Unresolved Issues in Prediction of Subjective and Objective Refraction from Wavefront Data

Size: px
Start display at page:

Download "Unresolved Issues in Prediction of Subjective and Objective Refraction from Wavefront Data"

Transcription

1 Wavefront Congress Symposium Feb, 2008 Unresolved Issues in Prediction of Subjective and Objective Refraction from Wavefront Data Larry N. Thibos School of Optometry, Indiana University, Bloomington, IN Slideshow in public domain at

2 6 questions without answers 1) Which subjective criterion is to be emulated: perceived or performance IQ? 2) Do metrics need to include the neural system, or is Rx just optics? 3) What are the sources of discrepancy between subjective and objective Rx? 4) How close is close enough? 5) Mono vs. poly chromatic IQ: does it matter? 6) Is there a systematic error due to depth of retinal beacon? If so, does it depend on wavelength?

3 Traditional subjective refraction Caveman Refractionist Wow! Retinal Image (inaccessible) Vision (perceivable) Patient decides which lens is better, #1 or #2

4 The subjective refraction paradigm Retinal image #1 Visual Object Filter #1 task Retinal image #2 Observer Filter #2 Which optical filter (i.e. lens) is better?

5 Objective refraction Visual target Mini-clinician assesses image quality Adjust distance Find the viewing distance (or correcting lens) for which retinal image quality is maximized.

6 Objective wavefront refaction Maxiclinician inspects reflected wavefront Δy Δx Aberrated rays P object point Measure wavefront aberration and compute the correcting lens needed to optimize an external image of the fundus.

7 Wavefront refraction: finding the best correcting lens Aberration map Lots Fourier of math optics Computed Image IQ Is IQ max? Yes No Add sphero-cylindrical wavefront

8 6 questions without answers 1) Which subjective criterion is to be emulated: perceived IQ or performance IQ? 2) Do metrics need to include the neural system, or is Rx just optics? 3) What are the sources of discrepancy between subjective and objective Rx? 4) How close is close enough? 5) Mono vs. poly chromatic IQ: does it matter? 6) Is there a systematic error due to depth of retinal beacon? If so, does it depend on wavelength?

9 What does "better" mean?

10 The subjective refraction paradigm Retinal image #1 Visual Object Filter #1 task Retinal image #2 Observer Filter #2 Choice of metric for ranking optical filters depends on the task. Task A: read the letters Task B: judge perceived quality

11 6 questions without answers 1) Which subjective criterion is to be emulated: perceived or performance IQ? 2) Do metrics need to include the neural system, or is refraction just optics? 3) What are the sources of discrepancy between subjective and objective Rx? 4) How close is close enough? 5) Mono vs. poly chromatic IQ: does it matter? 6) Is there a systematic error due to depth of retinal beacon? If so, does it depend on wavelength?

12 Objective prediction of perceived image quality Granger & Cupery (1972) Barten (1987) Area = SQF Area = SQRI 3 12

13 6 questions without answers 1) Which subjective criterion is to be emulated: perceived or performance IQ? 2) Do metrics need to include the neural system, or is Rx just optics? 3) What are the sources of discrepancy between subjective and objective Rx? 4) How close is close enough? 5) Mono vs. poly chromatic IQ: does it matter? 6) Is there a systematic error due to depth of retinal beacon? If so, does it depend on wavelength?

14 How large is the discrepancy? Defocus (M) Astigmatism (J 0 or J 45 ) Objective best lens (D) R R Subjective best lens (D) Cheng et al., 2004 (J. Vision) computationally-blurred images, monochromatic light 3 levels of 3rd & 4th order Zernike aberrations letter size & lens power (M, J 0 or J 45 ) varied to maximize VA

15 Real-world clinical refractions Subjective refraction uses polychromatic light Whereas, optical measurements of wavefront aberrations are monochromatic, typically with "invisible light" (infra-red) Subjective hyperfocal refractions deliberately leave the eye myopic (i.e. undercorrected) Whereas, wavefront refraction aims to optimize image quality for infinity, not the hyperfocal distance. How large is the discrepancy between subjective and objective refractions in the clinic?

16 6 questions without answers 1) Which subjective criterion is to be emulated: perceived or performance IQ? 2) Do metrics need to include the neural system, or is Rx just optics? 3) What are the sources of discrepancy between subjective and objective Rx? 4) How close is close enough? 5) Mono vs. poly chromatic IQ: does it matter? 6) Is there a systematic error due to depth of retinal beacon? If so, does it depend on wavelength?

17 Quantifying error of astigmatism predictions J 45 Subjective Prediction Error J 0 Objective J 0 = 0.5*Cyl*cos(2*axis) = c 2 +2 /r 2 Scatterplot of prediction errors J 45 J45 + J0 J 0 J 45 = 0.5*Cyl*sin(2*axis) = c 2-2 /r 2 Accuracy (systematic error) = distance of population mean from origin Precision (random error) = mean radius of 95% confidence ellipse

18 Astigmatism results (Coe, WFC 2004) The good news: Many metrics of WQ, IQ, and VQ make highly accurate predictions of subjective Rx (systematic error < 0.05D) Suggests errors in predicting astigmatism are random. For the most precise metrics, 95% of objective predictions are within 0.25 D of subjective measurements. This might be as good as we can expect, given variability in the gold standard of subjective refractions. It is hard to hit a moving target.

19 Defocus results (Coe, WFC 2004) The bad news: Accurate and precise predictions of spherical defocus have proven elusive, even when using unbiased "infinity" refractions designed to make the retina optically conjugate to infinity, rather than the hyperfocal distance used clinically. This discrepancy might be due to various features of ocular chromatic aberration.

20 6 questions without answers 1) Which subjective criterion is to be emulated: perceived or performance IQ? 2) Do metrics need to include the neural system, or is Rx just optics? 3) What are the sources of discrepancy between subjective and objective Rx? 4) How close is close enough? 5) Mono vs. poly chromatic IQ: does it matter? 6) Is there a systematic error due to depth of retinal beacon? If so, does it depend on wavelength?

21 Predicting defocus (M) is more challenging Accurate and precise prediction of defocus (M) is hampered by ocular chromatic aberration for several reasons: 1. Wavefront aberrometers using infrared light are subject to potential measurement bias. 2. Wavefronts measured in infrared must be converted to a visible wavelength using some model of ocular chromatic aberration (OCA). The model could be wrong. 3. Although OCA models should include higher-order chromatic aberrations, HOCAs are probably less important than individual variation in lower-order OCA. 4. Polychromatic calculations of defocus (M) require knowledge of wavelength-in-focus when white-light targets were optimally focused subjectively.

22 6 questions without answers 1) Which subjective criterion is to be emulated: perceived or performance IQ? 2) Do metrics need to include the neural system, or is Rx just optics? 3) What are the sources of discrepancy between subjective and objective Rx? 4) How close is close enough? 5) Mono vs. poly chromatic IQ: does it matter? 6) Is there a systematic error due to depth of the retinal beacon used to measure the eye? If so, does it depend on wavelength?

23 A possible explanation for myopic bias in IR Classical, refractive CA IR light may reflect from deeper layers of fundus, making eye appear myopic. Reflective CA??

24 A possible artifact of aberrometry Melanin and hemoglobin are more transparent for IR than for visible light. If IR light of aberrometer penetrates into choroid, eye will appear longer, hence more myopic, than for visible light. IR Visible

25 Myopic bias of infrared aberrometry (Warren, 2006) Previous reports indicate fundus reflection is near cone apertures: Williams et al. (1994) 633nm Lopez-Gil & Artal (1997) < 543 & 780 nm Our measurements at Indiana (N=30) indicate significant bias 850nm, suggesting the retinal beacon is near Bruch's membrane. RPE Bruch's memb. Cone apertures 0.25 ±0.16 D = 92 ±59 µm 850nm retinal beacon

26 Even more unanswered questions: Computational Is the dynamic range of the metrics large enough for Rx? Are the metrics robust enough for iterative solutions to converge to global maximum IQ? Is wavefront reconstructiona and Fourier optics calculations necessary? Or can we go straight from measured wavefront slopes to the prescription? Is compensation for individual variation necessary? Ocular chromatic aberration models used for polychromatic analysis Wavelength-in-focus for polychromatic objects Measurement bias due to depth-of-penetration of fundus beacon

27 Even more unanswered questions: Peripheral refractions Do foveal methods of objective refraction work also for peripheral vision? What is the best way to deal with elliptical entrance pupils that occur off-axis? Clinical issues Might cyclopean metrics of visual quality prove useful for performing binocular wavefront refractions? Will wavefront refractions replace clinical trials for new designs of refractive therapy? Will objective wavefront refractions replace subjective refractions as the "gold standard" of clinical practice?

28 The Visual Optics Group at Indiana University Larry Thibos, PhD Arthur Bradley, PhD Steve Burns, PhD Ann Elsner, PhD Donald Miller, PhD Carolyn Begley, OD Rowan Candy, OD PhD Jacob Rubinstein, PhD Jayoung Nam, Phd Nikole Himebaugh, OD Charles Coe, OD Haixia Liu, MD Jingyun Wang, BS Pete Kollbaum, OD Sowmya Ravikumar, BS Toco Chui, MS Xin Wei, BS Danielle Warren, OD Weihua Gao, BS Kevin Haggerty, BS Benno Petrig, PhD Ravi Jonnal, MS Jungtae Rha, PhD Yan Zhang, PhD Barry Cense, PhD Zhangyi Zhong, BS Jie Shen, BS Hongxin Song, BS Support: National Institutes of Health / NEI National Science Foundation Borish Center for Ophthalmic Research Vision Research at

Accuracy and Precision of Objective Refraction from Wavefront Aberrations

Accuracy and Precision of Objective Refraction from Wavefront Aberrations Accuracy and Precision of Objective Refraction from Wavefront Aberrations Larry N. Thibos Arthur Bradley Raymond A. Applegate School of Optometry, Indiana University, Bloomington, IN, USA School of Optometry,

More information

Vision Research at. Validation of a Novel Hartmann-Moiré Wavefront Sensor with Large Dynamic Range. Wavefront Science Congress, Feb.

Vision Research at. Validation of a Novel Hartmann-Moiré Wavefront Sensor with Large Dynamic Range. Wavefront Science Congress, Feb. Wavefront Science Congress, Feb. 2008 Validation of a Novel Hartmann-Moiré Wavefront Sensor with Large Dynamic Range Xin Wei 1, Tony Van Heugten 2, Nikole L. Himebaugh 1, Pete S. Kollbaum 1, Mei Zhang

More information

Using Eye Models to Describe Ocular Wavefront Aberrations

Using Eye Models to Describe Ocular Wavefront Aberrations Wavefront Congress San Francisco, 2016 Using Eye Models to Describe Ocular Wavefront Aberrations Larry N. Thibos, PhD and Tao Liu, PhD Candidate School of Optometry, Indiana University, Bloomington, IN

More information

Explanation of Aberration and Wavefront

Explanation of Aberration and Wavefront Explanation of Aberration and Wavefront 1. What Causes Blur? 2. What is? 4. What is wavefront? 5. Hartmann-Shack Aberrometer 6. Adoption of wavefront technology David Oh 1. What Causes Blur? 2. What is?

More information

Subjective Image Quality Metrics from The Wave Aberration

Subjective Image Quality Metrics from The Wave Aberration Subjective Image Quality Metrics from The Wave Aberration David R. Williams William G. Allyn Professor of Medical Optics Center For Visual Science University of Rochester Commercial Relationship: Bausch

More information

Author Contact Information: Erik Gross VISX Incorporated 3400 Central Expressway Santa Clara, CA, 95051

Author Contact Information: Erik Gross VISX Incorporated 3400 Central Expressway Santa Clara, CA, 95051 Author Contact Information: Erik Gross VISX Incorporated 3400 Central Expressway Santa Clara, CA, 95051 Telephone: 408-773-7117 Fax: 408-773-7253 Email: erikg@visx.com Improvements in the Calculation and

More information

10/25/2017. Financial Disclosures. Do your patients complain of? Are you frustrated by remake after remake? What is wavefront error (WFE)?

10/25/2017. Financial Disclosures. Do your patients complain of? Are you frustrated by remake after remake? What is wavefront error (WFE)? Wavefront-Guided Optics in Clinic: Financial Disclosures The New Frontier November 4, 2017 Matthew J. Kauffman, OD, FAAO, FSLS STAPLE Program Soft Toric and Presbyopic Lens Education Gas Permeable Lens

More information

Refractive surgery and other high-tech methods

Refractive surgery and other high-tech methods The Prospects for Perfect Vision Larry N. Thibos, PhD Refractive surgery and other high-tech methods for correcting the optical aberrations of the eye aim to make the eye optically perfect. The notion

More information

Transferring wavefront measurements to ablation profiles. Michael Mrochen PhD Swiss Federal Institut of Technology, Zurich IROC Zurich

Transferring wavefront measurements to ablation profiles. Michael Mrochen PhD Swiss Federal Institut of Technology, Zurich IROC Zurich Transferring wavefront measurements to ablation profiles Michael Mrochen PhD Swiss Federal Institut of Technology, Zurich IROC Zurich corneal ablation Calculation laser spot positions Centration Calculation

More information

phone extn.3662, fax: , nitt.edu ABSTRACT

phone extn.3662, fax: , nitt.edu ABSTRACT Analysis of Refractive errors in the human eye using Shack Hartmann Aberrometry M. Jesson, P. Arulmozhivarman, and A.R. Ganesan* Department of Physics, National Institute of Technology, Tiruchirappalli

More information

4th International Congress of Wavefront Sensing and Aberration-free Refractive Correction ADAPTIVE OPTICS FOR VISION: THE EYE S ADAPTATION TO ITS

4th International Congress of Wavefront Sensing and Aberration-free Refractive Correction ADAPTIVE OPTICS FOR VISION: THE EYE S ADAPTATION TO ITS 4th International Congress of Wavefront Sensing and Aberration-free Refractive Correction (Supplement to the Journal of Refractive Surgery; June 2003) ADAPTIVE OPTICS FOR VISION: THE EYE S ADAPTATION TO

More information

Aberrations and Visual Performance: Part I: How aberrations affect vision

Aberrations and Visual Performance: Part I: How aberrations affect vision Aberrations and Visual Performance: Part I: How aberrations affect vision Raymond A. Applegate, OD, Ph.D. Professor and Borish Chair of Optometry University of Houston Houston, TX, USA Aspects of this

More information

Normal Wavefront Error as a Function of Age and Pupil Size

Normal Wavefront Error as a Function of Age and Pupil Size RAA Normal Wavefront Error as a Function of Age and Pupil Size Raymond A. Applegate, OD, PhD Borish Chair of Optometry Director of the Visual Optics Institute College of Optometry University of Houston

More information

Representation of Wavefront Aberrations

Representation of Wavefront Aberrations 1 4th Wavefront Congress - San Francisco - February 2003 Representation of Wavefront Aberrations Larry N. Thibos School of Optometry, Indiana University, Bloomington, IN 47405 thibos@indiana.edu http://research.opt.indiana.edu/library/wavefronts/index.htm

More information

Is Aberration-Free Correction the Best Goal

Is Aberration-Free Correction the Best Goal Is Aberration-Free Correction the Best Goal Stephen Burns, PhD, Jamie McLellan, Ph.D., Susana Marcos, Ph.D. The Schepens Eye Research Institute. Schepens Eye Research Institute, an affiliate of Harvard

More information

Adaptive Optics for Vision Science. Principles, Practices, Design, and Applications

Adaptive Optics for Vision Science. Principles, Practices, Design, and Applications Adaptive Optics for Vision Science Principles, Practices, Design, and Applications Edited by JASON PORTER, HOPE M. QUEENER, JULIANNA E. LIN, KAREN THORN, AND ABDUL AWWAL m WILEY- INTERSCIENCE A JOHN WILEY

More information

Optics of Wavefront. Austin Roorda, Ph.D. University of Houston College of Optometry

Optics of Wavefront. Austin Roorda, Ph.D. University of Houston College of Optometry Optics of Wavefront Austin Roorda, Ph.D. University of Houston College of Optometry Geometrical Optics Relationships between pupil size, refractive error and blur Optics of the eye: Depth of Focus 2 mm

More information

Ron Liu OPTI521-Introductory Optomechanical Engineering December 7, 2009

Ron Liu OPTI521-Introductory Optomechanical Engineering December 7, 2009 Synopsis of METHOD AND APPARATUS FOR IMPROVING VISION AND THE RESOLUTION OF RETINAL IMAGES by David R. Williams and Junzhong Liang from the US Patent Number: 5,777,719 issued in July 7, 1998 Ron Liu OPTI521-Introductory

More information

Basics Of Retinal Image Quality

Basics Of Retinal Image Quality Slide 2 Basics Of Retinal Image Quality Slide 3 The optics of the eye are the first stage of vision. It is an extremely important stage but not the only stage. Slide 4 Broadly There Are Two Components

More information

Wavefront-Guided Programmable Spectacles Related Metrics

Wavefront-Guided Programmable Spectacles Related Metrics Wavefront-Guided Programmable Spectacles Related Metrics Lawrence Sverdrup, Sean Sigarlaki, Jeffrey Chomyn, Jagdish Jethmalani, Andreas Dreher Ophthonix, Inc. 23rd February 2007 Outline Background on Ophthonix

More information

Accommodation with higher-order monochromatic aberrations corrected with adaptive optics

Accommodation with higher-order monochromatic aberrations corrected with adaptive optics Chen et al. Vol. 23, No. 1/ January 2006/ J. Opt. Soc. Am. A 1 Accommodation with higher-order monochromatic aberrations corrected with adaptive optics Li Chen Center for Visual Science, University of

More information

Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye

Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye Linda Lundström 1*, Silvestre Manzanera 2, Pedro M. Prieto 2, Diego B. Ayala 2, Nicolas Gorceix 2,

More information

A Computational Model for Predicting Visual Acuity from Wavefront Aberration Measurements

A Computational Model for Predicting Visual Acuity from Wavefront Aberration Measurements A Computational Model for Predicting Visual Acuity from Wavefront Aberration Measurements by Azadeh Faylienejad A thesis presented to the University of Waterloo in fulfillment of the thesis requirement

More information

OPTICAL SYSTEMS OBJECTIVES

OPTICAL SYSTEMS OBJECTIVES 101 L7 OPTICAL SYSTEMS OBJECTIVES Aims Your aim here should be to acquire a working knowledge of the basic components of optical systems and understand their purpose, function and limitations in terms

More information

ORIGINAL ARTICLES. Image Metrics for Predicting Subjective Image Quality

ORIGINAL ARTICLES. Image Metrics for Predicting Subjective Image Quality 1040-5488/05/8205-0358/0 VOL. 82, NO. 5, PP. 358 369 OPTOMETRY AND VISION SCIENCE Copyright 2005 American Academy of Optometry ORIGINAL ARTICLES Image Metrics for Predicting Subjective Image Quality LI

More information

What is Wavefront Aberration? Custom Contact Lenses For Vision Improvement Are They Feasible In A Disposable World?

What is Wavefront Aberration? Custom Contact Lenses For Vision Improvement Are They Feasible In A Disposable World? Custom Contact Lenses For Vision Improvement Are They Feasible In A Disposable World? Ian Cox, BOptom, PhD, FAAO Distinguished Research Fellow Bausch & Lomb, Rochester, NY Acknowledgements Center for Visual

More information

Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes

Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes Bio-Medical Materials and Engineering 24 (2014) 3073 3081 DOI 10.3233/BME-141129 IOS Press 3073 Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes Yi

More information

Agenda. 1. EyeLT Step 1 2. EyeLT Step 2 3. EyeLT Step 3

Agenda. 1. EyeLT Step 1 2. EyeLT Step 2 3. EyeLT Step 3 EyeLT STEP 1-3 Agenda 1. EyeLT Step 1 2. EyeLT Step 2 3. EyeLT Step 3 Rodenstock unique selling propositions. EyeLT Step 1 EyeLT Step 2 EyeLT Step 3 + + Superior, clear vision from far to near. Up to 25%

More information

Principles and clinical applications of ray-tracing aberrometry (Part II)

Principles and clinical applications of ray-tracing aberrometry (Part II) UPDATE/REVIEW Principles and clinical applications of ray-tracing aberrometry (Part II) Alfredo Castillo Gómez, MD, PhD 1 ; Antonio Verdejo del Rey, OD 2 ; Carlos Palomino Bautista, MD 3 ; Ana Escalada

More information

IMAGE SENSOR SOLUTIONS. KAC-96-1/5" Lens Kit. KODAK KAC-96-1/5" Lens Kit. for use with the KODAK CMOS Image Sensors. November 2004 Revision 2

IMAGE SENSOR SOLUTIONS. KAC-96-1/5 Lens Kit. KODAK KAC-96-1/5 Lens Kit. for use with the KODAK CMOS Image Sensors. November 2004 Revision 2 KODAK for use with the KODAK CMOS Image Sensors November 2004 Revision 2 1.1 Introduction Choosing the right lens is a critical aspect of designing an imaging system. Typically the trade off between image

More information

A new approach to the study of ocular chromatic aberrations

A new approach to the study of ocular chromatic aberrations Vision Research 39 (1999) 4309 4323 www.elsevier.com/locate/visres A new approach to the study of ocular chromatic aberrations Susana Marcos a, *, Stephen A. Burns b, Esther Moreno-Barriusop b, Rafael

More information

Review of Basic Principles in Optics, Wavefront and Wavefront Error

Review of Basic Principles in Optics, Wavefront and Wavefront Error Review of Basic Principles in Optics, Wavefront and Wavefront Error Austin Roorda, Ph.D. University of California, Berkeley Google my name to find copies of these slides for free use and distribution Geometrical

More information

Pablo Artal. collaborators. Adaptive Optics for Vision: The Eye's Adaptation to its Point Spread Function

Pablo Artal. collaborators. Adaptive Optics for Vision: The Eye's Adaptation to its Point Spread Function contrast sensitivity Adaptive Optics for Vision: The Eye's Adaptation to its Point Spread Function (4 th International Congress on Wavefront Sensing, San Francisco, USA; February 23) Pablo Artal LABORATORIO

More information

Simulation of Zernike Aberrations in optical systems. Michael Koch, July 5, 2018

Simulation of Zernike Aberrations in optical systems. Michael Koch, July 5, 2018 Simulation of Zernike Aberrations in optical systems Michael Koch, astroelectronic@t-online.de July 5, 2018 This paper is about three related questions: 1. In a Newton telescope we have two mirrors. It's

More information

Physics Chapter Review Chapter 25- The Eye and Optical Instruments Ethan Blitstein

Physics Chapter Review Chapter 25- The Eye and Optical Instruments Ethan Blitstein Physics Chapter Review Chapter 25- The Eye and Optical Instruments Ethan Blitstein The Human Eye As light enters through the human eye it first passes through the cornea (a thin transparent membrane of

More information

ABSTRACT. Keywords: Geometrical optics, biomedical optics, optometry, education, ophthalmic optics, eye, vision, ametropia 1.

ABSTRACT. Keywords: Geometrical optics, biomedical optics, optometry, education, ophthalmic optics, eye, vision, ametropia 1. Optics education in an optometric setting Nicole M. Putnam Arizona College of Optometry, Midwestern University, 19555 N. 59 th Avenue, Glendale, AZ 85308 nputnam@midwestern.edu ABSTRACT The first year

More information

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5 Lecture 3.5 Vision The eye Image formation Eye defects & corrective lenses Visual acuity Colour vision Vision http://www.wired.com/wiredscience/2009/04/schizoillusion/ Perception of light--- eye-brain

More information

Telecentric Imaging Object space telecentricity stop source: edmund optics The 5 classical Seidel Aberrations First order aberrations Spherical Aberration (~r 4 ) Origin: different focal lengths for different

More information

Customized Correction of Wavefront Aberrations in Abnormal Human Eyes by Using a Phase Plate and a Customized Contact Lens

Customized Correction of Wavefront Aberrations in Abnormal Human Eyes by Using a Phase Plate and a Customized Contact Lens Journal of the Korean Physical Society, Vol. 49, No. 1, July 2006, pp. 121 125 Customized Correction of Wavefront Aberrations in Abnormal Human Eyes by Using a Phase Plate and a Customized Contact Lens

More information

Aberration Interaction In Wavefront Guided Custom Ablation

Aberration Interaction In Wavefront Guided Custom Ablation Aberration Interaction In Wavefront Guided Custom Ablation Scott M. MacRae MD Professor of Ophthalmology Professor of Visual Science University of Rochester Collaborators and Disclosures: Manoj Subbaram

More information

Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes

Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes Nathan Doble, 1,2, * Donald T. Miller, 3 Geunyoung Yoon, 4 and David

More information

Optical Connection, Inc. and Ophthonix, Inc.

Optical Connection, Inc. and Ophthonix, Inc. Optical Connection, Inc. and Ophthonix, Inc. Partners in the delivery of nonsurgical vision optimization www.opticonnection.com www.ophthonix.com The human eye has optical imperfections that can not be

More information

Optical Perspective of Polycarbonate Material

Optical Perspective of Polycarbonate Material Optical Perspective of Polycarbonate Material JP Wei, Ph. D. November 2011 Introduction Among the materials developed for eyeglasses, polycarbonate is one that has a number of very unique properties and

More information

Phernell Walker, MBA, ABOM Heart of America Eye Care Congress 2019

Phernell Walker, MBA, ABOM Heart of America Eye Care Congress 2019 Progressive Thinking - Eliminate Past Negative Experiences with Progressive Lenses Phernell Walker, II, MBA, ABOM International Speaker & Author About the Speaker Phernell Walker, II, MBA, NCLC, ABOM Master

More information

Generation of third-order spherical and coma aberrations by use of radially symmetrical fourth-order lenses

Generation of third-order spherical and coma aberrations by use of radially symmetrical fourth-order lenses López-Gil et al. Vol. 15, No. 9/September 1998/J. Opt. Soc. Am. A 2563 Generation of third-order spherical and coma aberrations by use of radially symmetrical fourth-order lenses N. López-Gil Section of

More information

The First True Color Confocal Scanner on the Market

The First True Color Confocal Scanner on the Market The First True Color Confocal Scanner on the Market White color and infrared confocal images: the advantages of white color and confocality together for better fundus images. The infrared to see what our

More information

Adaptive optics for peripheral vision

Adaptive optics for peripheral vision Journal of Modern Optics Vol. 59, No. 12, 10 July 2012, 1064 1070 Adaptive optics for peripheral vision R. Rosén*, L. Lundstro m and P. Unsbo Biomedical and X-Ray Physics, Royal Institute of Technology

More information

ABSTRACT. Keywords: Computer-aided alignment, Misalignments, Zernike polynomials, Sensitivity matrix 1. INTRODUCTION

ABSTRACT. Keywords: Computer-aided alignment, Misalignments, Zernike polynomials, Sensitivity matrix 1. INTRODUCTION Computer-Aided Alignment for High Precision Lens LI Lian, FU XinGuo, MA TianMeng, WANG Bin The institute of optical and electronics, the Chinese Academy of Science, Chengdu 6129, China ABSTRACT Computer-Aided

More information

Corneal Asphericity and Retinal Image Quality: A Case Study and Simulations

Corneal Asphericity and Retinal Image Quality: A Case Study and Simulations Corneal Asphericity and Retinal Image Quality: A Case Study and Simulations Seema Somani PhD, Ashley Tuan OD, PhD, and Dimitri Chernyak PhD VISX Incorporated, 3400 Central Express Way, Santa Clara, CA

More information

CATARACT SURGERY AND DEPTH OF FIELD (D.O.F.)

CATARACT SURGERY AND DEPTH OF FIELD (D.O.F.) Prof.Paolo Vinciguerra, M.D. 1, 2 Antonio Calossi 4 Riccardo Vinciguerra, M.D. 1-3 1 Humanitas University 1 Humanitas Clinical and Research Center IRCS 2 Columbus, Ohio State University 3 University of

More information

The First True Color Confocal Scanner

The First True Color Confocal Scanner The First True Color Confocal Scanner White color and infrared confocal images: the advantages of white color and confocality together for better fundus images. The infrared to see what our eye is not

More information

Vision Research 50 (2010) Contents lists available at ScienceDirect. Vision Research. journal homepage:

Vision Research 50 (2010) Contents lists available at ScienceDirect. Vision Research. journal homepage: Vision Research 5 (2) 28 24 Contents lists available at ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres Combining coma with astigmatism can improve retinal image over astigmatism

More information

2mm pupil. (12) Patent Application Publication (10) Pub. No.: US 2006/ A1. (19) United States. (43) Pub. Date: Sep. 14, 2006.

2mm pupil. (12) Patent Application Publication (10) Pub. No.: US 2006/ A1. (19) United States. (43) Pub. Date: Sep. 14, 2006. (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0203198A1 Liang US 20060203198A1 (43) Pub. Date: Sep. 14, 2006 (54) (75) (73) (21) (22) (60) ALGORTHMS AND METHODS FOR DETERMINING

More information

Aberrations Before and After Implantation of an Aspheric IOL

Aberrations Before and After Implantation of an Aspheric IOL Ocular High Order Aberrations Before and After Implantation of an Aspheric IOL Fabrizio I. Camesasca, MD Massimo Vitali, Orthoptist Milan, Italy I have no financial interest to disclose Wavefront Measurement

More information

Multiwavelength Shack-Hartmann Aberrometer

Multiwavelength Shack-Hartmann Aberrometer Multiwavelength Shack-Hartmann Aberrometer By Prateek Jain Copyright Prateek Jain 26 A Dissertation Submitted to the Faculty of the COMMITTEE ON OPTICAL SCIENCES (GRADUATE) In Partial Fulfillment of the

More information

Lecture 8. Lecture 8. r 1

Lecture 8. Lecture 8. r 1 Lecture 8 Achromat Design Design starts with desired Next choose your glass materials, i.e. Find P D P D, then get f D P D K K Choose radii (still some freedom left in choice of radii for minimization

More information

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name: EE119 Introduction to Optical Engineering Fall 2009 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Pantoscopic tilt induced higher order aberrations characterization using Shack Hartmann wave front sensor and comparison with Martin s Rule.

Pantoscopic tilt induced higher order aberrations characterization using Shack Hartmann wave front sensor and comparison with Martin s Rule. Research Article http://www.alliedacademies.org/ophthalmic-and-eye-research/ Pantoscopic tilt induced higher order aberrations characterization using Shack Hartmann wave front sensor and comparison with

More information

Aberrations and adaptive optics for biomedical microscopes

Aberrations and adaptive optics for biomedical microscopes Aberrations and adaptive optics for biomedical microscopes Martin Booth Department of Engineering Science And Centre for Neural Circuits and Behaviour University of Oxford Outline Rays, wave fronts and

More information

Monochromatic Aberrations and Emmetropization

Monochromatic Aberrations and Emmetropization Monochromatic Aberrations and Emmetropization Howard C. Howland* Department of Neurobiology and Behavior Cornell University, Ithaca N.Y. Jennifer Kelly Toshifumi Mihashi Topcon Corporation Tokyo *paid

More information

Fast scanning peripheral wave-front sensor for the human eye

Fast scanning peripheral wave-front sensor for the human eye Fast scanning peripheral wave-front sensor for the human eye Bart Jaeken, 1,* Linda Lundström, 2 and Pablo Artal 1 1 Laboratorio de Óptica, Universidad de Murcia, Campus Espinardo (Ed. CiOyN), Murcia,

More information

Visual Effects of Light. Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana

Visual Effects of Light. Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana Visual Effects of Light Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana Light is life If sun would turn off the life on earth would

More information

Properties of optical instruments

Properties of optical instruments Properties of optical instruments Visual optical systems part 1: afocal systems (telescope type) A basic optical description of the eye Power: 60 diopters (at rest) Equivalent to a single spherical surface,

More information

Impressive Wide Field Image Quality with Small Pupil Size

Impressive Wide Field Image Quality with Small Pupil Size Impressive Wide Field Image Quality with Small Pupil Size White color and infrared confocal images: the advantages of white color and confocality together for better fundus images. The infrared to see

More information

RAYMOND A. APPLEGATE,

RAYMOND A. APPLEGATE, 1040-5488/03/8001-0015/0 VOL. 80, NO. 1, PP. 15 25 OPTOMETRY AND VISION SCIENCE Copyright 2003 American Academy of Optometry ORIGINAL ARTICLE Comparison of Monochromatic Ocular Aberrations Measured with

More information

Vision Research 51 (2011) Contents lists available at SciVerse ScienceDirect. Vision Research

Vision Research 51 (2011) Contents lists available at SciVerse ScienceDirect. Vision Research Vision Research 51 (2011) 2132 2138 Contents lists available at SciVerse ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres The relationship between peripapillary crescent and

More information

Optical Engineering 421/521 Sample Questions for Midterm 1

Optical Engineering 421/521 Sample Questions for Midterm 1 Optical Engineering 421/521 Sample Questions for Midterm 1 Short answer 1.) Sketch a pechan prism. Name a possible application of this prism., write the mirror matrix for this prism (or any other common

More information

25 cm. 60 cm. 50 cm. 40 cm.

25 cm. 60 cm. 50 cm. 40 cm. Geometrical Optics 7. The image formed by a plane mirror is: (a) Real. (b) Virtual. (c) Erect and of equal size. (d) Laterally inverted. (e) B, c, and d. (f) A, b and c. 8. A real image is that: (a) Which

More information

Visual Effects of. Light. Warmth. Light is life. Sun as a deity (god) If sun would turn off the life on earth would extinct

Visual Effects of. Light. Warmth. Light is life. Sun as a deity (god) If sun would turn off the life on earth would extinct Visual Effects of Light Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana Light is life If sun would turn off the life on earth would

More information

The Human Visual System. Lecture 1. The Human Visual System. The Human Eye. The Human Retina. cones. rods. horizontal. bipolar. amacrine.

The Human Visual System. Lecture 1. The Human Visual System. The Human Eye. The Human Retina. cones. rods. horizontal. bipolar. amacrine. Lecture The Human Visual System The Human Visual System Retina Optic Nerve Optic Chiasm Lateral Geniculate Nucleus (LGN) Visual Cortex The Human Eye The Human Retina Lens rods cones Cornea Fovea Optic

More information

1.1 Singlet. Solution. a) Starting setup: The two radii and the image distance is chosen as variable.

1.1 Singlet. Solution. a) Starting setup: The two radii and the image distance is chosen as variable. 1 1.1 Singlet Optimize a single lens with the data λ = 546.07 nm, object in the distance 100 mm from the lens on axis only, focal length f = 45 mm and numerical aperture NA = 0.07 in the object space.

More information

PART 3: LENS FORM AND ANALYSIS PRACTICE TEST

PART 3: LENS FORM AND ANALYSIS PRACTICE TEST PART 3: LENS FORM AND ANALYSIS PRACTICE TEST 1. 2. To determine the power of a thin lens in air, it is necessary to consider: a. front curve and index of refraction b. back curve and index of refraction

More information

Research Article Intraocular Telescopic System Design: Optical and Visual Simulation in a Human Eye Model

Research Article Intraocular Telescopic System Design: Optical and Visual Simulation in a Human Eye Model Hindawi Ophthalmology Volume 27, Article ID 63793, 8 pages https://doi.org/.55/27/63793 Research Article Intraocular Telescopic System Design: Optical and Visual Simulation in a Human Eye Model Georgios

More information

The Eye as an Optical Instrument Pablo Artal

The Eye as an Optical Instrument Pablo Artal 285 12 The Eye as an Optical Instrument Pablo Artal 12.1 Introduction 286 12.2 The Anatomy of the Eye 288 12.3 The Quality of the Retinal Image 290 12.4 Peripheral Optics 294 12.5 Conclusions 295 References

More information

PHYSICS OPTICS. Mr Rishi Gopie

PHYSICS OPTICS. Mr Rishi Gopie OPTICS Mr Rishi Gopie Ray Optics II Images formed by lens maybe real or virtual and may have different characteristics and locations that depend on: i) The type of lens involved, whether converging or

More information

In this issue of the Journal, Oliver and colleagues

In this issue of the Journal, Oliver and colleagues Special Article Refractive Surgery, Optical Aberrations, and Visual Performance Raymond A. Applegate, OD, PhD; Howard C. Howland,PhD In this issue of the Journal, Oliver and colleagues report that photorefractive

More information

Adaptive Optics. Adaptive optics for imaging. Adaptive optics to improve. Ocular High order Aberrations (HOA)

Adaptive Optics. Adaptive optics for imaging. Adaptive optics to improve. Ocular High order Aberrations (HOA) Effect of Adaptive Optics Correction on Visual Performance and Accommodation Adaptive optics for imaging Astromomy Retinal imaging Since 977, Hardy et al, JOSA A Since 989, Dreher et al. Appl Opt Susana

More information

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 27 Physics, 4 th Edition James S. Walker Chapter 27 Optical Instruments Units of Chapter 27 The Human Eye and the Camera Lenses in Combination and Corrective Optics The Magnifying

More information

The Appearance of Images Through a Multifocal IOL ABSTRACT. through a monofocal IOL to the view through a multifocal lens implanted in the other eye

The Appearance of Images Through a Multifocal IOL ABSTRACT. through a monofocal IOL to the view through a multifocal lens implanted in the other eye The Appearance of Images Through a Multifocal IOL ABSTRACT The appearance of images through a multifocal IOL was simulated. Comparing the appearance through a monofocal IOL to the view through a multifocal

More information

The First True-Color Wide-Field Confocal Scanner

The First True-Color Wide-Field Confocal Scanner The First True-Color Wide-Field Confocal Scanner 2 Company Profile CenterVue designs and manufactures highly automated medical devices for the diagnosis and management of ocular pathologies, including

More information

Refractive Power / Corneal Analyzer. OPD-Scan III

Refractive Power / Corneal Analyzer. OPD-Scan III Refractive Power / Corneal Analyzer OPD-Scan III Comprehensive Vision Analysis and NIDEK, a global leader in ophthalmic and optometric equipment, has created the OPD-Scan III, the third generation aberrometer

More information

Tutorial Zemax 8: Correction II

Tutorial Zemax 8: Correction II Tutorial Zemax 8: Correction II 2012-10-11 8 Correction II 1 8.1 High-NA Collimator... 1 8.2 Zoom-System... 6 8.3 New Achromate and wide field system... 11 8 Correction II 8.1 High-NA Collimator An achromatic

More information

Optimizing Performance of AO Ophthalmic Systems. Austin Roorda, PhD

Optimizing Performance of AO Ophthalmic Systems. Austin Roorda, PhD Optimizing Performance of AO Ophthalmic Systems Austin Roorda, PhD Charles Garcia, MD Tom Hebert, PhD Fernando Romero-Borja, PhD Krishna Venkateswaran, PhD Joy Martin, OD/PhD student Ramesh Sundaram, MS

More information

ORIGINAL ARTICLE. Metrics of Retinal Image Quality Predict Visual Performance in Eyes With 20/17 or Better Visual Acuity

ORIGINAL ARTICLE. Metrics of Retinal Image Quality Predict Visual Performance in Eyes With 20/17 or Better Visual Acuity 1040-5488/06/8309-0635/0 VOL. 83, NO. 9, PP. 635 640 OPTOMETRY AND VISION SCIENCE Copyright 2006 American Academy of Optometry ORIGINAL ARTICLE Metrics of Retinal Image Quality Predict Visual Performance

More information

In recent years there has been an explosion of

In recent years there has been an explosion of Line of Sight and Alternative Representations of Aberrations of the Eye Stanley A. Klein, PhD; Daniel D. Garcia, PhD ABSTRACT Several methods for representing pupil plane aberrations based on wavefront

More information

ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008

ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008 ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008 July 2003+ Chuck DiMarzio, Northeastern University 11270-04-1

More information

Wide-angle chromatic aberration corrector for the human eye

Wide-angle chromatic aberration corrector for the human eye REVISED MANUSCRIPT Submitted to JOSAA; October 2006 Wide-angle chromatic aberration corrector for the human eye Yael Benny Laboratorio de Optica, Universidad de Murcia, Campus de Espinardo, 30071 Murcia,

More information

Effects of intraocular lenses with different diopters on chromatic aberrations in human eye models

Effects of intraocular lenses with different diopters on chromatic aberrations in human eye models Song et al. BMC Ophthalmology (2016) 16:9 DOI 10.1186/s12886-016-0184-6 RESEARCH ARTICLE Open Access Effects of intraocular lenses with different diopters on chromatic aberrations in human eye models Hui

More information

Crystalens AO: Accommodating, Aberration-Free, Aspheric Y. Ralph Chu, MD Chu Vision Institute Bloomington, MN

Crystalens AO: Accommodating, Aberration-Free, Aspheric Y. Ralph Chu, MD Chu Vision Institute Bloomington, MN Crystalens AO: Accommodating, Aberration-Free, Aspheric Y. Ralph Chu, MD Chu Vision Institute Bloomington, MN Financial Disclosure Advanced Medical Optics Allergan Bausch & Lomb PowerVision Revision Optics

More information

Effect of monochromatic aberrations on photorefractive patterns

Effect of monochromatic aberrations on photorefractive patterns Campbell et al. Vol. 12, No. 8/August 1995/J. Opt. Soc. Am. A 1637 Effect of monochromatic aberrations on photorefractive patterns Melanie C. W. Campbell, W. R. Bobier, and A. Roorda School of Optometry,

More information

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 35 Lecture RANDALL D. KNIGHT Chapter 35 Optical Instruments IN THIS CHAPTER, you will learn about some common optical instruments and

More information

Choices and Vision. Jeffrey Koziol M.D. Thursday, December 6, 12

Choices and Vision. Jeffrey Koziol M.D. Thursday, December 6, 12 Choices and Vision Jeffrey Koziol M.D. How does the eye work? What is myopia? What is hyperopia? What is astigmatism? What is presbyopia? How the eye works How the Eye Works 3 How the eye works Light rays

More information

PART 3: LENS FORM AND ANALYSIS PRACTICE TEST - KEY

PART 3: LENS FORM AND ANALYSIS PRACTICE TEST - KEY PART 3: LENS FORM AND ANALYSIS PRACTICE TEST - KEY d 1. c 2. To determine the power of a thin lens in air, it is necessary to consider: a. front curve and index of refraction b. back curve and index of

More information

Optimisation. Lecture 3

Optimisation. Lecture 3 Optimisation Lecture 3 Objectives: Lecture 3 At the end of this lecture you should: 1. Understand the use of Petzval curvature to balance lens components 2. Know how different aberrations depend on field

More information

Adaptive Optics for Vision Science

Adaptive Optics for Vision Science Adaptive Optics for Vision Science Principles, Practices, Design, and Applications Edited by JASON PORTER, HOPE M. QUEENER, JULIANNA E. LIN, KAREN THORN, AND ABDUL AWWAL A JOHN WILEY & SONS, INC., PUBLICATION

More information

Adaptive optics two-photon fluorescence microscopy

Adaptive optics two-photon fluorescence microscopy Adaptive optics two-photon fluorescence microscopy Yaopeng Zhou 1, Thomas Bifano 1 and Charles Lin 2 1. Manufacturing Engineering Department, Boston University 15 Saint Mary's Street, Brookline MA, 02446

More information

Performance Factors. Technical Assistance. Fundamental Optics

Performance Factors.   Technical Assistance. Fundamental Optics Performance Factors After paraxial formulas have been used to select values for component focal length(s) and diameter(s), the final step is to select actual lenses. As in any engineering problem, this

More information

Exercises Advanced Optical Design Part 5 Solutions

Exercises Advanced Optical Design Part 5 Solutions 2014-12-09 Manuel Tessmer M.Tessmer@uni-jena.dee Minyi Zhong minyi.zhong@uni-jena.de Herbert Gross herbert.gross@uni-jena.de Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str.

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Correcting Highly Aberrated Eyes Using Large-stroke Adaptive Optics

Correcting Highly Aberrated Eyes Using Large-stroke Adaptive Optics Correcting Highly Aberrated Eyes Using Large-stroke Adaptive Optics Ramkumar Sabesan, BTech; Kamran Ahmad, MS; Geunyoung Yoon, PhD ABSTRACT PURPOSE: To investigate the optical performance of a large-stroke

More information