Midterm Review. Image Processing CSE 166 Lecture 10

Size: px
Start display at page:

Download "Midterm Review. Image Processing CSE 166 Lecture 10"

Transcription

1 Midterm Review Image Processing CSE 166 Lecture 10

2 Topics covered Image acquisition, geometric transformations, and image interpolation Intensity transformations Spatial filtering Fourier transform and filtering in the frequency domain Image restoration Color image processing CSE 166, Fall

3 Image acquisition CSE 166, Fall

4 Geometric transformations CSE 166, Fall

5 Intensity transformations Contrast stretching function Thresholding function CSE 166, Fall

6 Intensity transformations Some basic transformation functions CSE 166, Fall

7 Gamma transformation CSE 166, Fall

8 Gamma transformation Dark image γ < 1 CSE 166, Fall

9 Gamma transformation Light image γ > 1 CSE 166, Fall

10 Piecewise linear transformations Contrast stretching Intensity level slicing Bit plane slicing CSE 166, Fall

11 Contrast stretching CSE 166, Fall

12 Intensity level slicing CSE 166, Fall

13 Bit plane slicing CSE 166, Fall

14 Histogram Similar to probability density function (pdf) CSE 166, Fall

15 Histogram equalization CSE 166, Fall

16 Histogram equalization CSE 166, Fall

17 Histogram equalization CSE 166, Fall

18 Spatial filtering (2D) CSE 166, Fall

19 Correlation and convolution (2D) CSE 166, Fall

20 Smoothing kernels Average (box kernel) Weighted average (Gaussian kernel) CSE 166, Fall

21 Smoothing with box kernel Input image 3x3 11x11 21x21 CSE 166, Fall

22 Smoothing with Gaussian kernel Standard deviation σ Percent of total volume under surface Volume under surface greater than 3σ is negligible CSE 166, Fall

23 Smoothing with Gaussian kernel Input image σ = 3.5 σ = 7 21x21 43x43 CSE 166, Fall

24 Derivatives CSE 166, Fall

25 Sharpening filters CSE 166, Fall

26 Review Complex numbers CSE 166, Fall

27 Overview: Image processing in the frequency domain Image in spatial domain f(x,y) Fourier transform Image in frequency domain F(u,v) Image in spatial domain g(x,y) Jean Baptiste Joseph Fourier Inverse Fourier transform Frequency domain processing Image in frequency domain G(u,v) CSE 166, Fall

28 1D Fourier series Sines and cosines Period T Weighted by magnitude Shifted by phase Periodic function CSE 166, Fall

29 Sampling CSE 166, Fall

30 Sampling Fourier transform of function Fourier transforms of sampled function Over sampled Critically sampled 1/ΔT Under sampled CSE 166, Fall

31 The sampling theorem Fourier transform of function Fourier transform of sampled function Critically sampled CSE 166, Fall

32 Recovering F(μ) from ~ F(μ) Fourier transform of sampled function Over sampled Ideal lowpass filter Product of above Recovered CSE 166, Fall

33 Aliasing Continuous Discrete Under sampled Alias: a false identity Different Identical Over sampled Sampled at same rate CSE 166, Fall

34 Aliasing 1D Original 2D Aliasing CSE 166, Fall

35 Fourier transform of sampled function and extracting one period Over sampled Under sampled 1D 2D Recovered m max Footprint of a 2-D ideal lowpass (box) filter v max v ass Imperfect recovery v due to interference m CSE 166, Fall m

36 Centering the DFT 1D 2D In MATLAB, use fftshift and ifftshift CSE 166, Fall

37 Centering the DFT Original DFT (look at corners) Shifted DFT Log of shifted DFT CSE 166, Fall

38 Contributions of magnitude and phase to image formation Phase IDFT: Phase only (zero magnitude) IDFT: Magnitude only (zero phase) IDFT: Boy magnitude and rectangle phase IDFT: Rectangle magnitude CSE 166, Fall 2017 and boy phase 38

39 Filtering using convolution theorem Filtering in spatial domain using convolution expected result Filtering in frequency domain using product without zero padding wraparound error CSE 166, Fall

40 Filtering using convolution theorem Zero padding Filtering in frequency domain using product with zero padding Fourier transform Product no wraparound error Inverse Fourier transform CSE 166, Fall 2017 Gaussian lowpass filter in frequency domain 40

41 Filtering in the frequency domain Ideal lowpass filter (LPF) Frequency domain CSE 166, Fall

42 Filtering in the frequency domain Ideal lowpass filter (LPF) Spatial domain H(u,v) h(x,y) CSE 166, Fall

43 Filtering in the frequency domain Gaussian lowpass filter (LPF) CSE 166, Fall

44 Filtering in the frequency domain Butterworth lowpass filter (LPF) CSE 166, Fall

45 Filtering in the frequency domain Ideal LPF Gaussian LPF Butterworth LPF CSE 166, Fall

46 Highpass filter (HPF) Frequency domain Ideal HPF Gaussian HPF Butterworth HPF CSE 166, Fall

47 Highpass filter (HPF) Spatial domain Ideal HPF Gaussian HPF Butterworth HPF CSE 166, Fall

48 Filtering in the frequency domain Ideal HPF Gaussian HPF Butterworth HPF CSE 166, Fall

49 Filtering in the frequency domain H (u) H (u) Frequency domain 1D h(x) u h(x) u Spatial domain x x Lowpass filter Sharpening filter CSE 166, Fall

50 Filtering in the frequency domain Lowpass filter Highpass filter Offset highpass filter 2D CSE 166, Fall

51 Bandreject filters Ideal Gaussian Butterworth CSE 166, Fall

52 Model of image degradation, then restoration CSE 166, Fall

53 Histograms of sample patches Sample flat patches from images with noise Identify closest probability density function (pdf) match: Gaussian Rayleigh Uniform CSE 166, Fall

54 Mean filters X ray image Additive Gaussian noise Arithmetic mean filtered Geometric mean filtered CSE 166, Fall

55 Order statistic filters Additive salt and pepper noise 1x median filtered 2x median filtered 3x median filtered CSE 166, Fall

56 Comparing filters Additive uniform + salt and pepper noise Arithmetric mean filtered Geometric mean filtered Median filtered Alpha trimmed mean filtered CSE 166, Fall

57 Adaptive filters Additive Gaussian noise Arithmetric mean filtered Geometric mean filtered Adaptive noise reduction filtered CSE 166, Fall

58 Periodic noise DFT magnitude Additive sinusoidal noise Conjugate impulses CSE 166, Fall

59 Notch reject filters CSE 166, Fall

60 Notch reject filter Degraded image Conjugate impulses DFT magnitude Filter in frequency domain Conjugate impulses Estimate of original image CSE 166, Fall

61 Estimation of degradation function by experimentation Impulse of light Imaged (degraded) impulse CSE 166, Fall

62 Estimation of degradation function by mathematical modeling Atmospheric turbulence model CSE 166, Fall

63 Image restoration Inverse filtering CSE 166, Fall

64 RGB color model RGB color cube RGB coordinates CSE 166, Fall

65 HSI color model: Relationship to RGB color model RGB color cube rotated such that line joining black and white (intensity axis) is vertical CSE 166, Fall 2017 All colors with cyan hue 65

66 RGB color cube HSI color model HSI intensity axis RGB color cube rotated such that observer is on intensity axis, beyond white looking towards black Shape does not matter, only angle from red CSE 166, Fall

67 Color models CMYK CMY RGB HSI CSE 166, Fall

68 Intensity slicing Grayscale to 2 colors CSE 166, Fall

69 Intensity slicing Grayscale to 2 colors CSE 166, Fall

70 Intensity slicing Colorbar Grayscale to 256 colors CSE 166, Fall

71 Intensity to color transformations Grayscale input image RGB output image CSE 166, Fall

72 Intensity to color transformations X ray grayscale input image Without explosive With explosive RGB output images CSE 166, Fall 2017 Misses explosive 72

73 Intensity to color transformations Multiple grayscale input images Single RGB output image CSE 166, Fall

74 Intensity to color transformations Red (R) Green (G) Blue (B) Multiple satellite grayscale input images Near infrared (NIR) NIR,G,B as RGB Output RGB images R,NIR,B as RGB 74

75 Full color image processing Spatial filtering: process each channel independently CSE 166, Fall

76 Full color image processing Spatial filtering: image smoothing All RGB channels HSI intensity channel only CSE 166, Fall 2017 Difference 76

77 Full color image processing Spatial filtering: image sharpening All RGB channels HSI intensity channel only Difference CSE 166, Fall

78 Full color image processing Histogram equalization: do not process each channel independently 1. RGB to HSI 2. Histogram equalize HSI intensity 3. HSI to RGB 4. HSI saturation adjustment CSE 166, Fall

Image acquisition. Midterm Review. Digitization, line of image. Digitization, whole image. Geometric transformations. Interpolation 10/26/2016

Image acquisition. Midterm Review. Digitization, line of image. Digitization, whole image. Geometric transformations. Interpolation 10/26/2016 Image acquisition Midterm Review Image Processing CSE 166 Lecture 10 2 Digitization, line of image Digitization, whole image 3 4 Geometric transformations Interpolation CSE 166 Transpose these matrices

More information

Enhancement. Degradation model H and noise must be known/predicted first before restoration. Noise model Degradation Model

Enhancement. Degradation model H and noise must be known/predicted first before restoration. Noise model Degradation Model Kuliah ke 5 Program S1 Reguler DTE FTUI 2009 Model Filter Noise model Degradation Model Spatial Domain Frequency Domain MATLAB & Video Restoration Examples Video 2 Enhancement Goal: to improve an image

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Part 2: Image Enhancement Digital Image Processing Course Introduction in the Spatial Domain Lecture AASS Learning Systems Lab, Teknik Room T26 achim.lilienthal@tech.oru.se Course

More information

DIGITAL IMAGE PROCESSING UNIT III

DIGITAL IMAGE PROCESSING UNIT III DIGITAL IMAGE PROCESSING UNIT III 3.1 Image Enhancement in Frequency Domain: Frequency refers to the rate of repetition of some periodic events. In image processing, spatial frequency refers to the variation

More information

CoE4TN4 Image Processing. Chapter 3: Intensity Transformation and Spatial Filtering

CoE4TN4 Image Processing. Chapter 3: Intensity Transformation and Spatial Filtering CoE4TN4 Image Processing Chapter 3: Intensity Transformation and Spatial Filtering Image Enhancement Enhancement techniques: to process an image so that the result is more suitable than the original image

More information

SYLLABUS CHAPTER - 2 : INTENSITY TRANSFORMATIONS. Some Basic Intensity Transformation Functions, Histogram Processing.

SYLLABUS CHAPTER - 2 : INTENSITY TRANSFORMATIONS. Some Basic Intensity Transformation Functions, Histogram Processing. Contents i SYLLABUS UNIT - I CHAPTER - 1 : INTRODUCTION TO DIGITAL IMAGE PROCESSING Introduction, Origins of Digital Image Processing, Applications of Digital Image Processing, Fundamental Steps, Components,

More information

Digital Image Processing. Image Enhancement: Filtering in the Frequency Domain

Digital Image Processing. Image Enhancement: Filtering in the Frequency Domain Digital Image Processing Image Enhancement: Filtering in the Frequency Domain 2 Contents In this lecture we will look at image enhancement in the frequency domain Jean Baptiste Joseph Fourier The Fourier

More information

8. Lecture. Image restoration: Fourier domain

8. Lecture. Image restoration: Fourier domain 8. Lecture Image restoration: Fourier domain 1 Structured noise 2 Motion blur 3 Filtering in the Fourier domain ² Spatial ltering (average, Gaussian,..) can be done in the Fourier domain (convolution theorem)

More information

CoE4TN4 Image Processing. Chapter 4 Filtering in the Frequency Domain

CoE4TN4 Image Processing. Chapter 4 Filtering in the Frequency Domain CoE4TN4 Image Processing Chapter 4 Filtering in the Frequency Domain Fourier Transform Sections 4.1 to 4.5 will be done on the board 2 2D Fourier Transform 3 2D Sampling and Aliasing 4 2D Sampling and

More information

ECE 484 Digital Image Processing Lec 10 - Image Restoration I

ECE 484 Digital Image Processing Lec 10 - Image Restoration I ECE 484 Digital Image Processing Lec 10 - Image Restoration I Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu, Ph: x 2346. http://l.web.umkc.edu/lizhu slides created with WPS Office Linux

More information

IMAGE ENHANCEMENT IN SPATIAL DOMAIN

IMAGE ENHANCEMENT IN SPATIAL DOMAIN A First Course in Machine Vision IMAGE ENHANCEMENT IN SPATIAL DOMAIN By: Ehsan Khoramshahi Definitions The principal objective of enhancement is to process an image so that the result is more suitable

More information

Lecture #10. EECS490: Digital Image Processing

Lecture #10. EECS490: Digital Image Processing Lecture #10 Wraparound and padding Image Correlation Image Processing in the frequency domain A simple frequency domain filter Frequency domain filters High-pass, low-pass Apodization Zero-phase filtering

More information

Digital Image Processing

Digital Image Processing Digital Image Processing D. Sundararajan Digital Image Processing A Signal Processing and Algorithmic Approach 123 D. Sundararajan Formerly at Concordia University Montreal Canada Additional material to

More information

Noise and Restoration of Images

Noise and Restoration of Images Noise and Restoration of Images Dr. Praveen Sankaran Department of ECE NIT Calicut February 24, 2013 Winter 2013 February 24, 2013 1 / 35 Outline 1 Noise Models 2 Restoration from Noise Degradation 3 Estimation

More information

Frequency Domain Enhancement

Frequency Domain Enhancement Tutorial Report Frequency Domain Enhancement Page 1 of 21 Frequency Domain Enhancement ESE 558 - DIGITAL IMAGE PROCESSING Tutorial Report Instructor: Murali Subbarao Written by: Tutorial Report Frequency

More information

PRACTICAL IMAGE AND VIDEO PROCESSING USING MATLAB

PRACTICAL IMAGE AND VIDEO PROCESSING USING MATLAB PRACTICAL IMAGE AND VIDEO PROCESSING USING MATLAB OGE MARQUES Florida Atlantic University *IEEE IEEE PRESS WWILEY A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS LIST OF FIGURES LIST OF TABLES FOREWORD

More information

Table of contents. Vision industrielle 2002/2003. Local and semi-local smoothing. Linear noise filtering: example. Convolution: introduction

Table of contents. Vision industrielle 2002/2003. Local and semi-local smoothing. Linear noise filtering: example. Convolution: introduction Table of contents Vision industrielle 2002/2003 Session - Image Processing Département Génie Productique INSA de Lyon Christian Wolf wolf@rfv.insa-lyon.fr Introduction Motivation, human vision, history,

More information

TDI2131 Digital Image Processing

TDI2131 Digital Image Processing TDI131 Digital Image Processing Frequency Domain Filtering Lecture 6 John See Faculty of Information Technology Multimedia University Some portions of content adapted from Zhu Liu, AT&T Labs. Most figures

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Filtering in the Frequency Domain (Application) Christophoros Nikou cnikou@cs.uoi.gr University of Ioannina - Department of Computer Science and Engineering 2 Periodicity of the

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Dr. T.R. Ganesh Babu Professor, Department of Electronics and Communication Engineering, Muthayammal Engineering College, Rasipuram, Namakkal Dist. S. Leo Pauline Assistant Professor,

More information

Image analysis. CS/CME/BIOPHYS/BMI 279 Fall 2015 Ron Dror

Image analysis. CS/CME/BIOPHYS/BMI 279 Fall 2015 Ron Dror Image analysis CS/CME/BIOPHYS/BMI 279 Fall 2015 Ron Dror A two- dimensional image can be described as a function of two variables f(x,y). For a grayscale image, the value of f(x,y) specifies the brightness

More information

Color Image Processing

Color Image Processing Color Image Processing Jesus J. Caban Outline Discuss Assignment #1 Project Proposal Color Perception & Analysis 1 Discuss Assignment #1 Project Proposal Due next Monday, Oct 4th Project proposal Submit

More information

Syllabus of the course Methods for Image Processing a.y. 2016/17

Syllabus of the course Methods for Image Processing a.y. 2016/17 Syllabus of the course Methods for Image Processing a.y. 2016/17 January 14, 2017 This document reports a description of the topics covered in the course Methods for Image processing for the academic year

More information

Prof. Vidya Manian Dept. of Electrical and Comptuer Engineering

Prof. Vidya Manian Dept. of Electrical and Comptuer Engineering Image Processing Intensity Transformations Chapter 3 Prof. Vidya Manian Dept. of Electrical and Comptuer Engineering INEL 5327 ECE, UPRM Intensity Transformations 1 Overview Background Basic intensity

More information

Enhancement Techniques for True Color Images in Spatial Domain

Enhancement Techniques for True Color Images in Spatial Domain Enhancement Techniques for True Color Images in Spatial Domain 1 I. Suneetha, 2 Dr. T. Venkateswarlu 1 Dept. of ECE, AITS, Tirupati, India 2 Dept. of ECE, S.V.University College of Engineering, Tirupati,

More information

Image Restoration. Lecture 7, March 23 rd, Lexing Xie. EE4830 Digital Image Processing

Image Restoration. Lecture 7, March 23 rd, Lexing Xie. EE4830 Digital Image Processing Image Restoration Lecture 7, March 23 rd, 2008 Lexing Xie EE4830 Digital Image Processing http://www.ee.columbia.edu/~xlx/ee4830/ thanks to G&W website, Min Wu and others for slide materials 1 Announcements

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK Course Title Course Code Class Branch DIGITAL IMAGE PROCESSING A70436 IV B. Tech.

More information

Digital Image Processing. Filtering in the Frequency Domain (Application)

Digital Image Processing. Filtering in the Frequency Domain (Application) Digital Image Processing Filtering in the Frequency Domain (Application) Christophoros Nikou cnikou@cs.uoi.gr University of Ioannina - Department of Computer Science 2 Periodicity of the DFT The range

More information

Achim J. Lilienthal Mobile Robotics and Olfaction Lab, AASS, Örebro University

Achim J. Lilienthal Mobile Robotics and Olfaction Lab, AASS, Örebro University Achim J. Lilienthal Mobile Robotics and Olfaction Lab, Room T29, Mo, -2 o'clock AASS, Örebro University (please drop me an email in advance) achim.lilienthal@oru.se 4.!!!!!!!!! Pre-Class Reading!!!!!!!!!

More information

DIGITAL IMAGE PROCESSING (COM-3371) Week 2 - January 14, 2002

DIGITAL IMAGE PROCESSING (COM-3371) Week 2 - January 14, 2002 DIGITAL IMAGE PROCESSING (COM-3371) Week 2 - January 14, 22 Topics: Human eye Visual phenomena Simple image model Image enhancement Point processes Histogram Lookup tables Contrast compression and stretching

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 15 Image Processing 14/04/15 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Image Processing for feature extraction

Image Processing for feature extraction Image Processing for feature extraction 1 Outline Rationale for image pre-processing Gray-scale transformations Geometric transformations Local preprocessing Reading: Sonka et al 5.1, 5.2, 5.3 2 Image

More information

TDI2131 Digital Image Processing

TDI2131 Digital Image Processing TDI2131 Digital Image Processing Image Enhancement in Spatial Domain Lecture 3 John See Faculty of Information Technology Multimedia University Some portions of content adapted from Zhu Liu, AT&T Labs.

More information

Image Enhancement using Histogram Equalization and Spatial Filtering

Image Enhancement using Histogram Equalization and Spatial Filtering Image Enhancement using Histogram Equalization and Spatial Filtering Fari Muhammad Abubakar 1 1 Department of Electronics Engineering Tianjin University of Technology and Education (TUTE) Tianjin, P.R.

More information

Examples of image processing

Examples of image processing Examples of image processing Example 1: We would like to automatically detect and count rings in the image 3 Detection by correlation Correlation = degree of similarity Correlation between f(x, y) and

More information

Last Lecture. Lecture 2, Point Processing GW , & , Ida-Maria Which image is wich channel?

Last Lecture. Lecture 2, Point Processing GW , & , Ida-Maria Which image is wich channel? Last Lecture Lecture 2, Point Processing GW 2.6-2.6.4, & 3.1-3.4, Ida-Maria Ida.sintorn@it.uu.se Digitization -sampling in space (x,y) -sampling in amplitude (intensity) How often should you sample in

More information

1.Discuss the frequency domain techniques of image enhancement in detail.

1.Discuss the frequency domain techniques of image enhancement in detail. 1.Discuss the frequency domain techniques of image enhancement in detail. Enhancement In Frequency Domain: The frequency domain methods of image enhancement are based on convolution theorem. This is represented

More information

Image Restoration. Lecture 7, March 23 rd, Lexing Xie. EE4830 Digital Image Processing

Image Restoration. Lecture 7, March 23 rd, Lexing Xie. EE4830 Digital Image Processing Image Restoration Lecture 7, March 23 rd, 2009 Lexing Xie EE4830 Digital Image Processing http://www.ee.columbia.edu/~xlx/ee4830/ thanks to G&W website, Min Wu and others for slide materials 1 Announcements

More information

Filtering in the spatial domain (Spatial Filtering)

Filtering in the spatial domain (Spatial Filtering) Filtering in the spatial domain (Spatial Filtering) refers to image operators that change the gray value at any pixel (x,y) depending on the pixel values in a square neighborhood centered at (x,y) using

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Lecture # 10 Color Image Processing ALI JAVED Lecturer SOFTWARE ENGINEERING DEPARTMENT U.E.T TAXILA Email:: ali.javed@uettaxila.edu.pk Office Room #:: 7 Pseudo-Color (False Color)

More information

Vision Review: Image Processing. Course web page:

Vision Review: Image Processing. Course web page: Vision Review: Image Processing Course web page: www.cis.udel.edu/~cer/arv September 7, Announcements Homework and paper presentation guidelines are up on web page Readings for next Tuesday: Chapters 6,.,

More information

Fourier Transforms and the Frequency Domain

Fourier Transforms and the Frequency Domain Fourier Transforms and the Frequency Domain Lecture 11 Magnus Gedda magnus.gedda@cb.uu.se Centre for Image Analysis Uppsala University Computer Assisted Image Analysis 04/27/2006 Gedda (Uppsala University)

More information

Transforms and Frequency Filtering

Transforms and Frequency Filtering Transforms and Frequency Filtering Khalid Niazi Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Reading Instructions Chapter 4: Image Enhancement in the Frequency

More information

LAB MANUAL SUBJECT: IMAGE PROCESSING BE (COMPUTER) SEM VII

LAB MANUAL SUBJECT: IMAGE PROCESSING BE (COMPUTER) SEM VII LAB MANUAL SUBJECT: IMAGE PROCESSING BE (COMPUTER) SEM VII IMAGE PROCESSING INDEX CLASS: B.E(COMPUTER) SR. NO SEMESTER:VII TITLE OF THE EXPERIMENT. 1 Point processing in spatial domain a. Negation of an

More information

Image Enhancement. DD2423 Image Analysis and Computer Vision. Computational Vision and Active Perception School of Computer Science and Communication

Image Enhancement. DD2423 Image Analysis and Computer Vision. Computational Vision and Active Perception School of Computer Science and Communication Image Enhancement DD2423 Image Analysis and Computer Vision Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 15, 2013 Mårten Björkman (CVAP)

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Lecture # 5 Image Enhancement in Spatial Domain- I ALI JAVED Lecturer SOFTWARE ENGINEERING DEPARTMENT U.E.T TAXILA Email:: ali.javed@uettaxila.edu.pk Office Room #:: 7 Presentation

More information

Non Linear Image Enhancement

Non Linear Image Enhancement Non Linear Image Enhancement SAIYAM TAKKAR Jaypee University of information technology, 2013 SIMANDEEP SINGH Jaypee University of information technology, 2013 Abstract An image enhancement algorithm based

More information

Image preprocessing in spatial domain

Image preprocessing in spatial domain Image preprocessing in spatial domain convolution, convolution theorem, cross-correlation Revision:.3, dated: December 7, 5 Tomáš Svoboda Czech Technical University, Faculty of Electrical Engineering Center

More information

Anna University, Chennai B.E./B.TECH DEGREE EXAMINATION, MAY/JUNE 2013 Seventh Semester

Anna University, Chennai B.E./B.TECH DEGREE EXAMINATION, MAY/JUNE 2013 Seventh Semester www.vidyarthiplus.com Anna University, Chennai B.E./B.TECH DEGREE EXAMINATION, MAY/JUNE 2013 Seventh Semester Electronics and Communication Engineering EC 2029 / EC 708 DIGITAL IMAGE PROCESSING (Regulation

More information

Color Image Processing II

Color Image Processing II Color Image Processing II Outline Color fundamentals Color perception and color matching Color models Pseudo-color image processing Basics of full-color image processing Color transformations Smoothing

More information

A Comparative Review Paper for Noise Models and Image Restoration Techniques

A Comparative Review Paper for Noise Models and Image Restoration Techniques Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IMPACT FACTOR: 6.017 IJCSMC,

More information

INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET

INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET Some color images on this slide Last Lecture 2D filtering frequency domain The magnitude of the 2D DFT gives the amplitudes of the sinusoids and

More information

What is image enhancement? Point operation

What is image enhancement? Point operation IMAGE ENHANCEMENT 1 What is image enhancement? Image enhancement techniques Point operation 2 What is Image Enhancement? Image enhancement is to process an image so that the result is more suitable than

More information

Image Enhancement in Spatial Domain

Image Enhancement in Spatial Domain Image Enhancement in Spatial Domain 2 Image enhancement is a process, rather a preprocessing step, through which an original image is made suitable for a specific application. The application scenarios

More information

Announcements. Image Processing. What s an image? Images as functions. Image processing. What s a digital image?

Announcements. Image Processing. What s an image? Images as functions. Image processing. What s a digital image? Image Processing Images by Pawan Sinha Today s readings Forsyth & Ponce, chapters 8.-8. http://www.cs.washington.edu/education/courses/49cv/wi/readings/book-7-revised-a-indx.pdf For Monday Watt,.3-.4 (handout)

More information

1. (a) Explain the process of Image acquisition. (b) Discuss different elements used in digital image processing system. [8+8]

1. (a) Explain the process of Image acquisition. (b) Discuss different elements used in digital image processing system. [8+8] Code No: R05410408 Set No. 1 1. (a) Explain the process of Image acquisition. (b) Discuss different elements used in digital image processing system. [8+8] 2. (a) Find Fourier transform 2 -D sinusoidal

More information

Digital Image Processing. Lecture # 3 Image Enhancement

Digital Image Processing. Lecture # 3 Image Enhancement Digital Image Processing Lecture # 3 Image Enhancement 1 Image Enhancement Image Enhancement 3 Image Enhancement 4 Image Enhancement Process an image so that the result is more suitable than the original

More information

Image Enhancement in the Spatial Domain

Image Enhancement in the Spatial Domain Image Enhancement in the Spatial Domain Algorithms for improving the visual appearance of images Gamma correction Contrast improvements Histogram equalization Noise reduction Image sharpening Optimality

More information

A.V.C. COLLEGE OF ENGINEERING DEPARTEMENT OF CSE CP7004- IMAGE PROCESSING AND ANALYSIS UNIT 1- QUESTION BANK

A.V.C. COLLEGE OF ENGINEERING DEPARTEMENT OF CSE CP7004- IMAGE PROCESSING AND ANALYSIS UNIT 1- QUESTION BANK A.V.C. COLLEGE OF ENGINEERING DEPARTEMENT OF CSE CP7004- IMAGE PROCESSING AND ANALYSIS UNIT 1- QUESTION BANK STAFF NAME: TAMILSELVAN K UNIT I SPATIAL DOMAIN PROCESSING Introduction to image processing

More information

Understanding Digital Signal Processing

Understanding Digital Signal Processing Understanding Digital Signal Processing Richard G. Lyons PRENTICE HALL PTR PRENTICE HALL Professional Technical Reference Upper Saddle River, New Jersey 07458 www.photr,com Contents Preface xi 1 DISCRETE

More information

EE4830 Digital Image Processing Lecture 7. Image Restoration. March 19 th, 2007 Lexing Xie ee.columbia.edu>

EE4830 Digital Image Processing Lecture 7. Image Restoration. March 19 th, 2007 Lexing Xie ee.columbia.edu> EE4830 Digital Image Processing Lecture 7 Image Restoration March 19 th, 2007 Lexing Xie 1 We have covered 2 Image sensing Image Restoration Image Transform and Filtering Spatial

More information

The Fourier Transform

The Fourier Transform The Fourier Transform Introduction to Digital Signal Processing (886457) 6 1 / 56 Contents Introduction Fourier Transforms One-dimensional DFT Two-dimensional DFT Fourier Transforms Function in Octave

More information

Image Filtering. Median Filtering

Image Filtering. Median Filtering Image Filtering Image filtering is used to: Remove noise Sharpen contrast Highlight contours Detect edges Other uses? Image filters can be classified as linear or nonlinear. Linear filters are also know

More information

CS/ECE 545 (Digital Image Processing) Midterm Review

CS/ECE 545 (Digital Image Processing) Midterm Review CS/ECE 545 (Digital Image Processing) Midterm Review Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Exam Overview Wednesday, March 5, 2014 in class Will cover up to lecture

More information

Color Transformations

Color Transformations Color Transformations It is useful to think of a color image as a vector valued image, where each pixel has associated with it, as vector of three values. Each components of this vector corresponds to

More information

SRI VENKATESWARA COLLEGE OF ENGINEERING. COURSE DELIVERY PLAN - THEORY Page 1 of 6

SRI VENKATESWARA COLLEGE OF ENGINEERING. COURSE DELIVERY PLAN - THEORY Page 1 of 6 COURSE DELIVERY PLAN - THEORY Page 1 of 6 Department of Electronics and Communication Engineering B.E/B.Tech/M.E/M.Tech : EC Regulation: 2013 PG Specialisation : NA Sub. Code / Sub. Name : IT6005/DIGITAL

More information

Image Filtering Josef Pelikán & Alexander Wilkie CGG MFF UK Praha

Image Filtering Josef Pelikán & Alexander Wilkie CGG MFF UK Praha Image Filtering 1995-216 Josef Pelikán & Alexander Wilkie CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 32 Image Histograms Frequency table of individual brightness (and sometimes

More information

ECC419 IMAGE PROCESSING

ECC419 IMAGE PROCESSING ECC419 IMAGE PROCESSING INTRODUCTION Image Processing Image processing is a subclass of signal processing concerned specifically with pictures. Digital Image Processing, process digital images by means

More information

VU Signal and Image Processing. Image Enhancement. Torsten Möller + Hrvoje Bogunović + Raphael Sahann

VU Signal and Image Processing. Image Enhancement. Torsten Möller + Hrvoje Bogunović + Raphael Sahann 052600 VU Signal and Image Processing Image Enhancement Torsten Möller + Hrvoje Bogunović + Raphael Sahann torsten.moeller@univie.ac.at hrvoje.bogunovic@meduniwien.ac.at raphael.sahann@univie.ac.at vda.cs.univie.ac.at/teaching/sip/17s/

More information

Digital Image Processing

Digital Image Processing Digital Image Processing 14 December 2006 Dr. ir. Aleksandra Pizurica Prof. Dr. Ir. Wilfried Philips Aleksandra.Pizurica @telin.ugent.be Tel: 09/264.3415 UNIVERSITEIT GENT Telecommunicatie en Informatieverwerking

More information

Practical Image and Video Processing Using MATLAB

Practical Image and Video Processing Using MATLAB Practical Image and Video Processing Using MATLAB Chapter 10 Neighborhood processing What will we learn? What is neighborhood processing and how does it differ from point processing? What is convolution

More information

Digital Image Processing. Frequency Domain Filtering

Digital Image Processing. Frequency Domain Filtering Digital Image Processing Frequency Domain Filtering DFT Matlab demo clear all; close all; a=imread('testpat1.png');b=imdouble(a); figure;imshow(b); Fb = fft(b);fbshift=fftshift(fb); figure;imshow(log(abs(fbshift)+0.00000001),[]);

More information

IMAGE PROCESSING: AREA OPERATIONS (FILTERING)

IMAGE PROCESSING: AREA OPERATIONS (FILTERING) IMAGE PROCESSING: AREA OPERATIONS (FILTERING) N. C. State University CSC557 Multimedia Computing and Networking Fall 2001 Lecture # 13 IMAGE PROCESSING: AREA OPERATIONS (FILTERING) N. C. State University

More information

DISCRETE FOURIER TRANSFORM AND FILTER DESIGN

DISCRETE FOURIER TRANSFORM AND FILTER DESIGN DISCRETE FOURIER TRANSFORM AND FILTER DESIGN N. C. State University CSC557 Multimedia Computing and Networking Fall 2001 Lecture # 03 Spectrum of a Square Wave 2 Results of Some Filters 3 Notation 4 x[n]

More information

Image enhancement. Introduction to Photogrammetry and Remote Sensing (SGHG 1473) Dr. Muhammad Zulkarnain Abdul Rahman

Image enhancement. Introduction to Photogrammetry and Remote Sensing (SGHG 1473) Dr. Muhammad Zulkarnain Abdul Rahman Image enhancement Introduction to Photogrammetry and Remote Sensing (SGHG 1473) Dr. Muhammad Zulkarnain Abdul Rahman Image enhancement Enhancements are used to make it easier for visual interpretation

More information

Chapter 3 Image Enhancement in the Spatial Domain. Chapter 3 Image Enhancement in the Spatial Domain

Chapter 3 Image Enhancement in the Spatial Domain. Chapter 3 Image Enhancement in the Spatial Domain It makes all the difference whether one sees darkness through the light or brightness through the shadows. - David Lindsay 3.1 Background 76 3.2 Some Basic Gray Level Transformations 78 3.3 Histogram Processing

More information

Fourier Transform. Any signal can be expressed as a linear combination of a bunch of sine gratings of different frequency Amplitude Phase

Fourier Transform. Any signal can be expressed as a linear combination of a bunch of sine gratings of different frequency Amplitude Phase Fourier Transform Fourier Transform Any signal can be expressed as a linear combination of a bunch of sine gratings of different frequency Amplitude Phase 2 1 3 3 3 1 sin 3 3 1 3 sin 3 1 sin 5 5 1 3 sin

More information

Analysis of Image Enhancement Techniques Used in Remote Sensing Satellite Imagery

Analysis of Image Enhancement Techniques Used in Remote Sensing Satellite Imagery Analysis of Image Enhancement Techniques Used in Remote Sensing Satellite Imagery Kriti Bajpai MTech Student, Department of Computer Science Engineering, Gyan Ganga Institute of Technology & Sciences,

More information

Image Processing. 2. Point Processes. Computer Engineering, Sejong University Dongil Han. Spatial domain processing

Image Processing. 2. Point Processes. Computer Engineering, Sejong University Dongil Han. Spatial domain processing Image Processing 2. Point Processes Computer Engineering, Sejong University Dongil Han Spatial domain processing g(x,y) = T[f(x,y)] f(x,y) : input image g(x,y) : processed image T[.] : operator on f, defined

More information

Image Enhancement in the Spatial Domain (Part 1)

Image Enhancement in the Spatial Domain (Part 1) Image Enhancement in the Spatial Domain (Part 1) Lecturer: Dr. Hossam Hassan Email : hossameldin.hassan@eng.asu.edu.eg Computers and Systems Engineering Principle Objective of Enhancement Process an image

More information

Fourier analysis of images

Fourier analysis of images Fourier analysis of images Intensity Image Fourier Image Slides: James Hays, Hoiem, Efros, and others http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering Signals can be composed + = http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering

More information

Filip Malmberg 1TD396 fall 2018 Today s lecture

Filip Malmberg 1TD396 fall 2018 Today s lecture Today s lecture Local neighbourhood processing Convolution smoothing an image sharpening an image And more What is it? What is it useful for? How can I compute it? Removing uncorrelated noise from an image

More information

Last Lecture. photomatix.com

Last Lecture. photomatix.com Last Lecture photomatix.com Today Image Processing: from basic concepts to latest techniques Filtering Edge detection Re-sampling and aliasing Image Pyramids (Gaussian and Laplacian) Removing handshake

More information

Applications of Image Enhancement Techniques An Overview

Applications of Image Enhancement Techniques An Overview MIT International Journal of Computer Science and Information Technology, Vol. 5, No. 1, January 2015, pp. 17-21 17 Applications of Image Enhancement Techniques An Overview Shanmukha Priya Mudigonda Under-graduate

More information

CS6670: Computer Vision Noah Snavely. Administrivia. Administrivia. Reading. Last time: Convolution. Last time: Cross correlation 9/8/2009

CS6670: Computer Vision Noah Snavely. Administrivia. Administrivia. Reading. Last time: Convolution. Last time: Cross correlation 9/8/2009 CS667: Computer Vision Noah Snavely Administrivia New room starting Thursday: HLS B Lecture 2: Edge detection and resampling From Sandlot Science Administrivia Assignment (feature detection and matching)

More information

EFFECT OF DEGRADATION ON MULTISPECTRAL SATELLITE IMAGE

EFFECT OF DEGRADATION ON MULTISPECTRAL SATELLITE IMAGE Journal of Al-Nahrain University Vol.11(), August, 008, pp.90-98 Science EFFECT OF DEGRADATION ON MULTISPECTRAL SATELLITE IMAGE * Salah A. Saleh, ** Nihad A. Karam, and ** Mohammed I. Abd Al-Majied * College

More information

Last Lecture. photomatix.com

Last Lecture. photomatix.com Last Lecture photomatix.com HDR Video Assorted pixel (Single Exposure HDR) Assorted pixel Assorted pixel Pixel with Adaptive Exposure Control light attenuator element detector element T t+1 I t controller

More information

Digital Image Processing 3/e

Digital Image Processing 3/e Laboratory Projects for Digital Image Processing 3/e by Gonzalez and Woods 2008 Prentice Hall Upper Saddle River, NJ 07458 USA www.imageprocessingplace.com The following sample laboratory projects are

More information

Basic Digital Image Processing. The Structure of Digital Images. An Overview of Image Processing. Image Restoration: Line Drop-outs

Basic Digital Image Processing. The Structure of Digital Images. An Overview of Image Processing. Image Restoration: Line Drop-outs Basic Digital Image Processing A Basic Introduction to Digital Image Processing ~~~~~~~~~~ Rev. Ronald J. Wasowski, C.S.C. Associate Professor of Environmental Science University of Portland Portland,

More information

Part I Feature Extraction (1) Image Enhancement. CSc I6716 Spring Local, meaningful, detectable parts of the image.

Part I Feature Extraction (1) Image Enhancement. CSc I6716 Spring Local, meaningful, detectable parts of the image. CSc I6716 Spring 211 Introduction Part I Feature Extraction (1) Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu Image Enhancement What are Image Features? Local, meaningful, detectable parts

More information

CSE 564: Scientific Visualization

CSE 564: Scientific Visualization CSE 564: Scientific Visualization Lecture 5: Image Processing Klaus Mueller Stony Brook University Computer Science Department Klaus Mueller, Stony Brook 2003 Image Processing Definitions Purpose: - enhance

More information

Image restoration and color image processing

Image restoration and color image processing 1 Enabling Technologies for Sports (5XSF0) Image restoration and color image processing Sveta Zinger ( s.zinger@tue.nl ) What is image restoration? 2 Reconstructing or recovering an image that has been

More information

Defocusing and Deblurring by Using with Fourier Transfer

Defocusing and Deblurring by Using with Fourier Transfer Defocusing and Deblurring by Using with Fourier Transfer AKIRA YANAGAWA and TATSUYA KATO 1. Introduction Image data may be obtained through an image system, such as a video camera or a digital still camera.

More information

Filtering Images in the Spatial Domain Chapter 3b G&W. Ross Whitaker (modified by Guido Gerig) School of Computing University of Utah

Filtering Images in the Spatial Domain Chapter 3b G&W. Ross Whitaker (modified by Guido Gerig) School of Computing University of Utah Filtering Images in the Spatial Domain Chapter 3b G&W Ross Whitaker (modified by Guido Gerig) School of Computing University of Utah 1 Overview Correlation and convolution Linear filtering Smoothing, kernels,

More information

Image Filtering. Reading Today s Lecture. Reading for Next Time. What would be the result? Some Questions from Last Lecture

Image Filtering. Reading Today s Lecture. Reading for Next Time. What would be the result? Some Questions from Last Lecture Image Filtering HCI/ComS 575X: Computational Perception Instructor: Alexander Stoytchev http://www.cs.iastate.edu/~alex/classes/2007_spring_575x/ January 24, 2007 HCI/ComS 575X: Computational Perception

More information

Digital Image Processing Question Bank UNIT -I

Digital Image Processing Question Bank UNIT -I Digital Image Processing Question Bank UNIT -I 1) Describe in detail the elements of digital image processing system. & write note on Sampling and Quantization? 2) Write the Hadamard transform matrix Hn

More information

IMAGE PROCESSING (RRY025) THE CONTINUOUS 2D FOURIER TRANSFORM

IMAGE PROCESSING (RRY025) THE CONTINUOUS 2D FOURIER TRANSFORM IMAGE PROCESSING (RRY5) THE CONTINUOUS D FOURIER TRANSFORM INTRODUCTION A vital tool in image processing. Also a prototype of other image transforms, cosine, Wavelet etc. Applications Image Filtering -

More information

ENEE408G Multimedia Signal Processing

ENEE408G Multimedia Signal Processing ENEE48G Multimedia Signal Processing Design Project on Image Processing and Digital Photography Goals:. Understand the fundamentals of digital image processing.. Learn how to enhance image quality and

More information

2D Discrete Fourier Transform

2D Discrete Fourier Transform 2D Discrete Fourier Transform In these lecture notes the figures have been removed for copyright reasons. References to figures are given instead, please check the figures yourself as given in the course

More information

Digital Imaging Systems for Historical Documents

Digital Imaging Systems for Historical Documents Digital Imaging Systems for Historical Documents Improvement Legibility by Frequency Filters Kimiyoshi Miyata* and Hiroshi Kurushima** * Department Museum Science, ** Department History National Museum

More information