Fiber-coupling technique for high-power diode laser arrays

Size: px
Start display at page:

Download "Fiber-coupling technique for high-power diode laser arrays"

Transcription

1 Fiber-coupling technique for high-power diode laser arrays H.-G. Treusch, Keming Du, M. Baumann, V. Sturm, B. Ehiers, P. Loosen Fraunhofer Institut für Lasertechnik, SteinbachstraBe 15, Aachen, Germany ABSTRAT Monolithic linear arrays of diode lasers, also known as diode laser bars, are the basic elements for most high-power laser applications such as solid-state laser pumping or material processing. ylindrical microlenses used as fast-axis collimators for 10-mm diode bars require very high angles of aperture (up to 100 degree FWI/e2, equivalent to a numerical aperture of approx. 0.8) to capture most of the emitted laser power. For the efficient longitudinal pumping of laser rods, or the narrow focusing of the diode laser radiation (fiber coupling, material processing), high-quality microlenses with small lens aberrations are necessary to avoid power losses and beam quality degradation A technique for coupling the output of high-power diode laser bars into one multimode fiber with high efficiency, easy alignment requirements and low manufacturing costs is demonstrated using a single fiber with core diameter down to 400 jim. This technique comprises two micro step-mirrors for beam shaping. The overall efficiency from one diode-laser bar to fiber is 71% with 20 W cw laser power through the fiber. oupling of 12 diode laser bars and power of 200 W out ofa fiber with core diameter of 0.8 mm and NA 0.2 is achievable with this technique. Keywords: Diode laser arrays, laser beam shaping, optical system design, fiber-optic components, micro-optics, aspherical cylinder lenses, 1. INTRODUTION At present, diode laser bars which continuously emit W of optical power at near infrared wavelengths are the basic elements for high-power applications of semiconductor diode lasers such as solid-state laser pumping or material processing.'2 The diode lasers operate reliable at these power levels. By increasing the diode current, record values of up to 200 w cw output power of a single diode laser bar have been demonstrated in the laboratory, but only for short operation times.3'4 A single diode bar is a monolithical linear array typically consisting of subarrays each containing of single emitters (Fig. 1). An alternative configuration is the linear arrangement of broad-area emitters active of t.tm width. layer The number of emitters and the subarray of spaces between the emitters destripe emitters or pend on the thermal load mansingle broad area emitter. 0.1 agement and can be optimized for a variety of operating requirements (cw or in the case of pulsed operation: peak power, pulse width, duty factor). Although typ. dimensions diode lasers exhibit a high laser of gain-guided efficiency (up to % for stripe emitters diode bars available on the mar- = 10 pm 1 pm ket), the removal of the waste =3 5 pm heat through high-performance micro-coolers is a major task Fig. 1: Typical geometry of high power diode laser arrays since it has to be done across the small diode bar area and only 98 SPIE Vol X1981$1o.oo

2 small junction temperature rises are acceptable.5 The optical cavity of O.6 mm length is formed by cleaving two opposite facets of the semiconductor wafer and using them as laser mirrors. Typical material systems are AlGaAs (e.g. 808-nm pump wavelength of Nd:YAG lasers) and InGaAs (e.g nm pump wavelengths of Er and Yb doped lasers). Due to the tim-sized, non-circular cross-section of the active region, the output radiation of diode lasers quickly diverges in the direction which is perpendicular to the plane of the pn junction ("fast axis") and slowly diverges in the parallel direction ("slow axis'). The beam quality M2 is approx. I in fast-axis direction, and M in slow-axis direction. The very high fast-axis divergence 2ê of up to 100 (FW1/e2), equivalent to a numerical aperture NA = sines = 0.8, makes it necessary in nearly all applications (with the exception of some side-pumping configurations for laser slabs or rods) that the first beam shaping has to be the fast-axis collimation. Since lens aberrations increase with the square of the NA, the optical performance of the fast-axis collimator is of crucial importance for the available beam quality of the diode laser assembly, and hence, for example, determines the minimum focal spot diameter (i.e., the maximum laser irradiance) at the workpiece or the minimum diameter of coupled fibers. Different approaches have been proposed to shape the diode laser emission to obtain a circular focus spot. In a straight forward approach the emission from diode laser bars are coupled into a plurality of fibers.6'7 These fibers are arranged in such a way as to generate a circular fiber bundle at the output end. A beam-shaping technique using two diffractive elements is demonstrated.8 The emission of each emitting facets (sub-beam) is incident on a micro prism.9"0 The emerging beam consists of sub-beams which are rotated 90 about their axis of propagation. Two plane parallel mirrors are used to reshape the emission from diode laser bars". However, most of these techniques have drawbacks such as large size, low flexibility, low efficiency or they are difficult to manufacture. Here, we demonstrate a technique using two micro step-minors to rearrange the emission from diode laser bars and to couple it to an optical fiber. 2. BEAM PROPAGATION OF DIODE LASER ARRAYS Detailed information about the beam propagation of diode laser arrays are required to optimize the design of beam shaping devices. The width of the collimated beam in fast-axis is of uppermost importance (discussed in chapter 5) to reach a filling factor close to 1 behind most shaping devices. The width is determined by the divergence angle in fast axis and the focal length of the collimating lens. In Fig. 2a) and b) the intensity distributions in fast axis of two different diode laser arrays are shown. Intensity is measured with a pin diode while rotating the diode laser array. The influence of the driving current could be neglected in both cases, but the low divergence of the Tutcore array offers the advantages of collimating with simple optics and reduced beam width at constant focal length. Siemens G5 1,0 0,8 Tutcore Nr l=20a 1= 40 A Gaussian fit 0,6.. U) 0,4 04 Angle (deg] 0,2 3 j HW89: 0,0 ' ' ø/,.. I,,., Angle (deg] Fig. 2: Intensity distribution infast axisfor two chfferent diode laser arrays close and above threshold current. a) left: Siemens G5, 20 stripes array, 200 pm wide and 400 pm pitch, 2 = 808 nm, cavity length 0. 6 mm b) right: Tutcore (1996) broad area array, 150 pm wide, 500 pm pitch, 2 =808 nm, cavity length ca. 1 mm The Gaussian fit ofthe data in Fig. 2 claims a beam quality M2 close to 1 for both arrays in the direction ofthe fast axisṫhe emission characteristic in slow axis is dependent on the structure of the emitting area (broad area or multiple stripe) and the length of the cavity. The intensity distribution in the direction of the slow axis, presented in Fig. 3, is detected by it:

3 the same procedure as in Fig. 2. The distance between diode laser array and pin diode was 2.6 m. The divergence in slow axis increases with the driving current. The beam quality reduces with increasing output power. This effect has to be considered in the design of the beam shaping optics to prevent significant losses in fiber coupling. Again the small angle of divergence of the Tutcore array offers some more advantages in coupling to smaller fiber core diameter (discussed in chapter 5) Siemens G5 Tutcore 1,0 0,8 0,6 U, a) 0.4 0, Angle [deg] Angle [degi Fig. 3: Intensity distribution in slow axis at different driving current, same diode arrays as in Fig. 2. The area enclosed by the curves are kept constant. 3. FAST AXIS KOLLIMATION Low-power diode lasers used in telecommunication and, for example compact disc players, are single emitters or small arrays of emitters. Microlens collimators available for such diode lasers are not suitable for diode bars since the lenses are mostly rotationally symmetric and their NA (typically < 0.5) is not sufficient. ylindrical collimating mirrors, or diffractive elements, as well as combined elements can also be used in specific applications and geometries but in this paper we focus on microlenses. 1.3 mm. t (1.2 mm) diode laser 2A/itd fast axis tx t1 (0.2 (0.88 mm) r (0.68 mm) Fig. 4: Asperical cylinder micro/ens: up) Aspherical contour and some ray paths. Pt and P2 are the paraxial principal planes of the thick lens, f is the paraxial focal length and r is the radius of curvature of the paraxial sphere. left) REM photograph of the macro/ens manufactured by ultraprecision grinding of Schott glas!.ifn

4 Fig. 4 illustrates in detail the geometry of the cylindrical microlens, which is used for collimation. The cross-section depicts the piano-concave lens with an aspherical contour in real proportion to the diode bar. The paths of some rays are drawn according to geometrical optics (with an angle cz exaggerated for clarity). In a first approximation, the lens can be described by its paraxial parameters, which are valid for small angles in the vicinity of the optical axis. The distance of the first principal plane to the entrance face is tin, where t is the center thickness of the lens and n the refractive index. The second principle plane is located at the lens exit because of the plane entrance surface. The radius of curvature of the paraxial sphere is r = (n- 1) f =(n-1) (t1 + t/n). Ideal collimation means in geometrical optics that a =0 stands for a non-extended source. In reality, diffraction limits the minimum divergence of the collimated beam. This is depicted in Fig. 4a by the Gaussian beam with waist d and beam divergence 9B In addition to inherent aberrations in a specific lens design, there are aberrations due to manufacturing irregularities such as deviations ofthe actual lens parameters to the rated values. These are, for example, the surface contour, the thickness and the position of the cylinder axis of the lens. Small surface irregularities and lens material inhomogenities cause scattering and an overall decrease ofthe power transmission. Measuring the quality of a microlens is much more complicated than with normal lenses because of the small dimensions and alignment tolerances, the very high numerical aperture, the cylindrical geometry and aspherical surfaces. Frequently, the first suggestion is to measure the focal spot line width when focusing a parallel beam (e.g. HeNe laser) with the microlens. However, the focal spot width is in the order of the diode beam waist of 1 tm, i.e. less than the pixel dimensions of D cameras. To magnify the focal spot for better measurement requires a cylindrical objective with at least the same NA than that of the microlens (up to NA = 0.8). Unfortunately, such an objective is not available. Another approach is to use a diode bar and measure the quality of the collimated beam in fast-axis direction. Since the beam quality M2 of the diode bar in this direction is close to 1,the beam degradation is predominantly caused by the microlens. At least, it is a relative measurement if the same diode bar is used for a test series. 1.0 diode laser divergence 5O x 5 HW1/e2 I I I I I 1.0 T T I I diode laser divergence 33 x 2.4 HW1/e2 i (mrad) (mrad) Fig. 5: Fast-axis profile ofthe collimated diode laser beam measured with a scanning mirror setup at a distance 2. 4 m awayfrom the aspherical micro/ens. The oscilloscope traces ofthe photodiode signal are measuredfor the same lens but with different diode bars. Therefore, we first measured the fast-axis profile of the collimated beam with a scanning mirror setup. The scanner deflects the beam across a slit aperture of a photo detector. Two examples of the photo detector signals are shown in Fig. 5 for the same aspherical microlens measured with the two different diode bars form Fig. 2. From the measured sweep time (FW1/e2), the profile width d(s) is calculated by a calibration factor, and by dividing d(s) by the distance s, the FWI/e2 divergence 202 is determined. In comparison to a D camera this setup has no offset problems to determine the correct ground level. The determination of the beam quality is completed by measuring the beam waist by the knife-edge method close to the microlens. The presented aspherical microlens collimates the fast axis of diode laser arrays up to NA of 0.8 with no significant losses in beam quality. 101

5 4. BEAM-SHAPING TEHNIQUE Many applications of diode lasers require a beam delivery by fiber optics. Different techniques are available for coupling the multiple arrays of a diode laser bar into a fiber bundle or into a single fiber. Most of them are aiming at maximum beam quality and are based on the physically arrangement of the arrays and so far limited to small filling factors and the size of the arrays. Beam shaping techniques handling the emission of a diode bar as a line source are not depending on this limitations and can use high power diode laser bars with filling factors of up to 90%. One approach and a really simple one is the usage of micro step-mirrors to homogenize the beam quality of one or multiple diode lasers, which is the basic requirement for coupling into a single fiber. The set-up for the transformation of the diode laser radiation consists of two identical micro step-mirrors. This device consists of N highly-reflective surfaces which are arranged in a special manner as depicted in Fig. 6. From which it can be seen that each single mirror surface of the first micro step-mirror is tilted 45 about the slow axis and separated from the neighboring surface by a constant distance d along the axis of propagation. This distance d corresponds to the width of a mirror surface and the width of the collimated beam in the direction of the fast axis. Thus, the centers of the mirror surfaces include an angle of 45 with the axis of propagation. The collimated beam is incident on the first j J micro step mirror Here it is cut into N sub I / f beams along the slow axis and reflected into the fast-axis direction. Each sub-beam which is reflected from the first step-mirror is incident on one surface of the second step-mirror. The surfaces of the second step-mirror are arranged in such a way as to reflect the sub-beams into the slow-axis direction., By means of this deflection, performed by the system of micro step-mirrors, a rearrangement of the diode laser radiation is performed. Before the rearrangement, the sub-beams are aligned next to one another along the slow axis. The beam-quality factor is approximately jt,l After the rearrangement by the Fig. 6: Schematic view of the micro step-mirrors first step-mirror. the sub-beams are grouped in a stair-shaped geometry. Finally the outgoing beams are arranged in a line again but now along the fast axis. As described above, each sub-beam exhibits a beam-quality factor in the fast axis of A Neglecting minor effects of diffraction, M of the sum of the sub-beams is M12 N M10 (1) However, this only holds if the fill-factor of the sub-beams after the transformation is 1, which is achieved by adapting the width of the collimated beam in fast axis direction as close as possible to the width of the steps.. Otherwise the resulting beam quality will be further decreased. On the opposite side, the beam quality along the slow axis improves by the factor of N while M correspondingly decreases by N: M 2 M= N (2) Again, diffraction effects caused by the clipping of the beam into sub-beams by the mirror surfaces are neglected. Now, N has to be chosen as a number which will render M2 and M/ similar. This case is the best approximation of a homogeneous distribution of the beam quality with respect to the axis of propagation. The number of steps N included in one micro stepmirror then is given by M02.i I (3) 102

6 5. OUPLING OF A SINGLE DIODE LASER BAR To demonstrate the beam-shaping technique a pair of step mirrors are manufactured out of copper by diamond cutting. The microlens discussed in chapter 2, which was originally designed for stack applications, is used for collimating the emission in the direction of the fast axis. The throughput of the microlens amounts to 96 /o with a broad-band AR-coating. Due to width of the collimated beam of about 1.1 mm for Siemens G5 bars and 0.8 mm for the Tutcore bars the width of the stepsis choosen to 1 mm. Fig. 7 illustrates the set-up. The Tutcore bar used in this set-up is a laser bar with a total width of 10 mm and an output power of 28 W at an injection current of 40 A. Efficient cooling is achieved through the use of a microchan- nel-watercooling device, de- Micro f = 1 50 mm signed and manufactured by the Step-Mirrors Fraunhofer ILT. The power of the collimated beam, at an in- - - jection current of 40 A, is 27 W. As illustrated above, the shaping 400 JJIT1 of the diode laser emission is Micro Fiber accomplished with two micro Lens step-mirrors. This device is f = 40mm placed directly in front of the Diode Bar microlens. Each micro stepon Heat Sink mirror consists of 13 steps while only 11 steps are used to shape the beam After the transformation, the relation of the beam- Fig. 7: Optical set-up for the fiber-coupling technique quality factors in fast and slow axis is reduced from 600 to 3. To obtain a small spot the 11 stacked beams in fast axis are focused with an achromatic lens doublet off 40 mm. In this case the NA amounts In the direction of the slow axis the illuminated steps are projected by a cylindrical lens off 150 rmn into the focal plain of the achromatic lens. Due to the inclination of the step-mirrors the cylindrical lens is also inclined by 450 about the direction of beam propagation to get a clear image of each step in the focal plain. This inclination reduces the focal length of the cylindrical lens close to 120 mm. Therefore the magnification is 0.3 and the NA in slow axis equals Due to the rectangular geometry of the beam the maximum NA equals The power distribution in the focal plain of the achromatic lens is shown in Fig.8. The spot measures 160 I.Lm x 340 tm encompassing 86% of the total power. According to Eq. (2) the beam-quality factor in the slow axis should evaluate to 120. In the fast axis a fill-factor of 0.8 after the transformation has to be taken into account. The beam-quality factor, stated in Eq. (1), then amounts to Mj' 41 starting with a beam quality of M, 3 in the unshaped line. There is a good conformity of the >. beam-quality factor in the slow and fast axis between the calculated values and the experimental results of M and A1/ 43. X Position [pm] Fig. 8: Intensity profile of the focused Fiber coupling experiments are conducted with 600 l.tm and 400 im core diameter, AR-coated at 810 rim. The Numerical Aperture of both fibers is Fig. 9 shows the power transmitted through the fiber, measured with a thermal absorber. The coupling efficiency of a 600 j.tm fiber is close to that achieved with a 400 i.tm fiber. It can be seen that the coupling efficiency decreases with increasing injection current and decreasing to a higher extend when using the 400 im fiber. Experiments on the 103

7 radiation characteristics of the diode laser bar (chapter 2) showed that the fast-axis divergence is not altered by variation of the injection current within a range where the slope efficiency of the diode is constant, i.e. the range of operation in practice. However, the slow-axis divergence increases with increasing injection current. Although this effect is not drastic, it leads to an increase of the NA of the focused beam which is at the limit of the fiber. Tab. 1 : Transfer efficiency ofthe optical setup. I diode micro- step-mirror fiber laser lens + I optics optic [pwer(w) trans. effic. (%) The transfer efficiency quoted in Tab. 1 is strongly influenced by the imperfection of the step-mirrors especially the absorption losses of 10% in total It can be assumed that a further optimization of the micro..... Injection urrent [A] step-mirrors according to Eq.3 will yield a square-shaped spot. This means that for the Tutcore bars 22 steps should be included in the micro step-mirrors at a width of the steps of 0.5 Fig. 9:Power through different fiber core diameters mm. Furthermore, the width of the collimated beam in fast axis has to be adapted to 0.5 mm by reducing the focal lenth of the microlens from 0.88 down to 0.6 mm. Using the same diode laser bar, the same throughput of 20 W with a single diode laser bar should be possible with a 200 j.tm fiber. 6. OUPLING OF MULTIPLE DIODE BARS To increase the output power compared to a single diode bar, the emission of multiple diode laser bars has to be cornbined. Using polarization or wavelength coupling the beam quality is not influenced while the power is linear increased with the number of diode bars. The emission of diode lasers is polarized up to 95% normally. The direction of polarization is parallel to the slow axis for the Siemens G5 and parallel to the fast axis for the Tutcore bars and could be rotated by axj2- wave plate. Therefore the emission of two similar diode lasers can be overlapped by a polarization beam splitter (PBS) as depicted in Fig. IOa. The coupling efficiency amounts 95%. If the emitted wavelength of the diode laser is not important for PBS A A/2 [ LD2 LD 3 LD1 LD1 a) b) c) 900 Wavelength. [nm] Fig. 10: a) polarization coupling b) wavelength coupling c) transmission ofwo different edgefiltersfor s-polarization (filter 1) and s+p-polarization (filter 2), the absorbtivity ofbothfilters is neglectable therefore the reflectivity R equals J-T Bothfilters are used to combine the emission of 800 nm, 930 nm and 970 nm diode lasers. 104

8 the application i.e. for materials processing like welding of plastics, soldering, cutting etc. different wavelength could be combined by dielectric coated edge filters (see Fig lob). Due to the steep change from 93% transmissivity to 99% reflectivity of those filters within 40 nm (see filter 1 in Fig loc) up to 6 different wavelength can be combined within the conimon range for high power diode lasers from 800 to 1000 nm. The total losses for such a setup will not exceed more than 6%. step-rn irrors PBS cylindrical lens m icro lens laser-diode with cooler aspherical lens Fig.]]: 40 Wpower at 808 nm out of a 0.6 mm fiber by two laser diode bars coupled by polarization ompared to Fig. 7 an improved optical setup for fiber coupling with respect to its compactness and output power is shown in Fig Two Siemens G5 diode bars on micro channel coolers are arranged as depicted in Fig. loa in front of the step mirrors (step width 1 mm). After the beam shaping the beam is compressed by two prisms in fast axis to save some of the distance between the optics and their size. The prisms also set upright the steps with respect to the direction of beam propagation. Therefore the beam incidence on the cylindrical lens (f = 40mm) is normal. Within this setup the steps are projected with a magnification of 0.5 using the cylindrical lens and an aspherical lens (f = 20 mm) on to a fiber with a core diameter of 0.6 mm and a NA of The same lens is used to focus the beam in fast axis. This results to a rectangular power distribution on the fiber entrance with spot dimension of 0,2 mm in fast axis and 0,5 mm in slow axis. Again more the 70% of coupling efficiency is achieved at a power level of 40 W out of the fiber. fibre To double the output power a second optical setup as shown in Fig 1 1 is arranged to the first one in a way that the beams are stacked up in the direction of the fast axis (see Fig. 12). The focal length of both lenses is also doubled (f= 80 and 40 mm) to keep the magnification and the NA constant. Then the spot size at the fiber is increased in fast axis from 0.2 to 0.4 mm, while the size in slow axis remains constant at 0.5 mm. Due to the dimension of the spot diagonal of 0.64 mm the core diameter of the fiber is also increased to 0.8 mm. laser-diodes 1 and 2 laser-diodes 3 and 4 prisms for beam-corn pression focusing lens Fig. 12: Optical setupfor a 80W diode laser using 4 diode bars. fibre-plug 105

9 oupling of three diode bars with different wavelength is also proven and leads to an output power of 60 W. The combination of all three coupling methods like wavelength multiplexing, polarization coupling and doubling can lead to a setup with 12 diode bars. First wavelength multiplexing with stacked diode bars is performed. In two of the four stacks half-wave-plates for each wavelength are introduced to rotate the direction of polarization. A polarization beam splitter combines the emission of two stacks. The setup depicted in Fig. 13 is doubled and arranged like the setup in Fig. 12. Maximum power of such a diode laser system will reach values above 200 w out ofa fiber. A/2 plate PBS Fig. 13: Arrangement of six diode laser bars using wavelength multplexing and polarization coupling to increase the output power A beam-shaping technique is demonstrated which yields highly efficient equalization of the beam-quality factor. With this set-up, 71% of the power of the diode laser bar is transmitted through a 400 j.tm fiber. An even higher efficiency should be obtained through further optimization. The whole set-up is compact and comprises only a few optical components. The alignment of the micro step-mirrors is easy to perform. Results in wavelength multiplexing and polarization coupling give rise to the assumption that an increased output power up to 1 kw is possible. This will open the competition between diode and solid state lasers in the field ofmaterials processing. This work was supported by BMBF/VDI 7. ONLUSION 8. AKNOWLEDGMENTS REFERENES 1. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin 1992). 2. P. Loosen, "Advanced concepts of using diode lasers in material processing," Proc. of SPIE Vol (1997) 3. P. Loosen, J. Biesenbach et al., "Design and industrial applications of high-power diode-lasers," in XI. mt. Symp. on Gas Flow and hem. Lasers and High-Power Laser onf, H.J. Baker, Editor, SPIE 3092, (1997). 4. M. Sakamoto, J.G. Endriz, D.R. Scifres, Electron. Lett. 28, 197 (1992). 5. T. Ebert, J. Biesenbach, et al., "Optimisation of micro channel heat sinks for high power diode lasers in copper technology," Proc. of SPIE Vol (1997) 6. H. Zbinden, and J. E. Balmer, Opt. Lett. 15, 1014 (1990) 7. Th. Graf, and J. E. Balmer, Opt. Lett. 18, 1317 (1993) 8. R. J. Leger, and W.. Goltsos, IEEE J. Quantum Electronics 28, (1992) 9. P. Albers, H. J. Heimbeck, and E. Langenbach, SPIE Proc. 1700, (1992) 10. S. Yamaguchi, T. Kobayashi, Y. Saito, and K. hiba, Opt. Lea. 20, 898 (1995) 11. W. A. larkson, and D.. Hanna, Opt. Lett. 21, 375 (1996) 106

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG C. Schnitzler a, S. Hambuecker a, O. Ruebenach a, V. Sinhoff a, G. Steckman b, L. West b, C. Wessling c, D. Hoffmann

More information

Dense Spatial Multiplexing Enables High Brightness Multi-kW Diode Laser Systems

Dense Spatial Multiplexing Enables High Brightness Multi-kW Diode Laser Systems Invited Paper Dense Spatial Multiplexing Enables High Brightness Multi-kW Diode Laser Systems Holger Schlüter a, Christoph Tillkorn b, Ulrich Bonna a, Greg Charache a, John Hostetler a, Ting Li a, Carl

More information

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2003 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

High power VCSEL array pumped Q-switched Nd:YAG lasers

High power VCSEL array pumped Q-switched Nd:YAG lasers High power array pumped Q-switched Nd:YAG lasers Yihan Xiong, Robert Van Leeuwen, Laurence S. Watkins, Jean-Francois Seurin, Guoyang Xu, Alexander Miglo, Qing Wang, and Chuni Ghosh Princeton Optronics,

More information

EXPRIMENT 3 COUPLING FIBERS TO SEMICONDUCTOR SOURCES

EXPRIMENT 3 COUPLING FIBERS TO SEMICONDUCTOR SOURCES EXPRIMENT 3 COUPLING FIBERS TO SEMICONDUCTOR SOURCES OBJECTIVES In this lab, firstly you will learn to couple semiconductor sources, i.e., lightemitting diodes (LED's), to optical fibers. The coupling

More information

Applying of refractive beam shapers of circular symmetry to generate non-circular shapes of homogenized laser beams

Applying of refractive beam shapers of circular symmetry to generate non-circular shapes of homogenized laser beams - 1 - Applying of refractive beam shapers of circular symmetry to generate non-circular shapes of homogenized laser beams Alexander Laskin a, Vadim Laskin b a MolTech GmbH, Rudower Chaussee 29-31, 12489

More information

11 kw direct diode laser system with homogenized 55 x 20 mm² Top-Hat intensity distribution

11 kw direct diode laser system with homogenized 55 x 20 mm² Top-Hat intensity distribution 11 kw direct diode laser system with homogenized 55 x 20 mm² Top-Hat intensity distribution Bernd Köhler *, Axel Noeske, Tobias Kindervater, Armin Wessollek, Thomas Brand, Jens Biesenbach DILAS Diodenlaser

More information

Properties of Structured Light

Properties of Structured Light Properties of Structured Light Gaussian Beams Structured light sources using lasers as the illumination source are governed by theories of Gaussian beams. Unlike incoherent sources, coherent laser sources

More information

High-brightness and high-efficiency fiber-coupled module for fiber laser pump with advanced laser diode

High-brightness and high-efficiency fiber-coupled module for fiber laser pump with advanced laser diode High-brightness and high-efficiency fiber-coupled module for fiber laser pump with advanced laser diode Yohei Kasai* a, Yuji Yamagata b, Yoshikazu Kaifuchi a, Akira Sakamoto a, and Daiichiro Tanaka a a

More information

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name: EE119 Introduction to Optical Engineering Fall 2009 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

A novel tunable diode laser using volume holographic gratings

A novel tunable diode laser using volume holographic gratings A novel tunable diode laser using volume holographic gratings Christophe Moser *, Lawrence Ho and Frank Havermeyer Ondax, Inc. 85 E. Duarte Road, Monrovia, CA 9116, USA ABSTRACT We have developed a self-aligned

More information

Q-switched resonantly diode-pumped Er:YAG laser

Q-switched resonantly diode-pumped Er:YAG laser Q-switched resonantly diode-pumped Er:YAG laser Igor Kudryashov a) and Alexei Katsnelson Princeton Lightwave Inc., 2555 US Route 130, Cranbury, New Jersey, 08512 ABSTRACT In this work, resonant diode pumping

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

Tutorial Zemax 9: Physical optical modelling I

Tutorial Zemax 9: Physical optical modelling I Tutorial Zemax 9: Physical optical modelling I 2012-11-04 9 Physical optical modelling I 1 9.1 Gaussian Beams... 1 9.2 Physical Beam Propagation... 3 9.3 Polarization... 7 9.4 Polarization II... 11 9 Physical

More information

Optical components for tailoring beam properties of multi-kw diode lasers

Optical components for tailoring beam properties of multi-kw diode lasers Optical components for tailoring beam properties of multi-kw diode lasers Tobias Könning*, Bernd Köhler, Paul Wolf, Andreas Bayer, Ralf Hubrich, Christian Bodem, Nora Plappert, Tobias Kindervater, Wilhelm

More information

Parallel Mode Confocal System for Wafer Bump Inspection

Parallel Mode Confocal System for Wafer Bump Inspection Parallel Mode Confocal System for Wafer Bump Inspection ECEN5616 Class Project 1 Gao Wenliang wen-liang_gao@agilent.com 1. Introduction In this paper, A parallel-mode High-speed Line-scanning confocal

More information

The Beam Characteristics of High Power Diode Laser Stack

The Beam Characteristics of High Power Diode Laser Stack IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS The Beam Characteristics of High Power Diode Laser Stack To cite this article: Yuanyuan Gu et al 2018 IOP Conf. Ser.: Mater. Sci.

More information

Fiber coupled diode laser of high spectral and spatial beam quality with kw class output power

Fiber coupled diode laser of high spectral and spatial beam quality with kw class output power Fiber coupled diode laser of high spectral and spatial beam quality with kw class output power Christian Wessling, Martin Traub, Dieter Hoffmann Fraunhofer Institute for Laser Technology, Aachen, Germany

More information

101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity

101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity PRAMANA c Indian Academy of Sciences Vol. 75, No. 5 journal of November 2010 physics pp. 935 940 101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity S K

More information

RECENTLY, using near-field scanning optical

RECENTLY, using near-field scanning optical 1 2 1 2 Theoretical and Experimental Study of Near-Field Beam Properties of High Power Laser Diodes W. D. Herzog, G. Ulu, B. B. Goldberg, and G. H. Vander Rhodes, M. S. Ünlü L. Brovelli, C. Harder Abstract

More information

Assembly and Experimental Characterization of Fiber Collimators for Low Loss Coupling

Assembly and Experimental Characterization of Fiber Collimators for Low Loss Coupling Assembly and Experimental Characterization of Fiber Collimators for Low Loss Coupling Ruby Raheem Dept. of Physics, Heriot Watt University, Edinburgh, Scotland EH14 4AS, UK ABSTRACT The repeatability of

More information

Laser Beam Analysis Using Image Processing

Laser Beam Analysis Using Image Processing Journal of Computer Science 2 (): 09-3, 2006 ISSN 549-3636 Science Publications, 2006 Laser Beam Analysis Using Image Processing Yas A. Alsultanny Computer Science Department, Amman Arab University for

More information

Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs

Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs Andrea Kroner We present 85 nm wavelength top-emitting vertical-cavity surface-emitting lasers (VCSELs) with integrated photoresist

More information

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember Günter Toesko - Laserseminar BLZ im Dezember 2009 1 Aberrations An optical aberration is a distortion in the image formed by an optical system compared to the original. It can arise for a number of reasons

More information

High Power Dense Spectral Combination Using Commercially Available Lasers and VHGs

High Power Dense Spectral Combination Using Commercially Available Lasers and VHGs High Power Dense Spectral Combination Using Commercially Available Lasers and VHGs Christophe Moser, CEO Moser@ondax.com Contributors: Gregory Steckman, Frank Havermeyer, Wenhai Liu: Ondax Inc. Christian

More information

Multi-kW high-brightness fiber coupled diode laser based on two dimensional stacked tailored diode bars

Multi-kW high-brightness fiber coupled diode laser based on two dimensional stacked tailored diode bars Multi-kW high-brightness fiber coupled diode laser based on two dimensional stacked tailored diode bars Andreas Bayer*, Andreas Unger, Bernd Köhler, Matthias Küster, Sascha Dürsch, Heiko Kissel, David

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Laser Diode Mounting Kits

Laser Diode Mounting Kits Laser Diode Mounting Kits For Ø5.6mm and Ø9mm Laser Diodes Complete Mounting System with Collimating Lens If your work involves laser diodes, you ll appreciate the benefits of Optima s laser diode mounting

More information

Performance Factors. Technical Assistance. Fundamental Optics

Performance Factors.   Technical Assistance. Fundamental Optics Performance Factors After paraxial formulas have been used to select values for component focal length(s) and diameter(s), the final step is to select actual lenses. As in any engineering problem, this

More information

Design of efficient high-power diode-end-pumped TEMoo Nd:YVO4. laser. Yung Fu Chen*, Chen Cheng Liaob, Yu Pin Lanb, S. C. Wangb

Design of efficient high-power diode-end-pumped TEMoo Nd:YVO4. laser. Yung Fu Chen*, Chen Cheng Liaob, Yu Pin Lanb, S. C. Wangb Design of efficient high-power diode-end-pumped TEMoo Nd:YVO4 laser Yung Fu Chen*, Chen Cheng Liaob, Yu Pin Lanb, S. C. Wangb ADepartment of Electrophysics, National Chiao Tung University Hsinchu, Taiwan,

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 205-04-8 Herbert Gross Summer term 206 www.iap.uni-jena.de 2 Preliminary Schedule 04.04. Basics 2.04. Properties of optical systrems I 3 8.04.

More information

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade: Examination Optoelectronic Communication Technology April, 26 Name: Student ID number: OCT : OCT 2: OCT 3: OCT 4: Total: Grade: Declaration of Consent I hereby agree to have my exam results published on

More information

Vertical External Cavity Surface Emitting Laser

Vertical External Cavity Surface Emitting Laser Chapter 4 Optical-pumped Vertical External Cavity Surface Emitting Laser The booming laser techniques named VECSEL combine the flexibility of semiconductor band structure and advantages of solid-state

More information

GEOMETRICAL OPTICS AND OPTICAL DESIGN

GEOMETRICAL OPTICS AND OPTICAL DESIGN GEOMETRICAL OPTICS AND OPTICAL DESIGN Pantazis Mouroulis Associate Professor Center for Imaging Science Rochester Institute of Technology John Macdonald Senior Lecturer Physics Department University of

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Big League Cryogenics and Vacuum The LHC at CERN

Big League Cryogenics and Vacuum The LHC at CERN Big League Cryogenics and Vacuum The LHC at CERN A typical astronomical instrument must maintain about one cubic meter at a pressure of

More information

A Novel Multipass Optical System Oleg Matveev University of Florida, Department of Chemistry, Gainesville, Fl

A Novel Multipass Optical System Oleg Matveev University of Florida, Department of Chemistry, Gainesville, Fl A Novel Multipass Optical System Oleg Matveev University of Florida, Department of Chemistry, Gainesville, Fl BACKGROUND Multipass optical systems (MOS) are broadly used in absorption, Raman, fluorescence,

More information

Solution of Exercises Lecture Optical design with Zemax Part 6

Solution of Exercises Lecture Optical design with Zemax Part 6 2013-06-17 Prof. Herbert Gross Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Solution of Exercises Lecture Optical design with Zemax Part 6 6 Illumination

More information

Laser Telemetric System (Metrology)

Laser Telemetric System (Metrology) Laser Telemetric System (Metrology) Laser telemetric system is a non-contact gauge that measures with a collimated laser beam (Refer Fig. 10.26). It measure at the rate of 150 scans per second. It basically

More information

Precise hardening with high power diode lasers using beam shaping mirror optics

Precise hardening with high power diode lasers using beam shaping mirror optics Precise hardening with high power diode lasers using beam shaping mirror optics Steffen Bonss, Marko Seifert, Berndt Brenner, Eckhard Beyer Fraunhofer IWS, Winterbergstrasse 28, D-01277 Dresden, Germany

More information

Using Stock Optics. ECE 5616 Curtis

Using Stock Optics. ECE 5616 Curtis Using Stock Optics What shape to use X & Y parameters Please use achromatics Please use camera lens Please use 4F imaging systems Others things Data link Stock Optics Some comments Advantages Time and

More information

CHAPTER 1 Optical Aberrations

CHAPTER 1 Optical Aberrations CHAPTER 1 Optical Aberrations 1.1 INTRODUCTION This chapter starts with the concepts of aperture stop and entrance and exit pupils of an optical imaging system. Certain special rays, such as the chief

More information

White Paper: Modifying Laser Beams No Way Around It, So Here s How

White Paper: Modifying Laser Beams No Way Around It, So Here s How White Paper: Modifying Laser Beams No Way Around It, So Here s How By John McCauley, Product Specialist, Ophir Photonics There are many applications for lasers in the world today with even more on the

More information

Tailored bar concepts for 10 mm-mrad fiber coupled modules scalable to kw-class direct diode lasers

Tailored bar concepts for 10 mm-mrad fiber coupled modules scalable to kw-class direct diode lasers Tailored bar concepts for 1 mm-mrad fiber coupled modules scalable to kw-class direct diode lasers Andreas Unger*, Ross Uthoff, Michael Stoiber, Thomas Brand, Heiko Kissel, Bernd Köhler, Jens Biesenbach

More information

Tutorial. Various Types of Laser Diodes. Low-Power Laser Diodes

Tutorial. Various Types of Laser Diodes. Low-Power Laser Diodes 371 Introduction In the past fifteen years, the commercial and industrial use of laser diodes has dramatically increased with some common applications such as barcode scanning and fiber optic communications.

More information

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2002 Final Exam Name: SID: CLOSED BOOK. FOUR 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

CREATING ROUND AND SQUARE FLATTOP LASER SPOTS IN MICROPROCESSING SYSTEMS WITH SCANNING OPTICS Paper M305

CREATING ROUND AND SQUARE FLATTOP LASER SPOTS IN MICROPROCESSING SYSTEMS WITH SCANNING OPTICS Paper M305 CREATING ROUND AND SQUARE FLATTOP LASER SPOTS IN MICROPROCESSING SYSTEMS WITH SCANNING OPTICS Paper M305 Alexander Laskin, Vadim Laskin AdlOptica Optical Systems GmbH, Rudower Chaussee 29, 12489 Berlin,

More information

Diode laser modules based on new developments in tapered and broad area diode laser bars

Diode laser modules based on new developments in tapered and broad area diode laser bars Diode laser modules based on new developments in tapered and broad area diode laser bars Bernd Köhler *a, Sandra Ahlert a, Thomas Brand a, Matthias Haag a, Heiko Kissel a, Gabriele Seibold a, Michael Stoiber

More information

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical

More information

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Purpose 1. To understand the theory of Fraunhofer diffraction of light at a single slit and at a circular aperture; 2. To learn how to measure

More information

Will contain image distance after raytrace Will contain image height after raytrace

Will contain image distance after raytrace Will contain image height after raytrace Name: LASR 51 Final Exam May 29, 2002 Answer all questions. Module numbers are for guidance, some material is from class handouts. Exam ends at 8:20 pm. Ynu Raytracing The first questions refer to the

More information

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS Equipment and accessories: an optical bench with a scale, an incandescent lamp, matte, a set of

More information

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Ring cavity tunable fiber laser with external transversely chirped Bragg grating Ring cavity tunable fiber laser with external transversely chirped Bragg grating A. Ryasnyanskiy, V. Smirnov, L. Glebova, O. Mokhun, E. Rotari, A. Glebov and L. Glebov 2 OptiGrate, 562 South Econ Circle,

More information

Kilowatt Yb:YAG Laser Illuminator. March 1997

Kilowatt Yb:YAG Laser Illuminator. March 1997 Approved for public release; distribution is unlimited Kilowatt Yb:YAG Laser Illuminator March 1997 David S. Sumida and Hans Bruesselbach Hughes Research Laboratories, Inc. 3011 Malibu Canyon Road, M/S

More information

High-power semiconductor lasers for applications requiring GHz linewidth source

High-power semiconductor lasers for applications requiring GHz linewidth source High-power semiconductor lasers for applications requiring GHz linewidth source Ivan Divliansky* a, Vadim Smirnov b, George Venus a, Alex Gourevitch a, Leonid Glebov a a CREOL/The College of Optics and

More information

LOPUT Laser: A novel concept to realize single longitudinal mode laser

LOPUT Laser: A novel concept to realize single longitudinal mode laser PRAMANA c Indian Academy of Sciences Vol. 82, No. 2 journal of February 2014 physics pp. 185 190 LOPUT Laser: A novel concept to realize single longitudinal mode laser JGEORGE, KSBINDRAand SMOAK Solid

More information

External-Cavity Tapered Semiconductor Ring Lasers

External-Cavity Tapered Semiconductor Ring Lasers External-Cavity Tapered Semiconductor Ring Lasers Frank Demaria Laser operation of a tapered semiconductor amplifier in a ring-oscillator configuration is presented. In first experiments, 1.75 W time-average

More information

Vixar High Power Array Technology

Vixar High Power Array Technology Vixar High Power Array Technology I. Introduction VCSELs arrays emitting power ranging from 50mW to 10W have emerged as an important technology for applications within the consumer, industrial, automotive

More information

Wavelength stabilized multi-kw diode laser systems

Wavelength stabilized multi-kw diode laser systems Wavelength stabilized multi-kw diode laser systems Bernd Köhler *, Andreas Unger, Tobias Kindervater, Simon Drovs, Paul Wolf, Ralf Hubrich, Anna Beczkowiak, Stefan Auch, Holger Müntz, Jens Biesenbach DILAS

More information

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E.

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E. QPC Lasers, Inc. 2007 SPIE Photonics West Paper: Mon Jan 22, 2007, 1:20 pm, LASE Conference 6456, Session 3 High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh,

More information

Sintec Optronics Technology Pte Ltd 10 Bukit Batok Crescent #07-02 The Spire Singapore Tel: Fax:

Sintec Optronics Technology Pte Ltd 10 Bukit Batok Crescent #07-02 The Spire Singapore Tel: Fax: Sintec Optronics Technology Pte Ltd 10 Bukit Batok Crescent #07-02 The Spire Singapore 658079 Tel: +65 63167112 Fax: +65 63167113 High-power Nd:YAG Self-floating Laser Cutting Head We supply the laser

More information

Use of Computer Generated Holograms for Testing Aspheric Optics

Use of Computer Generated Holograms for Testing Aspheric Optics Use of Computer Generated Holograms for Testing Aspheric Optics James H. Burge and James C. Wyant Optical Sciences Center, University of Arizona, Tucson, AZ 85721 http://www.optics.arizona.edu/jcwyant,

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 207-04-20 Herbert Gross Summer term 207 www.iap.uni-jena.de 2 Preliminary Schedule - Lens Design I 207 06.04. Basics 2 3.04. Properties of optical

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 2: Imaging 1 the Telescope Original Version: Prof. McLeod SUMMARY: In this lab you will become familiar with the use of one or more lenses to create images of distant

More information

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%.

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%. Application Note AN004: Fiber Coupling Improvement Introduction AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%. Industrial lasers used for cutting, welding, drilling,

More information

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature:

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature: Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: PID: Signature: CLOSED BOOK. TWO 8 1/2 X 11 SHEET OF NOTES (double sided is allowed), AND SCIENTIFIC POCKET CALCULATOR

More information

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc.

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc. Optodevice Data Book ODE-408-001I Rev.9 Mar. 2003 Opnext Japan, Inc. Section 1 Operating Principles 1.1 Operating Principles of Laser Diodes (LDs) and Infrared Emitting Diodes (IREDs) 1.1.1 Emitting Principles

More information

Beam shaping imaging system for laser microprocessing with scanning optics

Beam shaping imaging system for laser microprocessing with scanning optics Beam shaping imaging system for laser microprocessing with scanning optics Alexander Laskin a, Nerijus Šiaulys b, Gintas Šlekys b, Vadim Laskin a a AdlOptica GmbH, Rudower Chaussee 29, 12489 Berlin, Germany

More information

REFLECTION THROUGH LENS

REFLECTION THROUGH LENS REFLECTION THROUGH LENS A lens is a piece of transparent optical material with one or two curved surfaces to refract light rays. It may converge or diverge light rays to form an image. Lenses are mostly

More information

UV EXCIMER LASER BEAM HOMOGENIZATION FOR MICROMACHINING APPLICATIONS

UV EXCIMER LASER BEAM HOMOGENIZATION FOR MICROMACHINING APPLICATIONS Optics and Photonics Letters Vol. 4, No. 2 (2011) 75 81 c World Scientific Publishing Company DOI: 10.1142/S1793528811000226 UV EXCIMER LASER BEAM HOMOGENIZATION FOR MICROMACHINING APPLICATIONS ANDREW

More information

ECEN. Spectroscopy. Lab 8. copy. constituents HOMEWORK PR. Figure. 1. Layout of. of the

ECEN. Spectroscopy. Lab 8. copy. constituents HOMEWORK PR. Figure. 1. Layout of. of the ECEN 4606 Lab 8 Spectroscopy SUMMARY: ROBLEM 1: Pedrotti 3 12-10. In this lab, you will design, build and test an optical spectrum analyzer and use it for both absorption and emission spectroscopy. The

More information

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge). Chapter 30: Lenses Types of Lenses Piece of glass or transparent material that bends parallel rays of light so they cross and form an image Two types: Converging Diverging Converging Lenses Parallel rays

More information

plasmonic nanoblock pair

plasmonic nanoblock pair Nanostructured potential of optical trapping using a plasmonic nanoblock pair Yoshito Tanaka, Shogo Kaneda and Keiji Sasaki* Research Institute for Electronic Science, Hokkaido University, Sapporo 1-2,

More information

HCS 50W, 60W & 80W. Data Sheet. Housed Collimated High Power Laser Diode Bar

HCS 50W, 60W & 80W. Data Sheet. Housed Collimated High Power Laser Diode Bar HCS 50W, 60W & 80W Housed Collimated High Power Laser Diode Bar Features: The II-VI Laser Enterprise HCS series of hard soldered collimated laser diode bars offer superior optical beam parameters with

More information

Beam Profiling. Introduction. What is Beam Profiling? by Michael Scaggs. Haas Laser Technologies, Inc.

Beam Profiling. Introduction. What is Beam Profiling? by Michael Scaggs. Haas Laser Technologies, Inc. Beam Profiling by Michael Scaggs Haas Laser Technologies, Inc. Introduction Lasers are ubiquitous in industry today. Carbon Dioxide, Nd:YAG, Excimer and Fiber lasers are used in many industries and a myriad

More information

A Possible Design of Large Angle Beamstrahlung Detector for CESR

A Possible Design of Large Angle Beamstrahlung Detector for CESR A Possible Design of Large Angle Beamstrahlung Detector for CESR Gang Sun Wayne State University, Detroit MI 482 June 4, 1998 1 Introduction Beamstrahlung radiation occurs when high energy electron and

More information

Single frequency MOPA system with near diffraction limited beam

Single frequency MOPA system with near diffraction limited beam Single frequency MOPA system with near diffraction limited beam quality D. Chuchumishev, A. Gaydardzhiev, A. Trifonov, I. Buchvarov Abstract Near diffraction limited pulses of a single-frequency and passively

More information

R. J. Jones Optical Sciences OPTI 511L Fall 2017

R. J. Jones Optical Sciences OPTI 511L Fall 2017 R. J. Jones Optical Sciences OPTI 511L Fall 2017 Semiconductor Lasers (2 weeks) Semiconductor (diode) lasers are by far the most widely used lasers today. Their small size and properties of the light output

More information

GRINTECH GmbH. product information.

GRINTECH GmbH. product information. GRINTECH GmbH product information www.grintech.de GRIN rod lenses Gradient index lenses for fiber coupling and beam shaping of laser diodes z l d s f Order example: GT-LFRL-100-025-50-CC (670) Design wavelength

More information

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad.

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. DEPARTMENT OF PHYSICS QUESTION BANK FOR SEMESTER III PAPER III OPTICS UNIT I: 1. MATRIX METHODS IN PARAXIAL OPTICS 2. ABERATIONS UNIT II

More information

Chapters 1 & 2. Definitions and applications Conceptual basis of photogrammetric processing

Chapters 1 & 2. Definitions and applications Conceptual basis of photogrammetric processing Chapters 1 & 2 Chapter 1: Photogrammetry Definitions and applications Conceptual basis of photogrammetric processing Transition from two-dimensional imagery to three-dimensional information Automation

More information

Be aware that there is no universal notation for the various quantities.

Be aware that there is no universal notation for the various quantities. Fourier Optics v2.4 Ray tracing is limited in its ability to describe optics because it ignores the wave properties of light. Diffraction is needed to explain image spatial resolution and contrast and

More information

Laser Speckle Reducer LSR-3000 Series

Laser Speckle Reducer LSR-3000 Series Datasheet: LSR-3000 Series Update: 06.08.2012 Copyright 2012 Optotune Laser Speckle Reducer LSR-3000 Series Speckle noise from a laser-based system is reduced by dynamically diffusing the laser beam. A

More information

ADVANCED OPTICS LAB -ECEN Basic Skills Lab

ADVANCED OPTICS LAB -ECEN Basic Skills Lab ADVANCED OPTICS LAB -ECEN 5606 Basic Skills Lab Dr. Steve Cundiff and Edward McKenna, 1/15/04 Revised KW 1/15/06, 1/8/10 Revised CC and RZ 01/17/14 The goal of this lab is to provide you with practice

More information

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36 Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

More information

Tolerancing microlenses using ZEMAX

Tolerancing microlenses using ZEMAX Tolerancing microlenses using ZEMAX Andrew Stockham, John G. Smith MEMS Optical *, Inc., 05 Import Circle, Huntsville, AL, USA 35806 ABSTRACT This paper demonstrates a new tolerancing technique that allows

More information

TSBB09 Image Sensors 2018-HT2. Image Formation Part 1

TSBB09 Image Sensors 2018-HT2. Image Formation Part 1 TSBB09 Image Sensors 2018-HT2 Image Formation Part 1 Basic physics Electromagnetic radiation consists of electromagnetic waves With energy That propagate through space The waves consist of transversal

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Student Name Date MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.161 Modern Optics Project Laboratory Laboratory Exercise No. 6 Fall 2010 Solid-State

More information

BLUE SKY RESEARCH BLUE

BLUE SKY RESEARCH BLUE BLUE SKY RESEARCH Blue Sky Research is a company dedicated to providing the best possible balance of performance, value and quality. We have fielded over 1 million lasers since our inception in 1989, and

More information

Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens

Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens George Curatu a, Brent Binkley a, David Tinch a, and Costin Curatu b a LightPath Technologies, 2603

More information

Kilowatt Class High-Power CW Yb:YAG Cryogenic Laser

Kilowatt Class High-Power CW Yb:YAG Cryogenic Laser Kilowatt Class High-Power CW Yb:YAG Cryogenic Laser D.C. Brown, J.M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper Snake Creek Lasers, LLC, Hallstead, PA 18822 ABSTRACT We discuss progress

More information

Beam Shaping and Simultaneous Exposure by Diffractive Optical Element in Laser Plastic Welding

Beam Shaping and Simultaneous Exposure by Diffractive Optical Element in Laser Plastic Welding Beam Shaping and Simultaneous Exposure by Diffractive Optical Element in Laser Plastic Welding AKL`12 9th May 2012 Dr. Daniel Vogler Page 1 Motivation: Quality and flexibility diffractive spot shaping

More information

IST IP NOBEL "Next generation Optical network for Broadband European Leadership"

IST IP NOBEL Next generation Optical network for Broadband European Leadership DBR Tunable Lasers A variation of the DFB laser is the distributed Bragg reflector (DBR) laser. It operates in a similar manner except that the grating, instead of being etched into the gain medium, is

More information

High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems

High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems 64 Annual report 1998, Dept. of Optoelectronics, University of Ulm High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems G. Jost High-power semiconductor laser amplifiers are interesting

More information

Laser Diode Arrays an overview of functionality and operation

Laser Diode Arrays an overview of functionality and operation Laser Diode Arrays an overview of functionality and operation Jason Tang ECE 355 12/3/2001 Laser Diode Arrays (LDA) Primary Use in Research and Industry Technical Aspects and Implementations Output Performance

More information

OPTICAL SYSTEMS OBJECTIVES

OPTICAL SYSTEMS OBJECTIVES 101 L7 OPTICAL SYSTEMS OBJECTIVES Aims Your aim here should be to acquire a working knowledge of the basic components of optical systems and understand their purpose, function and limitations in terms

More information

Imaging with microlenslet arrays

Imaging with microlenslet arrays Imaging with microlenslet arrays Vesselin Shaoulov, Ricardo Martins, and Jannick Rolland CREOL / School of Optics University of Central Florida Orlando, Florida 32816 Email: vesko@odalab.ucf.edu 1. ABSTRACT

More information

United States Patent 19 Reno

United States Patent 19 Reno United States Patent 19 Reno 11 Patent Number: 45 Date of Patent: May 28, 1985 (54) BEAM EXPANSION AND RELAY OPTICS FOR LASER DODE ARRAY 75 Inventor: Charles W. Reno, Cherry Hill, N.J. 73 Assignee: RCA

More information

Imaging Systems Laboratory II. Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002

Imaging Systems Laboratory II. Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002 1051-232 Imaging Systems Laboratory II Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002 Abstract. In the last lab, you saw that coherent light from two different locations

More information

OPTICAL IMAGING AND ABERRATIONS

OPTICAL IMAGING AND ABERRATIONS OPTICAL IMAGING AND ABERRATIONS PARTI RAY GEOMETRICAL OPTICS VIRENDRA N. MAHAJAN THE AEROSPACE CORPORATION AND THE UNIVERSITY OF SOUTHERN CALIFORNIA SPIE O P T I C A L E N G I N E E R I N G P R E S S A

More information