Predicting the Performance of Space Coronagraphs. John Krist (JPL) 17 August st International Vortex Workshop

Size: px
Start display at page:

Download "Predicting the Performance of Space Coronagraphs. John Krist (JPL) 17 August st International Vortex Workshop"

Transcription

1 Predicting the Performance of Space Coronagraphs John Krist (JPL) 17 August st International Vortex Workshop

2 Determine the Reality of a Coronagraph through End-to-End Modeling Use End-to-End modeling to predict performance in a realistic system Deformable mirrors & wavefront control Realistic aberrations (fabrication, coating, polarization) on all optics Surface-to-surface propagation Evaluate the tolerance to low-order aberrations (after LOWFC & fast steering correction) Pointing jitter Wavefront jitter (reaction wheel vibrations of optics) Thermal changes Stellar diameter Determine useful throughput How much light ends up in the core of the planet s PSF? Tolerance to misalignments, distortions, magnification errors

3 Recent Space Coronagraph Studies Exo-C Probe Study 1.4 m off-axis (clear aperture, f/2.5 primary, mild polarization impact) system optimized for coronagraphy Hybrid Lyot, Vector Vortex, classical PIAA coronagraphs evaluated WFIRST 2.4 m on-axis (obscured, f/1.2 primary, significant polarization impact) system not optimized for coronagraphy After downselect competition in 2013, Hybrid Lyot & Shaped Pupil were baselined, PIAACMC is backup Both utilize LOWFS to correct time-dependent low-order errors with the DM, fast steering mirror, & focus correction mirror

4 Initial state (fabrication errors, polarization-induced aberrations) Dark Hole Generation Process Before any WFC (10-4 ) Flattened (10-6 ) EFC Iter 1 (4 x 10-8 ) EFC Iter 2 Flatten the wavefront (phase retrieval) ~10-4 contrast ~10-6 contrast Sense image plane E-field λ (DM probing) Determine DM settings (EFC, stroke minimization) Evaluate new DM solution (PROPER) No Converged? Yes Add pointing & WFE jitter, finite diameter star, thermal variations, alignment tolerances, etc. ~10-9 contrast

5 Exo-C charge 4 VVC: nm, X polarization No jitter 0.4 mas RMS jitter + 1 mas star 0.8 mas RMS jitter + 1 mas star -7 Log 10 (contrast) -12 Circles are r = 1 & 14 λ/d No jitter 0.8 mas RMS jitter 0.4 mas RMS jitter On a 12 m unobscured scope, the 0.8 mas jitter result shown here is equivalent to 0.09 mas jitter, or a ~0.36 mas diameter star.

6 WFIRST Vortex Coronagraph Downselect Competition Design DM1 DM2 Shaped Pupil ~1.5 μm stroke (optimized for 550 nm only) Charge 4 Vortex FPM Lyot Stop r = λ/d imaging field

7 WFIRST VVC Unaberrated Contrasts nm 550 nm nm r = 15 λ/d

8 DM Patterns WFIRST Coronagraphs Focal plane mask 5.2 λ c /D HLC SPC Lyot stop in grey superposed on AFTA obscurations FPM Lyot Stop 1 FPM Lyot Stop 2 Lyot stop Pupil mask 3.2 λ c /D PIAACMC Lyot Stop 3

9 WFIRST Coronagraph Field PSF EEs WFIRST PSF Core Throughput WFIRST 34.0% HLC 4.5% SPC 3.7% PIAACMC 14.0%

10 WFIRST Dark Holes with Pointing Jitter & Finite Star No polarization errors No jitter No star 0.4 mas jitter 1.0 mas star 0.8 mas jitter 1.0 mas star 1.6 mas jitter 1.0 mas star HLC λ c =550 nm 10% SPC λ c =800 nm 18% PIAACMC λ c =550 nm 10% 10

11 WFIRST HLC: λ c =550 nm, 15% Cross-polarization included, no jitter No polarization aberrations Pol X optimized Pol X + Pol Y optimized Log 10 (contrast) Circles are r = 3 & 9 λ c /D

12 WFIRST PIAACMC: λ c =550 nm, 10% Cross-polarization included, no jitter No polarization errors Optimized for X polarization X polarization aberrations Log 10 (contrast) No aberrations Circles are r = 1.3 & 9 λ c /D

13 WFIRST Coronagraph Aberration Sensitivities 100 picometers RMS of 550 nm HLC SPC PIAACMC

14 OS5: Zernike Aberrations vs Time from Thermal Models 61 UMa β UMa +13 settle settle 47 UMa +13 settle 47 UMa UMa β UMa +13 settle settle 47 UMa +13 settle 47 UMa -13 pm = picometers

15 Vortex Low-Order Aberration Sensitivity RMS change in background λ=550 nm with the introduction of 100 picometers RMS of the specified aberration Charge 4 Vortex Charge 6 Vortex Coma IWA IWA Spherical Astigmatism Tip/Tilt Trefoil Tip/Tilt Astigmatism Trefoil Focus Coma Spherical For very high contrast (10-10 ) space coronagraphs, a charge 4 vortex is not viable due to its high astigmatism sensitivity, but a charge 6 vortex is. A charge 4 vortex would not work on WFIRST due to polarization, even with polarization filtering.

16 Segmented Telescope Coronagraph Considerations Effective throughput Planet PSF morphology Aberration sensitivity Segment-to-segment piston, global low-order, wavefront jitter Jitter & finite stellar diameter DM patterns (ACAD) Affect on PSF morphology, increased aberration & jitter sensitivities, stroke limitations Alignment tolerances Mask-to-pupil registration, pupil distortion

17 Coronagraph Performance Metrics Diffraction suppression Residual background contrast Post-wavefront control residuals Dynamic aberrations Inner working angle Practical inner working angle Finite stellar diameter Polarization-induced aberrations Dynamic aberrations (pointing, fast aberrations) Transmission Useful throughput How much light ends up in the core of the planet s PSF? How much background is in the core (narrow or wide core?)

An overview of WFIRST-AFTA coronagraph modelling

An overview of WFIRST-AFTA coronagraph modelling An overview of WFIRST-AFTA coronagraph modelling John Krist, Bijan Nemati, Hanying Zhou, Erkin Sidick Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109

More information

Opportunities and Challenges with Coronagraphy on WFIRST/AFTA

Opportunities and Challenges with Coronagraphy on WFIRST/AFTA Opportunities and Challenges with Coronagraphy on WFIRST/AFTA Neil Zimmerman and N. Jeremy Kasdin Princeton University Nov 18, 2014 WFIRST/AFTA Exoplanet Imaging Science Goals Detect and characterize a

More information

Apodized phase plates & Shaped pupils

Apodized phase plates & Shaped pupils Apodized phase plates & Shaped pupils Surprising similarities & key differences Carlotti Alexis & Mamadou N Diaye Combining Coronagraphs and Wavefront Control - Oct. 6-1, 214 - Lorentz Center, Leiden 1

More information

Matthew R. Bolcar NASA GSFC

Matthew R. Bolcar NASA GSFC Matthew R. Bolcar NASA GSFC 14 November 2017 What is LUVOIR? Crab Nebula with HST ACS/WFC Credit: NASA / ESA Large UV / Optical / Infrared Surveyor (LUVOIR) A space telescope concept in tradition of Hubble

More information

PhD Defense. Low-order wavefront control and calibration for phase-mask coronagraphs. Garima Singh

PhD Defense. Low-order wavefront control and calibration for phase-mask coronagraphs. Garima Singh PhD Defense 21st September 2015 Space Telescope Science Institute, Baltimore on Low-order wavefront control and calibration for phase-mask coronagraphs by Garima Singh PhD student and SCExAO member Observatoire

More information

Towards Contrast for Terrestrial Exoplanet Detection:

Towards Contrast for Terrestrial Exoplanet Detection: Towards 10 10 Contrast for Terrestrial Exoplanet Detection: Coronography Lab Results and Wavefront Control Methods Ruslan Belikov, Jeremy Kasdin, David Spergel, Robert J. Vanderbei, Michael Carr, Michael

More information

High contrast imaging lab

High contrast imaging lab High contrast imaging lab Ay122a, November 2016, D. Mawet Introduction This lab is an introduction to high contrast imaging, and in particular coronagraphy and its interaction with adaptive optics sytems.

More information

The predicted performance of the ACS coronagraph

The predicted performance of the ACS coronagraph Instrument Science Report ACS 2000-04 The predicted performance of the ACS coronagraph John Krist March 30, 2000 ABSTRACT The Aberrated Beam Coronagraph (ABC) on the Advanced Camera for Surveys (ACS) has

More information

HC(ST) 2 : The High Contrast Spectroscopy Testbed for Segmented Telescopes

HC(ST) 2 : The High Contrast Spectroscopy Testbed for Segmented Telescopes HC(ST) 2 : The High Contrast Spectroscopy Testbed for Segmented Telescopes Garreth Ruane Exoplanet Technology Lab, Caltech NSF Astronomy and Astrophysics Postdoctoral Fellow On behalf of our Caltech/JPL

More information

arxiv: v1 [astro-ph.im] 17 Jun 2014

arxiv: v1 [astro-ph.im] 17 Jun 2014 Lyot-based Low Order Wavefront Sensor: Implementation on the Subaru Coronagraphic Extreme Adaptive Optics System and its Laboratory Performance arxiv:1406.4240v1 [astro-ph.im] 17 Jun 2014 Garima Singh

More information

arxiv: v1 [astro-ph.im] 7 Sep 2017

arxiv: v1 [astro-ph.im] 7 Sep 2017 Draft version September 11, 2017 Preprint typeset using L A TEX style emulateapj v. 01/23/15 ACTIVE CORRECTION OF APERTURE DISCONTINUITIES - OPTIMIZED STROKE MINIMIZATION I: A NEW ADAPTIVE INTERACTION

More information

Recent Progress in Vector Vortex Coronagraphy

Recent Progress in Vector Vortex Coronagraphy Recent Progress in Vector Vortex Coronagraphy E. Serabyn* a, D. Mawet b, J.K. Wallace a, K. Liewer a, J. Trauger a, D. Moody a, and B. Kern a a Jet Propulsion Laboratory, California Institute of Technology,

More information

WFIRST/AFTA Coronagraph Technology Development: Recent Results and Plan to TRL5

WFIRST/AFTA Coronagraph Technology Development: Recent Results and Plan to TRL5 WFIRST/AFTA Coronagraph Technology Development: Recent Results and Plan to TRL5 Ilya Poberezhskiy a, Feng Zhao a, Xin An a, Kunjithapatham Balasubramanian a, Ruslan Belikov b, Eric Cady a, Richard Demers

More information

High-contrast imaging with E-ELT/HARMONI

High-contrast imaging with E-ELT/HARMONI High-contrast imaging with E-ELT/HARMONI A. Carlotti, C. Vérinaud, J.-L. Beuzit, D. Mouillet - IPAG D. Gratadour - LESIA Spectroscopy with HARMONI - 07/2015 - Oxford University 1 Imaging young giant planets

More information

Low Order Wavefront Sensing and Control for WFIRST-AFTA Coronagraph

Low Order Wavefront Sensing and Control for WFIRST-AFTA Coronagraph Low Order Wavefront Sensing and Control for WFIRST-AFTA Coronagraph Fang Shi, Kunjithapatham Balasubramanian, Randall Bartos, Randall Hein, Brian Kern, John Krist, Raymond Lam, Douglas Moore, James Moore,

More information

Speckle Phase Sensing in Vortex Coronagraphy

Speckle Phase Sensing in Vortex Coronagraphy Speckle Phase Sensing in Vortex Coronagraphy Gene Serabyn Jet Propulsion Laboratory California Ins=tute of Technology Oct 6, 2014 Copyright 2014 California Institute of Technology. U.S. Government sponsorship

More information

Wavefront control for highcontrast

Wavefront control for highcontrast Wavefront control for highcontrast imaging Lisa A. Poyneer In the Spirit of Bernard Lyot: The direct detection of planets and circumstellar disks in the 21st century. Berkeley, CA, June 6, 2007 p Gemini

More information

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical

More information

Shaped Pupil Lyot Coronagraphs: High-Contrast Solutions for Restricted Focal Planes

Shaped Pupil Lyot Coronagraphs: High-Contrast Solutions for Restricted Focal Planes Shaped Pupil Lyot Coronagraphs: High-Contrast Solutions for Restricted Focal Planes Neil T. Zimmerman, a A J Eldorado Riggs, a, N. Jeremy Kasdin a, Alexis Carlotti b, Robert J. Vanderbei c a Princeton

More information

12.4 Alignment and Manufacturing Tolerances for Segmented Telescopes

12.4 Alignment and Manufacturing Tolerances for Segmented Telescopes 330 Chapter 12 12.4 Alignment and Manufacturing Tolerances for Segmented Telescopes Similar to the JWST, the next-generation large-aperture space telescope for optical and UV astronomy has a segmented

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Design and test of a high-contrast imaging coronagraph based on two. 50-step transmission filters

Design and test of a high-contrast imaging coronagraph based on two. 50-step transmission filters Design and test of a high-contrast imaging coronagraph based on two 50-step transmission filters Jiangpei Dou *a,b, Deqing Ren a,b,c, Yongtian Zhu a,b, Xi Zhang a,b,d, Xue Wang a,b,d a. National Astronomical

More information

High Contrast Imaging

High Contrast Imaging High Contrast Imaging Suppressing diffraction (rings and other patterns) Doing this without losing light Suppressing scattered light Doing THIS without losing light Diffraction rings arise from the abrupt

More information

arxiv: v1 [astro-ph.im] 19 Jan 2016

arxiv: v1 [astro-ph.im] 19 Jan 2016 Shaped Pupil Lyot Coronagraphs: High-Contrast Solutions for Restricted Focal Planes arxiv:1601.05121v1 [astro-ph.im] 19 Jan 2016 Neil T. Zimmerman, a A J Eldorado Riggs, a, N. Jeremy Kasdin a, Alexis Carlotti

More information

arxiv: v1 [astro-ph.im] 6 Nov 2009

arxiv: v1 [astro-ph.im] 6 Nov 2009 High Contrast Imaging and Wavefront Control with a PIAA Coronagraph: Laboratory System Validation arxiv:0911.1307v1 [astro-ph.im] 6 Nov 2009 Olivier Guyon National Astronomical Observatory of Japan, Subaru

More information

Explanation of Aberration and Wavefront

Explanation of Aberration and Wavefront Explanation of Aberration and Wavefront 1. What Causes Blur? 2. What is? 4. What is wavefront? 5. Hartmann-Shack Aberrometer 6. Adoption of wavefront technology David Oh 1. What Causes Blur? 2. What is?

More information

The Shaped Pupil Coronagraph for Planet Finding Coronagraphy: Optimization, Sensitivity, and Laboratory Testing

The Shaped Pupil Coronagraph for Planet Finding Coronagraphy: Optimization, Sensitivity, and Laboratory Testing The Shaped Pupil Coronagraph for Planet Finding Coronagraphy: Optimization, Sensitivity, and Laboratory Testing N. Jeremy Kasdin a, Robert J. Vanderbei b, Michael G. Littman a, Michael Carr c and David

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

M1/M2 Ray Tracer. for High-Speed Mirror Metrology in the E-ELT. Ron Holzlöhner, 21 Sep 2016 European Southern Observatory (ESO)

M1/M2 Ray Tracer. for High-Speed Mirror Metrology in the E-ELT. Ron Holzlöhner, 21 Sep 2016 European Southern Observatory (ESO) M1/M2 Ray Tracer for High-Speed Mirror Metrology in the E-ELT Ron Holzlöhner, 21 Sep 2016 European Southern Observatory (ESO) The E-ELT: 39m visible+ir Telescope ESO: Intergovernmental Organization, 15

More information

Visible Nulling Coronagraph

Visible Nulling Coronagraph Brian Hicks 1 Rick Lyon 2 Matt Bolcar 2 Mark Clampin 2 Jeff Bolognese 2 Pete Dogoda 3 Daniel Dworzanski 4 Michael Helmbrecht 5 Corina Koca 2 Udayan Mallik 2 Ian Miller 6 Pete Petrone 3 1 NASA Postdoctoral

More information

PROCEEDINGS OF SPIE. Measurement of low-order aberrations with an autostigmatic microscope

PROCEEDINGS OF SPIE. Measurement of low-order aberrations with an autostigmatic microscope PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Measurement of low-order aberrations with an autostigmatic microscope William P. Kuhn Measurement of low-order aberrations with

More information

EXCEDE Technology Milestone #1: Monochromatic Contrast Demonstration

EXCEDE Technology Milestone #1: Monochromatic Contrast Demonstration Technology Milestone Whitepaper EXCEDE Technology Milestone #1: Monochromatic Contrast Demonstration Glenn Schneider (The University of Arizona), PI Olivier Guyon (The University of Arizona) Ruslan Belikov

More information

An Achromatic Focal Plane Mask for High-Performance Broadband Coronagraphy

An Achromatic Focal Plane Mask for High-Performance Broadband Coronagraphy PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 127:437 444, 2015 May 2015. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. An Achromatic Focal Plane Mask for High-Performance

More information

VATT Optical Performance During 98 Oct as Measured with an Interferometric Hartmann Wavefront Sensor

VATT Optical Performance During 98 Oct as Measured with an Interferometric Hartmann Wavefront Sensor VATT Optical Performance During 98 Oct as Measured with an Interferometric Hartmann Wavefront Sensor S. C. West, D. Fisher Multiple Mirror Telescope Observatory M. Nelson Vatican Advanced Technology Telescope

More information

Optimization of Apodized Pupil Lyot Coronagraph for ELTs

Optimization of Apodized Pupil Lyot Coronagraph for ELTs Optimization of Apodized Pupil Lyot Coronagraph for ELTs P. Martinez 1,2, A. Boccaletti 1, M. Kasper 2, P. Baudoz 1 & C. Cavarroc 1 1 Observatoire de Paris-Meudon / LESIA 2 European Southern Observatory

More information

Bruce Macintosh for the GPI team Presented at the Spirit of Lyot conference June 7, 2007

Bruce Macintosh for the GPI team Presented at the Spirit of Lyot conference June 7, 2007 This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. Bruce Macintosh for the GPI

More information

GPI INSTRUMENT PAGES

GPI INSTRUMENT PAGES GPI INSTRUMENT PAGES This document presents a snapshot of the GPI Instrument web pages as of the date of the call for letters of intent. Please consult the GPI web pages themselves for up to the minute

More information

Optics of Wavefront. Austin Roorda, Ph.D. University of Houston College of Optometry

Optics of Wavefront. Austin Roorda, Ph.D. University of Houston College of Optometry Optics of Wavefront Austin Roorda, Ph.D. University of Houston College of Optometry Geometrical Optics Relationships between pupil size, refractive error and blur Optics of the eye: Depth of Focus 2 mm

More information

arxiv: v1 [astro-ph.im] 11 Jul 2018

arxiv: v1 [astro-ph.im] 11 Jul 2018 Phase-induced amplitude apodization complex mask coronagraph tolerancing and analysis Justin M. Knight a,b, Olivier Guyon a,b,c, Julien Lozi c, Nemanja Jovanovic d, and Jared R. Males b arxiv:1807.04379v1

More information

High Contrast Imaging and Wavefront Control with a PIAA Coronagraph: Laboratory System Validation

High Contrast Imaging and Wavefront Control with a PIAA Coronagraph: Laboratory System Validation High Contrast Imaging and Wavefront Control with a PIAA Coronagraph: Laboratory System Validation Olivier Guyon National Astronomical Observatory of Japan, Subaru Telescope, Hilo, HI 96720 guyon@naoj.org

More information

The Extreme Adaptive Optics test bench at CRAL

The Extreme Adaptive Optics test bench at CRAL The Extreme Adaptive Optics test bench at CRAL Maud Langlois, Magali Loupias, Christian Delacroix, E. Thiébaut, M. Tallon, Louisa Adjali, A. Jarno 1 XAO challenges Strehl: 0.7

More information

Starshade Technology Development Status

Starshade Technology Development Status Starshade Technology Development Status Dr. Nick Siegler NASA Exoplanets Exploration Program Chief Technologist Jet Propulsion Laboratory California Institute of Technology Dr. John Ziemer NASA Exoplanets

More information

Laboratory Experiment of a High-contrast Imaging Coronagraph with. New Step-transmission Filters

Laboratory Experiment of a High-contrast Imaging Coronagraph with. New Step-transmission Filters Laboratory Experiment of a High-contrast Imaging Coronagraph with New Step-transmission Filters Jiangpei Dou *a,b,c, Deqing Ren a,b,d, Yongtian Zhu a,b & Xi Zhang a,b,c a. National Astronomical Observatories/Nanjing

More information

Non-adaptive Wavefront Control

Non-adaptive Wavefront Control OWL Phase A Review - Garching - 2 nd to 4 th Nov 2005 Non-adaptive Wavefront Control (Presented by L. Noethe) 1 Specific problems in ELTs and OWL Concentrate on problems which are specific for ELTs and,

More information

NASA Ames Research Center, Moffet Field, Mountain View, CA 94035, USA; c. Lockheed Martin Space Systems Company, Palo Alto, CA ABSTRACT

NASA Ames Research Center, Moffet Field, Mountain View, CA 94035, USA; c. Lockheed Martin Space Systems Company, Palo Alto, CA ABSTRACT The EXoplanetary Circumstellar Environments and Disk Explorer (EXCEDE) Olivier Guyon*a, Glenn Schneidera, Ruslan Belikovb, Domenick J. Tenerellic Steward Observatory, University of Arizona, 933 Cherry

More information

Optical Design of an Off-axis Five-mirror-anastigmatic Telescope for Near Infrared Remote Sensing

Optical Design of an Off-axis Five-mirror-anastigmatic Telescope for Near Infrared Remote Sensing Journal of the Optical Society of Korea Vol. 16, No. 4, December 01, pp. 343-348 DOI: http://dx.doi.org/10.3807/josk.01.16.4.343 Optical Design of an Off-axis Five-mirror-anastigmatic Telescope for Near

More information

Design parameters Summary

Design parameters Summary 634 Entrance pupil diameter 100-m Entrance pupil location Primary mirror Exit pupil location On M6 Focal ratio 6.03 Plate scale 2.924 mm / arc second (on-axis) Total field of view 10 arc minutes (unvignetted)

More information

Aberrations and adaptive optics for biomedical microscopes

Aberrations and adaptive optics for biomedical microscopes Aberrations and adaptive optics for biomedical microscopes Martin Booth Department of Engineering Science And Centre for Neural Circuits and Behaviour University of Oxford Outline Rays, wave fronts and

More information

Lens Design I Seminar 5

Lens Design I Seminar 5 Y. Sekman, X. Lu, H. Gross Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Lens Design I Seminar 5 Exercise 5-1: PSF scaling (Homework) To check the Airy

More information

Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design)

Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design) Lens design Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design) Focal length (f) Field angle or field size F/number

More information

OWL OPTICAL DESIGN, ACTIVE OPTICS AND ERROR BUDGET

OWL OPTICAL DESIGN, ACTIVE OPTICS AND ERROR BUDGET OWL OPTICAL DESIGN, ACTIVE OPTICS AND ERROR BUDGET P. Dierickx, B. Delabre, L. Noethe European Southern Observatory Abstract We explore solutions for the optical design of the OWL 100-m telescope, and

More information

Proposed Adaptive Optics system for Vainu Bappu Telescope

Proposed Adaptive Optics system for Vainu Bappu Telescope Proposed Adaptive Optics system for Vainu Bappu Telescope Essential requirements of an adaptive optics system Adaptive Optics is a real time wave front error measurement and correction system The essential

More information

Checkerboard-Mask Coronagraphs for High-Contrast Imaging

Checkerboard-Mask Coronagraphs for High-Contrast Imaging Checkerboard-Mask Coronagraphs for High-Contrast Imaging Robert J. Vanderbei Operations Research and Financial Engineering, Princeton University rvdb@princeton.edu N. Jeremy Kasdin Mechanical and Aerospace

More information

1.1 Singlet. Solution. a) Starting setup: The two radii and the image distance is chosen as variable.

1.1 Singlet. Solution. a) Starting setup: The two radii and the image distance is chosen as variable. 1 1.1 Singlet Optimize a single lens with the data λ = 546.07 nm, object in the distance 100 mm from the lens on axis only, focal length f = 45 mm and numerical aperture NA = 0.07 in the object space.

More information

arxiv: v1 [astro-ph.im] 5 Nov 2015

arxiv: v1 [astro-ph.im] 5 Nov 2015 Demonstration of high contrast with an obscured aperture with the WFIRST-AFTA shaped pupil coronagraph Eric Cady a, Camilo Mejia Prada a, Xin An a, Kunjithapatham Balasubramanian a, Rosemary Diaz a, N.

More information

The Coronagraph Tree of Life (non-solar coronagraphs)

The Coronagraph Tree of Life (non-solar coronagraphs) The Coronagraph Tree of Life (non-solar coronagraphs) Olivier Guyon (Subaru Telescope) guyon@naoj.org Quick overview of coronagraph designs attempt to group coronagraphs in broad families Where is the

More information

Binocular and Scope Performance 57. Diffraction Effects

Binocular and Scope Performance 57. Diffraction Effects Binocular and Scope Performance 57 Diffraction Effects The resolving power of a perfect optical system is determined by diffraction that results from the wave nature of light. An infinitely distant point

More information

Focal Plane and non-linear Curvature Wavefront Sensing for High Contrast Coronagraphic Adaptive Optics Imaging

Focal Plane and non-linear Curvature Wavefront Sensing for High Contrast Coronagraphic Adaptive Optics Imaging Focal Plane and non-linear Curvature Wavefront Sensing for High Contrast Coronagraphic Adaptive Optics Imaging Olivier Guyon Subaru Telescope 640 N. A'ohoku Pl. Hilo, HI 96720 USA Abstract Wavefronts can

More information

Integrated Micro Machines Inc.

Integrated Micro Machines Inc. Integrated Micro Machines Inc. Segmented Galvanometer-Driven Deformable Mirrors Keith O Hara The segmented mirror array developed for an optical cross connect Requirements for the cross-connect Requirements

More information

SPEED: the Segmented Pupil Experiment for Exoplanet Detection

SPEED: the Segmented Pupil Experiment for Exoplanet Detection SPEED: the Segmented Pupil Experiment for Exoplanet Detection P. Martinez *a, O. Preis a, C. Gouvret a, J. Dejongue a, J-B. Daban a, A. Spang a, F. Martinache a, M. Beaulieu a, P. Janin-Potiron a, L. Abe

More information

PROCEEDINGS OF SPIE. Double drive modes unimorph deformable mirror with high actuator count for astronomical application

PROCEEDINGS OF SPIE. Double drive modes unimorph deformable mirror with high actuator count for astronomical application PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Double drive modes unimorph deformable mirror with high actuator count for astronomical application Ying Liu, Jianqiang Ma, Junjie

More information

October 7, Peter Cheimets Smithsonian Astrophysical Observatory 60 Garden Street, MS 5 Cambridge, MA Dear Peter:

October 7, Peter Cheimets Smithsonian Astrophysical Observatory 60 Garden Street, MS 5 Cambridge, MA Dear Peter: October 7, 1997 Peter Cheimets Smithsonian Astrophysical Observatory 60 Garden Street, MS 5 Cambridge, MA 02138 Dear Peter: This is the report on all of the HIREX analysis done to date, with corrections

More information

Subjective Image Quality Metrics from The Wave Aberration

Subjective Image Quality Metrics from The Wave Aberration Subjective Image Quality Metrics from The Wave Aberration David R. Williams William G. Allyn Professor of Medical Optics Center For Visual Science University of Rochester Commercial Relationship: Bausch

More information

Testing an off-axis parabola with a CGH and a spherical mirror as null lens

Testing an off-axis parabola with a CGH and a spherical mirror as null lens Testing an off-axis parabola with a CGH and a spherical mirror as null lens Chunyu Zhao a, Rene Zehnder a, James H. Burge a, Hubert M. Martin a,b a College of Optical Sciences, University of Arizona 1630

More information

3.0 Alignment Equipment and Diagnostic Tools:

3.0 Alignment Equipment and Diagnostic Tools: 3.0 Alignment Equipment and Diagnostic Tools: Alignment equipment The alignment telescope and its use The laser autostigmatic cube (LACI) interferometer A pin -- and how to find the center of curvature

More information

ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008

ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008 ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008 July 2003+ Chuck DiMarzio, Northeastern University 11270-04-1

More information

arxiv: v1 [astro-ph.im] 15 Aug 2012

arxiv: v1 [astro-ph.im] 15 Aug 2012 Broadband Focal Plane Wavefront Control of Amplitude and Phase Aberrations Tyler D. Groff a, N. Jeremy Kasdin a, Alexis Carlotti a and A J Eldorado Riggs a a Princeton University, Princeton, NJ USA arxiv:128.3191v1

More information

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%.

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%. Application Note AN004: Fiber Coupling Improvement Introduction AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%. Industrial lasers used for cutting, welding, drilling,

More information

MMTO Technical Memorandum #03-1

MMTO Technical Memorandum #03-1 MMTO Technical Memorandum #03-1 Fall 2002 f/9 optical performance of the 6.5m MMT analyzed with the top box Shack-Hartmann wavefront sensor S. C. West January 2003 Fall 2002 f/9 optical performance of

More information

CHARA Collaboration Review New York 2007 CHARA Telescope Alignment

CHARA Collaboration Review New York 2007 CHARA Telescope Alignment CHARA Telescope Alignment By Laszlo Sturmann Mersenne (Cassegrain type) Telescope M2 140 mm R= 625 mm k = -1 M1/M2 provides an afocal optical system 1 m input beam and 0.125 m collimated output beam Aplanatic

More information

Ron Liu OPTI521-Introductory Optomechanical Engineering December 7, 2009

Ron Liu OPTI521-Introductory Optomechanical Engineering December 7, 2009 Synopsis of METHOD AND APPARATUS FOR IMPROVING VISION AND THE RESOLUTION OF RETINAL IMAGES by David R. Williams and Junzhong Liang from the US Patent Number: 5,777,719 issued in July 7, 1998 Ron Liu OPTI521-Introductory

More information

OPTICAL IMAGING AND ABERRATIONS

OPTICAL IMAGING AND ABERRATIONS OPTICAL IMAGING AND ABERRATIONS PARTI RAY GEOMETRICAL OPTICS VIRENDRA N. MAHAJAN THE AEROSPACE CORPORATION AND THE UNIVERSITY OF SOUTHERN CALIFORNIA SPIE O P T I C A L E N G I N E E R I N G P R E S S A

More information

DAVINCI Pupil Mask Size and Pupil Image Quality By Sean Adkins April 29, 2010

DAVINCI Pupil Mask Size and Pupil Image Quality By Sean Adkins April 29, 2010 By Sean Adkins INTRODUCTION 3 This document discusses considerations for the DAVINCI instrument s pupil image quality and pupil mask selections. The DAVINCI instrument (Adkins et al., 2010) requires a

More information

Cardinal Points of an Optical System--and Other Basic Facts

Cardinal Points of an Optical System--and Other Basic Facts Cardinal Points of an Optical System--and Other Basic Facts The fundamental feature of any optical system is the aperture stop. Thus, the most fundamental optical system is the pinhole camera. The image

More information

Ultra-Flat Tip-Tilt-Piston MEMS Deformable Mirror

Ultra-Flat Tip-Tilt-Piston MEMS Deformable Mirror Ultra-Flat Tip-Tilt-Piston MEMS Deformable Mirror Mirror Technology Days June 16 th, 2009 Jason Stewart Steven Cornelissen Paul Bierden Boston Micromachines Corp. Thomas Bifano Boston University Mirror

More information

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember Günter Toesko - Laserseminar BLZ im Dezember 2009 1 Aberrations An optical aberration is a distortion in the image formed by an optical system compared to the original. It can arise for a number of reasons

More information

A JWST Derivative Design for the Next Large Aperture UV/Optical Telescope

A JWST Derivative Design for the Next Large Aperture UV/Optical Telescope A JWST Derivative Design for the Next Large Aperture UV/Optical Telescope W. B. Whiddon Next Large Aperture Optical/UV Telescope Workshop 11 April 2003 Strategy JWST is the nation's investment in large

More information

COMPARISON OF WAVEFRONT CONTROL ALGORITHMS AND FIRST RESULTS ON THE HIGH-CONTRAST IMAGER FOR COMPLEX APERTURE TELESCOPES (HICAT) TESTBED

COMPARISON OF WAVEFRONT CONTROL ALGORITHMS AND FIRST RESULTS ON THE HIGH-CONTRAST IMAGER FOR COMPLEX APERTURE TELESCOPES (HICAT) TESTBED COMPARISON OF WAVEFRONT CONTROL ALGORITHMS AND FIRST RESULTS ON THE HIGH-CONTRAST IMAGER FOR COMPLEX APERTURE TELESCOPES (HICAT) TESTBED L. Leboulleux 1,2,3, M. N Diaye 3, J. Mazoyer 3, L. Pueyo 3, M.

More information

Optimal apodizations for on-axis vector vortex coronagraphs

Optimal apodizations for on-axis vector vortex coronagraphs Optimal apodizations for on-axis vector vortex coronagraphs Kevin Fogarty a, Laurent Pueyo b, Dimitri Mawet c a Johns Hopkins Universty Department of Physics and Astronomy, 3400 N. Charles St, Baltimore,

More information

Big League Cryogenics and Vacuum The LHC at CERN

Big League Cryogenics and Vacuum The LHC at CERN Big League Cryogenics and Vacuum The LHC at CERN A typical astronomical instrument must maintain about one cubic meter at a pressure of

More information

Technology Development towards WFIRST-AFTA Coronagraph

Technology Development towards WFIRST-AFTA Coronagraph Technology Development towards WFIRST-AFTA Coronagraph Ilya Poberezhskiy a*, Feng Zhao a, Xin An a, Kunjithapatham Balasubramanian a, Ruslan Belikov b, Eric Cady a, Richard Demers a, Rosemary Diaz a, Qian

More information

The Aberration Structure of the Keratoconic Eye

The Aberration Structure of the Keratoconic Eye The Aberration Structure of the Keratoconic Eye Geunyoung Yoon, Ph.D. Department of Ophthalmology Center for Visual Science Institute of Optics Department of Biomedical Engineering University of Rochester

More information

BEAM HALO OBSERVATION BY CORONAGRAPH

BEAM HALO OBSERVATION BY CORONAGRAPH BEAM HALO OBSERVATION BY CORONAGRAPH T. Mitsuhashi, KEK, TSUKUBA, Japan Abstract We have developed a coronagraph for the observation of the beam halo surrounding a beam. An opaque disk is set in the beam

More information

Astronomy. Astrophysics. Apodized phase mask coronagraphs for arbitrary apertures. II. Comprehensive review of solutions for the vortex coronagraph

Astronomy. Astrophysics. Apodized phase mask coronagraphs for arbitrary apertures. II. Comprehensive review of solutions for the vortex coronagraph A&A 566, A31 (214) DOI: 1.151/4-6361/21323258 c ESO 214 Astronomy & Astrophysics Apodized phase mask coronagraphs for arbitrary apertures II. Comprehensive review of solutions for the vortex coronagraph

More information

WaveMaster IOL. Fast and accurate intraocular lens tester

WaveMaster IOL. Fast and accurate intraocular lens tester WaveMaster IOL Fast and accurate intraocular lens tester INTRAOCULAR LENS TESTER WaveMaster IOL Fast and accurate intraocular lens tester WaveMaster IOL is a new instrument providing real time analysis

More information

IMAGE SENSOR SOLUTIONS. KAC-96-1/5" Lens Kit. KODAK KAC-96-1/5" Lens Kit. for use with the KODAK CMOS Image Sensors. November 2004 Revision 2

IMAGE SENSOR SOLUTIONS. KAC-96-1/5 Lens Kit. KODAK KAC-96-1/5 Lens Kit. for use with the KODAK CMOS Image Sensors. November 2004 Revision 2 KODAK for use with the KODAK CMOS Image Sensors November 2004 Revision 2 1.1 Introduction Choosing the right lens is a critical aspect of designing an imaging system. Typically the trade off between image

More information

Shaped pupil Lyot coronagraphs: high-contrast solutions for restricted focal planes

Shaped pupil Lyot coronagraphs: high-contrast solutions for restricted focal planes Shaped pupil Lyot coronagraphs: high-contrast solutions for restricted focal planes Neil T. Zimmerman A. J. Eldorado Riggs N. Jeremy Kasdin Alexis Carlotti Robert J. Vanderbei Journal of Astronomical Telescopes,

More information

Why is There a Black Dot when Defocus = 1λ?

Why is There a Black Dot when Defocus = 1λ? Why is There a Black Dot when Defocus = 1λ? W = W 020 = a 020 ρ 2 When a 020 = 1λ Sag of the wavefront at full aperture (ρ = 1) = 1λ Sag of the wavefront at ρ = 0.707 = 0.5λ Area of the pupil from ρ =

More information

Hartmann wavefront sensing Beamline alignment

Hartmann wavefront sensing Beamline alignment Hartmann wavefront sensing Beamline alignment Guillaume Dovillaire SOS Trieste October 4th, 2016 G. Dovillaire M COM PPT 2016.01 GD 1 SOS Trieste October 4th, 2016 G. Dovillaire M COM PPT 2016.01 GD 2

More information

MALA MATEEN. 1. Abstract

MALA MATEEN. 1. Abstract IMPROVING THE SENSITIVITY OF ASTRONOMICAL CURVATURE WAVEFRONT SENSOR USING DUAL-STROKE CURVATURE: A SYNOPSIS MALA MATEEN 1. Abstract Below I present a synopsis of the paper: Improving the Sensitivity of

More information

WaveMaster IOL. Fast and Accurate Intraocular Lens Tester

WaveMaster IOL. Fast and Accurate Intraocular Lens Tester WaveMaster IOL Fast and Accurate Intraocular Lens Tester INTRAOCULAR LENS TESTER WaveMaster IOL Fast and accurate intraocular lens tester WaveMaster IOL is an instrument providing real time analysis of

More information

Fabrication of 6.5 m f/1.25 Mirrors for the MMT and Magellan Telescopes

Fabrication of 6.5 m f/1.25 Mirrors for the MMT and Magellan Telescopes Fabrication of 6.5 m f/1.25 Mirrors for the MMT and Magellan Telescopes H. M. Martin, R. G. Allen, J. H. Burge, L. R. Dettmann, D. A. Ketelsen, W. C. Kittrell, S. M. Miller and S. C. West Steward Observatory,

More information

Development of a Deformable Mirror for High-Power Lasers

Development of a Deformable Mirror for High-Power Lasers Development of a Deformable Mirror for High-Power Lasers Dr. Justin Mansell and Robert Praus MZA Associates Corporation Mirror Technology Days August 1, 2007 1 Outline Introduction & Project Goal Deformable

More information

A Ground-based Sensor to Detect GEOs Without the Use of a Laser Guide-star

A Ground-based Sensor to Detect GEOs Without the Use of a Laser Guide-star A Ground-based Sensor to Detect GEOs Without the Use of a Laser Guide-star Mala Mateen Air Force Research Laboratory, Kirtland AFB, NM, 87117 Olivier Guyon Subaru Telescope, Hilo, HI, 96720 Michael Hart,

More information

Lens Design II Seminar 6 (Solutions)

Lens Design II Seminar 6 (Solutions) 2017-01-04 Prof. Herbert Gross Yi Zhong, Norman G. Worku Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Lens Design II Seminar 6 (Solutions) 6.1. Correction

More information

arxiv:astro-ph/ v1 30 Mar 2005

arxiv:astro-ph/ v1 30 Mar 2005 Tip-tilt Error in Lyot Coronagraphs James P. Lloyd 1,2,3 arxiv:astro-ph/0503661v1 30 Mar 2005 Astronomy Department California Institute of Technology 1200 East California Boulevard, Pasadena, CA 91125

More information

Long-Range Adaptive Passive Imaging Through Turbulence

Long-Range Adaptive Passive Imaging Through Turbulence / APPROVED FOR PUBLIC RELEASE Long-Range Adaptive Passive Imaging Through Turbulence David Tofsted, with John Blowers, Joel Soto, Sean D Arcy, and Nathan Tofsted U.S. Army Research Laboratory RDRL-CIE-D

More information

Lens Design I Seminar 1

Lens Design I Seminar 1 Xiang Lu, Ralf Hambach Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Lens Design I Seminar 1 Warm-Up (20min) Setup a single, symmetric, biconvex lens

More information

Optimization of coupling between Adaptive Optics and Single Mode Fibers ---

Optimization of coupling between Adaptive Optics and Single Mode Fibers --- Optimization of coupling between Adaptive Optics and Single Mode Fibers --- Non common path aberrations compensation through dithering K. Saab 1, V. Michau 1, C. Petit 1, N. Vedrenne 1, P. Bério 2, M.

More information

Wavefront-Guided Programmable Spectacles Related Metrics

Wavefront-Guided Programmable Spectacles Related Metrics Wavefront-Guided Programmable Spectacles Related Metrics Lawrence Sverdrup, Sean Sigarlaki, Jeffrey Chomyn, Jagdish Jethmalani, Andreas Dreher Ophthonix, Inc. 23rd February 2007 Outline Background on Ophthonix

More information