reproduce so rapidly

More information

Vision. Definition. Sensing of objects by the light reflected off the objects into our eyes

Vision. Definition. Sensing of objects by the light reflected off the objects into our eyes Vision Vision Definition Sensing of objects by the light reflected off the objects into our eyes Only occurs when there is the interaction of the eyes and the brain (Perception) What is light? Visible

More information

Introduction. The Human Eye. Physics 1CL OPTICAL INSTRUMENTS AND THE EYE SPRING 2010

Introduction. The Human Eye. Physics 1CL OPTICAL INSTRUMENTS AND THE EYE SPRING 2010 Introduction Most of the subject material in this lab can be found in Chapter 25 of Serway and Faughn. In this lab, you will make images of images using lenses and the optical bench (Experiment A). IT

More information

Exemplar for Internal Achievement Standard Level 2

Exemplar for Internal Achievement Standard Level 2 Exemplar for internal assessment resource Physics 2.2A for Achievement Standard 91169 Exemplar for Internal Achievement Standard 91169 Level 2 This exemplar supports assessment against: Achievement Standard

More information

Psych 333, Winter 2008, Instructor Boynton, Exam 1

Psych 333, Winter 2008, Instructor Boynton, Exam 1 Name: Class: Date: Psych 333, Winter 2008, Instructor Boynton, Exam 1 Multiple Choice There are 35 multiple choice questions worth one point each. Identify the letter of the choice that best completes

More information

Types of lenses. Shown below are various types of lenses, both converging and diverging.

Types of lenses. Shown below are various types of lenses, both converging and diverging. Types of lenses Shown below are various types of lenses, both converging and diverging. Any lens that is thicker at its center than at its edges is a converging lens with positive f; and any lens that

More information

PSY 214 Lecture # (09/14/2011) (Introduction to Vision) Dr. Achtman PSY 214. Lecture 4 Topic: Introduction to Vision Chapter 3, pages 44-54

PSY 214 Lecture # (09/14/2011) (Introduction to Vision) Dr. Achtman PSY 214. Lecture 4 Topic: Introduction to Vision Chapter 3, pages 44-54 Corrections: A correction needs to be made to NTCO3 on page 3 under excitatory transmitters. It is possible to excite a neuron without sending information to another neuron. For example, in figure 2.12

More information

Refraction, Lenses, and Prisms

Refraction, Lenses, and Prisms CHAPTER 16 14 SECTION Sound and Light Refraction, Lenses, and Prisms KEY IDEAS As you read this section, keep these questions in mind: What happens to light when it passes from one medium to another? How

More information

Visual Effects of. Light. Warmth. Light is life. Sun as a deity (god) If sun would turn off the life on earth would extinct

Visual Effects of. Light. Warmth. Light is life. Sun as a deity (god) If sun would turn off the life on earth would extinct Visual Effects of Light Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana Light is life If sun would turn off the life on earth would

More information

Mastery. Chapter Content. What is light? CHAPTER 11 LESSON 1 C A

Mastery. Chapter Content. What is light? CHAPTER 11 LESSON 1 C A Chapter Content Mastery What is light? LESSON 1 Directions: Use the letters on the diagram to identify the parts of the wave listed below. Write the correct letters on the line provided. 1. amplitude 2.

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

More information

General Physics - E&M (PHY 1308) - Lecture Notes. General Physics - E&M (PHY 1308) Lecture Notes

General Physics - E&M (PHY 1308) - Lecture Notes. General Physics - E&M (PHY 1308) Lecture Notes General Physics - E&M (PHY 1308) Lecture Notes Lecture 036: Application of Lenses - the Human Eye SteveSekula, 1 December 2010 (created 30 November 2010) Goals of this lecture no tags conclude the discussion

More information

Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2)

Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2) Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2) Lecture 5 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Spring 2015 1 Summary of last

More information

The eye* The eye is a slightly asymmetrical globe, about an inch in diameter. The front part of the eye (the part you see in the mirror) includes:

The eye* The eye is a slightly asymmetrical globe, about an inch in diameter. The front part of the eye (the part you see in the mirror) includes: The eye* The eye is a slightly asymmetrical globe, about an inch in diameter. The front part of the eye (the part you see in the mirror) includes: The iris (the pigmented part) The cornea (a clear dome

More information

Retina. Convergence. Early visual processing: retina & LGN. Visual Photoreptors: rods and cones. Visual Photoreptors: rods and cones.

Retina. Convergence. Early visual processing: retina & LGN. Visual Photoreptors: rods and cones. Visual Photoreptors: rods and cones. Announcements 1 st exam (next Thursday): Multiple choice (about 22), short answer and short essay don t list everything you know for the essay questions Book vs. lectures know bold terms for things that

More information

Physics of the Eye *

Physics of the Eye * OpenStax-CNX module: m42482 1 Physics of the Eye * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Explain the image formation by

More information

3. Study the diagram given below and answer the questions that follow it:

3. Study the diagram given below and answer the questions that follow it: CH- Human Eye and Colourful World 1. A 14-year old student is not able to see clearly the questions written on the blackboard placed at a distance of 5 m from him. (a) Name the defect of vision he is suffering

More information

Chapter 11 Human Eye and Colourful World Question 1: What is meant by power of accommodation of the eye? When the ciliary muscles are relaxed, the eye lens becomes thin, the focal length increases, and

More information

Vision and Color. Reading. Optics, cont d. Lenses. d d f. Brian Curless CSEP 557 Fall Good resources:

Vision and Color. Reading. Optics, cont d. Lenses. d d f. Brian Curless CSEP 557 Fall Good resources: Reading Good resources: Vision and Color Brian Curless CSEP 557 Fall 2016 Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Wandell. Foundations

More information

Vision and Color. Brian Curless CSEP 557 Fall 2016

Vision and Color. Brian Curless CSEP 557 Fall 2016 Vision and Color Brian Curless CSEP 557 Fall 2016 1 Reading Good resources: Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Wandell. Foundations

More information

Grade 8. Light and Optics. Unit exam

Grade 8. Light and Optics. Unit exam Grade 8 Light and Optics Unit exam Unit C - Light and Optics 1. Over the years many scientists have contributed to our understanding of light. All the properties listed below about light are correct except:

More information

The Human Visual System. Lecture 1. The Human Visual System. The Human Eye. The Human Retina. cones. rods. horizontal. bipolar. amacrine.

The Human Visual System. Lecture 1. The Human Visual System. The Human Eye. The Human Retina. cones. rods. horizontal. bipolar. amacrine. Lecture The Human Visual System The Human Visual System Retina Optic Nerve Optic Chiasm Lateral Geniculate Nucleus (LGN) Visual Cortex The Human Eye The Human Retina Lens rods cones Cornea Fovea Optic

More information

Further reading. 1. Visual perception. Restricting the light. Forming an image. Angel, section 1.4

Further reading. 1. Visual perception. Restricting the light. Forming an image. Angel, section 1.4 Further reading Angel, section 1.4 Glassner, Principles of Digital mage Synthesis, sections 1.1-1.6. 1. Visual perception Spencer, Shirley, Zimmerman, and Greenberg. Physically-based glare effects for

More information

Reading. 1. Visual perception. Outline. Forming an image. Optional: Glassner, Principles of Digital Image Synthesis, sections

Reading. 1. Visual perception. Outline. Forming an image. Optional: Glassner, Principles of Digital Image Synthesis, sections Reading Optional: Glassner, Principles of Digital mage Synthesis, sections 1.1-1.6. 1. Visual perception Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA, 1995. Research papers:

More information

Vision. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 13. Vision. Vision

Vision. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 13. Vision. Vision PSYCHOLOGY (8th Edition, in Modules) David Myers PowerPoint Slides Aneeq Ahmad Henderson State University Worth Publishers, 2007 1 Vision Module 13 2 Vision Vision The Stimulus Input: Light Energy The

More information

Physics 11. Unit 8 Geometric Optics Part 2

Physics 11. Unit 8 Geometric Optics Part 2 Physics 11 Unit 8 Geometric Optics Part 2 (c) Refraction (i) Introduction: Snell s law Like water waves, when light is traveling from one medium to another, not only does its wavelength, and in turn the

More information

INTERNATIONAL TURKISH HOPE SCHOOL ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY CO-ORDINATION CLASS 09 and 10 Name :... Date :...

INTERNATIONAL TURKISH HOPE SCHOOL ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY CO-ORDINATION CLASS 09 and 10 Name :... Date :... 1 P a g e 2 P a g e 3 P a g e 4 P a g e 5 P a g e 6 P a g e 7 P a g e 8 P a g e 9 P a g e 10 P a g e Name :... Date :... 11 P a g e Name :... Date :... 12 P a g e 13 P a g e 14 P a g e play important role

More information

The Physiology of the Senses Lecture 1 - The Eye

The Physiology of the Senses Lecture 1 - The Eye The Physiology of the Senses Lecture 1 - The Eye www.tutis.ca/senses/ Contents Objectives... 2 Introduction... 2 Accommodation... 3 The Iris... 4 The Cells in the Retina... 5 Receptive Fields... 8 The

More information

Getting light to imager. Capturing Images. Depth and Distance. Ideal Imaging. CS559 Lecture 2 Lights, Cameras, Eyes

Getting light to imager. Capturing Images. Depth and Distance. Ideal Imaging. CS559 Lecture 2 Lights, Cameras, Eyes CS559 Lecture 2 Lights, Cameras, Eyes Last time: what is an image idea of image-based (raster representation) Today: image capture/acquisition, focus cameras and eyes displays and intensities Corrected

More information

Refraction Phenomena Apparent Depth & Volume

Refraction Phenomena Apparent Depth & Volume Refraction Phenomena Apparent Depth & Volume Refraction can change the perception of depth and volume because the apparent path of light does not equal the actual path of light. 1 Underwater Vision Atmospheric

More information

Introduction. Strand F Unit 3: Optics. Learning Objectives. Introduction. At the end of this unit you should be able to;

Introduction. Strand F Unit 3: Optics. Learning Objectives. Introduction. At the end of this unit you should be able to; Learning Objectives At the end of this unit you should be able to; Identify converging and diverging lenses from their curvature Construct ray diagrams for converging and diverging lenses in order to locate

More information